
1

Combining Risk Analysis and Slicing for Test
Reduction in Open Architecture

Valdis Berzins

Naval Postgraduate School

U.S. Navy Open Systems Architecture

• A multi-faceted strategy for developing joint
interoperable systems that adapt and exploit
open system design principles and architectures

• OSA Objectives:
– Provide more opportunities for completion and innovation
– Rapidly field affordable, interoperable systems
– Minimize total ownership cost
– Maximize total system performance
– Field systems that are easily developed and upgradable
– Achieve component software reuse

2

Problems and Proposed Solutions

• New Testing Technologies, Processes &
Policies are Needed
– Safely Reduce Testing Required (2007-2014)
– Make testing more effective

• Risk-based testing (2012-2014)
• Safe test result reuse (Berzins, 2009)

– Reduce System Integration problems
• Architecture QA aimed at system interference (2014)

• Procedures, practices and guidance are
being developed
– Open Systems Architecture Technical Reference

Frameworks

3

Test Avoidance Approach

4

C4 depends on C3

Program Slicing

• Program slicing is a kind of automated
dependency analysis
– Same slice implies same behavior
– Can be computed for large programs
– Depends on the source code, language specific
– Some tools exist, but are not in widespread use
– No tools spanning boundaries between languages (yet)

• Slicing tools must handle the full programming
language(s) correctly to support safe reduction
of testing.

5

Test Reduction Process (1)
• Check that the slice of each service is the same in

both versions (automated)
• Check that the requirements and workload of each

service are the same in both versions
• Must recheck timing and resource constraints
• Must certify absence of memory corrupting bugs

– Popular tools exist: Valgrind, Insure++, Coverity, etc.
• Must ensure absence of runtime code modifications

due to cyber attacks or physical faults
– Cannot be detected by testing because modifications

are not present in software versions under test
– Need runtime certification

• Can be done using cryptographic signatures (Berzins, 2009)
6

Test Reduction Process (2)
• The test reduction process in the previous slide is for

new releases with the same operating environment.
– This is a significant constraint because reliability depends

strongly on operating environment
– The same system can have 0% reliability in one environment

and 100% in another

• Components reused in different contexts need a
different approach
– Can reuse some previous test results and focus new tests

on unexplored parts via differences in operational profiles
• See (Berzins 2009) for details.

– Risk-based testing can determine number of test cases
needed

7

8

Tool Evaluation

• Two existing Slicing Tools were evaluated
for supporting safe test reduction

• Neither was adequate in its current state
– Incorrect outputs in some cases
– Both tailored for manual program debugging,

graphical output on display screens only
– No file output or API for integration with other

tools
• Post-processing is needed for large scale analysis

Risk Based Testing

1. Whole-system operational risk analysis identify
potential mishaps / mission failures

2. Identify which software service failures would
lead to identified mishaps

3. Use slicing to identify which software modules
affect the critical services

4. Associate maximum risk level of affected
services with each software module (2012)

5. Set number of test cases using risk level (2008)

9

Drone Risk Case Study

10

Parrot AR.Drone 2.0

• Commercially available quad-rotor
• Many advanced features such as image recognition
• The Software Development Kit (SDK) is open source and not

subject to restrictions

Drone Hazards

11

• Hazards that were identified for analysis:
– Loss of communication
– Loss of propulsion
– Damage due to environmental factors
– Loss of battery power
– Loss of situational awareness

• Due to schedule limits, the case study
focused on damage to the platform, did not
include possible damage to surroundings.

Drone Risk Analysis

12

• Fault Tree analysis for loss of communication

SW

HW

Case Study Severity Matrix

13

Catastrophic Could result in irretrievable loss of aircraft, human life,
damages exceeding $1000, or irreversible severe
environmental damage that violates law or regulation.

Critical Permanent damage to retrievable aircraft requiring complete
replacement, permanent partial disability, loss exceeding $1000
or reversible environmental damage causing a violation of law
or regulation or indirectly causes mission failure.

Marginal Major reparable damage to aircraft requiring replacement of
expensive parts with total repair cost exceeding $150, non-
permanent injury or mitigate-able environmental damage
causing a violation of law or regulation.

Negligible Minor reparable damage to aircraft requiring replacement of
cheap parts with total repair not exceeding $150, or minimal
environmental damage not violating law or regulation.

Case Study Probability Matrix

14

Frequent Expected to occur multiple times in the
operation of the aircraft.

Probable Will be expected to occur at least once in the
operation of the aircraft.

Occasional Will be expected to occur at least once after
several operations of the aircraft.

Remote Unlikely, but can be expected to occur at least
once in the life of the aircraft.

Improbable Highly unlikely to occur, but still possible to
occur at least once in the life of the aircraft.

Case Study Risk Analysis Summary

15

Hazard System Risk

Loss of Communication High

Loss of Situational Awareness High

Loss of Propulsion Serious

Loss of Battery Power Medium

Environmental Damage Medium

Software design changes were suggested to mitigate the highest risks.

The slicing analysis could not be completed due to tool deficiencies.

Integration and Architecture Faults

• Hypothesis: many system integration
problems are due to architecture faults and
imperfections in test and evaluation.
– Examples of integration problems due to

architecture faults are on following slides.
– Testing imperfection example:

• Code faults in which components fail to conform to
architecture standards are missed by test cases.

• When two components are connected, one triggers such
a fault in the other, by exercising an untested situation.

• Incidence can be reduced by automated statistical
testing, with enough test cases for high confidence.

16

Architecture Fault Example (1)

• Kitchen plan calls out a Miele microwave
oven and an electric outlet.
1. Electrical contractor installs a 110 volt outlet.
2. Oven delivered, installation guide requires a 220

volt power supply, installation fails.

• Architecture left out constraints needed to
ensure the subsystems will work together.
– In this case: power supply voltage.

17

Architecture Fault Example (2)

• Laundry plan calls out an outlet, water supply,
and drain (washer), an outlet, gas supply, and
air vent (drier), and a big window on top.
1. Plumber installs the pipes below the structural

members supporting the window.
2. Electrical contractor finds space for the electrical

outlets completely obstructed by the pipes.
• Architecture left out constraints to deconflict

resource requirements for the subsystems.
– In this case: volumes of physical space.

18

Recommendations
• Architecture descriptions should be a

required deliverable in all contracts for
systems with open architectures.

• These should be required to pass design
reviews specifically targeted at preventing
system integration problems

• System designs & implementations should be
checked for conformance to the architecture.

• Preventing unauthorized changes to code
should be a requirement for any OSA

19

20

Conclusions
• Program Slicing has potential to reduce the

cost of regression testing of new releases.
• Currently available slicing tools need

improvement to do this in practice.
• System-level risk analysis can determine the

amount of testing needed for software.
• Architecture faults can lead to system

integration problems.
• QA procedures aimed at architecture faults

should be part of new OSA processes.

Thank you

