
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-AM-14-C11P07R02-037

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

bäÉîÉåíÜ=^ååì~ä=^Åèìáëáíáçå=
oÉëÉ~êÅÜ=póãéçëáìã=

tÉÇåÉëÇ~ó=pÉëëáçåë=
sçäìãÉ=f= =

Analyzing Quality Attributes as a Means to Improve
Acquisition Strategies

Lisa Brownsword, Carnegie Mellon University
Cecilia Albert, Carnegie Mellon University
Patrick Place, Carnegie Mellon University
David Carney, Carnegie Mellon University

Published April 30, 2014

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 181 -

Panel 7. Challenges of Software Development in an
Open Architecture Environment

Wednesday, May 14, 2014

1:45 p.m. –
3:15 p.m.

Chair: TBD

Achieving Better Buying Power Through Cost-Sensitive Acquisition of Open
Architecture Software Systems

Walt Scacchi, University of California–Irvine
Thomas Alspaugh, University of California–Irvine

Analyzing Quality Attributes as a Means to Improve Acquisition Strategies

Lisa Brownsword, Carnegie Mellon University
Cecilia Albert, Carnegie Mellon University
Patrick Place, Carnegie Mellon University
David Carney, Carnegie Mellon University

Combining Risk Analysis and Slicing for Test Reduction in Open
Architecture

Valdis Berzins, Naval Postgraduate School

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 183 -

Analyzing Quality Attributes as a Means to Improve
Acquisition Strategies

Patrick Place—is a senior member of the technical staff at the Software Engineering Institute.
Recent projects include developing practices for engineering in a system of systems context; the
Service Migration and Reuse Technique; and the acquisition implications of adopting a service-
oriented architecture (SOA) development strategy. He has participated in a number of independent
technical assessments related to the adoption of SOA practices. Place has been an adjunct lecturer
at Carnegie Mellon University, South Bank University, and Imperial College teaching various courses
on the use of formal specification techniques. [prp@sei.cmu.edu]

Lisa Brownsword—is a senior member of the technical staff at the Software Engineering Institute.
She manages and participates in customer engagements for major programs within the Department
of Defense and federal agencies, providing pragmatic expertise in software engineering, systems of
systems, commercial off-the-shelf–based systems, architecture and product lines, and iterative
development. She is managing a research team to identify patterns of misalignment of acquisition
strategies, architecture, and program business and mission goals that lead to program problems.
[llb@sei.cmu.edu]

Cecilia Albert—is a senior member of the technical staff at the Software Engineering Institute, where
she has managed strategic software improvement across Army programs and codeveloped a process
for developing commercial off-the-shelf–based systems. Albert has more than 35 years of experience
developing and acquiring software-reliant systems and holds a master’s degree in computer science
from Stanford University and a bachelor’s degree from Sweet Briar College. [cca@sei.cmu.edu]

David Carney—is a retired member of the Software Engineering Institute (SEI), now working as a
consultant on select assignments. He has 30 years’ experience as a software engineer working at
Intermetrics, the Institute for Defense Analyses, and the SEI. His fields of particular interest have
included computer-aided software engineering tool environments, system of systems integration,
issues relating to the use of commercial off-the-shelf products, and service-oriented architectures.
[djc@sei.cmu.edu]

Abstract
In the acquisition of a software-intensive system, the relationship between the software
architecture and the acquisition strategy is typically not specifically examined. The first phase
of our research discovered an initial set of failure patterns that result when these two entities
become misaligned. Programs with these failure patterns experienced reduced operational
capabilities and effectiveness, cost overruns, and significant schedule slips. In other words,
these programs resulted in systems failing to satisfy stakeholder needs.

This paper briefly describes the conceptual foundations for our project and summarizes the
first phase as context for the second phase, which is the major thrust of this paper. The
current research has centered on demonstrating the existence and utility of acquisition-
related quality attributes, embodied in a program’s business goals, which then drive the
shape of the acquisition strategy. This is comparable to the relationship between mission
goals, software-related quality attributes, and the software architecture. This paper describes
the approach used to generate 75 acquisition-related quality attribute scenarios based on
data derived from more than 23 large government programs spanning business, logistics,
command and control, and satellite domains.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 184 -

Introduction
Our project is focused on the relationships between software architecture1 and

acquisition strategy.2 Although these entities might appear to be unrelated, there is a
surprisingly deep connection between them. More specifically, we are concerned with their
alignment or misalignment. By identifying and articulating how key entities that are critical to
alignment or misalignment interact, we can provide a useful approach for organizations and
project managers engaged in acquisition programs.

The key entities of interest are as follows: the architectures themselves, both
software and system; the planned acquisition strategy; the quality attributes that drive those
architectures and strategies; and the goals (both business and mission3) of all of the
stakeholders. By examining these entities, we seek to pinpoint major sources that tend
either to keep the software architecture and acquisition strategy in harmony or to pull them
apart. By so doing, we intend to provide a method for organizations and project managers to
avoid patterns of failures that we have discovered, which are summarized in the Phase One:
Characterizing Failure Patterns section. We expect to validate the utility of this method
through pilot applications on projects and programs outside the Software Engineering
Institute (SEI).

This project is expected to take place over multiple phases. The remainder of this
section describes the conceptual foundations for our project as a whole. The second section
summarizes the first phase as context for the third section, which discusses the current work
we completed in the second phase and is the major thrust of this paper. In the final section,
we describe our plans for future phases.

Hypotheses

Our primary hypothesis is that a mismatch between acquisition strategy and software
architecture contributes to significant problems in acquisition programs. If a program can
avoid the patterns of failure (such as those we identified in phase one of our research), its
acquisition strategy and software architecture can be aligned and the program can increase
the likelihood of program success.

This hypothesis depends on two key premises. First, a software architecture and an
acquisition strategy are necessarily related, as shown in the work of Conway (1968) and
MacCormack (2011). These entities form two conceptual structures that are parallel,
although in different spheres of the acquisition space (i.e., the software architecture, and the

1 Software architecture is defined by Bass, Clements, and Kazman (2012) as “the structure or structures of the
system, which comprise software elements, the externally visible properties of those elements, and the
relationships among them.”
2 Acquisition strategy is defined by the Defense Acquisition University (2011) as “A business and technical
management approach designed to achieve program objectives within the resource constraints imposed. It is the
framework for planning, directing, contracting for, and managing a program. It provides a master schedule for
research, development, test, production, fielding, modification, postproduction management, and other activities
essential for program success.”
3 A mission goal is an expression of an operational objective that could affect a user, focused on what the
solution or product should do or how it should behave. A business goal is an expression of an organizational
(e.g., Navy) objective, focused on what the acquisition (development or maintenance) organization should do or
how it should behave.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 185 -

mission users and goals, on one hand; the acquisition strategy, and business stakeholders
and goals, on the other hand).

Second, the quality of the relationship between software architecture (and related
mission goals and software and system quality attributes) and program acquisition strategy
(and related business goals and acquisition quality attributes4) is of critical importance to the
success of the program5. This relationship must be one wherein these two entities are both
aligned and mutually constraining.

Foundations

This research builds on significant previous work. There are three foundations that
frame our research. The first is our recognition and appreciation of the considerable body of
knowledge that has emerged from the SEI’s ongoing work in software architecture6. Two
SEI methods are of particular relevance to our work:

 generating, documenting, and prioritizing a system’s quality properties (e.g.,
performance, availability, interoperability): the quality attribute workshop
(QAW; Barbacci et al., 2003) and

 eliciting and documenting high-priority business and mission goals and
capturing the architectural implications of those goals: the Pedigreed Attribute
eLicitation Method (PALM; Clements & Bass, 2010).

The second foundation of our research lies in the ongoing efforts of the Department
of Defense (DoD) to improve the acquisition process. These efforts have had two positive
effects on our research. First, the business goals of the DoD have been clearly stated;
second, they make the relationship between these business goals and the program’s
acquisition strategy more explicit. With efforts such as Better Buying Power 2.0, described
by the Office of the Under Secretary of Defense (2012), improvements are being sought in
delivering better value to both the taxpayer and the warfighter.

A third foundation of our work is the SEI’s experience with more than 100
independent technical assessments (or ITAs, and often informally called “red teams”). Such
assessments are commissioned by the government to provide third-party analyses of a
program’s health, quality of progress, and similar conditions. Our team’s ITA experiences
and those of our colleagues strongly corroborate the observations noted in the previous
paragraph.

Phase One: Characterizing Failure Patterns
As previously noted, developing a validated method that facilitates the alignment of a

software architecture and the acquisition strategy within a program is a multiphase project.
Our objective for phase one was to discover the potential causes of mismatch between the
acquisition strategy and the software architecture that contribute to acquisition program

4 Acquisition quality attributes are properties of the programanalogous to software or system quality attributes.
5 Within the information systems arena, the relationship between business goals and information technology (IT)
is termed business-IT alignment and is considered crucial to the success of an enterprise. For more information,
readers can refer to Strassman (1998) or Henderson and Venkatraman (1993).
6 Although we specifically call out SEI research in software architecture, we are not limited to this source in our
research. We are leveraging other work in the broader architecture and requirements community, particularly as
we move into phase three of this project.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 186 -

problems. In this section, we summarize the activities and outcomes of the first phase of our
project, principally covering the following: patterns of failure, or anti-patterns; entities and
relations that pertain to the anti-patterns; and conclusions we drew from this phase of our
research.

Entities and Relations That Pertain to Our Anti-Patterns

Our initial focus was on gathering data by conducting interviews with SEI personnel
who had participated in major ITAs. In analyzing this data, we discovered several recurring
patterns of mismatches between the acquisition strategy and the software architecture
leading to programmatic failures. We based some of this analysis on an existing body of
research on design patterns:

[A pattern] describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice; in other words, a pattern is a template that can
be used in a specific situations. (Alexander, Ishikawa, & Silverstein, 1977)

We transposed this description somewhat, since Alexander et al.’s description of a
pattern included the presence of a solution to a problem, while we were describing only the
problem element. This transposition is commonly called an “anti-pattern” within the software
community, as exemplified by Brown, Malveau, McCormick, and Mowbray (1998).

While there are many patterns of failure in acquisitions, the analysis of our data
identified a number of anti-patterns that were evident in the programs we studied. These
were the following:

1. undocumented business goals,

2. unresolved conflicting goals,

3. failure to adapt,

4. turbulent acquisition environment,

5. poor consideration of software,

6. inappropriate acquisition strategies, and

7. overlooking quality attributes.

For each of these anti-patterns, we described the context in which the problem
usually emerged, the specific nature of the problem, the observed response to the problem
(NB: not a solution, but rather the observed response that failed to solve the problem), and
examples of the consequences, both immediate and long-range. Brownsword et al. (2013)
described these anti-patterns further.

Entities and Relations That Pertain to Anti-Patterns

Based on our analysis, we conjectured that there was a small number of critical
entities involved in these anti-patterns and that they were related in significant ways. The
entities are as follows:

 mission goals, and the (system and software) quality attributes implicit in
those goals;

 business goals, and the (acquisition) quality attributes implicit in those goals;

 the acquisition strategy;

 the software and system architectures, which are closely related but
separate; and

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 187 -

 the different sets of stakeholders who have expressed needs that are
captured by the mission and business goals.

The set of entities and relations is shown in Figure 1 and is at the heart of our
primary hypotheses: if these relationships between the main entities of an acquisition are
strong, then there is a higher chance that the acquisition strategy and the software
architecture are mutually constraining, and at least this cause of acquisition failure can be
avoided. For example, by strengthening the relationship “stakeholders have business goals,”
such that these goals from the salient stakeholders are collected and exist in a coherent
artifact, then Anti-pattern 1 (undocumented business goals) would not occur, or be
substantially reduced. Brownsword et al. (2013) discussed further how the anti-patterns
noted previously are affected by these relationships.

 Desired Relationships Among the Principal Entities

Conclusions From Our Phase One Research

As shown in Figure 1, the business goals for a program are a key entity. Although
our data showed that a number of important stakeholders have business goals, these goals
are often not expressed or captured. Further, we observed that there was no process for
doing so. Without such a process, it is difficult to analyze these goals for conflicts with other
mission or business goals, let alone to analyze for the sufficiency of the acquisition strategy
to accommodate the desired business goals.

Through our phase one research and analysis, we concluded that the business
goals, similar to mission goals, will have quality attributes that should be the main drivers for
the acquisition strategy. We assert that these acquisition strategy–related quality attributes
are as important as those derived from the mission goals and refer to them as acquisition
quality attributes. We posit that these acquisition quality attributes are a critical means for
forming and analyzing the acquisition strategy for a particular program.

How are these acquisition quality attributes best elicited and captured? Can they be
used to surface potential conflicts among other business goals? Can they show possible

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 188 -

impacts on an acquisition strategy? Exploring these questions became the basis for phase
two of our project.

Phase Two: Exploring Acquisition Quality Attributes
The focus for phase two of our project was to demonstrate the applicability of

acquisition quality attributes. Our premise was twofold: (1) there is a set of program-specific
acquisition quality attributes that can be derived from a program’s business goals that drive
its acquisition strategy and (2) acquisition quality attributes can be expressed in a way that
allows them to be analyzed and evaluated. Our research methodology for this phase
consisted of the following activities:

 form a list of potential acquisition quality attributes,

 define an approach for expressing program-specific acquisition quality
attributes that allows them to be effectively reasoned about,

 elicit and capture acquisition quality attribute scenarios,

 build and validate a prototype workshop to elicit acquisition quality attribute
scenarios, and

 analyze the acquisition quality attribute scenarios.

Much of this work followed a similar path as that used with the original research on
software quality attributes. In particular, similar to the developers of QAW and PALM, we
adopted the principle of using scenarios to give precise meaning to acquisition quality
attributes.

Potential Acquisition Quality Attributes

There are many different ways that attributes—whether the software quality
attributes of software architecture or the acquisition quality attributes we are presently
focusing on—can be aggregated. We decided initially to simply create a list, unordered and
without concern for generality or specificity, and use the scenarios to give us insight as to
what a reasonable taxonomy might be. The initial list was derived from a combination of
reviews of DoD acquisition strategy guidance and discussion with acquisition professionals,
colleagues, and several brainstorming sessions within our team.

However, as we reflected on the collection of acquisition quality attribute scenarios
generated through our research, we saw emerging themes that may provide the basis for a
possible taxonomy of acquisition quality attributes in the future. We observed the following:

 Executability tends to occur when program cost, schedule, and performance
are in balance and can therefore be further decomposed into affordability,
schedulability, and performability.

 Flexibility tends to occur when a program can respond appropriately to
changes and could therefore also embrace the attribute of innovativeness.

 Program survivability tends to occur to the extent that a program can defend
against external pressure; this attribute could also embrace the attribute of
staffability.

 Realism tends to occur when stakeholder expectations are compatible with
the program.

 Transparency tends to occur when information about cost, schedule, and
performance is available.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 189 -

These initial observations are oriented exclusively to acquisition and programmatic
factors and do not attempt to account for software architecture decisions. Further work
during phase three of this project may refine and extend these early observations.

Expressing Program-Specific Acquisition Quality Attribute Scenarios

We next considered how program-specific scenarios might be constructed. Once
again, the example from the work in software architecture–based scenarios was invaluable.
In a software architecture QAW, end users are encouraged to create small “stories” that
specify some event (the “stimulus”) that occurs under particular conditions (the
“environment”) and then the desired behavior (the “response”) of the system.

An example of such a scenario from the domain of software architecture (Software
Engineering Institute, n.d.) might be the following:

Stimulus: An internal component fails

Environment: During normal operation

Response: The system is able to recognize a failure of an internal
component and has strategies to compensate for the fault

A parallel example from the domain of acquisition might be the following:

Stimulus: An unexpected budget cut

Environment: For a multi-segment system

Response: The program is able to move work between major segments to
speed up or slow down separate segments within the available
funding

Subsequently, a program would expand these three-part scenarios to six parts: the
original three parts; who generates the stimulus (the “source”); the artifact that the stimulus
most strongly affects, and the measure(s) by which the success of the response will be
evaluated. In practice, this expansion and refinement takes considerable effort. We
investigated this refinement and expansion for many of the acquisition quality attribute
scenarios created in this phase, and we expect to continue our investigations in the
following phase of our work. For simplicity of presentation in this paper, we use the three-
part scenario form.

Elicit and Capture Acquisition Quality Attribute Scenarios

A major component of phase two was the task of collecting and describing a large
number of scenarios that would provide us with the necessary basis for analyzing alignment
and incompatibilities. To accomplish this task, we needed additional data in the form of
actual acquisition situations, events that occurred (whether beneficial or otherwise), the
types of conditions in which the programs unfolded, the kinds of authority structures and
strictures that were present, and related kinds of information. To this end, we gathered a
large body of actual acquisition experiences through interviews from a variety of acquisition
professionals, and then we refined that experience into a collection of acquisition quality
attribute scenarios. The aggregate data covered 23 government programs gathered through
interviews with former program management office personnel and ITA members.

The data we collected from the interviews described actual acquisition experiences,
each one concerning events with significant effect on the success of a given program. For
each of the descriptions, we isolated the event that occurred: this formed the stimulus of the
scenario. The kinds of stimuli that we noted included the discovery that a contractor is non-

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 190 -

performing due to a lack of capability on staff, and the need to react quickly, and there are
only a limited number of contractors able do the work

We then noted the conditions that were present when that stimulus occurred. By
“conditions that were present,” we refer to a variety of things that might provide the
environment for the scenario. Examples included a program where the work is classified and
it takes a long time to get people cleared and where warfighters have urgent operational
needs and there is a limited number of contractors able do the work.

And finally, we considered the behavior, i.e., the response to the event. At this point,
our focus became divided. On one hand, some of our data (generally drawn from ITA
experiences) indicated what a program had actually done, which was, in retrospect, failing
behavior. By contrast, we also examined data where a program had planned well in its
earliest days, and when some unforeseen event occurred, the program responded in a
beneficial manner.

Comparing these different programs was at the heart of our work during this phase.
We realized that developing acquisition quality attribute scenarios for a real program would
have acquisition-focused program participants try to forecast unexpected events, and the
persons defining the acquisition strategy must design the strategy to permit an appropriate
and beneficial response. We therefore cast each scenario in “beneficial” terms.

The following are examples of the scenarios we constructed. We added an element
to show possible acquisition strategy tactics—that is, how the scenario response could be
incorporated into an acquisition strategy.

Acquisition Quality Attribute Scenario A:

Stimulus One associate contractor refuses to share information with
other contractors

Environment Associate contractors are competing on other customer work

Response Use management structures and incentives to force
collaboration

Potential
Acquisition Tactic

Create contract requirements so government can monitor
collaboration

Acquisition Quality Attribute Scenario B:

Stimulus A new need arises when we want to react quickly

Environment There are only a limited number of contractors able to do the
work

Response Work to satisfy the need is added to an existing contract

Potential
Acquisition Tactic

Award indefinite delivery/indefinite quantity contracts to multiple
(perhaps eight or so) vendors, and issue task orders in a
round-robin fashion

Build Prototype Workshop to Elicit Acquisition Quality Attribute Scenarios

The investigations in scenario elicitation through interviews were focused largely on
how to form viable acquisition quality attribute scenarios from the interview data. This was a
necessary step toward developing a technique that we could use with a program that was in
the process of forming its acquisition strategy. We again leveraged the work in the software
architecture community in eliciting software quality attributes—namely, the QAW. Where

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 191 -

necessary, we made some modifications, but in essence, the prototype acquisition quality
attribute workshop (AQAW) paralleled the QAW closely. The shape of a QAW is as follows:

 Opening presentations define the QAW process, describe the program’s
business and mission drivers, and outline the plan for the system
architecture.

 Scenario brainstorming takes place in a round-robin fashion where each
workshop participant is, in turn, asked to provide a scenario or pass for the
round. Scenarios are provided in a three-part format of stimulus,
environment, and response.

 The last steps of a QAW relate to analysis of the generated scenarios. The
scenarios are consolidated so that duplicates are removed and the remaining
scenarios are prioritized.

We adapted the QAW to form an AQAW primarily by placing more emphasis on the
business presentation and replacing the architecture presentation with one on the program’s
acquisition strategy plans. Prior to scenario brainstorming, we modified the identification of
architectural drivers step to focus on acquisition strategy drivers instead of the architecture.

We conducted a prototype of the AQAW as a test to determine whether our QAW
variant could, indeed, elicit acquisition quality attribute scenarios. The prototype was
conducted on a real program using SEI staff who supported the program in place of
members of the program office. We asked the SEI team members to role-play the actual
stakeholders associated with the program, identifying which role they were playing.

The prototype AQAW generated 20 acquisition quality attribute scenarios. While only
a single instance, the prototype has successfully demonstrated that an AQAW is a plausible
approach for capturing acquisition quality attribute scenarios.

Analyze Acquisition Quality Attribute Scenarios

Our interviews generated 55 acquisition quality attribute scenarios in addition to 20
acquisition quality attribute scenarios captured in the prototype AQAW. Using this data, we
looked for general themes or trends.

The scenarios generated from interviews were developed by asking our interviewees
to identify memorable negative and positive events that occurred in the programs they were
associated with (i.e., we were identifying possible scenarios after the fact). Thus, they gave
us scenarios that largely represented dominant problems encountered in their programs.
Given the large number of programs represented, there were repeating, or at least similar,
program events. Similar scenarios were grouped together, forming five categories as shown
in Table 1.

 Distribution of Scenarios Derived From Interviews

Classification Number
Contractor Capability 10

Program Office Capability 16

Sharing Across Programs 12

Innovative Solution/Technology 8

Other Software Life Cycle 9

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 192 -

The two most common themes occurring in the scenarios relate to personnel and
requirements as part of either the stimulus or the environment: 11 (20%) of the scenarios
reference lack of skilled personnel in either the program office or the contractor and seven
(13%) of the scenarios reference the reality of changing or urgent requirements.

As part of capturing each scenario, we associated it with the acquisition quality
attribute it defines. Table 2 shows the frequency of the acquisition quality attributes.

 Frequency Count of Acquisition Quality Attribute Scenarios

Acquisition Quality Attribute Frequency
Flexibility 23

Performability 15

Realism 14

Affordability 10

Survivability 6

Executability 5

Responsiveness 4

Programmatic Transparency 2

Innovativeness 1

Schedulability 1

Analysis of Scenario Content

Just as for software quality attributes, the general form of an acquisition quality
attribute scenario can be expressed as “if this event occurs (stimulus) when we are in this
state (environment), then we want to be able to do this (response).” However, if we examine
the acquisition quality attribute scenarios we have collected and focus on the stimulus, we
see that the majority of these stimuli follow a slightly different form. Specifically, the stimulus
itself is in two parts, where the first part reveals an issue with one of the three major
programmatic controls (cost, schedule, and performance) and the second part defines the
reason for that issue.

For example, one scenario from our data has the stimulus “The schedule is not being
met because of poor planning by a subcontractor.” We can see that the former part is that
the schedule is not being met, and then a reason is given as the latter part. It is logical that
most scenarios will have a stimulus of this form, since cost, schedule, and performance are
key indicators of the acquisition’s progress and are the areas on which a program reports.
However, if cost, schedule, and performance were the only pieces of the stimulus, it would
be impossible to fashion a detailed response. Thus, a reason for the perturbation is also a
necessary part of the stimulus. The response can then be crafted to mitigate the reason; in
the case of this scenario, one of the responses was “The prime contractor trains the
subcontractor in project management.”

Just as occurs in a QAW, different acquisition quality attribute scenarios from a
single program can be variants of each other. In the case of software quality attributes,
these variants are frequently based on the same stimulus in different environments that
could lead to a different response. We have found in the case of acquisition quality attributes
that these variants are more likely to be based on different responses to the same stimulus
and the same environment.

In hindsight, the different responses in acquisition quality attribute scenarios are a
reflection of the nature of acquisition. Acquisition is about people, not software, making

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 193 -

decisions; and, frequently, these decisions are strongly influenced by factors outside the
control of the program. System and software responses are more deterministic.

The external environmental influences on acquisition decision are very difficult—
maybe even impossible—to explicitly delineate. The number of factors that could influence
the decisions that a program manager makes are numerous and can range from obvious
factors, such as the effect of an unforeseen budget cut or new direction on the schedule
driven by operational crisis, to hidden or subtle factors, such as the relationship between the
program manager and the customer organization.

Different Scenarios Result in Different Acquisition Strategies

If acquisition quality attribute scenarios are truly analogous to software quality
attribute scenarios, then we should be able to anticipate the influence from the acquisition
quality attribute scenarios on the “goodness” of the acquisition strategy analogous to the
way software quality attribute scenarios influence the “goodness” of the software
architecture. Even if applied after the acquisition strategy has been developed, we should be
able to use the acquisition quality attribute scenarios to distinguish between acquisition
strategies or to determine the appropriateness7 of the acquisition strategy with respect to
any given scenario. Since these two ways to use an acquisition quality attribute scenario are
simply a matter of timing, we focus on the first use with the knowledge that if we can
demonstrate that a scenario might influence the acquisition strategy, then we can also use a
scenario to test a strategy.

For an acquisition quality attribute scenario to have an influence on the acquisition,
there must be some element of the scenario that leads the program office to make some
kind of choice between one strategy and another. Examining the relationship, we see that
the acquisition strategy should be such that the program office can make the response
specified in the acquisition quality attribute scenario. Thus, if there are to be different
scenarios, it is reasonable to see that we have either two different scenarios with different
responses or a single scenario that leads to two different responses. In either case, we
show that different scenarios lead to different acquisition strategies.

Examining the scenarios we collected, we found a number relating to new
technology and the issues that arise if the chosen innovative technology fails to deliver on its
promises. From the collected scenarios, we may posit a single scenario with two variant
responses, where the variation depends on the environment component (indicated by italics)
of the scenario:

1. A new technology that the program office expects to use is found to be
unsuitable where schedule is of prime importance; the program office
switches to an alternative that is also currently under development and is
evaluated to be suitable.

2. A new technology that the program office expects to use is found to be
unsuitable where costs must be kept as low as possible; the program office
instructs the contractor to restart but using an alternative technology.

7 We avoid the judgmental terms good and bad since most strategies will be “good” with respect to some
scenarios and “bad” for others. A “good” strategy is one that is appropriate for the crucial scenarios.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 194 -

We can see from these two scenarios that the stimulus is the same but the
environment changes; in the first case, schedule is more important than cost, and the
second case reverses their relative importance. In the first case, an acquisition strategy
starting multiple developments simultaneously with a requirement for some kind of decision
between the alternatives would be appropriate. In the second case, a strategy starting a
single development and continuing with that until such time as it was found to be infeasible
and then switching to an alternative would be appropriate.

As simple as this example is, it demonstrates that different acquisition quality
attribute scenarios can lead to different acquisition strategies. This strengthens our
contention that our use of acquisition quality attributes and acquisition quality attribute
scenarios is, indeed, analogous to the use of software quality attributes and software quality
attribute scenarios and that we may continue to rely on methods and mechanisms
developed for that purpose to assist with the creation of sound acquisition strategies.

Identifying Incompatibilities Between Scenarios

In software, we frequently find that two or more software quality attributes are
incompatible with each other (e.g., performance attributes are often in conflict with security
attributes) and thus become the subject of architectural trade-offs. We, therefore, examined
the acquisition quality attribute scenarios to determine the possible kinds of incompatibilities
between different scenarios. We first considered incompatibilities that could occur between
different acquisition-related scenarios and then considered incompatibilities that could occur
between an acquisition-related scenario and an architecture-related scenario.

Incompatible Acquisition Scenarios

Conflicts between scenarios are not always obvious and may not become apparent
immediately. In the following example, for instance, the conflict is quite subtle without some
analysis. Organization ABC has deployed a large, complex legacy system in multiple
operational locations, where each location installed its own local variant of the system. Over
time, these variants diverged in response to differing requirements of the local users. The
various operational locations identified a need to share data in a more integrated way. A
new program was initiated to acquire one replacement capability that would support all of
the differing needs across the multiple fielded locations. The program decided to implement
an incremental approach to replacing the legacy system so they could respond to budgetary
constraints and uncertainties.

The operational processes and need vary between the current fielded locations.
Understandably, the user requirements for the new capability also differ across the various
operational sites. As the program attempts to define an agreed-upon set of requirements,
the user representatives change their requirements. In addition, an influential stakeholder
has advocated the use of a new commercial off-the-shelf (COTS) product as the solution
approach.

As might be expected, there are incompatible scenarios that the new program would
need to surface and explicitly address if it is to meet its various stakeholders’ expectations.
The first scenario reflects the expectation of one influential stakeholder who advocated the
use of a COTS product that had been successfully used at one of the operational
installations:

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 195 -

Stimulus There is a desire to replace a complex component of a large
legacy system with a COTS package

Environment Within an established enterprise architecture with many local
variations implemented that are largely different from each
other

Response The program runs a contest with a big prize to evaluate COTS
packages for an enterprise-wide solution.

The second set of stakeholders, reflecting the operational users, is counting on the
new system to quickly address their current needs. Understandably, these needs vary
among the current fielded locations. During the time it takes the program to define an
agreed-upon set of requirements for each increment, the user representatives from the
various fielded locations change their requirements. This leads to the second acquisition
scenario for this program:

Stimulus Requirements for the next release keep changing

Environment For a program with a fixed budget that must be carefully
managed

Response The program accepts the new requirements

Both of these scenarios are related to an acquisition quality attribute of flexibility.
They describe how the program would accommodate different stakeholder needs.
Unfortunately, the two scenarios are potentially incompatible with respect to designing the
acquisition strategy. The first scenario is centered around the implementation of a common
COTS product across all locations. This could provide sizeable value in terms of moving to
one capability that is distributed across all fielded locations, but it may not meet what the
current users consider urgent needs.

Implied in these two scenarios is a third set of stakeholders, the enterprise system
engineers, who are advocating the implementation of an enterprise architecture that extends
across all of the local fielded implementations. This enterprise architecture could be
incompatible with both of the preceding scenarios: Each COTS product, by definition, is built
to an architecture and a set of requirements that ABC has no control over. Further, the
demands for local fielded implementations compete with architectural changes within a
constrained budget.

Competition Between Acquisition and Architecture Scenarios

A different kind of incompatibility, and one less likely to be recognized, can occur
between an acquisition-focused scenario and an architecture-focused one. One cause of
this is that different communities (i.e., acquisition personnel and software personnel) and
different sets of goals (i.e., business and mission) are involved in creating the scenarios.

In one program, for instance, organization XYZ had been under significant criticism
for delay in responding to users in the field. A new director had been appointed with a
mandate to remove bottlenecks and reduce the time between program start and initial
operational capability.

The acquisition strategy therefore emphasized agility, responsiveness, and other
such attributes. Among the elements of the strategy were several goals that (had the AQAW
been available) could have led to appropriate acquisition quality attribute scenarios. For
example, the goal of responsiveness led to a strategy of maximizing the use of open-source
software. If we were to couch that goal in terms of an acquisition quality attribute scenario, it
might take the following form:

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 196 -

Stimulus Users request significant new functionality to be delivered
rapidly

Environment During the program's development phase

Response Create the functionality rapidly by reusing open-source
software from other projects to provide much of the capability

At the same time, however, the software architects had been warned that the
situation in which the system was to be used made it necessary that the system was to be
safety-critical and hard, real-time. Stringent certification standards would also apply to the
system. For that reason, certification of the system would depend on removal of
unreachable code from any reused or open-source software. During a subsequent QAW,
therefore, one of the key scenarios was aimed at a system/software quality attribute of
certifiability:

Stimulus A new requirement to adhere to a rigorous safety standard is
applied to the system

Environment During the program's development phase

Response Remove all unreachable code to insure that the system will
pass stringent new certification standards

As in the previous example, both of these scenarios were well-intentioned, but they
ultimately collided. Because, as the program unfolded, the open source that was most
appropriate for the system had a considerable amount of unreachable code, the
development underwent very large delays since the unreachable code was extensive and
was pervasive in all of the reused modules. The result was that the system was fielded
almost three years late, since certification could not be done until the developers were
convinced that all of the dead code was removed. By common agreement, the program
office believed that while the open-source software provided benefits, they were not as
significant as expected.

In analyzing the 55 acquisition quality attribute scenarios generated from our
interviews, we identified 24 scenarios as having a probable impact on the software
architecture. We would, therefore, expect to have one or more software quality attribute
scenarios for each of the acquisition quality attribute scenarios that would need to be
elicited, captured, and analyzed for potential incompatibilities. This will be an area of
emphasis in the future phases of our project.

Summary and Proposed Future Steps
We are on a journey to provide a better approach to identify, understand, and reason

about key drivers of a program’s acquisition strategy and software architecture. Our
research shows either that these drivers—in the form of business and mission goals—are
implicit or that conflicts exist among the goals that are not resolved. Such misalignment can
lead to reduced operational capabilities and effectiveness, cost overruns, and severe
schedule slips, eventually resulting in systems failing to satisfy stakeholder needs or, still
worse, leading to program cancellations.

In making this pervasive problem tractable, we first created a model of the desired
relationships among key entities—stakeholders, business goals, mission goals, acquisition
strategy, software and system architecture, acquisition quality attributes, and
software/system quality attributes. Forming the model then allowed us to (1) determine that
there is no process for eliciting, capturing, and adjudicating the business goals of a
program’s stakeholders comparable to a process such as the DoD’s Joint Capabilities

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 197 -

Integration Development System process and (2) guide our research to prove our
hypothesis on the existence and utility of acquisition quality attributes, embodied in the
business goals, that drive the shape of the acquisition strategy—comparable to the
relationship between mission goals, quality attributes, and the software architecture.

Our research in phase two was on item 2 mentioned previously (acquisition quality
attributes) and is the focus of this report. We patterned our approach from that used by the
SEI as it identified and codified key concepts and techniques around the relationship
between software/system quality attributes and the software architecture. For the acquisition
domain, we adapted the role of scenarios to create and demonstrate a viable way to
express acquisition quality attributes specific to a particular program. We modified the
original scenario elements in some ways: the acquisition strategy for the software
architecture, the program for the system, and the program manager for the architect.

Underlying our work is the assertion that eliciting quality attributes so they can be
analyzed is as critical for a sound acquisition strategy as it is for software/system
architectures. We conducted various investigations in this regard, gaining experience within
the acquisition domain and capturing numerous example scenarios. These investigations
gave us the confidence that modifying the SEI QAW could be a viable starting point to elicit,
capture, and analyze acquisition quality attributes and begin identifying potential impacts on
an acquisition strategy. Our use of the prototype AQAW also indicated that it is important to
explore a more deterministic approach for eliciting acquisition quality attribute scenarios that
cover the breadth of acquisition strategy drivers and is potentially less dependent on the
particular participants attending a workshop

Our research to date has given us strong confirmation that our initial suppositions
were sound and that the method we will now develop will make a strong contribution to the
acquisition community. In phase one, we saw ample evidence that, among the many pitfalls
that plague acquisition programs, the lack of alignment between acquisition strategy and
architectures ranked high on the scale of problems. During phase two, the gradual maturing
of our concept of the acquisition quality attribute and the value of acquisition-related
scenarios has taught us many considerable lessons in the complex and subtle ways that
acquisition strategy and architecture have mutual influence.

References
Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A pattern language: Towns, buildings,

construction. Oxford, England: Oxford University Press.

Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C., & Wood, W. (2003).
Quality attribute workshops (QAWs) (3rd ed.) (CMU/SEI-2003-TR-016). Retrieved from
Software Engineering Institute, Carnegie Mellon University website:
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6687

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice (3rd ed.).
Addison-Wesley.

Brown, W. J., Malveau, R. C., McCormick, H. W., & Mowbray, T. (1998). Antipatterns:
Refactoring software, architecture, and projects in crisis. Hoboken, NJ: John Wiley &
Sons.

Brownsword, L., Albert, C., Carney, D., Place, P., Hammons, C., & Hudak, J. (2013).
Isolating patterns of failure in Department of Defense acquisition (CMU/SEI-2013-TN-
014). Retrieved from Software Engineering Institute, Carnegie Mellon University
website: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=53252

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 198 -

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-
oriented software architecture volume 1: A system of patterns. Hoboken, NJ: John
Wiley & Sons.

Clements, P., & Bass, L. (2010). Relating business goals to architecturally significant
requirements for software systems (CMU/SEI-2010-TN-018). Retrieved from Software
Engineering Institute, Carnegie Mellon University website:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9347

Conway, M. E. (1968). How do committees invent? Datamation, 14(5), 28–31.

Defense Acquisition University. (2011). Glossary of defense acquisition acronyms and terms
(14th ed.). Retrieved from https://dap.dau.mil/glossary/Pages/Default.aspx

Henderson, J. C., & Venkatraman, N. (1993). Strategic alignment: Leveraging information
technology for transforming organizations. IBM Systems Journal, 32, 1.

Office of the Under Secretary of Defense (OUSD). (2012, November 13). Better Buying
Power 2.0: Continuing the pursuit for greater efficiency and productivity in defense
spending [Memorandum].

Software Engineering Institute. (n.d.). Reasoning about software quality attributes. Retrieved
from http://www.sei.cmu.edu/architecture/start/reasoning.cfm

Acknowledgments
This material is based upon work funded and supported by the Department of

Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the United
States Department of Defense.

No warranty. This Carnegie Mellon University and Software Engineering Institute
material is furnished on an “as-is” basis. Carnegie Mellon University makes no warranties of
any kind, either expressed or implied, as to any matter including, but not limited to, warranty
of fitness for purpose or merchantability, exclusivity, or results obtained from use of the
material. Carnegie Mellon University does not make any warranty of any kind with respect to
freedom from patent, trademark, or copyright infringement.

This material has been approved for public release and unlimited distribution.

DM-0001076

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net

