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Abstract 
Like most contemporary organizations, the Department of Defense (DoD) is under increasing 
pressure to reap the synergistic advantages of collaborative efforts across branches and 
services. Starting in the early 2000s, under former Defense Secretary Donald Rumsfeld, the 
transformation to the joint warfighting paradigm at the Defense Department has been in 
progress now for over a decade. As a consequence of these new defense realities, the 
integration of capabilities across a range of different MDAPs becomes a crucial factor for 
success on the battlefield. But, in doing so, it widens the number of stakeholders and 
requirements that must be met. Accommodating joint requirements also means that fiscal 
resources will derive from a wider set of sources, with all of the political and financial 
complexity they portend. In short, the complex needs of combatants for interoperable 
systems leads to the demand for material solutions—weapons systems—that are capable of 
enabling joint operations in the battlefield.  

This research examines DoD acquisition from the context of a network of interrelated 
programs that exchange and share resources for the purpose of establishing joint 
capabilities. The research focuses on the joint space of major defense acquisition programs 
(MDAPs): the space where transactions form interdependencies among MDAP programs. 
The research is especially salient because, to date, little is known about the risks associated 
with interdependent activities. 

Introduction 
For this research, jointness, interdependency, exchange, and partnerships all refer to 

a similar concept: the notion that autonomous organizations build relationships to obtain 
resources to provide capabilities that, when looked at in totality, form network structures. 
While it is true that at the individual pair-wise level, these exchanges exist as explicit 
transactions for the transfer of data, labor, capital, or materials, it is also true that the totality 
of the various dimensions, coupled with the turbulence of perturbations, influences the cost, 
schedule, and performance of the acquisition effort.  

Organizations in the past sought to limit interdependencies to maintain control over 
the environment. More recently, however, organizations have sought to leverage the 
benefits that interdependencies, or partnerships, can provide. Thus, discussions of the 
nature of structure and how to best organize in the face of increasing needs for 
comprehensive solutions has taken center stage. The key question seems to be whether 
organizations can benefit from interdependence while minimizing the negative influences of 
environmental turbulence. The question thus becomes, what structural arrangements are 
conducive to achieving the benefits of coordinated actions? And what structural 
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arrangements prove to insurmountable to overcome? The following research explores the 
nature of the funding and data interdependencies that characterize major defense 
acquisition programs. 

The primary objective of the research is to isolate how interdependencies influence 
program performance. Three questions drive the research. The first question is to identify 
whether the two networks (funding and data) demonstrate preferential attachment. As 
discussed further below, preferential attachment occurs a small number of programs serve 
as hubs for the network. The presence of preferential attachment is important to program 
performance because while it can demonstrate greater levels of efficiency, it can also 
indicate higher levels of vulnerability. 

The second question seeks to identify the most frequently occurring configuration 
patterns. Network researcher have identified a series of configurations, each type suggests 
different insights that might influence program performance. The third question focuses on 
determining the extent to which MDAPs in the network(s) experience contagion and under 
what conditions contagion is apparent. The discussion below begins by providing a short 
synopsis of network analysis. Once this foundation is established, attention shifts to the 
research methods. The findings section follows and is organized according to the three 
research questions. The paper closes with recommendations for continued research on the 
role of interdependencies on program performance.  

Interdependent Networks 
A novice’s glance into the field of interdependent organizational-based networks is 

likely to reveal a terminological jungle of abstract and obscure vocabulary. This section of 
the report seeks to convey many of the more common network terms and place them in the 
context of DoD acquisition. Table 1 provides a glossary of several of the key terms. At the 
onset, it is important to recognize that the term social is used in a specific empirical context 
for understanding programmatic interactions: “social systems of interaction” form the basis 
from which material equipment and organizational capacities get things done (Turner, 1988). 

Wasserman and Faust (1994) defined the social network perspective as a focus on 
the relationships that exist among entities and the patterns and implications of these 
relationships. Overall, the vantage point is that  

 actors and their actions are viewed as interdependent rather than 
independent, autonomous units; 

 relational ties between actors are channels for the transfer of resources; and 

 network models view the structural environment as providing opportunities 
for, or constraints on, individual and collective action (Wasserman & Faust, 
1994, pp. 3–4). 

In the work setting, network actors (or nodes) often represent people, teams, or 
organizations. A tie represents some form of interaction or relationship. In short, network 
structures provide the “plumbing” for the flow of resources through the network. 
Interdependent networks are complicated by the fact that they are multidimensional, and as 
such, understanding their behavior requires consideration of multiple levels of analysis. 
Typically, networks can be characterized in light of four basic levels: the individual, the 
subnetwork(s), the entire network, or as a multiplex network. A multiplex perspective 
considers the node from a multi-network consideration.  

At the individual (or node) level, an ego is the central node of interest, and those 
connected to the ego are known as alters (see Figure 1a). A network rendering from the 
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context of an ego is referred to as an ego-network. A dyad consists of an ego and its 
adjacent alter. As discussed further below, examining data in light of the dyads (or pairs) 
provides the ability to test the influence that one node might have on another.  

A directed network is one where the flow of resources moves in a specific direction, 
either inbound to an ego or outbound from an ego (see Figure 1b). For example, the data-
sharing network identified previously is a directed network because the data flow from one 
program to another. A directed network can be either sequential or reciprocal in nature. A 
node is labeled as a broker when it connects two distinct subnetworks. So in Figure 1c, 
Program Number 554 Multifunctional Information Distribution System Joint Tactical Radio 
System (MIDS JTRS) acts as a broker between three subnetworks. An isolate is a node with 
no ties. Again, in Figure 1c, Program Number 419 (EA 6B Prowler) is an isolate. In directed 
networks, a node can serve as a transmitter, a receiver, or a carrier. A bridge is identified 
when a tie spans two subnetworks.  

Relying on matrix algebra, a number of metrics have been devised throughout the 
years to measure networks. Some of the metrics occur at the node or ego level, and others 
are at the subnetwork or whole-network levels. Nodes are often considered in light of their 
position, or role, in the network. Many of the ego-level metrics are calculated relative to 
others in the network.  

The degree of a node is the number of ties that a node exhibits. These ties can be 
measured as inbound or outbound (or both) in a directed network. Another measure is the 
geodesic distance that one node may be from another. Adjacency identifies direct 
connections while reachability identifies whether any two nodes are capable of connecting 
by way of other nodes. Degree centrality identifies the number of ties that a node 
possesses. The more ties relative to others, the greater the centrality. Closeness, on the 
other hand, indicates how close a given node is to the remaining nodes. When all of the 
nodes are close to all of the other nodes, the interaction level among the nodes is typically 
high.  

Network size is often calculated as the sum of the number of nodes or number of 
ties. Networks are often measured by the longest, or shortest, path between two nodes. The 
bridge identified previously is often of interest because it indicates that if the tie between the 
two nodes can be cut, the network can be disconnected or reduced to its subnetworks. The 
same holds true for the broker. If a broker is eliminated, the network will be reduced to a 
number of subnetworks. Node connectivity identifies the minimum number of nodes that 
have to be removed to disconnect the network. Betweenness is the extent to which a given 
node lies between other nodes and, thus, could act to facilitate or block the flow of 
resources. 

Density refers to the proportion of ties relative to the absolute total. Relational 
embeddedness refers to the quality and depth of a single dyadic tie. Structural 
embeddedness refers to the extent to which a node’s alters are connected to each other. 
Because structural embeddedness reflects the degree of the interactions, it is often used as 
a proxy for understanding network actions. 

In the study of networks, scholars often take either a structural or a connectionist 
approach. Structural approaches examine the structure of the network and its influence on 
key variables of interest. Connectionists, on the other hand, focus on the flows between the 
nodes. Those who study social capital tend to focus on the possibilities of actions that social 
ties provide. Others, however, tend to be more concerned with diffusion and the dynamics of 
network change over time. Still, other studies focus on why and how networks develop, how 
and why they change over time, and finally, what influences they exert. Social capital is 
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mostly studied at the individual level, and diffusion is observed from the perspective of the 
entire network.  

Studies of the influence of dyadic ties on performance have mixed and contradictory 
findings. For example, Perry-Smith and Shalley (2003) found that weak ties led to creativity, 
but others claim that strong ties are more advantageous (Sosa, 2011). Others claim that it is 
not the number of ties but rather the depth of the engagement that matters. No one would 
be surprised by the idea that relative to fewer ties, more ties may provide organizations with 
better information that might promote enhanced decision-making. At the same time, 
information overload and difficulties with scrubbing data to provide information at the proper 
specification level has become a real problem for many managers.  

Similarly, studies of embeddedness are equally contradictory. According to some, 
the more each node knows about the others, the more constraints there are on each other’s 
behaviors. This is often seen as a positive. Parties gather information on whom to avoid as 
well as potential opportunities and synergies. Structural embeddedness allows the use of 
sanctions since knowledge of misfeasance influences reputational value. But these 
constraints can backfire and actually restrict flexibility. Too much embeddedness can also 
create problems. It can lead to feuding, group think, and welfare support of weak members. 
Social aspects such as restricting access to exchanges, imposing collective sanctions, and 
making use of social memory and cultural processes all influence nodal behavior. 
Apparently, networks and ties matter, but the extent of the influence is highly debatable.  

Much of the incongruity in the findings may be due to the difficulties associated with 
measurement and data collection. Researchers are challenged by the burden of the data 
collection requirements, and organizations are often frustrated by the extent of the data 
request. Because multilevel data are needed for each specific relationship, the data 
collection task can be onerous. Moreover, given that the study of networks is a fairly new 
phenomenon, typical organizational records often lack insights at a network level.  

Despite these contradictory findings and data collection difficulties, the examination 
of networks and ties that manifest as interdependencies is likely to provide substantial 
insights into a number of issues. First, when considering cost and affordability, examining a 
program in isolation of the entire value chain is likely to provide erroneous information. 
Second, a wealth of research illustrates the importance of risk management. Considering 
the risks of a given program without considering its interdependencies may underestimate 
the true risk level. Next, in the decision of a start-up or termination, it is essential to know 
how the inclusion or removal of a program will influence its n-order neighbors. Finally, 
network conditions may exert powerful influences over program sustainability. The following 
discussion explores the methods used to conduct the research, after which the funding and 
data networks that manifest the acquisition arena are explored.  

Data Methods 
The sample for the research consists of all active Major Defense Acquisition 

Programs between the 2005-2012 time-period. FY2005 was identified as the beginning year 
because prior to this period, data were not automated in a way that allowed statistical 
analysis of networks. Per DoD directive number 5000.02, an MDAP is an acquisition 
program that is estimated to require an eventual total expenditure for Research, 
Development, Test and Evaluation (RDT&E) of more than 365 million in Fiscal Year (FY) 
2000 constant dollars or, for procurement, of more than 2.19 billion in FY 2000 constant 
dollars. Given their high cost, the DoD provides annual reports to Congress on MDAP 
performance in what is termed as a Select Acquisition Report (SAR). Annual SARs provided 
the data analyzed in this study. Within these reports the DoD provides insights on the 
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program’s cost, schedule, and performance for the given year. The report also provides the 
account number(s) of the funds that served to finance the program. These account numbers 
are referred to as “program elements” or PEs. Hence the study below is based on fiscal 
interdependencies that exist among the MDAPs. The assumption is that collaborative efforts 
would entail and exchange of monetary resources and that would be realized by 
examination of the funding interdependencies.  

As mentioned, the sample is all active MDAPs between 2005 and 2012. Two 
important distinctions require clarification. First, the study below is based on only those 
accounts that are employed for “research, development, testing, and evaluation (RDT&E).” 
The DoD discriminates between accounts that are employed for procurement and those that 
fund RDT&E activities. Given the vagaries of the two types of money, the study below 
examines only those accounts that refer to RDT&E funds. The second clarification is that 
SARs are not published during those years when a new president has taken office. As a 
consequence, where the study examines the 2005-2012 time period, no SAR was published 
for FY2008. Hence, the study is restricted to RDT&E accounts for seven years spanning the 
eight fiscal years 2005 through 2012. 

The data interdependencies were derived from an OSD call for information from 
MDAP program managers in 2010. In 2010 managers were surveyed to determine the 
critical data interdependencies that existed among the MDAP programs. The program 
managers identified the inbound and outbound critical data connections. Interviews with 
OSD employees indicate that because the interdependencies were tied to initial 
requirements, they were assumed to be static. Meaning that the connections do not vary 
over time. These data were then merged with the SAR data. 

Descriptive Statistics of the Funding and Data Networks 
The descriptive statistics of the funding and data networks are provided below. Per 

above, in the organizational arena, interdependencies can be viewed in three ways. As 
Thompson (1967) illustrates, network arrangements can be pooled, sequential, or 
reciprocal. Under a pooled arrangement, network actors draw down from a common pool of 
resources. Under this scenario, the actors do not interrelate, but they are nonetheless 
interdependent because they all share a common resource that can be depleted. The 
funding interdependencies described below reflect a pooled relationship. These acquisition 
programs share a common program element. Thus the interconnections reflect their 
interdependencies on a common funding source.  

Sequential relationships are often termed supply chains. In these scenarios 
resources flow in a sequential manner from program to program. Reciprocal relationships 
are often seen as the most complex and have the greatest risk. In this case, resources are 
exchanged and as a consequence there is a two-way link among the programs.  

When network configurations are pooled in nature (bipartite), they are often 
converted into a one-mode network so the object of interest can be analyzed in closer detail. 
A bipartite network is one where the nodes are seperated into two unconnected sets. An 
example of this type of network would be individuals attending events. In this case, the 
bipartite network is made up of one set of MDAPs and one set of PEs or accounts. Bipartite 
networks are often converted to undirected networks for analysis purposes. Figure 2 
provides a rendering of how the conversion occurs. The conversion is especially appropriate 
in the event that the central question rests on one set of nodes as is the case in this specific 
study. Consequently, for each year, the MDAP to PE account network was converted to an 
undirected network to examine connections among the MDAPs in light of shared accounts.  
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Figure 3 displays the funding interdependencies and how they grew over time. As 
displayed in the figure, the interdependencies have grown increasing complex over time. 
The density has grown from a low of 6% to a high of 22%. Previous work has shown that in 
a growing network there is a critical probability (termed the “percolation threshold”) where 
the network structure changes from a loose collection of small clusters to a system 
dominated by a single giant component. The giant component is a connected, isolated 
subnetwork where every node is reachable from most any other node. The presence of a 
giant component is suggestive of emergent order and complexity. As illustrated in Figure 3, 
the account network illustrated a growing number of ties that peaked in FY 2009. Yet, per 
Figure 4, the density has continued to grow through the years. The Krackhardt Graph 
Theoretic Dimension (GTD) measures identify the amount of hierarchy in an informal 
network. A hierarchically nested structure indicates that smaller groups are embedded in 
larger groups. The Krackhardt GTD ranges from zero to one where one indicates that every 
node in the network can reach every other node. Per Figure 5, in 2005 the Krackhardt GTD 
was only 0.12 but by FY 2012 it had grown to 0.75. Not surprisingly, at the same time, the 
compactedness of the network also increased (See Figure 6). 

As mentioned, the data interdependencies do not vary over time. The data 
interdependencies are reciprocal in nature—they are directional (inbound or outbound) 
connections. Figure 3 illustrates the data interdependencies. As demonstrated in the 
diagram, these interdependencies reflect 326 ties and range from 27% inbound to 16% 
outbound. The Krackhardt Graph Theoretic Dimension (GTD) is static at 0.37. 

A few other interesting findings are reported in Table 2. PAUC growth was measured 
as the percent growth from the previous year. Per the table, average annual growth ranged 
from a high of 5% to a low of minus 1%. Cost variance was highest in FY209 and FY2010 
coming in with a mean of approximately $200M. The average recovery rate, or the average 
amount of time a program illustrates positive PAUC growth before returning to a zero of 
negative growth rate, was roughly two years. For the FY2005-2012 time period, the average 
number of years with positive PAUC growth was two and one-half. MDAPs averaged three 
and one-half partners over the time period and the in the data network they averaged five 
partners. 

The Question of Preferential Attachment 
The subject of preferential attachment has received important attention over the past 

five years. First isolated by Barabasi and Albert (1999), preferential attachment refers to the 
notion that the more connected a node, the more likely it is to recive additional connections 
(sometimes referred to as “the rich get richer” phenenomen). Preferential attachment follows 
a power-law distribution. Preferential attachment has important implications for networks 
because, on the one hand, they illustrate efficiency precisely according to a lack of 
redundancy in the web of nodes. Yet, on the other hand, they exhibit increased vulnerability 
owing to a lack of redundancy. In short, network operations are vulnerable to the healthiness 
of the most highly-connected nodes. Hence the presence or absence of preferential 
attachment could be indicative of the overall well being of the network. 

To test for preferential attachment, the Kolmogorov-Smirnov (K-S) and goodness-of-
fit tests were obtained. The K-S statistic tests whether the distribution is significantly different 
from a power-law distribution. When the p-value is signifcantly larger than .1 it can be 
assumed that the data distribution does not differ from a power-law distribution (Clauset et 
al., 2009). Per Figure 7, years 2007–2011 failed to confirm the power law distribution. 
However, FY 2012 did yield a power law distribution. Hence, preferential attachment was 
demononstrated in FY 2012. Given the results of the examination of the topological structure 
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and the occurrence of preferential attachment, the findings illustrate spontaneous 
emergence of order at about the FY2009 time period that resulted in much greater network 
complexity by 2012.  

In terms of the data network, preferential attachment was also demonstrated with a 
KS statistic of 0.13 (p < .37). In short, both networks exhibit preferential attachment with a 
small number of MDAPs illustrating an unusually high number of partners. 

The Question of Complex Configurations 
To test whether the MDAPs experienced any rare, or significant, configurations, 

exponential random graph models (ERGMs) were employed. Over the past several decades 
researchers have sought statistical techniques that would allow inferential examination of 
networks. In the recent past, several refinements to previously established algorithms has 
led to ERGM development. ERGMs collectively constitute a family of models that offer wide 
application to a variety of network structures. In short, ERGMs take the form of a probability 
distribution, enabling one to model a given network as a single multivariate observation. 
ERGMs are employed as an effective way to investigate social networks owing to their 
ability to posit various alternative configurations, and test whether their occurrence is 
statistically different from the norm (Shumate & Palazzolo, 2010). 

The central problem in employing standard statistical techniques in network analysis 
is the lack of independence among the actors and their ties. ERGMs are more effective than 
standard techniques for studying networks in that they control for interdependence by 
explicitly modeling it in the equation. Table 1 provides key terms and the configurations 
tested below. Per Table 1, networks can be examined in light of various configurations that 
range from simple dyads to complex triangles. In the ERGM model, each parameter 
corresponds to a configuration in the network and represents a distribution of random 
graphs (Pattison & Robins, 2002). 

With ERGMs different network configurations can be hypothesized (i.e., 
reciprocity/exchange, triadic closure/transitivity, preferential attachment) and then 
statistically tested without risk of violating the independence assumption. ERGMs are 
powerful in that they model the conditional probability of a tie, or configuration, given the 
entire network. In their most basic form, in predicting a tie from ݅ to ݆ ERGMs take the 
expression: PሺX 	ൌ 1|X 	ൌ 	 x,  ሻ where the probability of a tie occurring between twoߠ
nodes in a network (X) is conditionally dependent on the presence or absence of a tie in the 
observed network (x) (Snijders et al., 2006). 

ERGMs are capable of incorporating three dependency structures. Dyadic 
dependence captures the presence of reciprocity between two nodes. Markov dependence 
goes a bit further in that two potential ties are assumed to be conditionally dependent if they 
share a common actor. Over time, researchers found that the Markov assumption was too 
restrictive and led to poorly fitting models. Thus, refinements were offered by Pattison and 
Robbins (2002) and Snijders et. al (2006). The new form is based on partial conditional 
independence. In other words, two potential ties are considered to be partial conditionally 
dependent if: 1) they share a common actor, and 2) if two ties exist they are part of a four-
cycle configuration. 

So, employing the joint form of the model, a probability distribution expression for all 
tie variables is taken from Koskinen and Daraganova (2013): 

Prሺܺ ൌ ሻݔ ߠ| ≡ 	 ଵ

ሺఏሻ
exp	ሼߠIऊI ሺݔሻ2ߠऊ2 ሺݔሻ… pऊpߠ ሺݔሻሽ   (1) 
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Per standard statistical tests, a parameter estimate greater than two times the 
standard error is deemed a significant effect, given the other parameters in the model. In 
some ways, ERGMs are similar to logistic regression in that they cannot indicate the 
strength of the relationship but rather indicate the probability of occurrence. It should be 
noted that the configurations are added to the model sequentially starting with a simple arc 
and traversing to more complex relationships. The sequential addition prevents the 
occurrence of double counting ties.  

As alluded to above, the parameter estimate reflects the probability of a given 
network configuration or nodal attribute. ERGMs make use of Markov Chain Monte Carlo 
(MCMC) to simulate a distribution of networks (Koskinen & Snijders, 2013). Each simulated 
network is compared to the original observed network. Starting with an empty network, the 
algorithm iterates thru the generation/compare process based on the number of updates 
identified by the researcher. The chain is said to have “converged” when estimates stabilize, 
in other words when the convergence statistics are 0.1 or less. A lack of convergence 
suggests that the model is poorly specified. Once the sample is established, parameter 
values are derived via maximum likelihood estimation (MLE). The MLE technique involves 
evaluating the probability over all possible networks of the same size as the observed 
network. MCMCMLE is a longstanding simulation approach for complex stochastic systems 
(Valente, 2010). 

Shumate and Palazzolo (2010) argue that ERGMs offer superior capabilities over 
and above earlier models because they are capable of accommodating a wide range of 
network configurations, they can handle skewed bimodal distributions, and they have a high 
tolerance for collinearity. As a consequence they argue that ERGMs represent a promising 
class of models for those interested in social network analysis. As indicated above, ERGMs 
provide the ability to test whether a given network illustrates configurations that are out of 
the norm for what would be normally expected.  

Table 1 provides an illustration of the various network configurations that were 
tested. In short, stars illustrate popularity or preferential attachment. Triangles indicate a 
predisposition for closure. Alternating triangles show tightly coupled relations. 

The coefficients of the ERGM analyses are provided in Tables 3 and 4. ERGM 
analyses were not obtained for FY2005 and 2006 because the fragmented nature of the 
network prevented model convergence. It was not until FY2007 that the network 
demonstrated enough structure to test for the significance of different topological structures. 
As mentioned, ERGMs employ MCMC maximum likelihood estimations. All models 
demonstrated convergence at a t-ratio of at least 0.1.  

The findings of the alternating-stars and alternating-triangles, did illustrate deviation 
from expectations. Fewer numbers of alternating-stars were revealed in the early years but 
the sign of the coefficient shifted to positive in FY2012. The alternating-triangles were 
consistently positive over the span of all of the years. Thus, by FY2012, the network 
experienced higher numbers of alternating-stars and alternating-triangles than would be 
normally expected in a network of this size. The high number of alternating-star and 
triangles are in keeping with a preference for forming cohesive, interlocking relationships.  

ERGM analyses of the data interdependencies also revealed several statistical 
relationships. The arc parameter reflects the intercept. Reciprocity is a measure of the 
extent to which MDAPs exchange data. The parameter of 4.02 indicates that the data 
network is four times more likely to exchange data with partners than would normally be 
expected of a network of this size. The alternating in star demonstrates that the data 
network experiences roughly .97 more in star configurations that would normally be 
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expected. Not surprisingly, the out star configurations are roughly 0.61 times less likely. 
Finally, the AT-U is significant with a parameter of 0.64 indicating that there is a preference 
for tight closed relationships. 

Contagion 
Complex contagion theories seek to describe networks in terms of the presence of 

absence of infectious attitudes or behaviors. Contact among the nodes serves as the 
exposure mechanism. Relying on the models developed by epidemiologists, recent research 
has begun to examine the potential contagious influence of social behaviors and attitudes 
among partners in a network. Where “groupthink” is a well-known and common phenomena, 
few studies have examined social contagion in the work setting. The question of contagion 
is especially intriguing when partnerships exist over time. While the literature is lacking in the 
consideration of contagion at a single point in time, very studies have examined its influence 
over time. Whether long lasting partnerships exhibit the same contagion influences as newly 
developed partnerships is unknown. In other words, the question of whether the actors 
reach an equilibrium and, thus are no longer susceptible to their long term partner may have 
important organizational implications. A recent study by Jordan et al. (2013) examined the 
influence of contagion in cooperative networks. In their study they examined both dynamic 
and static networks. Their findings suggest that “cooperation can spread from person to 
person in fixed social networks. And that it it may be possible for interventions to create 
cascades of cooperation” (p. 7). 

The analysis of the contagion effects was based on the models provided by 
Christakis and Fowler (2007).  

Let:  

1. ܻሺݐሻ and ܻሺݐ  1ሻ denote the ego’s outcomes (Pct PAUC Growth) at time ݐ 
and ݐ  1, respectively;  

2. ܻሺݐሻ and ܻሺݐ  1ሻ denote the alter’s outcome (Pct PAUC Growth) at time ݐ 
and ݐ  1, respectively;  

3. ܼሺݐ  1ሻ denote the ego’s covariates at time ݐ.  
Christakis and Fowler regressed ܻሺݐ  1ሻ on ܻሺݐሻ, ܻሺݐሻ, ܻሺݐ  1ሻ, and ܼሺݐ  1ሻ 

using linear regression. The coefficient for ܻሺݐ  1ሻ on ܻሺݐ  1ሻ is interpreted as the 
contagion effect. Tables 5 and 6 provide the results of the test for contagion. Per Table 5, 
the funding network did not illustrate contagion in light of the MDAP’s partners. However, the 
number of partner’s does appear to influence percent PAUC growth. Alternatively, contagion 
was witnessed in the data network. As shown in Table 6, the contagion variable achieved 
statistical significance. 

Conclusion 
The primary objective of this research is to isolate how interdependencies influence 

program performance. Three questions drove the research. The first question was to identify 
whether the two networks (funding and data) demonstrate preferential attachment. As 
discussed further below, preferential attachment occurs a small number of programs serve 
as hubs for the network. The presence of preferential attachment is important to program 
performance because while it can demonstrate greater levels of efficiency, it can also 
indicate higher levels of vulnerability. 

The second question sought to identify the most frequently occurring configuration 
patterns. Network researchers have identified a series of configurations, each type 
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suggestive of different insights that might influence program performance. The third question 
focused on determining the extent to which MDAPs in the network(s) experienced contagion 
and under what conditions contagion was apparent.  

In sum, the funding network demonstrated increased complexity over the years. 
Preferential attachment was witnessed, as was a high number of stars and triangles. 
Contagion was not demonstrated, but the number of partners does appear to influence 
percent PAUC growth. 

The data network was a static network. It too illustrated preferential attachment along 
with an unusually high amount of reciprocity, inbound stars, and triangles. Contagion was 
apparent and statistically significant. In sum, this research illustrates the important role that 
interdependencies play on program performance. Based on these results, additional 
research on the role (and risk) of interdependencies is clearly warranted.  

 

 Figures 1a Through 1d 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 119 - 

 

 Bipartite Graph Conversion 

 

 Fiscal Interdependencies by Year 
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 Number of Ties Over Years 

 

 Density Changes Over the Years 
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 Krackhardt GTD Measures Over Time 

 

 Compactedness Changes Over the Years 
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 Preferential Attachment Over Time 

 

 Preferential Attachment of Data Interdependencies 
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Table 1. Terms and Configurations 
Terms 

Edge A tie or link between two nodes 
Ego The focal node or actor 
Alter The neighbor of ego 
Reciprocity The ratio of (the number of links which are the part of 

reciprocated relations) to (the total number of links) 

Density* The proportion of ties to the number of all possible ties 
 

Diameter The length of the longest path between connected actors in a 
network 

Betweenness Centrality* A measure of the extent to which a node lies between all pairs of 
nodes on the geodesic path tells us which people are most 
“between” other people. Can be used to reflect brokerage. 
 

Closeness Centrality* The degree to which a given node is near or close to all of the 
other nodes. 

Degree Centrality* Total number of edges for a given node; 
In-degree represents total number of in bound edges 
Out-degree represents total number of out bound edges 

* May be measured in light of each individual actor or ego or as an average for the entire network 
Undirected Network Configurations 

(Directed has Arrowheads) 

2-Stars 
Often indicates popularity or preferential attachment  

 

Triangle—indicates closure among partners 

 

Alternating k-Stars 
Indicative of the activity of actors to engage others.  

 

Alternating-Triangle 
can indicate tightly coupled closed relationships 
Path Closure  

 

Reciprocity—indicative a two-way relationship 

 

Alternating In Star—indicative of popularity or hub 
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1 In Alternating Out Star—indicative of diffusion 

 
 

Alternating Triangle Upward—indicative of tight closed 
clustering 

Table 2. Descriptive Statistics 

Descriptive Statistics 

N Minimum Maximum Mean Std. Deviation 

Recovery Rate 26 1.00 5.00 2.08 1.09 

PCT PAUC Growth FY 2012 48 -32.35 12.89 -1.17 6.31 

PCT PAUC Growth FY 2011 46 -19.92 167.83 3.19 25.63 

PCT PAUC Growth FY 2010 45 -7.55 17.75 1.75 4.81 

PCT PAUC Growth FY 2009 42 -38.37 69.80 5.07 18.09 

PCT PAUC Growth FY 2007 37 -13.28 44.84 2.04 8.98 

PCT PAUC Growth FY 2006 36 -4.24 17.39 1.91 4.55 

PCT PAUC Growth FY 2005 32 -19.57 9.61 -0.36 4.63 

Total Cost Variance FY2005 ($M) 48 -1199.70 427.60 2.25 201.33 

Total Cost Variance FY2006 ($M) 48 -341.00 437.60 18.64 128.74 

Total Cost Variance FY2007 ($M) 48 -146.90 909.70 29.99 140.46 

Total Cost Variance FY2009 ($M) 48 -39.80 5798.20 197.75 841.84 

Total Cost Variance FY2010 ($M) 48 -49.10 4228.60 196.85 640.34 

Total Cost Variance FY2011 ($M) 48 -318.30 837.10 42.42 185.13 

Total Cost Variance FY2012 ($M) 48 -184.00 431.10 19.42 85.06 
Number Years with Positive 
PAUC Growth Between FY2005-
FY2012 48 0.00 6.00 2.65 1.91 
Average Number of Funding 
Partners Per Year 74 0.67 15.00 3.50 2.46 

Average Number of Data Partners 65 1.00 15.00 5.02 4.22 

Table 3. ERGM Results Funding Interdependencies (Undirected Network) 
ERGM Results Funding Interdependencies 

(Undirected Network) 

FY2007 FY2009 FY2010 FY2011 FY2012 

2-star 0.23 0.01 -0.06 -0.15* -0.12*

3-star -0.01 0.00 0.01 0.01* 0.01*

Triangle 0.53 0.49* 0.62* 0.72* 0.65*

Alternating Star -2.38* -1.89* -1.66* -1.29* -1.12*

Alternating Triangle 1.43* 2.03* 1.83* 1.33* 1.50*

* p<.05 
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Table 4. ERGM Results Data Interdependencies (Directed Network) 
ERGM Results Data Interdependencies 

(Directed Network) 

Parameter Coefficient 

Arc (intercept)  -4.44* 

Reciprocity 4.02* 

Alternating In Star 0.97* 

1 In Alternating Out Star -0.62* 

Alternating Triangle Upward 0.64* 

Table 5. Contagion in Funding Networks 

Contagion in Funding Networks 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

B Beta 

(Constant) -1.07 

Lagged PCT PAUC Growth of Alter -0.078 -0.067 

Lagged PCT PAUC Growth of Ego -0.058 -0.049 

PCT PAUC Growth of Ego 0.027 0.027 

Number of Partners 0.321 0.16*** 

p<.05* p<.01** p<.00*** 

Table 6. Contagion in Data Networks 

Contagion in Data Networks 

  
Unstandardized 

Coefficients 
Standardized 
Coefficients 

B Beta 

(Constant) 0.252 

Lagged PCT PAUC Growth of Alter 0.083*** 0.084 

Lagged PCT PAUC Growth of Ego -0.003 -0.003 

PCT PAUC Growth of Ego 0.057* 0.065 

p<.05* p<.01** p<.00*** 
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