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Abstract 
Mismatches between part procurement life cycles (especially for electronic parts) and the life 
cycles of the systems that parts are used in cause systems with long manufacturing and/or 
support lives to incur significant obsolescence management costs. While lifetime and bridge 
buys, which are used to manage part discontinuance (i.e., obsolescence) during the support 
of critical systems are simple in concept, the challenge is determining the optimum number of 
parts to buy and understanding their true cost. This paper presents a real options approach to 
valuate lifetime and bridge buys and to determine the optimum part quantity for a lifetime or 
bridge buy. The approach accommodates uncertainties in demand, holding costs, and end of 
support dates. 

Introduction 

Background 

A significant problem facing many complex systems is technology obsolescence. 
Technology obsolescence is defined as the loss or impending loss of original manufacturers 
of items or suppliers of items or raw materials (Sandborn, 2008). The type of obsolescence 
addressed in this paper is referred to as DMSMS (Diminishing Manufacturing Sources and 
Material Shortages) and is caused by the unavailability of technologies or parts that are 
needed to manufacture or sustain a system. DMSMS means that due to the length of the 
system’s manufacturing and support life, coupled with unforeseen support life extensions, 
needed parts become unavailable (or at least unavailable from their original manufacturer). 
While DMSMS can impact hardware, software, intellectual property, and human capital, its 
impact on hardware, specifically electronic parts, is the focus of most existing DMSMS 
management. 

The DMSMS-type obsolescence problem is most prevalent in “sustainment-
dominated” systems (Sandborn & Myers, 2008) where the cost of sustaining (maintaining) 
the system over its support life far exceeds the cost of manufacturing or procuring the 
original system. Sustainment in this paper refers to three things: keeping a system 
operational, continuing to manufacture and install versions of the original system that satisfy 
the original requirements, and finally manufacturing and installing versions of the original 
system that satisfy new and evolving requirements. Examples of sustainment-dominated 
systems include airplanes, military systems, medical equipment, and power plant controls 
and telecommunications infrastructure. These types of systems have long enough design 
cycles that a significant portion of the electronic technology in them are obsolete prior to the 
system being fielded for the first time, after which they must be supported in the field for 20 
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or more years. For these systems, simply replacing obsolete parts with newer parts is often 
not a viable solution because of high reengineering costs and the prohibitive cost of system 
qualification and certification. 

Many part obsolescence mitigation strategies exist for managing DMSMS 
obsolescence once it occurs, including (Stogdill, 1999): lifetime buy (also referred to as final 
order or Life Of Type—LOT buy), bridge buy (also referred to as last-time buy), 
alternative/substitute parts, aftermarket sources, emulation, reengineering, salvage, thermal 
uprating, and design refresh/redesign of the system. 

Lifetime and Bridge Buys 

The opportunity to make lifetime buys—making a one-time purchase of all the parts 
that you think you will need forever—is usually offered by manufacturers of electronic parts 
prior to part discontinuance (in the form of a published “last order date”). Alternatively, 
bridge buys mean purchasing enough parts to last until a planned design refresh point in the 
future where the part will be designed out. Lifetime and bridge buys play a role in nearly 
every part obsolescence management portfolio, no matter what other reactive, proactive, or 
strategic management plans are being followed. 

Purchasing sufficient parts to meet current and future demands is simpler in theory 
than in practice due to many interacting influences and the complexity of multiple concurrent 
buys as shown in Figure 1. Fundamentally, the lifetime buy problem can be divided into two 
activities: (1) demand forecasting and (2) optimizing the buy quantities based on the 
demand forecasted. 

Forecasted demand depends on manufacturing (sales) forecasts and sustainment 
expectations (spares) for fielded systems—this paper does not address the demand 
forecasting portion of the problem. The second portion of the problem is given the demand 
and its uncertainties, determine the number of parts that should be purchased (buy 
quantity), which is the focus of this paper. 

In practice today, the common wisdom usually used to determine buy sizes is a best 
guess (forecast) of demand based on projected manufacturing needs (if manufacturing is 
still occurring) and spares needed (based on observed or predicted failure rates) to the 
planned end of support (EOS) date; then buffer that quantity by 10%–50%. Over time, the 
buffers often increase due to pain experienced by engineers.1 

Quantitative approaches to the lifetime/bridge buy problem have been used—given a 
demand forecast one can calculate the quantities of parts necessary to minimize life-cycle 
cost, which, depending on how you are penalized for running short or running long on parts, 
could be substantially different than what simple demand forecasting tells you to purchase. 
In general, this is an asymmetric problem where the penalties for under buying parts and 
overbuying parts are not the same—if they were the same, the optimum quantity to 

                                            
 

 

1 The buffers are put in place to mitigate “life extension” risk. Life extensions may take the form of (a) 
manufacturing the product that the part is in for longer than anticipated, (b) supporting the fielded 
products for longer than planned, or (c) design refreshes (that designed out the obsolete part) 
happening less frequently than planned or taking longer than planned. In most organizations, the 
buffers are based on “institutional knowledge,” and there may be little understanding of the statistical 
meaning or ramifications of the lifetime/bridge buy buffer sizes that are used. 
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purchase would be exactly the forecasted demand. For example, the penalty for under 
buying parts is the cost to acquire additional parts long after they became obsolete or 
redesign the system to use a newer part, while the penalty for overbuying parts is paying for 
extra parts and paying the inventory (holding) cost for those parts for a long period of time 
and then losing all or some of that investment.2 In general, for sustainment-dominated 
systems, the penalty for under buying parts is significantly larger than the penalty for 
overbuying parts. 

 

 Lifetime Buy Costs 
(Feng, Singh, & Sandborn, 2007) 

Existing Lifetime/Bridge Buy Analysis Approaches 

In the operations research domain, lifetime buy optimization is a special case of the 
newsvendor problem.3 Extensions to the classical newsvendor problem solution exist that 
accommodate many different situations, but these solutions fall well short of solving real 
lifetime and bridge buy problems because they generally lack time dependence (i.e., they 
generally do not include cost of money and holding cost). In addition, a “must support” 
assumption is implicit in lifetime buy problems that is not generally present in simple 
newsvendor problems; you cannot choose not to support the system (i.e., you are not 
allowed to fail to fulfill the demand, and therefore you must pay the penalty to purchase 
                                            
 

 

2 Additionally, you may need to pay to dispose of the extra parts. The cost of disposal could be 
negative (if you resell the parts) or positive (paying to ensure that parts are destroyed so they cannot 
enter the counterfeit parts stream). 
3 The newsvendor problem seeks to find the optimal inventory level for an asset given an uncertain 
demand and unequal costs for overstock and understock. This problem dates back to an 1888 paper 
by Edgeworth. 
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extra parts from a broker or redesign the system if you run out [the newsvendor is not 
required to do this]). A discussion of the application of newsvendor problem solutions to 
lifetime buys appears in (Sandborn, 2013). 

Some treatments of the “final order” problem applicable to lifetime buy exist in the 
operations research literature. Existing final order models are intended for systems like 
complex manufacturing machinery that have long-term service contracts. To be able to 
provide long-term service, a manufacturer must be able to supply parts throughout the 
service period. The period after the machine has been taken out of production is called the 
EOS period. To avoid out-of-stock situations during the EOS, an initial stock of spare parts is 
ordered at the beginning of the EOS. This initial stock is called the final order. Some final 
order problem solutions exist (Teunter & Fortuin, 1999; Teunter & Haneveld, 1998), but 
simplifying assumptions about demand profiles and fixed EOS dates make these solutions 
impractical for the treatment of DMSMS problems in real applications. The problem with 
existing newsvendor and operations research solutions is that they either cannot 
accommodate the important drivers (e.g., time), or are oversimplified to the point of 
uselessness for real applications. 

Most practical treatments of lifetime buys use discrete-event simulation (DES) that 
follows the time history of a population of parts forecasting demands, determining holding 
costs and associated penalties until an EOS date for the use of the part is reached. Such 
solutions can be used to determine the life-cycle cost of the buys and the optimum 
quantities (the quantity that minimizes the life-cycle cost). These solutions base their 
optimum quantity decision on the minimization of life-cycle cost. 

The following section of this paper proposes a real options approach to the life-time 
buy (LTB) quantity optimization problem. Then, the next section provides a verification of the 
real options model using a stochastic DES solution. Both real options and stochastic DES 
accommodate uncertainties in demand, holding costs, and EOS dates. In the final section, 
the dependence of the solutions on the weighted average cost of capital (the cost of money) 
and uncertain EOS dates is discussed. 

A REAL OPTIONS APPROACH TO LIFETIME BUY FORECASTING 
This section presents a methodology to quantify a proposed option in the ROA 

method and to illustrate its role in obtaining the optimum LTB/bridge buy: We present the 
valuation methodology, then focus on the real options analysis of the option, and finally, 
provide a demonstration case. 

Valuation Methodology 

A real option is the right, but not the obligation, to undertake certain business 
initiatives, such as deferring, abandoning, expanding, staging, or contracting. For example, 
the opportunity to invest in an asset is a real “call” option. Real options differ from financial 
options in that they are not typically traded as securities and do not usually involve decisions 
on an underlying asset that is traded as a financial security. Unlike conventional net present 
value analysis (discounted cash flow analysis) and decision tree analysis, real options offers 
the flexibility to alter the course of action in a real assets decision, depending on future 
developments. 

The analysis of options focuses on valuation under uncertainty. If there were no 
uncertainty, the value of an option would be trivial to determine. However, everything is 
uncertain, and the future returns are generally highly asymmetric (upside ≠ downside). For 
financial options, the important question is what should I pay to buy the option? For real 
options, the questions are what is the value I get from the option and when do I exercise the 
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option? Real options have been previously used in obsolescence management to assess 
the value of waiting to invest in new technology (Josias, 2009), to assess delaying lifetime 
buys (Venesmaa et al., 2008), and the option to buy additional parts after the lifetime buy 
(Burnetas & Ritchken, 2000); however, real options have never been used to assess lifetime 
or bridge buy sizes. 

In order to cast the LTB problem for ROA, we need to define the “value” of the 
lifetime buy option, 

ܸ ൌ ௧௬ܣܥ   ்     (1)ܣܥ

where ܣܥ௧௬ is the penalty cost avoided (penalty cost associated with running out of 
parts before the demand for parts is exhausted) and ܣܥ்is the lifetime buy cost avoided 
(by buying and holding fewer parts). Figure 2 shows a graphical representation of Equation 
1. 

 

 Simple Lifetime Buy (LTB) Value Formulation 

For example, if zero parts are purchased at a lifetime buy, then no penalty costs are 
avoided, and all LTB costs are avoided. For a nonzero quantity, N, of lifetime buy parts 
purchased, there will be a greater than zero penalty cost avoided, but LTB costs will have to 
be paid. The cost avoidances in Equation 1 are uncertain due to uncertainties in everything: 
the demand for parts for manufacturing and for sparing, the timing of demands, and the 
penalties. In order to formulate this as a real options problem, we must cast the formulation 
in terms of time (not part count); hence, the cost avoidances and value that appear in 
Equation 1 become functions of “buy-to time (Tbt)” and the objective will be to determine the 
optimum point in time to buy parts for, which is the optimum time to exercise the option. 
Knowing the optimum exercise time, the equivalent optimum number of parts can be 
determined. 

For an arbitrary buy-to time (Tbt) between zero to the EOS, (shown in Figure 3), 
Equation 1 is defined as 
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where i refers to ith simulated demand path, L and P refer to lump and pay per part penalties 
imposed after the LTB runs out, IB is the initial buy cost, and HC is the sum of all the holding 
costs for the initial buy of parts as they are held and used up to the buy-to time. The lump 
penalty is a one-time charge at the LTB run out date, and the pay per part penalty is 
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imposed for every part that must be procured after the LTB runs out. The first term in 
brackets in Equation 2 is the penalty cost avoided (it includes under buy penalties due to 
buying less than the required LTB size), and the second term in brackets is the lifetime buy 
cost avoided (it includes the purchase of the initial buy and the holding cost for the parts up 
to the points where they are used). 

 

 Valuation at an Arbitrary Buy-To Time, Tbt 

Real Options Analysis (ROA) 

To evaluate the value added as a result of the flexibility created by the option, a 
“stopping the buy early” option is defined. In our case, the “option” is not an option to 
purchase LTB parts (or additional LTB parts), but rather the option to have an LTB that is 
less than the total number of parts needed to satisfy the demand through the EOS of the 
system. Using this definition, exercising the option means that a buy that covers the demand 
through a time period that ends before the EOS date, and letting the option expire means 
that the LTB covers the demand through the EOS. We treat the options as a set of 
European-style options that can only be exercised on a certain date (buy-to date) or allowed 
to expire. The best “buy-to date” will be the option with the highest value.  

The first step in the ROA is to generate demand paths. Monte Carlo sampling of 
application-specific time-to-failure (TTF) distributions for the part is used to generate failure 
dates for the part and thus the points in time where a spare part is required.4 The sequence 
of demands generated in this way represents a demand path. Having a required demand 
path, one can find the value of the option at discrete times throughout the life cycle of the 
system using Equation 2.  

Figure 4 illustrates the values generated for a particular demand path. In Figure 4, 
the value of the option starts at a minimum where no penalty costs are avoided and all LTB 
costs are avoided (Tbt1 in Figure 4). The value reaches a peak where the combination of the 
penalty cost due to running out of parts avoided and the LTB costs for buying and holding 

                                            
 

 

4 Note that in this description, we are assuming that there is no manufacturing demand for the part; 
however, manufacturing demand could be included as well. 
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parts avoided are maximum (Tbt2 in Figure 4). When the buy is made to the EOS, all the 
penalty costs are avoided, but none of the LTB costs are avoided (Tbt3 in Figure 5). 

 

 Value From Equation 2 for One Demand Path as a Function of the Buy-
To Time 

Figure 4 shows only one possible value path (corresponding to one possible demand 
path). In reality, each possible sequence of demands will generate a unique value path, so 
there will be a large population of possible value paths due to the demand uncertainty. To 
analyze the population of paths using ROA for the “stopping the buy early” option, we need 
to define a stopping criteria, Equation 3. The stopping criteria is the value associated with 
buying the LTB all the way to the EOS. If the option value is less than the value from buying 
to the EOS date, it lies below the stopping criteria shown in Figure 5; hence, the option 
would not be exercised. For example, the option value from Equation 2 at time Tbt1 is less 
than that at EOS (Tbt=160 quarters); hence, the option would be allowed to expire. In other 
words, it is worth more to make an initial buy through the EOS at the beginning (Tbt=0) than 
having an initial buy up to Tbt1 and then paying the penalty cost. Alternatively, if the option 
was exercised at time Tbt2, the path has a higher value compared with that at the EOS; in 
this case the option would be exercised at Tbt2. 

ሺ݁ݑ݈ܸܽ ܶ௧ሻ െ ሻܱܵܧሺ݁ݑ݈ܸܽ  0 → option	݄݁ݐ	݁ݏ݅ܿݎ݁ݔ݁ → ValueሺT௧ሻ ൌ ሺ݁ݑ݈ܸܽ ܶ௧ሻ   (3) 

ሺ݁ݑ݈ܸܽ ܶ௧ሻ െ ሻܱܵܧሺ݁ݑ݈ܸܽ ൏ 0 → 	option	݄݁ݐ	݁ݏ݅ܿݎ݁ݔ݁	ݐ݊	݀ → ሺ݁ݑ݈ܸܽ ܶ௧ሻ ൌ  ሻܱܵܧሺ݁ݑ݈ܸܽ
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 The Illustration of the Stopping Criteria Definition for the Example Case 

For a selected Tbt, the defined stopping criteria is applied to each path and the value 
of either exercising or not exercising the option is determined as 

ܸሺ ܶ௧ሻ ൌ ൜
											:option	݄݁ݐ	݁ݏ݅ܿݎ݁ݔ݁ ܸሺ ܶ௧ሻ	

ሻܱܵܧVሺ					option	݄݁ݐ	݁ݏ݅ܿݎ݁ݔ݁	ݐ݊	݀
   (4) 

where i refers to ith simulated demand path. The final value of exercising the option at a 
specific buy-to date is obtained by averaging the paths’ values, ܸ݅ሺܾܶݐሻ.  

ܸሺ ܶ௧ሻ ൌ ሺ݃ݒܽ ܸሺ ܶ௧ሻ⎸݅ ൌ 1:ܰ   (5) 

where N refers to the total number of paths. 

Demonstration Case 

In this section, we assume the following application-specific lifetime buy problem: 

1. Reliability (for a mean TTF of 7 years): 

a. The Weibull location parameter = 0 

b. The Weibull shape parameter = 1.5  

c. The Weibull scale parameter = 7.7541 years 

2. Cost analysis: 

a. Number of systems to support = 1000 

b. End of support (EOS)= 40 years (160 quarters) 

c. Initial buy size = to be determined 

d. Part purchase price = $110/part 

e. Riskless interest rate = 3%/year 

f. Holding cost = $38.50/part/year 

3. Penalties: 

a. Under buy (one-time cost) (L) = $110,000 

b. Under buy per part penalty (P) = 0 

c. Overbuy penalty cost = $55/part 

Figure 6 illustrates the result of exercising the “stopping the buy early” option for the 
example case. The value of exercising this option has its maximum at 93 quarters. Using 
this time, we can determine the required number of parts. Figure 7 shows the plot of 100 
simulation demand paths. The distribution of the required buy size at quarters 93 is shown 
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on the left top; the mean buy size at quarter 93 gives 3,047 parts as the optimum buy size 
for the example case.  

 

 The Value of Exercising the “Stopping the Buy Early” Option for the 
Example Case 

 

 The Optimum Lifetime Buy Size Obtained From Exercising the 
“Stopping the Buy Early” Option for the Example Case 

Verification—Stochastic Discrete Event Simulation (DES) Solution 
To verify the real options formulation and solution, we use a stochastic discrete event 

simulator. A DES is capable of representing the operation of a complex system as a discrete 
sequence of well-defined events in time (in smaller or larger time scales). Each event occurs 
at a particular instant in time and marks a change of state in the system.  

The DES starts with the same demand paths used by the ROA. In the case of DES, 
the demands create a timeline of events that is pushed through a discounted cash flow 
analysis. The cost analysis includes the initial buy, penalty costs, and holding cost. 

Using the example data from the previous section, and varying the initial buy size, 
the result in Figure 8 is obtained. As shown in Figure 8, by increasing the buy size, the total 
cost of the system with a fixed EOS of 40 years and a fixed WACC of 3%, decreases to a 
minimum and then increases. The minimum of this curve gives the optimum buy size for 
such a system. Note that the optimum buy size is not the mean lifetime demand (e.g., 5,445 
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at 160 quarters in Figure 7); this is due to the fact that the penalties for overbuy and under 
buy are not the same; the holding cost is not zero, and the demand is uncertain. 

 

 The Total Cost Versus Buy Size Obtained From Exercising DES Method 
for the Example Case 

DES vs. ROA  

Assuming the same riskless rate and penalties, ROA and a stochastic DES should 
produce identical results. To verify this, the optimum buy size from the two methods using 
identical inputs are compared.5 To perform the comparison, an identical set of 1,000 
uncertain demand event paths are considered in both analyses. For a 3% WACC, as 
illustrated in Figure 9(a), the DES method gives an optimum buy size range of 2,923–3,191 
with an average of 3,052 parts; the optimum buy size for ROA method is obtained from the 
optimum buy time range; it gives a range of 2,922–3,190 with an average of 3,052 parts. 
Note that there is a maximum of one part discrepancy in this case; this discrepancy is due to 
time scale differences and rounding numbers. Hence, both methods are consistent in 
determining the optimum lifetime/bridge buy size.  

To further verify this consistency, other WACC values were tested as well. For 
example, for a 12% WACC, as illustrated in Fig. 9(b), the DES method gives an optimum 
buy size range of 2,502–2,817 with an average of 2,652 parts; the optimum buy size for 
ROA method is obtained from the optimum buy time range; it gives a range of 2,501–2,816 
with an average of 2,653 parts. 

                                            
 

 

5 Note that Equation 2 by itself does not differ from the DES solution. Equation 2 is a “value” 
calculation, whereas the DES evaluates life-cycle costs. In the case of the ROA, we are interested in 
maximizing the value from Equation 2, while the DES seeks to minimize the life-cycle cost. Using 
identical constant WACC values, the two formulations should result in the same optimum buy 
quantities, since the stochastic DES captures a representative population of possible demand paths. 
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 The Life-Cycle Buy Size Distribution for the Example Case From DES 
and ROA for WACC of (a) 3%, and (b) 12% 

Discussion and Conclusions 
Real options have been used in obsolescence management to assess the value of 

waiting to invest in new technology but have never been used to assess lifetime or bridge 
buys. This paper presents a real options approach to valuate lifetime and bridge buys of 
parts. Using this valuation approach, the optimum part quantity at which to exercise the 
“stopping the buy early” option and to perform a lifetime or bridge buy is determined. The 
method accommodates uncertainties in demand, holding costs, and end of support dates. 
The optimum buy size from this method has been shown to be consistent with that from 
stochastic discrete event simulation (DES). 

The real options analysis methodology is used to address several questions: 

 What is the critical initial buy size that drives the option at the money? 

 What are the critical penalty costs (under buy, overbuy, and holding cost) that 
drive the option at the money? How do different sources of uncertainty impact 
the option’s value? 

 What is the sensitivity of the option to uncertainties in the discount rate, EOS 
time, part price, and so on? 
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A fundamental problem that needs to be addressed is how to set the discount factor 
(WACC) for the analysis. As demonstrated in Figure 9, the use of different values of the 
WACC generate significantly different optimum buy sizes for the same problem. If investors 
are risk-neutral, then the discount factor is simply the risk-free interest rate; however, it is 
unreasonable to expect that investors would seek the same rate of return from a project as a 
risk-free treasury bond. Hence, risk neutrality is not realistic. If investors are risk-averse, 
they will demand a risk premium on a project. The risk premium can be calculated according 
to the rate of return on a financial asset that has the same systematic risk as the project. 
Under the assumption of complete markets (a market in which the complete set of possible 
bets on future states-of-the-world can be constructed with existing assets), a financial asset 
with this level of systematic risk exists, and so a portfolio or bundle of these financial assets 
can be created to replicate the risk in the project. In this way, if the project or cash flows 
were traded, a replicating portfolio can be constructed from the traded project and a risk-free 
bond. These are the fundamental arguments of real options analysis and would suggest that 
a risk-free rate should be used when assessing buy sizes. 

Future work will include examining the impact of a variable end-of-support date and 
the appropriate choice of WACC on the optimum buy size. Also, the value of exercising 
other options in making a lifetime/bridge buy will be studied.  
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