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Abstract 
Identifying optimal design requirements of new systems that operate along with existing 
systems to provide a set of overarching capabilities is a challenging endeavor for acquisition 
practitioners. Difficulties arise due to the tightly coupled effects that setting requirements on a 
system’s design (here, military transportation aircraft) can have on how the system is being 
used (here, how the aircraft is allocated to carry cargo on specified routes). The task of 
identification becomes even more difficult when considering uncertainties in the way the 
system is used, and in the demand for its services. Our research extends a previously 
developed quantitative approach that generates optimum design requirements of new, yet-to-
be-designed systems that, when serving alongside other systems, will optimize fleet-level 
objectives. We extend the approach to now include the effect of various forms of operational 
uncertainties. Our approach relegates quantitative complexities of decision-making to the 
method and designates trade-space exploration to the practitioner. We demonstrate the 
approach by exploring tradeoffs between fleet-level cost and fleet-wide performance for the 
USAF Air Mobility Command fleet. 

Introduction 

Nomenclature 

ARX = aspect ratio of aircraft type X 
Bp  = maximum average daily utilization of each aircraft (16 hours) 
BHp,k,i,j  = number of block hours for kth trip of aircraft p from base i to 

base j 
Cp,k,i,j = cost coefficient for kth trip of aircraft p from base i to base j 
Capp,k,i,j= pallet carrying capacity for kth trip of aircraft p from base i to    

base j  
 ஽ೀ  = Parasite drag coefficientܥ

D݁݉௜,௝ = demand from base i to base j in number of pallets 

DOC = Direct Operating Cost 
DOC/BH = Direct Operating Cost per block hour ($/hr) 
M  = Fleet-level DOC or fuel limit 
Op,I       = indicates if airport i is the initial location (e.g., home base) of 

an aircraft p 
PalletX = number of pallets carried by aircraft type X 
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Prodp,k,i,j= productivity coefficient for kth trip of aircraft p from base i to 
base j 

RangeX= design range of aircraft type X (nm) 
SFC   =  Specific Fuel Consumption (1/hr) 
SpeedX= cruise speed of aircraft type X (knots) 
STO  = take off field length 
(T/W)X = thrust-to-weight ratio of aircraft type X 
WE  = empty weight (lbs) 
(W/S)X = wing loading of aircraft type X (lb/ft2) 
xp,k,i,j       = Boolean variable for kth trip flown by aircraft p from base i to 

base j 

Research Issue 
The Energy Efficiency Starts With the Acquisition Process factsheet states that 

“neither current requirements or acquisition processes accurately explore tradeoff 
opportunities using fuel as an independent variable” (Deputy Under Secretary of Defense for 
Acquisition, Technology, and Logistics [DUSD(AT&L)], 2012). The factsheet also states, 
“Current processes undervalue technologies with the potential to improve energy efficiency.” 
The complexity of dealing with many interdependent systems, the impact of changing 
characteristics of such systems, and uncertainties related to allocations of such systems 
becomes cognitively impossible to manage without a decision-support framework. Current 
acquisition processes focus on development at the system-level (e.g., aircraft performance), 
with little consideration on how the interactive effects between the newly designed systems 
will have when set to work with other existing systems.  

Typically, engineering systems are designed to meet specific performance 
objective(s) during their lifespan. A system may not be able to obtain or consistently provide 
a predicted value of a performance objective, because of uncertainties in the estimation, the 
physical implementation of the system, and in the operating environment, as illustrated in 
Figure 1 (Schuëller & Jensen, 2008). Epistemic (reducible) uncertainties in the design 
parameters (assumptions in model inputs) reflect uncertainties in the use of the system 
under varying operational conditions (e.g., during design, a nominal inlet temperature for the 
engine may be assumed but, in reality, varying operational conditions can change this). The 
varying nature of daily demand for the use of these systems also presents uncertainty. The 
research presented here addresses uncertainty in fleet operations and in the design 
parameters of the new system. 
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 Classes of Uncertainties 

Our approach treats design requirements of new systems as decision variables in an 
optimization problem to minimize (or maximize) fleet-level objectives—the solution being the 
selection, based on mathematical techniques, of decision variable values that yield the best 
fleet-level objectives. Our problem of designing a new system (here, an aircraft) and 
determining the optimal allocation of the new aircraft, together with existing aircraft as a fleet 
to meet air transportation demand, is mathematically difficult when considering the effects of 
uncertainty, and may become impossible to solve in practical time—even for small-sized 
problems with few decision variables. Prior Acquisition Research Program–funded work 
demonstrated that, for a simple air cargo transportation example representing operations of 
the USAF Air Mobility Command (AMC) fleet, breaking down the complex mathematical 
problem into a series of smaller, well-posed sub-problems makes the problem 
computationally tractable; this strategy is known as a subspace decomposition strategy. The 
research presented here extends prior work (Govindaraju et al., 2014) to encompass 
investigating tradeoffs between objectives of productivity/mission effectiveness and cost. 
These two competing objectives (maximizing productivity increases cost and minimizing cost 
decreases productivity) often play a critical role in determining new system requirements.  

Scope and Method of Approach 
The early stages of the design process have substantial uncertainty due to the lack 

of high fidelity information from a realized design. The conventional approach to designing 
engineering systems typically involves analyses of deterministic models and parameters. 
However, most engineering systems experience variations in operating conditions and/or 
the environment in which these systems operate. Deterministic models account for these 
variations by considering the extreme or nominal values, and/or using safety factors. These 
assumptions of the nominal/extreme factors in deterministic models lead to sub-optimal 
performance of these systems when deployed (Beyer & Sendhoff, 2007; Schuëller & 
Jensen, 2008). Missing performance targets by incorrectly using nominal, deterministic 
predictions or greatly over-designing systems by using safety factors applied to deterministic 
predictions can both lead to cost overruns and increased risk. The observed inefficiencies 
that stem from the deterministic assumption have sparked research over the last two 
decades in addressing uncertainty in the design of complex systems (Mavris et al., 1999).  
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Aircraft design optimization efforts have traditionally focused on improving the 
aircraft’s performance (e.g., minimizing takeoff gross weight, cost), with the new aircraft 
expected to improve fleet-level performances, albeit indirectly. Identifying optimal design 
requirements of new systems that operate along with existing systems to provide a set of 
overarching capabilities is challenging due to the tightly coupled effects that setting 
requirements on a system’s design can have on how the system is being used (Mane et al., 
2007; Taylor & Weck, 2007). The task of identification becomes even more difficult when 
considering uncertainties in the way the system is used and in the demand for its services. 
Previous work by the author (Choi et al., 2013a, 2013b; Govindaraju et al., 2014) and others 
(Baker et al., 2002; Listes & Dekker, 2005) address uncertainties at the system-level or at 
the resource allocation level separately, and do not consider the impact and propagation of 
uncertainty that setting system-level requirements has on the way the same system might 
be operated along with other systems to provide a set of capabilities.  

Quantifying and addressing uncertainty in multiple disciplines is often characterized 
by high computational expense leading to the design problem being intractable. A 
computationally efficient approach is necessary to effectively conduct studies that examine 
several scenarios using different predictions of demand, cost of operating the fleet, and so 
forth. Furthermore, multi-objective analyses performed using the resulting methodology will 
address the current need for analytical frameworks, which enable decision-makers and/or 
acquisition practitioners to assess tradeoffs that design choices may have on fleet-level 
metrics of interest.  

Monolithic Problem Formulation 

The approach in this study seeks to maximize (or minimize) a fleet-level objective 
function by searching for the optimal values of a set of decision variables that describe the 
new system design features and also determine the assignment of the new and existing 
systems to perform operational missions. Solving the monolithic problem that combines the 
selection of the new aircraft design features and the assignment of new and existing aircraft 
to meet demand requirements can be challenging. The monolithic representation of the 
variable resource allocation problem considered for this study involves the combination of 
resource assignment and aircraft design problems under uncertainty. The resulting problem 
is a stochastic mixed integer non-linear programming (MINLP) problem (stochastic—
because of the uncertainties in demand and design parameters; mixed integer—because of 
the presence of continuous decision variables such as aspect ratio, wing loading, etc., and 
integer decision variables such as pallet capacity; and non-linear— because of the non-
linearity of the constraints such as the aircraft takeoff distance constraint) and is represented 
by the following equations:  

Maximize 

(Productivity = Speed x Capacity) (0) 

Subject to  

 

(DOC or Fleet fuel limits) (0) 
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  (Node balance constraints) (0) 

 (Trip constraints) (0) 

 (Demand constraint) (0) 

 (Starting location constraints) (0) 

  
(Aircraft takeoff distance)  (0) 

 (Design pallet capacity bounds) (0) 

 (Range at max. payload bounds) (0) 
 (Cruise speed bounds in knots)  (0) 

 (Wing aspect ratio bounds) (0) 

 (Wing loading bounds) (0) 

 (Thrust-to-weight ratio bounds) (0) 

 (Binary variable) (0) 

 (Continuous aircraft design variables) (0) 

 (Discrete aircraft design variables)  (0) 

Equation 1 is the objective function that seeks to maximize the expected fleet-level 
productivity where Speedp,k,i,j x Palletp,k,i,j indicates the productivity coefficient of the trip for 
kth trip for aircraft p from base i to base j. The objective function is the expected (average) 
value because of the uncertainty in the aircraft design parameters and in the pallet demand 
in the service network. Equation 2 limits the fleet-level fuel consumption or cost to a pre-
defined limit (M); the limit is varied and the problem is re-solved for each varied value of limit 
to generate a set of Pareto optimal solutions; the equation has two parts where ݔ௣,௞,௜,௝ ∙
 ௣,௞,௜,௝ refers to the cost of use of utilizing aircraft type p for kth trip from base i to base j. Theܥ	
rest of the terms in Equation 2 refer to the cost of allocating the new yet-to-be-designed 
aircraft, where the new aircraft is a function of design variables (aspect ratio, thrust-to-weight 
ratio, and wing loading) and design requirements (pallet capacity, design range, and cruise 
speed). Equation 3 is the balance and sequencing constraint that ensures that the (k+1)th 
trip of an aircraft out of a base occurs only after kth trip into that base—this constraint 
ensures that an aircraft needs to already be at a base prior to completing a subsequent 
segment trip out of the same base. Equation 4 limits flights to only occur within daily 
utilization limit Bp (assumption of 16 hours) of the aircraft, where BHp,k,i,j indicates the block 
hour for the kth trip for aircraft p from base i to base j. Equation 5 ensures that carrying 
capacity of combined trips flows by all aircraft on a specific route meets the demand on that 
route, where Capp,k,i,j indicates the pallet carrying capacity of the kth trip for aircraft p from 
base i to base j. Equation 6 ensures that the first trip of each aircraft originates at the initial 
location, Op,i (home base), which is randomly generated. The non-availability of the aircraft 
starting location information necessitates the random distribution of the starting location of 
each aircraft. Equation 7 limits the new aircraft design based on maximum takeoff distance 
(D) to ensure that the new aircraft can operate at all bases in the network. Equations 8–10 
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describe bounds on the aircraft design variables of payload, design range (in nautical miles) 
at maximum payload, and cruise speed (in knots) capabilities of the new aircraft. The 
chosen limits are within ranges exhibited by current military cargo aircraft. The continuous 
aircraft design variables of aspect ratio ሺܴܣሻ௑, thrust-to-weight ratio ሺܶ/ܹሻ௫ , and wing 
loading ሺܹ/ܵሻ௫ (in lb/ft2), describing the new aircraft, are bounded within the range of values 
associated with current cargo aircraft; the bounds appear in Equations 11–13. 

Subspace Decomposition Strategy  

The subspace decomposition strategy, as shown in Figure 2, decomposes the 
MINLP problem into smaller optimization problems—each sub-problem follows the natural 
boundaries of disciplines involved in formulating the original problem. The top-level problem 
helps explore the requirements space for the new yet-to-be-introduced aircraft based on 
fleet-level metrics. In this research, the top-level optimization problem is tackled using quasi-
enumeration and seeks to maximize the expected fleet-level productivity using pallet 
capacity, range, and cruise speed of the new, yet-to-be-introduced aircraft type X. 

 

 Subspace Decomposition of Monolithic Optimization Problem With 
Monte Carlo Sampling and Design of Experiments 

The resulting pallet capacity (Palletx), design range (Rangex), and cruise speed 
(Speedx) from the top-level problem then become inputs to the aircraft sizing problem. Here, 
the aircraft sizing problem seeks to minimize the direct operating cost of the new yet-to-be-
introduced aircraft for the value of range, pallet capacity, and cruise speed from the top-level 
optimization problem. The aircraft design problem is subject to constraints on take-off 
distance. Actual aircraft design of this kind would need additional constraints; here, using 
only the takeoff distance simplifies the problem, while demonstrating that the approach can 
incorporate performance constraints. The design variables in the aircraft sizing subspace 
are the main drivers of aircraft design, namely the wing aspect ratio ሺܴܣሻ௫, thrust-to-weight 
ratio ሺܶ/ܹሻ௫, and wing loading ሺܹ/ܵሻ௫. The aircraft sizing code computes performance 
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metrics such as cost estimates, fuel consumed, empty weight, and so forth of the new 
aircraft design, which are then used for solving the aircraft sizing problem After the aircraft 
sizing problem is solved, the outputs of the aircraft sizing problem and the top-level 
optimization problem, namely the productivity coefficients and cost coefficients, and pallet 
capacity, then become inputs to the aircraft assignment problem. Here, the assignment 
problem’s objective is to maximize the fleet-level productivity using characteristics of the 
new, yet-to-be-introduced aircraft (cost, pallet capacity, speed), subject to capacity, fleet-
level cost, and aircraft trip limits. The aircraft sizing problem and the assignment problem are 
solved multiple times using samples of demand instantiations and for different factor settings 
(design of experiments) to account for uncertainty in the current approach. The average or 
expected (mean) value of the fleet productivity is calculated from the results of the sampled 
demand runs.  

Aircraft Sizing Subspace 

The problem formulation requires estimates of the cost, block time, and fuel 
consumed by each aircraft type in the fleet to determine the appropriate assignment of 
aircraft to the various routes in the network. A Purdue in-house aircraft sizing code, written in 
MATLAB, provides these estimates in the aircraft sizing subspace shown in Figure 2. Jane’s 
Aircraft database (Jackson et al., 2004) provided the input parameters for the three existing 
aircraft types (C-5, C-17, 747-F) used in this study. Table 1 summarizes the technical 
characteristics of the various aircraft types in the existing AMC fleet considered for this study. 
The MATLAB sizing code’s predictions of the existing aircraft size, weight, and performance 
have been validated with published data. 

 Technical Characteristics of Different Aircraft Types in Existing Fleet 

 

Direct operating cost (DOC) estimates include fuel costs, crew costs, maintenance, 
depreciation, and insurance. DOC estimates are also dependent on the payload, route 
distance, empty weight, landing weight, and takeoff gross weight. To estimate the fuel 
weight necessary for flying the route distance, the fuel required for each mission segment is 
computed and aggregated. The fuel weight fractions for the different mission segments such 
as warm-up and take-off, climb, landing and taxi, and reserves are based on empirical data 
(Raymer, 2006). The aircraft design variables are aspect ratio ሺܴܣሻ௫, thrust-to-weight ratio 
ሺܶ/ܹሻ௫ , and wing loading ሺܹ/ܵሻ௫. There are many other design variables, but these three 
have significant impact on the size, weight, and performance of the aircraft. The aircraft 
sizing problem is a nonlinear programming (NLP) problem and is described using Equations 
17–21. 

Minimize   ݂ ൌ ሺܥܱܦ௣௔௟௟௘௧,௥௔௡௚௘,௦௣௘௘ௗሻ௑   (17) 

Subject to ்ܵைሺ݈݈ܲܽ݁ݐ௑, ,௑݀݁݁݌ܵ ሺܴܣሻ௑, ሺܹ/ܵሻ௑, ሺܶ/ܹሻ௑ሻ 	൑  (18) (Aircraft takeoff distance) ܦ

  6.0 ൑ ሺܴܣሻ௑ ൑ 9.5 (Wing aspect ratio bounds) (19) 

  65 ൑ ሺܹ/ܵሻ௑ 	൑ 161  (Wing loading bounds) (20) 
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  0.18	 ൑ ሺܶ/ܹሻ௑ ൑ 0.35   (Thrust-to-weight ratio bounds)(21) 

Equation 17 is the objective function that seeks to minimize DOC or fuel cost of the 
new aircraft X. The aircraft X design input variables are pallet carrying capacity of the 
aircraft, design maximum range at maximum loading condition, and cruise speed as shown 
in Equations 8–10. Equation 18 limits the aircraft design based on maximum takeoff 
distance to ensure that the new aircraft can operate at bases in the network within the 
bounds of modern day cargo aircraft descriptions shown in Equations 19–21.  

Uncertainty in Design Parameters  
The conceptual phase of the aircraft design process is based on empirical equations 

and simplified physics models. The limited knowledge available at this phase of the design 
process combined with the modeling fidelity results in high uncertainty. Therefore, the 
design parameters of the system are not certain and this type of uncertainty enters the 
system in the form of perturbations of the design variables. It is to be noted that the 
perturbations may or may not depend on the design variables. For example, an aircraft is 
typically sized for its design mission based on a set of nominal values on operating 
conditions (e.g., engine inlet air temperature). However, when evaluating the “operating 
missions” to determine block time and fuel consumed on the flight, there might be a variation 
in winds aloft, which would alter the block time and fuel consumed. To account for the 
uncertainties in the design parameters, it is necessary to perform simulations in the absence 
of closed form mathematical expressions for the objective function and constraints. 
Implementing robust counterparts for the original objective function and reliability-based 
optimization techniques have been widely employed to solve problems involving design 
parameter uncertainty (Schuëller & Jensen, 2008). As an initial step to capture the inherent 
uncertainty present in the conceptual phase of the design process, we have devised a three-
factor full factorial design of experiment (DOE) study (Montgomery, 2008). The four 
uncertain design parameters chosen for this study are empty weight (WE), specific fuel 
consumption (SFC), parasite drag coefficient (ܥ஽ೀ), and direct operating cost per block hour 
(DOC/BH). Table 2 summarizes the uncertain model parameters and their range of values. 
The three factor values for each uncertain model parameter are the baseline value, 90% of 
baseline value, and 110% of baseline value. 

 Uncertain Design Parameters for the Aircraft Sizing Problem 

 

We use a full factorial design of experiments approach to determine an optimal 
description of the new aircraft. A full factorial DOE generates nk experiment designs, where 
n is the number of variables and k is the number of factors. The results from the DOE are 
used to identify the significance of the different factors of the design parameters and their 
impact on fleet-level performance metrics. Since the aircraft sizing and the assignment 
problems are embedded within the DOE method, for each experiment involving a set of 
factor values of the design parameters, the new aircraft (obtained from solving the aircraft 
sizing problem) and the existing aircraft are then assigned to routes in the service network; 
the fleet-level cost and productivity values are then computed from the optimal assignment. 
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These fleet-level performance metrics for each of the DOE runs are then passed on to the 
top-level problem.  

The DOE approach combined with the subspace decomposition strategy can also 
accommodate economic uncertainty analyses that might be of interest to acquisition 
practitioners. For instance, uncertainty in future budget estimates for new aircraft 
acquisitions will affect the DOC predictions of the new aircraft, and this uncertainty 
propagates to the assignment problem. The acquisition decision of the new aircraft is 
dependent on the budget, and the number of new aircraft in service and uncertainty in fleet 
operations will affect fleet-level performance metrics. The DOE approach can quantify the 
resulting uncertainty that propagated from the system design subspace to the fleet 
operations subspace. 

AMC Assignment Subspace 

The fleet assignment subspace identifies the optimal assignment of the fleet’s aircraft 
to meet demand obligations; this includes allocation of the new aircraft—as described by the 
preceding aircraft sizing subspace—along with existing aircraft in the fleet. The resulting 
mathematical program of the allocation problem is given by the following set of equations: 

Maximize 

    (Productivity = Speed x Capacity)   (1) 

Subject to  

  (Fleet-level DOC or fuel limits) (2) 

  (Node balance constraints) (3) 

 (Trip constraints) (4) 

 (Demand constraint) (5) 

 (Starting location constraints) (6) 

 (Binary variable) (7) 

Equation 26 describes of the objective of maximizing the fleet-level productivity, 
subject to a fleet DOC limit that enables a subsequent multi-objective optimization, node 
balance, trip, demand, and aircraft starting location constraints described in Equations 22–
28; these follow the same description as Equations 2–6 of the monolithic problem 
formulation. Equation 28 describes the binary decision variable of the assignment subspace 
that takes a value of 1, if the kth trip of aircraft p is flown from base i to base j, and 0, 
otherwise. The “scheduling-like” formulation used in the problem is a surrogate for the cost 
and operation model, and it does not consider aircraft or pilot scheduling. However, the 
aircraft in the fleet are not required to return to their home base at the end of the day (a 
round-trip assumption is removed), and may continue servicing different routes. The Generic 
Algebraic Modeling System (GAMS) software package, accessed through a MATLAB 
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interface, is used to solve the assignment problem, using the CPLEX solver option (Ferris, 
1998). The “scheduling-like” formulation using node balance constraints allows individual 
aircraft to make multiple flight segments in one day (within a time limit), allows for pallets to 
be carried from their origin to destination on possibly multiple aircraft, and tracks each 
individual aircraft by “tail number.” These features more directly model AMC operations than 
some of the previous models from the author and his colleagues considering passenger 
airline transportation (Govindaraju et al., 2013; Mane et al., 2007).  

Uncertainty in Fleet Operations 

The cost of operating a fleet is subject to the trip demand characteristics—a quantity 
that is typically uncertain. While passenger demand between origin-destination pairs is fairly 
constant for commercial or passenger airline route networks, the same cannot be said for 
AMC operations, which typically experience high levels of uncertainty in demanded trips and 
cargo size (Choi et al., 2013). To develop the example problem with relevance to AMC, the 
Global Air Transportation Execution System (GATES) dataset provides historical route and 
cargo demand data. These data enable the reconstruction of the route network, pallet 
demand characteristics, and existing fleet size for the fleet assignment problem. The GATES 
dataset reveals the variation in pallet demand (number of pallets transported on a route) 
over a year, reflecting the uncertainty associated with pallet demand in AMC operations. 
Thus, it becomes imperative for any systems designer/planner to consider the uncertainty in 
the network as part of the decision-making framework. Figure 3a shows the severity of 
fluctuation indicating the wide variation in the number of the pallets transported daily 
between two popular bases in the GATES dataset. Figure 3b, showing the histogram of the 
number of pallets transported per aircraft per day, reveals that for many of the days, aircraft 
are very lightly loaded. The demand uncertainty in the service network is addressed through 
a Monte Carlo Sampling (MCS) approach from literature (Mane & Crossley, 2012). The MCS 
technique uses prior demand data distribution information to generate random samples of 
demand realizations, based on the historical demand distributions for each route. The 
expected (arithmetic mean) fleet-level performance metrics are then averaged from the total 
number of Monte Carlo runs. We adopt a naïve MCS strategy for this work due to its ease of 
implementation. However, the MCS technique can prove to be computationally expensive 
with increasing sample sizes, due to the computational complexity of solving an integer 
program for each realized sample of demand and starting location for each aircraft in the 
fleet, and may warrant further work in using more efficient sampling techniques. The process 
of solving one aircraft sizing problem and several assignment problems is repeated for 
different factorial experiments. The expected fleet-level productivity and cost values from 
each of the DOE experiments are then passed on to the top level. 
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 Pallets Transported on a Sample Route From GATES Dataset 

Three-Base Network Problem 

Network Description 

A simple, illustrative sample problem for AMC operations, consisting of six directional 
routes between three bases is devised as an initial study. The airbase locations and the 
route data are extracted from the GATES dataset. Figure 4 depicts the geographical 
locations of the bases and the average daily pallet demand between the bases of the three-
base network problem. The intent is to assign aircraft on various routes to satisfy the 
network cargo demand. 

 

 Schematic of Three-Base Network Problem 

Three-Base Network Results 

The three bases in the sample network (ETAR, OKAS, and OTBH,) are the most 
flown routes in the GATES dataset for May 2006. The actual size of the strategic airlift fleet 
dedicated to cargo transport is obtained from the GATES dataset by accumulating unique 
tail numbers, resulting in a fleet composition of 92 C-5s, 145 C-17s, and 69 B747-Fs. The 
reduced existing fleet size for the three-base network problem consists of three of each 
aircraft type (C-5, C-17, and B747-F, which is assumed to be operated as a chartered 
aircraft). One new aircraft (aircraft type X) is introduced to the fleet. The new aircraft, in 
addition to the existing fleet, serve to satisfy the pallet cargo demand on various routes 
subject to the scheduling and capacity constraints.  
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Using the aforementioned subspace decomposition and a partial enumeration for the 
top-level search, the author conducted a full factorial DOE with numerous Monte Carlo 
simulations to obtain a description of the new aircraft requirements (top-level decision 
variables), the new aircraft description (the aircraft sizing design variables), and the 
corresponding allocation of the new aircraft along with the existing aircraft fleet (the 
assignment decision variables). For each discrete combination of the top-level values (pallet 
capacity, design range, and cruise speed), we conducted a DOE in the uncertain aircraft 
design. For each “experiment” in the DOE, one aircraft sizing subspace problem solution 
describes the new aircraft. Then, for each “experiment” in the DOE, considering the 
assignment problem with uncertain demand, the Monte Carlo approach solves several 
assignment problems, each with a different cargo demand from samples generated using 
the AMC GATES data. Each of these assignment solutions must meet a fixed constraint on 
fleet DOC, in addition to the other operational constraints. The subspace decomposition 
approach is solved sequentially until the top-level converges. Then, to identify the tradeoff 
between fleet operating cost, which is strongly related to fuel consumption, and the 
expected productivity, the entire process repeats using a different limit value on fleet DOC. 

 

 Pareto Front of Normalized Expected Fleet Productivity and Normalized 
Expected Fleet Costs for Existing Fleet, and for Fleet Comprising of 

Existing Aircraft and One New Aircraft in the Three-Base Network Problem 

Figure 5 shows the Pareto front obtained from solving the multi-objective problem of 
the example three-base network. The plot shows only the expected values and does not 
depict the uncertainty associated with those computations. The expected fleet productivity 
and cost values shown in Figure 5 have been normalized with respect to the minimum 
productivity and minimum cost values from the outputs of the “Fleet with one new A/C” 
scenario. In other words, the lowest value of expected productivity obtained from the 
decomposition process and the top-level partial enumeration equals 1.0 for the “Fleet with 
one new A/C” scenario; similarly, the lowest value of fleet DOC obtained equals 1.0.  
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The Pareto front is the set of Pareto optimal solutions, that is, solutions from multi-
objective problems that cannot be improved without worsening at least one of the other 
objectives. These solutions are called non-inferior or non-dominated solutions. The Pareto 
front provides a quantitative measure of how the optimal design of the new system varies, 
as a particular objective is traded off with another objective. As we move along the Pareto 
front depicted by the red curve, the design requirements of the optimum design of the new 
aircraft changes to maximize the fleet-level productivity at different fleet-level DOC limits. 
The Pareto front depicted by the black curve shows the variation in normalized fleet-level 
productivity and normalized fleet-level costs for a fleet comprising only of existing aircraft. 
The existing fleet serves as a “baseline” to measure the impact of the introduction of the 
new aircraft into the existing fleet. As Figure 5 indicates, the introduction of the new aircraft 
X decreases the fleet-level costs for specific fleet-level productivity values. For instance, the 
new aircraft X with a normalized expected fleet productivity value of 1.12 and a normalized 
expected fleet-level costs value of 1.0, is a “small” aircraft capable of transporting 14 pallets 
for a range of 2,600 nautical miles at a speed of 400 knots; this aircraft reduces the 
expected fleet-level costs by 21.2% in comparison to the “Existing fleet” scenario for the 
same normalized expected fleet productivity value. However, estimates of the expected 
fleet-level performance metrics vary because of the uncertainties present in the design of 
the new aircraft and in the fleet operations. 

 

 Variation of Normalized Expected Fleet Productivity as a Function of 
Normalized Expected Fleet Costs for Fleet Comprising of Existing Aircraft 

and One New Aircraft in the Three-Base Network Problem 

Figure 6 shows the variation in fleet-level performance metrics and their 
corresponding maximum/minimum values. The solutions for the “Fleet with one new A/C” 
scenario shown in Figure 6 are identical to those shown in Figure 5. Each horizontal green 
error bar shows the maximum/minimum of the normalized expected fleet-level productivity, 
and each vertical blue error bar shows the maximum/minimum of the normalized expected 
fleet-level costs. As Figure 6 indicates, the “worst case” (maximum value) for the new 
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aircraft X with a normalized expected fleet-level costs value of 1.12 still reduces the fleet-
level costs by 9.8% in comparison to the “Existing fleet” scenario for the same normalized 
expected fleet productivity value. These results suggest that for several points along the 
Pareto front, the introduction of the new aircraft improves the fleet-level performance metrics 
significantly, even after accounting for uncertainties. 

Concluding Statements and Future Work 
The results from this paper show promise in the applicability of the subspace 

decomposition framework combined with the DOE and Monte Carlo sampling approaches, 
to determine the optimum design requirements of engineering system(s) that work along 
with existing systems to provide a capability or set of capabilities considering the uncertainty 
in design parameters and in fleet operations. This methodology could help acquisition 
practitioners with a decision-support framework to determine the design requirements and 
the optimal design for different tradeoff opportunities of performance and cost under varying 
levels of uncertainties. Also, explicitly addressing uncertainty in design process can lead to 
more reliable/robust design recommendations for acquisition practitioners to achieve fleet-
level objectives. Solutions from these “design under uncertainty” problems provide insight 
about new systems, and these insights can inform acquisition decisions.  

Also, solutions to multi-objective analyses will advance the knowledge base 
regarding how to perform “fuel/cost as an independent variable” tradeoffs and will enhance 
understanding about what features this kind of process should entail under various 
operational scenarios. This methodology can also provide a quantitative measure of the 
impact of the optimum design under uncertainty to the fleet-level objectives in comparison to 
the optimum design determined due to deterministic methods. While demonstrated for the 
design of aircraft systems, the subspace decomposition approach appears generalizable to 
other systems that require effective decision-making in setting requirements for new 
systems and platforms.  

The studies presented here describe our initial steps in understanding the impact of 
considering design parameter uncertainties and demand uncertainties simultaneously from 
a fleet-level perspective. Future work will incorporate methods from robust optimization, 
statistical sampling, and reliability-based optimization methods to address computational 
tractability in dealing with these two forms of uncertainty.  
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