
Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

SYM-AM-17-046

Proceedings
of the

Fourteenth Annual
Acquisition Research

Symposium

Wednesday Sessions
Volume I

Acquisition Research:
Creating Synergy for Informed Change

April 26–27, 2017

Published March 31, 2017

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program:
Creating Synergy for Informed Change - 56 -

The Policies and Economics of Software Sustainment:
DoD's Software Sustainment Ecosystem

Forrest Shull—is Assistant Director for Empirical Research at Carnegie Mellon University’s Software
Engineering Institute. His role is to lead work with the U.S. DoD, other government agencies, national
labs, industry, and academic institutions to advance the use of empirically grounded information in
software engineering, cybersecurity, and emerging technologies. Dr. Shull has been a lead
researcher on projects for the U.S. DoD, NASA’s Office of Safety and Mission Assurance, the
Defense Advanced Research Projects Agency (DARPA), the National Science Foundation, and
commercial companies. He serves on the IEEE Computer Society Board of Governors and Executive
Committee. [fjshull@sei.cmu.edu]

Michael McLendon—is an Associate Director, Software Engineering Institute, Carnegie Mellon
University. Previously, he served as Senior Advisor, Office of the Assistant Secretary of Defense for
Systems Engineering. He also was a principal in the Office of the Assistant Secretary of Defense for
Program Analysis & Evaluation and in the Office of the Under Secretary of Defense for Policy. Dr.
McLendon was Professor at the Defense Systems Management College and a career Air Force
officer in a range of leadership and management positions in system and technology development
and acquisition, as well as the federal level and the private sector. [mmclendon@sei.cmu.edu]

Abstract
Software is the foundational building material for the engineering of systems, enabling almost
100% of the integrated functionality of cyber physical systems—especially mission- and
safety-critical software reliant systems—to the extent that these systems cannot function
without software. As a result, it is imperative that the DoD has the capability and capacity to
affordably sustain software-reliant systems and to continually operate and achieve mission
success in a dynamic threat, cybersecurity, and net-centric environment.

The Carnegie Mellon University (CMU) Software Engineering Institute (SEI) has been
performing studies to inform Departmental decisions regarding software sustainment policies
and programs regarding complex weapon systems. These studies were based on interviews
and discussions with sustainment centers across all of the Services, case studies on selected
programs, and a literature review.

In this paper we present an overview of our initial study regarding the DoD’s organic software
sustainment infrastructure and its key components related to complex weapon systems, and
a selection of key themes from our analysis of sustainment practices. There are two key
takeaway messages. First, software sustainment is not effectively described with a model
based on hardware (where sustainment can be treated as a discrete series of activities
intended to restore form, fit, and function). Secondly, software sustainment is really about
continuous engineering in which the software undergoes a series of engineering activities
intended to deliver the latest capability to the warfighter, a task which is never “done.”

Motivation
Software is the foundational building material for the engineering of systems,

enabling almost 100% of the integrated functionality of cyber-physical systems—especially
mission- and safety-critical software-reliant systems—to the extent that these systems
cannot function without software. There is no plateau in sight for the advancement of
software technology and its use by the DoD in new systems, as well as to enhance the
capabilities of legacy systems and extend their operational value far beyond their designed
service life.

Software can also be a major a source of defects and potential security
vulnerabilities with potentially fatal consequences, due to the increased complexity of

Acquisition Research Program:
Creating Synergy for Informed Change - 57 -

interactions among embedded software, the hardware platform, and its associated
subsystems. The dynamics of the cyber environment and the constantly changing nature of
the cyber threat mean that with software we are never “done.”

The issues surrounding sustainment become increasingly complex as the DoD’s
reliance on software increases. For example, the ever-expanding reliance on software
means that an increasing portion of the acquisition cost as well as the sustainment cost of
systems is driven by software (NRC, 2010a). There is evidence that it is three to 10 times
more expensive to mitigate software defects/vulnerabilities in sustainment rather than early
in acquisition and development. Successfully mitigating this software cost trend, while still
enhancing warfighter capability, must be an essential element in the DoD’s affordability
strategy.

Therefore it is imperative that software sustainment be a priority in defining system
requirements, design, and development. This means that the software sustainment
community must be an active participant early in the requirements and engineering process
and that the Product Support Manager in acquisition programs must be knowledgeable and
proactive in representing software sustainment equities.

Another critical challenge is the magnitude of the DoD’s software sustainment
inventory. The inventory is immense, but there is limited visibility and understanding at the
enterprise level of the total size, complexity, and characteristics of the DoD’s software
inventory, which may be trending toward one billion lines of custom developed software
code or more.1 Additionally, the engineering of systems also relies on an extensive portfolio
of commercial-off-the-shelf (COTS) software, government-off-the-shelf (GOTS) software,
and increasingly on free and open-source software (FOSS). The use of non-custom
development software is pervasive across all DoD system domains and its use comes with
significant technical and management challenges. The DoD relies on comprehensive and
complex information systems to provide almost real time visibility and management of its
wholesale and retail inventory of parts and supplies, but it has no similar capability for
software.

It is imperative that the DoD have the capability and capacity to affordably acquire
and sustain software-reliant systems to continually operate and achieve mission success in
a dynamic threat, cyber, and net-centric environment. However, the DoD’s ability to produce
high-quality software more affordably and efficiently across the system life cycle is a
strategic challenge (NRC, 2010a). The acquisition and sustainment of software, particularly
for distributed real-time and embedded systems, remains high risk and more problematic as
system complexity continues to grow.

Research Goal, Scope, and Methodology
Our research goal was to characterize the factors that affect the effectiveness and

cost of software sustainment in the DoD. For this initial step of our research, we did not
intend to produce value judgments as to the efficacy or cost-effectiveness of different

1 This is an estimate based on the limited data available and expert judgment. However, we note that
several experts in the DoD software engineering community have expressed the opinion in
discussions that the number may be even higher.

Acquisition Research Program:
Creating Synergy for Informed Change - 58 -

sustainment choices; rather, we intended to identify and describe the major factors that DoD
organizations must manage, in order to impact software sustainment performance.

To provide a manageable focus for our work, we concentrated on describing the
software sustainment ecosystem as it relates to complex weapon systems. Embedded
software presents the most technically difficult and resource-intensive software engineering
challenge because of tightly coupled interfaces, integration with unique hardware, real-time
requirements, and very high reliability and assurance needs due to life-critical and mission-
critical demands. Of course, the DoD’s software sustainment challenge is broader than the
software embedded in complex weapon systems. Mission critical non-embedded systems,
mission support systems (e.g., test equipment, mission planning, engineering models, and
simulations), and the range of business systems also present significant software
sustainment challenges. While our initial results can be used to understand the software
sustainment ecosystem for other types of software intensive systems, a more detailed
description of how the factors apply to those domains will be a subject of future work.

Our team leveraged multiple streams of data and information for this study.

 Literature Search—The body of knowledge related to software engineering is
extensive. The formal body of knowledge, academic research, and
practitioner publications has evolved so that there are now various
communities of interest and professional organizations that focus on software
engineering.2 However, there has been limited systematic study focused on
DoD software sustainment, so there is no organized set of literature and
ongoing study or research agenda to create and refresh a software
sustainment body of knowledge.

 SEI DoD Engagements—The SEI has been actively engaged with the military
services for three decades to provide technical expertise to enhance
organizational capabilities (processes, practices, and competencies) for
software engineering across the life cycle and to solve technical challenges
for specific weapon system and information system programs. This has
included continuous engagement with the principal Army, Navy, and Air
Force software sustainment centers to include the provision of knowledge
and practice to institutionalize CMMI.

 DoD IPT Report—The SEI had access to the data and results of the DoD
UAS Software Sustainment Integrated Product Team (IPT) Report. This IPT
effort, which concluded in 2015, was led by the office of the DASD (MP&P).
The SEI was invited to serve as an ex officio member of the IPT, which made
visits to a number of Army, Navy, and Air Force organic software sustainment
organizations.

 Interviews with Key Leaders—It was critical that the SEI inform its analysis
based on the views of decision-makers who influence a range of software

2 For example, the Software Engineering Body of Knowledge (SWEBOK), a community-driven
approach using an open consensus model to document generally accepted software engineering
knowledge under the leadership of the IEEE Computer Society
(https://www.computer.org/web/swebok). A DoD-specific example is the Software Assurance
Community of Practice.

Acquisition Research Program:
Creating Synergy for Informed Change - 59 -

sustainment policies, programs, and resource allocation. To that end, the SEI
complemented its research with information from meetings with key leaders
across all three Services, including those in the Senior Executive Service
(SES), senior managers and staff in OSD, and from industry. This study was
conducted at the unclassified level, and our interviews with DoD sustainment
staff were conducted under the conditions of non-attribution to enable an
open exchange of perspectives with senior leaders, managers, and staff
engaged in software sustainment. These conversations provided context for
understanding the evolution of the DoD’s current software sustainment
posture and enabled the SEI to refine its model of the software sustainment
ecosystem.

DoD’s Organic Software Sustainment Organizational Infrastructure
The DoD’s organic software sustainment organizations successfully respond to a

range of customer needs and deliver critical software updates and enhancements, often
under the intense schedule pressure of wartime operations, to deliver critical warfighter
capability. This organic infrastructure is composed of a number of principal organizations
and a myriad of other smaller organizations and offices that have not been fully identified
and characterized. To a large degree, in our view, the critical role and functions of these
organizations are not well understood or visible. These organic organizations are structured
and resourced in different ways by each Service, each performing software sustainment
utilizing a variety of government and contract staffing strategies. The Services employ a
variety of business model strategies in making decisions about allocating sustainment
workload across their organic software development capabilities and the defense industrial
base (DIB), as well as structuring public–private sector partnerships. These decisions are
made within the context of a number of statutory requirements and DoD policies, such as
determination of core requirements and the 50% ceiling, measured in dollars, on the amount
of depot maintenance workload that may be performed by a contract with industry for a
military department or defense agency during a fiscal year.

The Nature of Software in Systems
One of the keys to addressing the software sustainment challenge is to understand

the nature of software in DoD systems. The characteristics of software relative to hardware
are generally not well appreciated, especially in relation to how the DoD traditionally uses
the term maintenance.

The critically important and growing role of software in defense systems has been
noted in many prior studies (DSB, 2000; NRC, 2010a, 2010b). This growth is due in many
ways to the unique characteristics of software, as summarized eloquently in a study by the
National Academy of Sciences:

This growth is a natural outcome of the special engineering characteristics of
software: Software is uniquely unbounded and flexible, having relatively few
intrinsic limits on the degree to which it can be scaled in complexity and
capability. Software is an abstract and purely synthetic medium that, for the
most part, lacks fundamental physical limits and natural constraints. For
example, unlike physical hardware, software can be delivered and upgraded
electronically and remotely, greatly facilitating rapid adaptation to changes in
adversary threats, mission priorities, technology, and other aspects of the
operating environment. The principal constraint is the human intellectual

Acquisition Research Program:
Creating Synergy for Informed Change - 60 -

capacity to understand systems, to build tools to manage them, and to
provide assurance—all at ever-greater levels of complexity. (NRC, 2010a)

These aspects of software are not always well understood or at least addressed in
practice. For example, much of DoD depot policy (and industrial base policy) remains
hardware-centric, despite software enabling an increasingly large percentage of system
functionality. Due to its “uniquely unbounded and flexible” nature, the sustainment of
software operates very differently from that of other building materials of contemporary
systems.

Software is not a “physics of failure” domain, which is to say that software itself does
not wear out or degrade over time. Maintenance at any organizational level for hardware
typically focuses on returning components categorized as repairable items, such as avionics
line-replaceable units (LRUs), to their original functional condition and configuration by
replacing parts, using smaller electronic components, or treating corrosion. This typically
involves applying standardized processes and procedures for diagnostics and repair. In the
case of software, sustainment takes the form of making intentional changes to the software
source code and related work products for many different reasons, not exclusively (or in
many cases even primarily) driven by correction of failures. These changes are driven by a
number of goals, such as to correct a flaw, to mitigate a security vulnerability, to make fact-
of-life changes due to systems and system-of-system interface and interoperability impacts,
and to incorporate system enhancements that deliver greater warfighter capability.

Demand and funding requirements for software sustainment do not scale with
operational tempo or the size of the force structure. From a hardware or weapon system
platform perspective, depot maintenance or sustainment demands and funding are routinely
forecasted on the basis of the number of reparable units anticipated, taking into account
certain factors such as reliability, flying hours, miles driven, engine hours, number of
landings, or calendar time since last overhaul. From a software perspective, sustainment is
about applying the disciplines of systems and software engineering (knowledge, processes,
practices, and skills) each time the software is touched.

Due to the complexity of software, the great majority of the software sustainment
effort is spent on the analysis of the specific need for a change and then designing,
implementing, and testing a unique change. Once implemented, it is trivial to make
additional copies of the new configuration version of the software system, and generally it is
inexpensive to push out updates for all the instances of the weapon system in the force
structure inventory. Further, the number of a particular type of weapon system that is in the
force structure is not the driver of software sustainment. In other words, relying on a “cost
per asset” analysis can be hugely misleading. Since costs are independent of the quantity of
a given system in the inventory or force structure, dividing over a fairly small fleet like the B-
2s is a misleading comparison with other systems. Another factor to consider is the
differences in complexity of systems and the associated complexity of sustainment from
system to system. Addressing cybersecurity issues is another distinction.

Software quality is related not only to operational failures but also to technical debt—
that is, the reflection of inadequate attention to the design of the software architecture
coupled with developers optimizing short-term goals (like the ability to deliver code on time)
over longer term impacts (such as the need to create clean, well-organized code that is easy
to maintain). Technical debt, as generally understood, affects the internal quality of the code
and its extensibility to more easily accommodate change. However, technical debt does not
necessarily impact behaviors of the software that would be visible to the end user. Technical

Acquisition Research Program:
Creating Synergy for Informed Change - 61 -

debt’s impact on architecture and internal software quality directly affects the scope,
magnitude, and complexity of software sustainment.

The scope and complexity of the technical debt in an individual program is also
driven by the complexity of the software supply chain. The number of different suppliers in
the software supply chain for a weapon system program can be extensive. A program often
has limited visibility and understanding of the architecture considerations and software
practices (not only for development but for assurance as well) that each vendor employs
and the degree to which there is a consistent approach to software development for the
entire program. From a software sustainment perspective, organic sustainment
organizations inherit the cumulative technical debt generated from the multiplicity of
software development efforts on one program.

An implication of the points highlighted above is that software sustainment is more
usefully viewed as continuous engineering rather than a set of discrete maintenance
activities. Software sustainment enables an ongoing evolution of system capability to
address the changing environments in which DoD systems are deployed, especially related
to ongoing changes in cyber threats.

Policy Context
Software sustainment organizations plan and execute their missions within the

context of the existing depot maintenance and associated governance environment. As
highlighted in Figure 1, the DoD, and in turn the Services, promulgate depot maintenance
policy and guidance based on a number of statutory requirements. These mandates then
drive decisions relative to planning and executing software sustainment.

The overall direction and guidance for software sustainment are based on statutory
requirements in Title 10 USC and DoD policies for depot-level maintenance. Figure 1
summarizes the relevant Title 10 USC statutes that influence product support and depot
maintenance decisions. As a result, the legacy of the DoD’s depot maintenance paradigms
and policies is rooted in a hardware-centric paradigm. In turn, each Service has developed
its own guidance for implementing the DoD’s policy to address Service software sustainment
needs within the depot maintenance framework.

 Title 10 USC Laws Influencing Sustainment

Acquisition Research Program:
Creating Synergy for Informed Change - 62 -

The DoD’s Depot Source of Repair (DSOR) practices also drive software
sustainment decisions. In practice, the Program Manager conducts a level of repair analysis
(LORA) to determine if there is a depot level requirement (DAU, 2017). The PM also
conducts a core logistics assessment (CLA) to determine in accordance with Title 10 USC §
2464 if there is a requirement to establish an organic (core) depot maintenance capability
(i.e., government owned and government operated [GOGO]). This practice evolved from a
focus on hardware and is now applied to software.

A key factor that drives software sustainment is the program manager-centric nature
of decisions about sourcing strategies for the sustainment of specific weapon system
programs. These program manager decisions ripple through and impact virtually every
component of the software sustainment ecosystem. These program-specific policy
decisions, in our view, may not be balanced with considerations for optimizing the DoD
software sustainment enterprise to contribute to greater enterprise affordability and
productivity.

The Software Sustainment Ecosystem Factors
Based on our findings, we believe that the software sustainment infrastructure is best

described and understood as an ecosystem composed of interrelated elements. We found
over and over that the factors that drive software sustainment are highly interrelated. For
example, it is difficult to discuss the workforce needed to perform necessary sustainment
activities without first understanding the business model in terms of public-private
partnerships, which activities can be done by contractors, and which activities need to
remain in the organic DoD workforce. Decisions about the nature and types of these
business models may also be influenced by the degree to which the government has
provisioned for and exercised its technical data rights for a given program at the time of
developing an acquisition strategy and contract. These decisions have implications for the
scope of the software sustainment system. Because of the high degree of connectivity that
exists among the drivers and factors, we use the metaphor of an “ecosystem” to describe
the interdependencies among these elements; decisions made at any point are affected by
and affect whole series of other decisions.

There are many variables that are inherent in this ecosystem, not the least of which
is time. The time variable is one of the key factors that makes this ecosystem dynamic.
There is a time dependency among and between certain software sustainment demand
drivers and the critical elements. For example, demands for software changes are frequent,
and the underlying technology of software changes rapidly. Failure to invest in software
quality up front during initial system development creates a bow wave of risk and technical
debt that may continue for decades. Similarly, inadequate investments early in software
workforce capital, tools, and engineering processes will increase the cost of sustainment. In
operation, the software sustainment ecosystem is dynamic.

Based on our research, we created a framework that describes the software
sustainment ecosystem, depicted in Figure 2. We abstracted the issues raised in our
discussions with DoD sustainment stakeholders into six demand drivers and 10 ecosystem
elements.

Acquisition Research Program:
Creating Synergy for Informed Change - 63 -

 The DoD Software Sustainment Ecosystem Framework

These six demand drivers capture the fact that DoD systems exist in an
environment that is highly dynamic, where there is a need to respond to constantly changing
threats and mission needs. This dynamism drives many of the system changes that need to
be made during software sustainment. For many of these changes, the most cost-effective
way of implementing the new capability relies on the unique flexibility of software.

Our work with the DoD software sustainment community continually highlighted an
array of what some called constraints, factors, or “outside the organization influences” that
directly impact software sustainment planning and execution. We mapped these
considerations into the six higher level demand drivers. These demand drivers include policy
(which may include formal guidance such as the Defense Acquisition Guidance and
standards) and governance, the nature of the mission, the cyber and mission threat
environment, funding, technology trends, and regulatory/certification requirements.

The 10 ecosystem elements, shown as interconnected “bubbles” within Figure 2,
are the tightly interconnected factors that sustainment organizations need to manage in
order to effectively and continuously engineer the software. The drivers and elements of this

Acquisition Research Program:
Creating Synergy for Informed Change - 64 -

ecosystem represent a virtual spider web of linkages and relationships. The ecosystem
elements shown in the figure are as follows:

The four infrastructure elements are the basic, fundamental resources that are
necessary for the sustainment activities to occur.

 Systems and Software Engineering Process and Tools—The engineering
practices to be applied to plan and execute the work.

 Enabling IT Infrastructure—The information technology environment and
assets upon which the work must be conducted.

 Test and Evaluation (T&E)—The mechanisms by which changes made
during software sustainment are verified as ready to be rolled out to users.
For DoD weapons systems, significant investments in program-specific
hardware may be required.

 Systems Integration Laboratory (SIL)—The SIL is a specific type of T&E
equipment, providing accurate analysis of the impact of changes, and is
increasingly important to DoD sustainment practice.

The three knowledge and expertise elements include the factors that describe how
the necessary skill sets are brought to bear for sustainment activities and how the
government grows its organic workforce and gets access to necessary technical
information—perhaps with some level of interaction with the private sector—in order to
deliver and deploy the capabilities that need to go to the warfighter.

 Workforce (Competency and Staffing—The means of accessing a
sufficient organic workforce with appropriate skill sets.

 Business Model (Incentives, Workshare)—The strategic decision
regarding which parts of the work will be done by the organic workforce and
which by contractors, and how the overall work is managed both technically
and contractually.

 Technical Data Rights and Licensing—The tactical decisions governing
what technical information is necessary to be accessed by the organic
workforce, and the mechanisms by which they have access.

Three ungrouped elements complete the ecosystem.

 Facilities—The physical location that meets the needs of the work (providing
sufficient space, security levels, etc.).

 Operational Software Deployment—The mechanisms and strategy by
which new versions of the software under sustainment are delivered to users.

 Management and Performance Measurement—The management function
necessary to organize and monitor the work being conducted to ensure that it
is executing as planned, and to identify any problems that need to be
resolved.

Conclusion
The DoD’s ability to continually evolve warfighter capability to address the dynamics

of the vulnerability and thread environment is driven more and more by the affordable and
timely continuous engineering of a system’s software. However, there has been limited
enterprise visibility and management of the DoD’s critical organic software sustainment
infrastructure. This paper provides insights into this complex issue, and we expect to provide

Acquisition Research Program:
Creating Synergy for Informed Change - 65 -

more detailed information describing the software sustainment ecosystem when our report is
cleared for broader distribution.

We also hope that the current summary can be useful for multiple stakeholders in the
DoD, as a way to understand the unique issues related to the sustainment of software.
Software is continuing to provide a greater percentage of the capabilities to be found in DoD
weapons systems—and providing an increasing percentage of system cost as well. For both
of these trends, no plateau is in sight. The unique flexibility and usefulness of software will
make it central to sustainment strategies for adapting systems to the ever-changing mission
needs and cyber-threat environment for the foreseeable future. We hope that the brief
synopsis in this paper and the discrete ecosystem factors that we identified help to articulate
many of the software-specific issues that are needed to do that effectively.

References
Defense Acquisition University (DAU). (2017.) Level of repair analysis (LORA). In

Acquipedia. Retrieved from https://shortcut.dau.mil/acq/lora

Defense Science Board (DSB). (2000, November.) Report of the Defense Science Board
Task Force on defense software. Washington, DC: Office of the Under Secretary of
Defense for Acquisition, Technology, and Logistics. Retrieved from
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA385923

National Research Council (NCR). (2010a.). Critical code: Software producibility for defense.
Washington, DC: National Academies Press. doi: https://doiorg/10.17226/12979

National Research Council (NCR). (2010b.) Achieving effective acquisition of information
technology in the Department of Defense. Washington, DC: National Academies Press.
doi: https://doi.org/10.17226/12823

Acknowledgments
During the course of this study, the SEI interacted with a range of senior leaders, key

managers, and staff across the DoD’s software sustainment organizations. Universally, the
Services and those we engaged were generally responsive to our data and information
requests and candidly shared their experiences and perspectives on this critical and
complex issue. We are exceedingly grateful for the many thoughtful conversations and
insights we received in the course of this work.

This material is based upon work funded and supported by the DoD under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

Disclaimer & Distribution Statement
The view, opinions, and/or findings contained in this material are those of the

author(s) and should not be construed as an official Government position, policy, or
decision, unless designated by other documentation.

No warranty. This Carnegie Mellon University and Software Engineering Institute
material is furnished on an “as-is” basis. Carnegie Mellon University makes no warranties of
any kind, either expressed or implied, as to any matter including, but not limited to, warranty
of fitness for purpose or merchantability, exclusivity, or results obtained from use of the
material. Carnegie Mellon University does not make any warranty of any kind with respect to
freedom from patent, trademark, or copyright infringement.

Acquisition Research Program:
Creating Synergy for Informed Change - 66 -

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No Warranty”
statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other external and/or commercial use. Requests for
permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM17-0081

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

