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Abstract 
This paper introduces a mixture distribution approach to modeling the probability density 
function for lead time demand (LTD) in problems where a continuous review inventory system 
is implemented. The method differs from the typical “moment-matching” approach by 
focusing on building up an accurate, closed-form approximation to the LTD distribution from 
its components by using mixtures of polynomial functions. First, construction of the lead time 
distribution is illustrated and the approach is compared to two other possible lead time 
distributions. This distribution is then utilized to determine optimal order policies in a situation 
where members of a two-level supply chain coordinate their actions. 

Introduction 
This objective of this paper is to describe and implement a mixture distribution 

method for modeling lead time demand (LTD) in continuous-review inventory problems, then 
utilize this distribution to jointly determine an optimal order quantity and reorder point. A 
common approach to finding a probability density function (PDF) for LTD involves modeling 
lead time (LT) and demand per unit time (DPUT) with standard PDFs. Based on the 
distributions assigned, a compound probability distribution is determined for demand during 
LT, or LTD. In some cases, analytical formulas for optimal reorder point, safety stock, or 
stockout costs are available in terms of the compound distribution’s parameters, while in 
other situations the values associated with certain percentiles of the compound LTD 
distribution are estimated to provide these values. While the problem of finding an 
appropriate LTD distribution has been well studied, researchers in recent years have 
continued to pursue methods that overcome unrealistic distributional assumptions (Ruiz-
Torres & Mahmoodi, 2010; Vernimmen, Dullaert, Willemé, & Witlox, 2008). 

There are many situations in which assigning a single, standard PDF as the 
compound distribution for LTD leads to a poor approximation. Tyworth (1992) observed that 
this is particularly true when LT is random and follows a non-standard, empirical distribution. 
This paper illustrates an approach for constructing a mixture distribution for LTD that can 
incorporate any discrete or continuous LT distribution while approximating the DPUT 
distribution with a normal PDF. The mixture distribution method for modeling the LTD 
distribution differs from the typical “moment-matching” approach, as it focuses on 
constructing the distribution from its components. Use of the mixture distribution technique 
was demonstrated by Cobb (2013) in a single item continuous-review inventory model for 
one buyer, and was further described by Cobb and Johnson (2013). Both of these papers 
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illustrated the use of mixtures of truncated exponential (MTE) functions to approximate the 
DPUT distribution. In this paper, we explore the use of the mixture of polynomials (MOP) 
approximation as an alternative to the MTE model.  

After the mixture distribution approach is described, a two-level supply chain model 
in which the buyer operates under uncertain demand and utilizes a continuous review 
inventory system is considered. In this two-echelon supply chain model, credit terms 
(Chaharsooghi & Heydari, 2010), quantity discounts (Li & Liu, 2006; Chaharsooghi, Heydari, 
& Kamalabadi, 2011), and rebates (Cobb & Johnson, 2014) have been suggested as 
incentives that allow the supply chain members to divide the cost savings resulting from 
coordinating their order quantity and reorder point decisions. In each of these cases, LTD is 
assumed to be normally distributed. This assumption is not always realistic, particularly 
when DPUT and LT are each random variables such that LTD has a compound probability 
distribution (Eppen & Martin, 1988; Lau & Lau, 2003; Lin, 2008). This paper incorporates the 
mixture model into the two-echelon supply chain problem to show that this model can 
overcome the requirement that demand for the entire LT period is normally distributed. 

The next section discusses the construction of three possible LTD distributions for an 
example problem in which LT is random. This is followed by a section containing a 
description of the use of the LTD distribution to find optimal inventory policies in the two-
level supply chain. The final section concludes the paper. 

Lead Time Demand Distributions 
LTD in a continuous-review inventory system is often assumed to follow a compound 

probability distribution. Suppose ܮ is a random variable for LT and ܦ represents random 
DPUT. LTD is a random variable ܺ determined as 

ܺ ൌ ଵܦ  ଶܦ  ⋯ ܦ  ⋯  .    (1)	ܦ
Therefore, ܺ	is a sum of random, independent and identically distributed (i.i.d.) 

instances of demand.  

To illustrate the formation of the LTD distribution, we utilize the following example 
from McClain and Thomas (1985) that has also been used by Eppen and Martin (1988). 
Demand in each time period is normally distributed with mean ߤ ൌ 40 and variance ߪ

ଶ ൌ
30. LT (in periods of one day) may take on the values 7, 12, 14, 15, 16, and 25, and each 
value has a probability of 1/6. 

Normal Approximation 
Because the possible values for LT are dispersed over the range from 7 to 25, the 

distribution for LTD is multi-modal. As such, there is no one standard PDF that is a good fit. 
The typical “textbook” approach to modeling the LTD distribution in this case is a normal 
approximation, and the normal distribution has been used exclusively in the two-stage 
supply chain model under continuous review assumptions that are presented later in the 
paper. 

The normal approximation to the compound LTD distribution has a mean and 
variance calculated (Mood, Graybill, & Boes, 1974) as 

ሺܺሻܧ ൌ ሻܮሺܧ ∙ ሺܺሻݎܸܽ			and			ߤ ൌ ሻܮሺܧ ∙ ߪ
ଶ  ߤ

ଶ ∙  ሻ.   (2)ܮሺݎܸܽ
In the example under consideration, ܧሺܮሻ 	ൌ 	14.83 days and LT has a variance of 

ሻܮሺݎܸܽ 	ൌ 	29.14. The formulas in (2) are used to determine that ܧሺܺሻ 	ൌ 	593.33 and 
ሺܺሻݎܸܽ 	ൌ 	47047.2. If we want to find the reorder point ሺܴሻ associated with a certain service 
level (SL), say 95%, we can use the Excel function NORM.INV(0.95,593.33,47047.2^0.5) to 
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find ܴ	 ൌ 	950. The SL is the probability that all customer orders are filled in given order 
cycle. 

Eppen and Martin (1988) demonstrated that for this example, implementing ܴ	 ൌ 	950 
will actually lead to very different SL than 95%. This is because the true distribution of LTD 
is a mixture of normal distributions. This is discussed in the next section. 

Mixture of Normal Distributions 
In this section and for the remainder of the paper, the distribution of LTD is denoted 

by ݂. The distribution of LTD conditional on a specific value ܮ	 ൌ 	݈ for LT is denoted by 
݂|ሼܮ	 ൌ 	݈ሽ. Similarly, the cumulative distribution function (CDF) for LTD is denoted by ܨ, 

while the CDF conditional on a specific LT ܮ ൌ 	݈ is denoted by ܨ|ሼܮ	 ൌ 	݈ሽ. 

In the example problem, if LT is ܮ	 ൌ 	7 days, the distribution ݂|ሼܮ	 ൌ 	7ሽ is a normal 
PDF with mean 7 × 40 = 280 and variance 7 × 30 = 210. The means and variances of all the 
conditional LTD distributions can be similarly calculated. The marginal distribution for LTD is 
the mixture of normal distributions calculated as 

݂ሺݔሻ ൌ
ଵ


൫ ݂|ሼ	ୀ	ሽሺݔሻ  ݂|ሼ	ୀ	ଵଶሽሺݔሻ 	 ݂|ሼ	ୀ	ଵସሽሺݔሻ 			 ݂|ሼ	ୀ	ଵହሽሺݔሻ 	 ݂|ሼ	ୀ	ଵሽሺݔሻ 	

݂|ሼ	ୀ	ଶହሽሺݔሻ	൯        (3) 

The mixture of normal distributions for LTD is shown in Figure 1 overlaid on the normal 
approximation with mean 593.33 and variance 47047.2. 

 

 LTD Distribution and Normal Approximation 

Consider the reorder point ܴ	 ൌ 	950. We can find the SL associated with this reorder point 
by evaluating the conditional CDFs ܨ|ሼܮ	 ൌ 	݈ሽ at 950 and weighting the results (Eppen & 
Martin, 1988). This is done as follows: 

ሺ950ሻܮܵ ൌ
1
6
൫ܨ|ሼୀሽሺ950ሻ  |ሼୀଵଶሽሺ950ሻܨ 	 |ሼୀଵସሽሺ950ሻܨ 			 |ሼୀଵହሽሺ950ሻܨ 	

 |ሼୀଵሽሺ950ሻܨ 	  	,൯	|ሼୀଶହሽሺ950ሻܨ
ሺ950ሻܮܵ ൌ

ଵ


ሺ1  1	  1  1	  1	  0.034ሻ ൌ 83.8%.       (4) 
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The conditional values for SL given a certain LT are calculated using the NORM.DIST 
formula in Excel; for example, the SL given ܮ	 ൌ 	25 is NORM.DIST(950,7 × 40,(7 × 
30)^0.5,1). Calculation of the reorder point associated with a desired SL cannot be done 
directly with the exact LTD distribution, but a function such as Goal Seek in Excel can be 
implemented to find that	ܴ = 1014 provides a 95% SL. 

Mixture of Polynomials Approximation 
If the functional form of ݂ permits closed-form integration, the SL associated with a 

given reorder point, ܴ, can be determined as 

ሺܴሻܮܵ ൌ න ݂ሺݔሻ	݀ݔ

ோ



.																																																																						(5) 

Since the functional form of the mixture of normal distributions for the example problem 
cannot be integrated in this way, built-in Excel functions for the normal CDF were used to 
calculate the SL. This required weighting the results from the conditional distributions for 
each possible LT value. 

One method for obtaining a closed-form distribution for LTD is the mixture of 
polynomials (MOP) model (Shenoy & West, 2011). The MOP model can be used to 
approximate PDFs by piecewise polynomials defined on hypercubes. MOP approximations 
of standard PDFs, such as the normal distribution, can be developed by using Lagrange 
interpolating polynomials with Chebyshev points (Shenoy, 2012). This method was used to 
define a 2-piece, 4th-degree MOP function that approximates the standard normal PDF as 

݃ሺݖሻ ൌ ൜0.398  െ ݖ0.038 െ ଶݖ0.322 െ ଷݖ0.148 െ ସݖ0.020 if െ 3  ݖ ൏ 0
0.398   ݖ0.038 െ ଶݖ0.322  ଷݖ0.148 െ ସݖ0.020 if	0  ݖ  3.

   (6) 

All piecewise functions in this paper are assumed to equal zero in undefined regions. 
Using this approximation, the PDF for LTD conditional on ܮ	 ൌ 	݈ can be determined as  

መ݂
|ሼ	ୀ	ሽሺݔሻ ൌ

ଵ

ට	ൈ	ఙವ
మ
݃ ቌ

௫	ି		ൈ	ఓವ

ට	ൈ	ఙವ
మ
ቍ.    (7) 

 

The MOP function መ݂ that approximates the PDF ݂for LTD is determined as  

መ݂
ሺݔሻ ൌ  ܲሺܮ ൌ ݈ሻ ൈ መ݂

|ሼ	ୀ	ሽሺݔሻ.																																			(8)



	ୀ	ଵ

 

The index ݅ has been added to the ݇ possible values for LT. This method can be 
used when the DPUT distribution is normal, or at least in any situation in which we are 
willing to approximate the DPUT distribution with a normal distribution. Notice, this would be 
very different (and more accurate) than approximating the distribution for demand over the 
entire LT with a normal distribution. 

For the example problem, መ݂ is calculated as 

መ݂
ሺݔሻ ൌ

ଵ


	ൈ 	ቆ

	 መ݂|ሼ	ୀ	ሽሺݔሻ  መ݂
|ሼ	ୀ	ଵଶሽሺݔሻ 	 መ݂|ሼ	ୀ	ଵସሽሺݔሻ 	 መ݂|ሼ	ୀ	ଵହሽሺݔሻ

	 መ݂|ሼ	ୀ	ଵሽሺݔሻ 	 መ݂|ሼ	ୀ	ଶହሽሺݔሻ
ቇ	 (9) 
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The MOP approximation to the LTD distribution is a relatively compact 15-piece, 4th-
degree polynomial defined as  

መ݂
ሺݔሻ ൌ ൞

െ20.93  ݔ0.333 െ ଶݔ0.002  5.24 ൈ 10ିݔଷ െ 5.18 ൈ 10ିଽݔସ if	236.53  ݔ ൏ 280
െ45.50  ݔ0.596 െ ଶݔ0.003  6.36 ൈ 10ିݔଷ െ 5.18 ൈ 10ିଽݔସ 280.00	  ݔ ൏ 323.47
⋮ ⋮
െ261.34  ݔ0.996 െ ଶݔ0.001  9.03 ൈ 10ିݔଷ െ 2.15 ൈ 10ିଵݔସ if	1000  ݔ  1082.16.

(10) 

This closed-form function for the LTD distribution is easy to manipulate. It can be 
easily integrated to find a closed-form function for the CDF of LTD as follows: 

ሻݔሺܨ ൌ	

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ
1059.39 െ ݔ20.93  ଶݔ0.167 െ ଷݔ0.0007 െ 1.31 ൈ 10ିݔସ െ 1.036 ൈ 10ିଽݔହ if	236.53  ݔ ൏ 280
2770.91 െ ݔ45.50  ଶݔ0.298 െ ଷݔ0.0010 െ 1.59 ൈ 10ିݔସ െ 1.036 ൈ 10ିଽݔହ 280.00	  ݔ ൏ 323.47
0.1667 323.47	  ݔ ൏ 423.01
4621.62 െ ݔ52.22  ଶݔ0.236 െ ଷݔ0.0005 െ 5.99 ൈ 10ିݔସ െ 2.692 ൈ 10ିଵݔହ 423.01	  ݔ ൏ 480
⋮ ⋮
0.8333 	705.73  ݔ ൏ 917.84
⋮ ⋮
54808 െ ݔ261.34  ଶݔ0.498 െ ଷݔ0.0005  2.26 ൈ 10ିݔସ െ 4.30 ൈ 10ିଵଵݔହ if	1000  ݔ  1082.16
1 ݔ  1082.16.

(11) 

Using this CDF to find the SL for a reorder point of 950 gives 

ሺ950ሻܨ ൌ ሺ950ሻܮܵ ൌ 83.9%.      (12) 

Evaluating 950 gives ܨ at each possible reorder point value between ܧሺܺሻ and the first 
value for ܴ that provides a 95% SL gives ܴ	 ൌ 	1015, and this calculation requires 0.05 
seconds of computing time. 

In summary, the LTD distribution can be modeled using one normal distribution as an 
approximation over the entire LT period. This method leads to poor results when calculating 
the SL for a given LT and for finding a reorder point that achieves a targeted SL. The actual 
distribution for the example problem is a mixture of normal distributions, and Excel formulas 
and built-in functions can be utilized to find SLs and reorder points, albeit indirectly. The 
MOP model offers an alternative to constructing a closed-form LTD distribution that can be 
directly integrated and evaluated to find a CDF for LTD, SLs, and reorder points. As 
discussed in the remainder of the paper, this distribution can be utilized to find optimal 
inventory policies in a two-level supply chain under uncertain demand and continuous 
review assumptions. 

Finding Inventory Policies 
Suppose that we want to determine an optimal order quantity and reorder point in a 

continuous-review inventory system (a “ሺܳ, ܴሻ” policy). When demand is uncertain, the LTD 
distribution is an important component of a model used to develop such a policy. Since the 
MOP technique provides a method for directly representing the LTD distribution in closed 
form, we will utilize the model developed in the last section. Cobb and Johnson (2013) 
discussed the use of the MTE model in this context. The MOP method used here is an 
alternative that has produced a better trade-off between computational complexity and 
modeling accuracy in our experiments. 

In this section, we consider a two-echelon supply chain as depicted in Figure 2. A 
buyer experiencing random demand places its orders for inventory with the supplier. 
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 Two-Echelon Supply Chain 
(Chaharsooghi & Heydari, 2010) 

The cost function for the buyer in this problem (Hadley & Whitin, 1963; Johnson & 
Montgomery, 1974) is 

,ሺܳܥܶ ܴ, ܸሻ ൌ ሺܭ െ ܸሻ ∙


ொ


గ∙∙ௌೃሺோሻ

ொ
 ݄ ∙ ሺ0.5ܳ  ܴ െ  (13)						ሺܺሻሻ.ܧ

In this equation, ܭ is the fixed cost per order, ܻ is the expected annual demand, ݄ is 
the holding cost per unit per year, and ߨ is the stockout cost per unit. The subscript ܾ has 
been added where necessary to identify assumptions of the buyer. The subscript s similarly 
represents the seller. The quantity ܸ is a rebate provided by the seller to the buyer on a per-
order basis as an incentive for the buyer to adopt policies that benefit both parties (Cobb & 
Johnson, 2014). As discussed in the introduction, credit options and price discounts have 
also been considered in this two-level supply chain as coordination incentives 
(Chaharsooghi & Heydari, 2010; Chaharsooghi et al., 2011; Li & Liu, 2006). 

The value ܵோ in the buyer’s cost function is the expected shortage per order cycle, 
and is calculated for ܴ using the LTD distribution as 

ܵோሺܴሻ ൌ නሺݔ െ ܴሻ ∙ መ݂ሺݔሻ	݀.ݔ																																																				(14)

ஶ

ோ

 

Note from Equation 14 that we assume from this point forward that we use the MOP 
approximation መ݂ to calculate the expected shortage per cycle (i.e., we do not assume we 
can use the actual PDF ݂). The cost function for the supplier in this problem is 

,௦ሺܳܥܶ ܰ, ܸሻ ൌ ቀೞ
ே
 ܸቁ ∙



ொ
 ݄௦ሺܰ െ 1ሻ0.5ܳ.   (15) 

In this two-level supply chain model, the buyer selects an order quantity and reorder 
point. The supplier receives orders of size ܳ from the buyer and purchases inventory from 
its vendors in a quantity that is an integer multiple ܰ of the buyer’s order size.  

If the buyer selects ܳௗ and ܴௗ without considering the effect of its selection on the 
supplier’s costs, the supply chain operates in a decentralized mode. The supplier simply 
chooses ௗܰ to minimize its own costs. There is no coordination, so the rebate amount is 
ܸ	 ൌ 	0. Total costs in the supply chain are ܶܥௗ ൌ ,ሺܳௗܥܶ	 ܴௗ, 0ሻ. + ܶܥ௦ሺܳௗ, ௗܰ, 0ሻ. 
Alternatively, if the buyer and supplier compromise on values for ܳ, ܴ, and ܰ that minimize 
the sum of the cost functions in Equations 13 and 15, this is termed a centralized supply 
chain. There is again no requirement for the supplier to provide a coordination incentive and 
ܸ	 ൌ 	0. Total costs in this mode are denoted by ܶܥ ൌ ,ሺܳ, ܴܥܶ	 0ሻ + ܶܥ௦ሺܳ, ܰ, 0ሻ. This 
type of arrangement is most likely to occur if the buyer and seller are part of the same firm. 
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If the parties are not centralized but can coordinate their policies, the potential exists 
to divide cost savings of ܶܥା ൌ ௗܥܶ	 െ	ܶܥ. An interval [ ܸ, ܸ௫ሿ can be calculated (Cobb 
& Johnson, 2014) such that any value for the rebate ܸ in the interval reduces the total 
supply chain costs to centralized levels. The smallest value ܸ for the rebate the buyer will 
accept can be found by solving ܶܥሺܳ, ܴ, ܸሻ 	ൌ ,ሺܳௗܥܶ ܴௗ, 0ሻ for ܸ. The largest value ܸ௫ 
for the rebate the seller will accept can be found by solving ܶܥ௦	ሺܳ, ܰ, ܸሻ = 
,ሺܳௗ	௦ܥܶ ௗܰ, 0ሻ	݂ݎ	ܸ. In this paper, we assume that if the parties agree to coordinate their 
policies (and implement ܳ, ܴ, and ܰሻ, the value of the rebate they select is തܸ  = ( ܸ 
		 ܸ௫ሿ/2. Chaharsooghi and Heydari (2010) suggested that division of coordination cost 
savings could be based on the relative bargaining powers of the two parties. 

All of the two-echelon supply chain models referenced previously assume that 
demand for the entire LT period is normally distributed. For the case where both ܳ and ܴ are 
selected to minimize total costs, Charharsooghi and Heydari (2010) derived expressions 
that state the optimal value for ܳ (in either the decentralized or centralized mode) as a 
function of the optimal value for ܴ (and vice versa) and the standard normal CDF. The 
optimal values can be found by iterating between these two expressions. The supplier 
selects the integer value for ܰ that minimizes its costs subject to the choices of the buyer. 

To implement the MOP mixture distribution approach to find an optimal order 
quantity/reorder point combination, we first develop a closed-form expression for the 
expected shortage per cycle in Equation 14 using the previously defined PDF መ݂. This 
function is an eight-piece, 6th-degree polynomial defined as 

ܵோሺܴሻ	

ൌ

ە
ۖۖ

۔

ۖۖ

ۓ
െ3.16 ൈ 10ି  32362.4ܴ െ 138.1ܴଶ  0.314ܴଷ

																			െ0.0004ܴସ  2.75 ൈ 10ିܴହ െ 7.81 ൈ 10ିଵଵܴ if	593.33  ܴ ൏ 600
െ4.11 ൈ 10ି  40257.0ܴ െ 164.4ܴଶ  0.358ܴଷ

																		െ0.0004ܴସ  2.87 ൈ 10ିܴହ െ 7.81 ൈ 10ିଵଵܴ if	600  ܴ ൏ 621.48
⋮ ⋮
െ9.57 ൈ 10ି  54807.6ܴ െ 130.7ܴଶ  0.166ܴଷ

																		െ0.0001ܴସ  4.52 ൈ 10ି଼ܴହ െ 7.16 ൈ 10ିଵଶܴ if	1000  ܴ  1082.16.

  (16) 

Decentralized Solution 

This function for ܵோ shown above can be substituted into Equation 13 to create a 
piecewise cost function for the buyer. In this example, we assume ܭ 	ൌ 	50, 	݄ 	ൌ
	5, 	ߨ	݀݊ܽ ൌ 	6. Expected annual demand is based on 150 working days and equals ܻ	 ൌ 	150 
ൈ	μ 	ൌ 	150	 ൈ 	40	 ൌ 	6000. This cost function is displayed as a function of ܳ for three 
values of ܴ in Figure 3. By inspection, we can see that the optimal order quantity is lower for 
smaller values of ܴ. In other words, we can better control costs by simultaneously selecting 
the order quantity and reorder point. 
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 Buyer’s Cost as a Function of Order Quantity for Three Values of the 
Reorder Point 

Decentralized Solution 

Optimization over the cost function developed using the MOP distribution for LTD is 
fast. Notice that the function for expected shortage per cycle is a MOP. When this 
expression is inserted in the cost function in Equation 13, the result is a function with 
polynomial terms and some terms with ܳ in the denominator. The example here was solved 
using Mathematica 9.0 by using the ArgMin function. The resulting solutions are ܳௗ  ൌ 	364 
and ܴௗ 		ൌ 	1014 with ܶܥሺܳௗ, ܴௗ, 0ሻ 	ൌ 	3924. The supplier’s best response is to set ௗܰ 	ൌ 	1 
and incur costs of ܶܥ௦ሺܳௗ, ௗܰ, 0ሻ 	ൌ 	2472, and total costs in the supply chain are ܶܥௗ 	ൌ
	6396. The computing time expended is less than one second. 

An iterative approach (Hadley & Whitin, 1963) in combination with numerical 
integration was implemented to find the solutions using the normal approximation to the LTD 
distribution using the partial solution provided by Chaharsooghi and Heydari (2010). The 
solutions are ܳே

ௗ ൌ 447 and  ܴே
ௗ ൌ 925. If these solutions are inserted in the “actual” cost 

function (the one developed with the MOP distribution for LTD), the result is	ܶܥ൫ܳே
ௗ, ܴே

ௗ , 0൯ ൌ
4454. Using the MOP mixture distribution yields an improvement in costs of 4454–3924 = 
530 or 12%. 

Centralized Solution 

The closed-form function ܵோ for expected shortage per cycle developed using the 
MOP distribution for LTD can also be used to derive a cost function for the entire supply 
chain in the centralized case. This function ܶܥሺܳ, ܴ, ܰሻ is used to find the optimal 
combination (ܳ, ܴ) for several possible values of the supplier’s decision variable ܰ. The 
value of ܰ producing the lowest total cost once the corresponding optimal values for order 
quantity and reorder point are selected is deemed the best supplier policy. Typically, solving 
for the optimal (ܳ, ܴሻ with ܰ	 ൌ 	1	then checking to see if ܰ	 ൌ 	2 or ܰ	 ൌ 	3	produces a 
better solution is adequate. 

The best order quantity in the centralized model for a given reorder point is higher 
than the optimal order quantity in the decentralized case. This is illustrated in Figure 4, in 
which the total costs are graphed as a function of ܳ	for the decentralized and centralized 
cases assuming a reorder point of ܴ	 ൌ 	1000. Visually, the centralized cost function appears 
to reach a minimum at a larger value of ܳ. 
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The closed-form centralized cost function can again be easily utilized to find the 
optimal policy of ሺܳ, ܴ, ܰሻ 	ൌ 	 ሺ718,993,1ሻ. The costs for the parties at the optimal solutions 
are as follows: ܶܥሺܳ, ܰ, 0ሻ 	ൌ ,௦ሺܳܥܶ	;4333	 ܰ, ܸሻ 	ൌ ܥܶ	;1254	 	ൌ 	5587. The solution 
again takes around one second of computing time to obtain. 

The buyer incurs higher costs by 4333 − 3924 = 409 in the decentralized mode as 
compared to the centralized mode, where the supplier’s costs are reduced by 2472 − 1254 = 
1218. Total costs in the supply chain are lower than in the decentralized mode by 6396 − 
5587 = 809. 

The corresponding centralized solutions found using the normal approximation are 
ܳே
 ൌ 802 and ܴே

 ൌ 857. If these solutions are inserted in the “actual” cost function for the 
supply chain (the one developed with the MOP distribution for LTD), the result is ܶܥே

  = 
5891. Using the MOP mixture distribution yields an improvement in costs of 5891 − 5587 = 
304 or 5% in the centralized mode.  

Coordinated Solution 

While the buyer prefers that the supply chain operate in decentralized mode and the 
supplier wants a centralized solution, both parties can potentially compromise and 
coordinate to divide the centralized costs savings. The closed-form cost functions developed 
using the MOP method again provide an approach to determine a supply chain coordination 
mechanism to make this work.  

The buyer will accept a per order rebate as low as ܸ, which can be found by 
solving ܶܥሺ718,993, ܸሻ = 3924, or 4333 − 8.3563924 = ݒ. The solution is ܸ = 49. The 
supplier will accept a per-order rebate as high as ܸ௫, which can be found by solving ܶܥ௦ 
(718,993,ܸ) = 2472, or 1254 + 8.3562472 = ݒ. The solution is ܸ௫ = 146. 

In this example, at the centralized optimal order quantity, there are ܻ/ܳ = 6000/718 
= 8.356 order cycles per year, so the minimum incentive entails rebates of 8.356 × 49 = 409, 
and the maximum incentive entails rebates of 8.356 × 146 = 1218. One solution is to 
implement തܸ= ( ܸ + ܸ௫)/2 = 97.5 and require the supplier to provide 815 in rebates to 
the buyer. This brings the buyer’s total costs to 3518, the supplier’s total costs to 2069, and 
supply chain costs to 5587, which is the centralized level. 
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Conclusions 
This paper has detailed the use of a MOP approximation to the LTD distribution in 

inventory management problems where a continuous review system is assumed. The use of 
this approximation was first compared to use of a normal approximation and a mixture of 
normal distributions approximation. The normal approximation is not very accurate, and the 
mixture of normal approximation is difficult to manipulate to determine optimal inventory 
policies. Next, the mixture of polynomials approximation was used to construct a closed-
form approximation to the expected shortage per cycle function for the continuous review 
buyer cost function under uncertain demand. The resulting model was implemented to find 
optimal inventory policies in a two-level supply chain. The results provide significant cost 
savings as compared to a solution developed using the normal approximation. 

Additional research supported under BAA Number NPS-BAA-12-002 through the 
Naval Postgraduate School’s Acquisition Research Program (Grant N00244-13-1-0014) has 
extended the use of the MOP approximation to the case where the actual distributions for 
DPUT and LT are unknown. The approach is the estimate the conditional distributions for 
LTD using B-spline functions. This methodology will be discussed in the final report 
presented for that project. 
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