

System Definition-Enabled Acquisition (SDEA)

A Systems Approach to Defining the Next Generation of SE Support to Acquisition

Dr. Paul Montgomery

Associate Professor

Ron Carlson

Professor of Practice

Department of Systems Engineering Naval Postgraduate School

System Definition-Enabled Acquisition

- Problem Definition
- Where at we at, today?
- What is SDEA?
- How can we best apply SDEA?
- Why not apply SDEA today?
- How do we get there?

SDEA at NAVAIR PROBLEM DEFINITION

3

- Systems Engineering (SE)
 - The DoD SE community and process is current unable to fully support acquisition in the development of complex systems
- Support for SEs
 - System Engineers need a innovative system to help them
- Definition
 - SEs need define that system

Where are we (DoD) Going? - DoD and SoS/LSI (Gansler)

- SoS acquisition and engineering is the norm in DoD
- SoS design, integration and qualification (I&Q) is highly complex
- DoD engineering workforce not well aligned to LSI responsibilities

- Government oversight of LSI has been complicated with contractual ambiguities
- Delineation of "inherently governmental functions" for LSI needs more clarity
- Private LSIs have inherent conflicts of interests without specific controls
- SoS integration requires a strong, centralized LSI

- Acquisition timeliness
- System complexity
- **TOC**
- I&I risks
- Workforce support
- Acquisition process

- Document-driven
- Oversight-oriented
- Acquisition too long
- Poor TOC control
- Poor quantification (what-ifs / trades...)
- Lack of repeatability (too "greybeard" dependent)
- No longevity of baselines for P3I
- Inability to cope w/complexity, SoS, LSI
- Integration not coupled early enough
- Interoperability not well quantified or predictable
- I&Q risks too high

SDEA Context

- What are SDEA requirements?
- What are SDEA components, elements, tools, etc.
- What are available today?
- Where do they fall short?
- How might SDEA affect org roles and responsibilities?
 - JCIDS, WSARA, ...
 - Pentagon-vice-SysComs
- What are SDEA solicitation strategy key elements?

SDEA Where at we at, today?

System Acquisition in a Nutshell

Concept Development & Validation Design Development & Validation Produce &Qualify

Deploy & Improve

Document / Expert – Centric Acquisition

SDEA what is sdea (MBSE + MBSI)?

SDEA = MBSE + MBSI

SE Activities Should Produce System Definition/Model

SDEA System Supports Acquisition Engineering Activities

Acceptance

Retirement

Integration

Can We Create a System for Acquisition SEs?

Capability Goals, Objectives, Assumptions, Constraints

SDEA Transformation

Example: Interface Design and Analysis

Example: Operational Analysis

Example: Architecture Design and Analysis

SDEA Enables Acquisition SE

SDEA How can we best apply SDEA?

SDEA is Impactful to Complex Systems

Strong impact

- "Complex" systems
- Mission systems
- High levels of integration
- System of Systems
- Weapons system integration
- Emerging acquisitions (UCAS, UAS, JSF, etc.)

Supporting impact

- "Complicated" systems
- Airframe
- Propulsion
- P3I parts

SDEA Why not apply SDEA today?

Tool and HSI Consistency in SE

Organizational processes

Analysis of alternatives

Team training on SDEA analytical methods

Management integration

Not well integrated into PM/SE management methods

Modeling and Simulation

Now well integrated into system/ops M&S methods/tools

Executable models

Non-executable models

DoD Acquisition

Not completely tailored to DoD 5000 / WSARA

SDEA How do we get there?

Way ahead?

- Select exemplar program
- Build system description
- Demonstrate application of SDEA
- Demonstrate/analyze value
- Consensus check
- Goal:
 - Develop a SysCom SDEA(MBSE/I):
 - Needs
 - Goals and objectives
 - Assumptions and constraints

Solicitation(s) Prototypes Research Studies Trials

SDEA SUMMARY

- Systems grow more complex
- Systems of systems (SoS) and LSI will be the norm
- Experience base is shrinking
- Disciplined, repeatable, and quantifiable SE practices needed
- SDEA technology is partially available
- Navy SysCom requirements for SDEA need to be defined for SDEA methods, practices, and tool acquisition

QUESTIONS / DISCUSSIONS

BACKUPS

