

Multi-Objective Optimization Of Fleet-Level Metrics To Determine New System Design Requirements: An Application To Military Air Cargo Fuel Efficiency

Parithi Govindaraju, Navindran Davendralingam and William Crossley
School of Aeronautics and Astronautics
Purdue University
AFCEA Acquisition Research Symposium
May 15, 2014

PURDUE AERONAUTICS & ASTRONAUTICS

Overview

- Assist decision maker/acquisition practitioner with a decision support framework
 - Determine requirements for and suggest design of a new system that will optimize fleet-level objectives
- Motivated by a lack of processes to capture effects of fuel-saving measures on fleet-level performance metrics
- Address combined platform design (here, aircraft) and fleet operations problem
 - Fleet-level objectives are functions of new platform requirements
- Used the approach to generate tradeoffs between fleet productivity and cost
 - Use simple network extracted from Air Mobility Command operations
 - Representation of demand constraint
 - New aircraft design requirements change across range of best tradeoff solutions

MOTIVATION

PURDUE AERONAUTICS & ASTRONAUTICS

Motivation

- Current requirements or acquisition processes do not accurately explore tradeoff opportunities for fleet-level fuel (cost) and performance*.
- Lack of a framework that captures the effect that fuel-saving measures can have on fleet-level performance metrics*.
- Fleet-level energy efficiency poses significant risks and operational constraints on military operational flexibility**
- Determining design requirements of 'yet-to-be-designed' systems is difficult
 - Tightly coupled nature of the system design problem with the resource assignment problem
 - Non-deterministic nature of AMC operations
 - Demand is highly asymmetric
 - Demand fluctuation on a day to day basis
 - Routes flown vary based on demand

http://www.acq.osd.mil/asda/docs/fact sheets/energy efficiency starts with the acquisition process.pdf

^{*}Energy Efficiency starts with the acquisition process

^{**}Saving fuel secures the future – one gallon at a time. Inside AMC

Air Mobility Command

- Air Mobility Command (AMC) One of the major command centers of the U.S. Air Force
- AMC is the largest consumer of aviation fuel in the Department of Defense
 - AMC Operations
 - Uncertainty in cargo demand
 - Limited aircraft types
- AMC's mission profile includes
 - Worldwide cargo and passenger transport
 - Air refueling
 - Aeromedical evacuations

B747-f chartered from Civil Reserve Air Fleet

Source: www.amc.af.mil

^{*}Our work only addresses cargo transport

How can our approach help?

- Our methodology
 - Helps determine the requirements for and describe the design of – a new aircraft for use in the AMC fleet
 - Optimize fleet-level metrics that address performance and fuel use
- Describe how design requirements of the new aircraft would change for different tradeoff opportunities between productivity and cost

SCOPE AND METHOD OF APPROACH

Scope and Method of Approach

- Consider this as an optimization problem
 - Objectives
 - Fleet Productivity (speed of payload delivery)
 - Fleet Operating cost (strongly driven by fuel use)
 - Variables
 - New aircraft requirements
 - New aircraft design variables
 - Assignment variables
 - Constraints
 - Cargo demand
 - Aircraft performance

Scope and Method of Approach Purpug

Monolithic Formulation

Subspace Decomposition

Scope and Method of Approach

- Subspace Decomposition approach
 - Breaks down the computational complexity
 - Solve a series of smaller sub-problems
 - Controlled by a top level optimization problem
- Addresses the issue of tractability of solving a monolithic, stochastic mixed integer nonlinear programming (MINLP) problem

Subspace Decomposition Approach

Multi-Objective Formulation

- Two objectives
 - Maximize fleet-level productivity
 - Minimize fleet-level cost
- Epsilon (Gaming) constraint formulation
 - Converts multi-objective to single objective
 - Identify a primary objective
 - Place limits on other objectives (inequality constraints)

Top Level Subspace

Maximize Productivity

Productivity = Speed x Capacity

Subject to $14 \le Pallet_x \le 38$

Pallet Capacity Bounds

 $2400 \le Range_x \le 3800$

Range at maximum payload bounds (nm)

 $350 \le Speed_x \le 550$

Cruise speed bounds (knots)

- Pallet capacity, Range and Speed bounds are set by strategic air lift aircraft description
- Bounds for aircraft design variables similar to current military cargo aircraft

Aircraft Sizing Subspace

Minimize
$$f = (DOC_{pallet,range,speed})_X$$

Direct Operating Cost

Subject to
$$6.0 \le (AR)_{y} \le 9.5$$

Wing aspect ratio bounds

$$65 \le (W/S)_{\scriptscriptstyle X} \le 161$$

Wing loading bounds (lb/ft²)

$$0.18 \le (T/W)_{y} \le 0.35$$

Thrust-to-weight ratio bounds

$$S_{TO}\left(Pallet_X, (AR)_X, (W/S)_X, (T/W)_X\right) \leq D$$

Aircraft takeoff distance

 Bounds for aircraft design variables similar to current military cargo aircraft

Fleet Assignment Subspace

Maximize

$$E\left|\sum_{p=1}^{P}\sum_{k=1}^{K}\sum_{i=1}^{N}\sum_{j=1}^{N}x_{p,k,i,j}\cdot\left(Speed_{p,k,i,j}\cdot Pallet_{p,k,i,j}
ight)
ight|$$

Subject to

$$\sum_{p=1}^{P} \sum_{k=1}^{K} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{p,k,i,j} \cdot C_{p,k,i,j} \le M$$

$$\sum_{i=1}^{N} x_{p,k,i,j} \ge \sum_{i=1}^{N} x_{p,k+1,i,j} \quad \forall k = 1, 2, 3...K,$$

$$\forall p = 1, 2, 3...P, \forall j = 1, 2, 3...N$$

$$\sum_{p=1}^{P} \sum_{k=1}^{K} Cap_{p,k,i,j} \cdot x_{p,k,i,j} \ge dem_{i,j}$$

$$\forall i = 1, 2, 3...N, \forall j = 1, 2, 3...N$$

$$\sum_{i=1}^{N} x_{p,1,i,j} \ge O_{p,i} \quad \forall p = 1,2,3...P, \ \forall i = 1,2,3...N$$

$$\sum_{k=1}^{K} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{p,k,i,j} \cdot BH_{p,k,i,j} \le B_{p} \quad \forall p = 1, 2, 3...P$$

$$x_{p,k,i,j} \in \{0,1\}$$

Productivity = Speed x Capacity

Fleet-level DOC or fuel limits

Node balance constraints

Demand constraints

Starting location of aircraft constraints

Trip constraints

Binary Variable

Pallet Cargo Demand

- High levels of uncertainty in cargo demand
- Addressed using Monte Carlo sampling methods
 - Repeated deterministic calculations for statistical distribution of input parameters

Subspace Decomposition Approach

SCENARIOS & STUDIES

Three-base Problem

- Filtered route network from GATES dataset
 - Demand for subset served by C-5, C-17 and 747-F (~75% of total demand)
- Simple three-base problem consisting of 6 directional routes
 - Extracted from the GATES dataset
 - Most flown routes in March 2006
- Existing fleet for AMC
 - Three C-5: 36 pallet capacity
 - Three C-17: 18 pallet capacity
 - Three B747-F: 29 pallet capacity
- 3 new aircraft X are introduced to the existing baseline fleet

Results

Results

- Optimum pallet capacity varies based on fleet-level productivity /DOC values
 - Pallet capacity increases with fleet-level productivity
- Optimum design range varies between 2400 nm to 3200 nm
 - Design range increases when sampled demand instances are higher than average

CONCLUSIONS

Summary/Conclusions

- Developed a framework that identifies the tradeoffs between fleet-level cost and productivity
 - Each tradeoff solution describes the design requirements, and design variables for the new aircraft
 - Uncertainty in demand addressed using Monte Carlo sampling techniques
- Demonstrates the viability and applicability of the subspace decomposition framework
 - Assist acquisition practitioners

Future Work

- Demonstrate the decomposition framework for a larger, i.e. realistic network
- Aircraft sizing accounts for outsized/oversized cargo
- Reduce computational cost associated with sampling demand uncertainty
- Generalize to other systems

Questions?

BACKUP SLIDES

- Prior work assumed symmetric demand*
- Developed metric calculates the asymmetry in demand between bases

Demand asymmetry =
$$\sum_{O=1}^{N} \sum_{D=1}^{N} \frac{\left| Demand_{O,D} - Demand_{D,O} \right|}{\max(Demand_{O,D}, Demand_{D,O})} \times 100$$

- Calculates demand asymmetry between origin-destination pairs
- The AMC network reconstructed from the 2006 GATES dataset shows 65.15% demand asymmetry
- Symmetric demand assumption is not suited for AMC operations

^{*}Choi, J., Govindaraju, P., Davendralingam, N., & Crossley, W. (2013). Platform Design for Fleet-Level Efficiency: Application for Air Mobility Command (AMC). In *10th Annual Acquisition Research Symposium*.

Air Mobility Command

- Used Global Air Transportation Execution System (GATES) dataset
- Filtered route network from GATES dataset
 - Demand for subset served by C-5, C-17 and 747-F (~75% of total demand)
 - Fixed density and dimension of pallet (463 L)
- Our aircraft fleet consists of only the C-5, C-17 and 747-F.

Source: www.amc.af.mil