
Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

SYM-AM-17-062

Proceedings
of the

Fourteenth Annual
Acquisition Research

Symposium

Wednesday Sessions
Volume I

Acquisition Research:
Creating Synergy for Informed Change

April 26–27, 2017

Published March 31, 2017

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program:
Creating Synergy for Informed Change - 316 -

Cybersecure Modular Open Architecture Software
Systems for Stimulating Innovation

Walt Scacchi—is Senior Research Scientist and Research Faculty Member at the Institute for
Software Research, University of California, Irvine. He received a PhD in information and computer
science from UC Irvine in 1981. From 1981 to 1998, he was on the faculty at the University of
Southern California. In 1999, he joined the Institute for Software Research at UC Irvine. He has
published more than 200 research papers and has directed more than 70 externally funded research
projects. In 2011, he served as co-chair for the 33rd International Conference on Software
Engineering Practice Track, and in 2012, he served as general co-chair for the Eighth IFIP
International Conference on Open Source Systems. [wscacchi@ics.uci.edu]

Thomas A. Alspaugh—is a Project Scientist at the Institute for Software Research, University of
California, Irvine. His research interests are in software engineering, requirements, and licensing.
Before completing his PhD, he worked as a software developer, team lead, and manager in industry.
He also worked as a computer scientist at the Naval Research Laboratory on the Software Cost
Reduction, or A-7, project. [thomas.alspaugh@acm.org]

Abstract
Our interest is to stimulate the development of innovative approaches to continuously
assuring the cybersecurity of open architecture (OA) software systems. We focus on
exploring the potential for using blockchains and smart contract techniques and how these
techniques can be applied to support acquisition efforts for software systems for OA
command and control, or business enterprise (C2/B) systems. We further limit our focus to
examining the routine software system updates to OA software configuration specifications
that arise during the development and evolution processes arising during system acquisition.
We discuss new ways and means by which blockchains and smart contracts can be used to
continuously assure the cybersecurity of software updates arising during OA software system
development and evolution processes. We present a case study examining the software
evolution process that updates an OA C2/B system to describe these details. We then
discuss some consequences that follow for what emerges from these innovations in the
expanded scope of cybersecurity assurance of not just the delivered OA C2/B software
systems, but also in the engineering processes which create, transform, or otherwise update
technical data that is central to the acquisition of OA software systems.

Overview
How might we stimulate the development of innovative approaches to continuously

assuring the cybersecurity of open architecture (OA) software systems? This is the
acquisition research challenge we are addressing. In particular, we are interested in
investigating innovations that represent either incremental improvements or substantial
departures from our current acquisition practices for such systems. We target our efforts to
practical OA software system production, deployment, and sustainment, for applications like
command and control or business enterprise (C2/B) systems that are central to the mission
and operations of military or industrial enterprises. We seek to stimulate significant
innovations that employ emerging concepts and technologies to problems observable in the
acquisition, development, and evolution of modern C2/B systems.

Problem

The particular problem we investigate here is how best to develop and demonstrate
a new conceptual approach to providing continuous cybersecurity assurance (DoD & GSA,
2013) with OA C2/B software systems in response to evolutionary updates to currently

Acquisition Research Program:
Creating Synergy for Informed Change - 317 -

installed software configurations that routinely arise during the technical development and
maintenance, upkeep, and sustainment in the field—what we call “software evolution.”

Solution

The innovations we focus our attention to are the concepts, techniques, and
technologies that denote blockchains and smart contracts, along with how they can be used
to continuously assure the cybersecurity of software updates arising during OA software
system development and evolution processes.

Approach

Our efforts focus on an innovative utilization of blockchains and smart contracts
within the technical software development and evolution processes that arise within the
acquisition of complex OA C2/B software systems. We are not focusing attention at this time
to software purchasing activities or financial transactions, though blockchains and smart
contracts are likely to stimulate innovations in this aspect of OA software system acquisition.

Why This Approach?

Based on prior studies of issues and challenges arising in the development and
evolution of OA software systems for C2/B system applications (Guertin, Sweeney, &
Schmidt, 2015; Scacchi & Alspaugh, 2012–2017; Womble et al., 2011), we have already
drawn attention to technical problems that arise in the software engineering processes that
software producers, system integrators, and customer end-users (both enterprises and
individuals therein) experience. But we recognize these processes are partially-ordered sets
of activities whose completion often entails technical data transactions like creation of digital
system design documents, composition and integration of software components (e.g.,
applications, mobile apps, plug-in widgets), and deployed software executable/update
packages that are stored, installed, and tracked in different online repositories across a
network environment. At present, these transactions often lack a common or centralized
repository for tracking these diverse transactions across networked platforms that span an
OA software system ecosystem (a supply chain network from producers to system
integrators to customer enterprises/individuals). We believe blockchains are a candidate for
this. These transactions similarly lack a common and potentially reusable specification for
how to manage and track such software engineering transactions in forms that are open to
independent validation and audit. We believe smart contracts are a candidate to address
this.

Background: Blockchains and Smart Contracts as Ledgers and Contractual
Agreements for Tracking and Managing Transactions

Blockchains are a 21st century computational mechanism for realizing the equivalent
of the traditional bookkeeping ledger utilized in finance and accounting. Such ledgers record
and track the assignment of incoming (budget authorization or revenue) and outgoing
(allocations and expenses) enterprise transactions and denominated amounts, whether in a
monetary currency, bartered trade, or some other transactional resource (e.g., gold bullion,
Bitcoins, original artworks; DuPont & Maurer, 2015). Such transactions are grouped in
blocks; for example, a set of interrelated OA software system updates may be grouped
together into a block that denotes a transformation of the current system configuration into
an evolved system configuration. Both transactions and blocks are serialized, logged,
timestamped, and tracked in ways that are open to internal, external, or independent
verification and audit by decentralized third-parties (“Blockchain,” n.d.). Updates to the
blockchain are allowed only by consensus of remote mechanisms and proofs of work by
anonymous, untrusted service providers (called miners) who collect a modest execution fee

Acquisition Research Program:
Creating Synergy for Informed Change - 318 -

for their efforts. The payment and deposit of an execution fee also mitigates against the
actions of unknown others who might act to corrupt the blockchain state. Finally,
blockchains can be realized as persistent databases or cloud-based repositories
(“Blockchain,” n.d.). Figure 1 displays a traditional centralized ledger versus a decentralized
blockchain ledger.

 Traditional Ledger Network (Left) and Decentralized Blockchain Ledger
Network (Right)

Blockchains operate as an append-only data structure or database maintained by a
decentralized collection of mutually distrusting computational nodes participating in a peer-
to-peer network. Blockchains are secure by design (“Blockchain,” n.d.). Blockchain ledgers
are updated (appended) as a result of recorded transactions, much like a personal bank
account is updated through deposit, withdrawal, credit, or debit transactions made by the
account holder, through a third-party (the bank or transaction system processor), who may
charge a fee for transactions. Much like bank account transactions, blockchain update
transactions are distributed over a network, time-stamped, persistent, and verifiable.
However, the peer-to-peer network of blockchain nodes is a decentralized autonomous
authority without legal standing, compared to the centralized authority taken by a bank or
credit/debit card transaction processor.

Smart contracts are similarly the computational counterparts of traditional paper
contracts for how a group of interrelated transactions will be governed to assure fulfillment of
terms, conditions, rights, and obligations. Such transactions, for example, may be
associated with the acquisition of a complex system or with the ongoing procurement of
retail supply purchasing agreements. These smart contracts denote networked software

Acquisition Research Program:
Creating Synergy for Informed Change - 319 -

system protocols that facilitate, verify, or enforce the negotiation or performance of a
specified contract, and thus denote which transactions to process (where, when, how, and
for what parties) in what order (“Smart Contracts,” n.d.). They are realized using computer-
based, formal specifications of transaction-based processes that can be codified into
executable computer programs. Such computational support allows for modeling, analysis,
and simulation of transactions or processes that can be enacted, verified, and validated at
Internet-time speeds, with precision and automated recall of transaction details well beyond
what enterprises have traditionally performed. Smart contracts also allow for the
establishment and operation of decentralized autonomous services that allow for
cooperating parties to enact and fulfill the details of a shared contract through only
automated means. Next, smart contracts are automatically enforced by the consensus
mechanism associated with the blockchain. Smart contracts are thus attractive to use to
securely manage recurring transactions between known or unknown parties, such as those
associated with updating the technical data, source code, repositories, and related artifacts
associated with the software development and evolution processes of large, long-term
software acquisition efforts.

Blockchains are being extended to accommodate smart contracts that allow for the
formation of virtual, decentralized autonomous organizations that act to govern, enforce, and
assure the integrity and validity of complex or idiosyncratic blockchain update transactions
(“Smart Contracts,” n.d.). For example, multi-party agreements whereby two or more
program offices or other enterprises can act to share the procurement costs of a new C2/B
system application or component of mutual interest to the participating parties (Reed et al.,
2012; Reed et al., 2014; Scacchi & Alspaugh, 2015). Similarly, smart contracts can govern
transactions between mutually distrusting participants that are automatically enforced by
automated consensus mechanisms associated with blockchain updates. This capability thus
provides a mechanism for detecting, rejecting, or preventing unauthorized update
transactions to the blockchain, as might be attempted via a cyber attack during OA software
system development or evolution. Accordingly, our interest is to investigate how
blockchains, smart contracts, and related technologies can be utilized to improve
cybersecurity, specifically to manage and track software engineering development and
evolution processes that entail process transactions that update the configuration of OA
software systems.

So how might we utilize blockchains and smart contracts to innovate the continuous
development and evolution of OA systems? How can this be conceived and applied in ways
that are not specifically limited to financial transactions commonly associated with system
acquisition?

Blockchains and Smart Contracts for Installed Software Configurations
How might we utilize blockchains and smart contracts to record, track, and verify

updates to OA software system configurations as they evolve over time? We examine this
question in this section.

Ledgers of Installed Software Configurations

We envision a new kind of ledger: one that records executable computational
updates to the specification of the current installed, operational configuration of C2/B
systems of interest. The executable computational updates are similar to scripts in a
declarative scripting language, like those used to direct the invocation of utilities on an
operating system, procedural scripts involved in building (compiling and integrating) a
targeted software executable, or for customizing the functional display and navigation
operations within a Web browser. We call the repository in which this specification is

Acquisition Research Program:
Creating Synergy for Informed Change - 320 -

recorded the installed software configuration (ISC) ledger. Such a specification is a kind of
technical data to be managed with an acquisition effort.

The ISC ledger records the transactions that update the software applications,
including their components, interconnections, interfaces, or licenses for such installed on
each machine of interest, such as a desktop PC, smartphone, or central computation server
within a mission command or enterprise data center. The installation is enacted via an
installation (update) transaction, which may be enabled using an “installation wizard” for a
standalone PC application, or using a ready-to-install packaged software app acquired from
an online app store. For each application installed, the ledger lists the repository from which
the software app or update was acquired, the version of the application or update, and some
information with which to confirm/verify the version, such as the size of that version of the
app, meta-data about where it resides in storage on the machine, other information, or a
combination of these. How do we ensure that the repository’s copy is safe, has not been
unintentionally modified, and has not been attacked or unknowingly compromised? How do
we ensure that attacks are not falsely recorded in the ledger?

In order for a ledger to be up-to-date, each approved installation must be recorded
there. How do we ensure this is the case for approved installations? If a ledger is up to date,
then an auditor can verify the approved installations by examining the ISC specification for
the machine of interest (e.g., a smartphone or laptop PC). Furthermore and most
importantly, the blockchain can be queried to identify non-approved or non-compliant
installations and whether these are apps or updates that were innocently installed but not
recorded in the ledger or attacks—maliciously injected software for some nefarious purpose,
which would not be recorded in the ledger. In either case, the auditor can then institute for
each application that does not match the ledger a rollback to a known safe ISC state
matching what has previously been verified on the ledger.

The following issues must be managed appropriately for the ledger scheme to
succeed.

 How is it ensured that the origination or destination repository’s copy is
safe and has not been attacked?
This is a separate concern, and one that is equally problematic with or
without a ledger system. We do not discuss it further here, merely noting that
it must be ensured for devices to remain secure. But in normal operation, the
ISC specification has a unique identifier in the hashcode value associated
with the current system when last updated and verified by miners, and this
hashcode may reveal whether the ISC specification copy’s hashcode
matches the one checked during audit or subsequent miner verification
activities. If the hashcode values are different, then something has altered the
copy, and thus it may be rolled back to a prior verified state or ISC
specification.

 How is it ensured that every approved installation or update is recorded
in the ledger?
The ledger system must be integrated with whatever system manages
installations and updates for the machines in question. We note that
unapproved installations or updates can be automatically detected and can
be rolled back or reverted at the next audit point/event, so there will be a
strong motivation to ensure that desired transactions are recorded.

 How do we ensure that attacks are not falsely recorded in the ledger?
Obviously this is a key concern. As discussed later, changes to the ledger are

Acquisition Research Program:
Creating Synergy for Informed Change - 321 -

validated by multiple autonomous parties (miners) using several sources of
information, and each particular copy of a ledger competes with all others for
accuracy as part of the blockchain scheme.

Transactions for Installed Software Configurations

Each transaction in a ledger records an installation or update of an app on a specific
machine. How do we ensure that all valid installations or updates are presented? Every time
a new application is installed, or an existing application is updated, the appropriate
information is recorded in the ledger. If an application is installed or updated without being
recorded in the ledger, that installation or update is recognized as unverified, and thus rolled
back the next time the machine is audited. Audits may simply involve checking a hashcode
value (a long, non-guessable string of characters that is generated within the blockchain
system) associated with the current ISC specification on the target machine, with the
corresponding value in the blockchain (this is a simple match-checking query that can be
performed periodically), or by enterprise policy. When the audit reveals a mismatch, then a
rollback may be triggered that reverts the ISC on the machine to a previously trusted ISC,
and then removes, deprecates, or flags the unverified ISC as suspect, along with distributing
a notification to relevant parties of such action following enterprise policy. But how do we
ensure that only valid installations or updates are presented? Transactions that would
record an invalid installation or update, fraudulently misrepresenting the repository’s
version’s size or hash or from an untrusted repository, are identified by comparison with the
set of trusted repositories, with the size and hash information recorded there for the
installation or update in question, and for the data calculated from the destination machine
afterwards. Accordingly, we are acting to use blockchain techniques as intended, but for a
new kind of use case, namely that of ISC specification update, verification, and
reconciliation.

Smart Contracts for Installed Software Configurations

A smart contract works within the framework of the blockchain ledger and transaction
system, ensuring that the required obligations for each transaction are met before the
transaction is enacted, verified, and then recorded in the ledger. These obligations are
associated with those we have previously identified and specified as security requirements
for ensuring access and update rights encoded in a software system’s security license
(Alspaugh & Scacchi, 2012).

An Example Ledger, Transaction, Smart Contract Implementation System

Ethereum is being used to implement smart contracts, transactions, and a blockchain
ledger (“Ethereum,” n.d.). Ethereum is a set of technologies: a general-purpose
programming language, open application program interfaces (APIs), and an open
transaction/blockchain repository associated with the APIs. Ethereum uses a cryptocurrency
called ether, and users of Ethereum can transfer money, ownership, or control of exchanged
resources whose (fungible) value is denominated in the form of ether between each other
and to contracts to hold in escrow. Online currency exchange markets can exist for
converting ether to a traditional currency like U.S. dollars. Users of Ethereum send
transactions to it in order to create contracts, invoke existing contracts, and transfer ether.
The transactions are public and permanently recorded in the blockchain, unless access to
the blockchain is restricted/private to an authorized set of known parties who must be
granted permission to access or update the blockchain.

Ethereum is decentralized, with a network of blockchains for which each transaction
is processed by a number of miners, possibly anonymous actors, who perform computations
on the blockchain that collectively verify the validity of a transaction of data/value between

Acquisition Research Program:
Creating Synergy for Informed Change - 322 -

the participating parties. These miners are mutually-untrusted peers who are paid fees (in
ether) for the work of processing each transaction and its contract provisions. A miner
groups transactions into blocks and performs a calculation (or “solves a puzzle”) that takes
as inputs the previous block in the blockchain and the transactions in the new block. A valid
block, one whose puzzle has been solved and which meets certain other conditions, can be
appended to the blockchain. The miner broadcasts the new valid block to the network and
receives the ether paid for each of the transactions by their originators. In this way,
Ethereum-based smart contracts are validated by decentralized miners who receive
payment when contracted transactions they verify are successfully appended by consensus
to the blockchain.

A transaction may appear in a number of different blocks, produced by different
miners and appended to different blockchains. Ethereum pays miners somewhat more to
append a block to a longer blockchain, which has the effect, over time, of converging the
ledger to the blocks and thus transactions that the majority of miners agree are valid.

Continuous Software Development and Evolution Processes for Open Architecture
Software Systems

In previous work, we have identified and substantiated seven types of software
evolution process update transactions, shown in Figure 2. We further observe that a given
software evolution process may entail either (a) one type of transaction per update, or (b)
multiple concurrent types of updates per transaction. This may be due to current-to-evolved
transformations where the evolved system version of the OA configuration involves the
replacement of more than one component arising from the availability of a new technology
that represents a departure from the current system architecture, or that integrates
functionally similar capabilities through a new mix of components, interfaces and
interconnections (e.g., when combining multiple widgets into mashups; Endres-Niggemeyer,
2013). The purpose may be to reduce software maintenance complexity and extend the
sustainability of a deployed current (or legacy) system through adoption and integration of
remote (cloud-based) services that are functionally similar to the capabilities formerly
available in multiple components. For example, replacing legacy office productivity
applications (word processor, email, calendar) with browser-based remote networked
services (Google Docs, Microsoft Office 365), can provide end-users with functionally-similar
processing capabilities, but with fewer application components installed on the end-user’s
desktop PC system. Furthermore, subsequent updates to remote services may by policy be
integrated and deployed automatically for minor functionally equivalent evolutionary updates
(e.g., bug fixes), or be deployed only by request or authorization when functionally similar
system version updates are made available (Scacchi & Alspaugh, 2013a, 2015, 2016,
2017).

Blockchains and Smart Contracts for Managing Software Development and
Evolution Process Transactions

How might we utilize blockchains and smart contracts to manage software
development or evolution updates to OA software system configurations over time? We
examine this question in the following section.

Ledger: What Versions of What Software Components and Connectors Are Integrated
in What OA Configuration Topology

A ledger records and defines through the design-time OA specification, the
ecosystem in which the OA is evolving (Scacchi & Alspaugh, 2012). The OA is represented
using an architecture description language, and successive ledger entries record successive

Acquisition Research Program:
Creating Synergy for Informed Change - 323 -

configurations of the OA system as it evolves. The ledger as a whole presents the history of
the OA’s evolution, and as long as the components and connectors remain available from
their repositories, an instance of any stage of the OA can be rebuilt as needed. At a
minimum the ledger records every release of the OA system.

 Seven Types of Software Evolution Update Transactions
(Scacchi & Alspaugh, 2013)

If a machine on which the OA ISC is installed needs to be rolled back to an earlier
configuration, the desired version of the ISC can be rebuilt guided by the corresponding
ledger entry.

Transactions: OA Evolution Steps

Each transaction corresponds to one (or several) of the seven types of OA evolution,
stating which component, connector, or license is being changed or what change is being
made to the OA topology. In total, the sequence of all transactions for an OA system
represents the history of its evolution. The ledger summarizes the system’s evolution, based
on the transactions made to it, and presents each of the versions that the evolution has
proceeded through.

Not everyone can record a transaction with the ledger, and each actor that can
record a transaction may be restricted in precisely what sorts of transactions can be
recorded. These restrictions ensure that the OA ISC is evolved through steps that preserve
its security. It also accommodates actors who may or may not have been vetted and
authorized so that they are trusted to preserve the system’s security through their
transactions.

Smart Contracts: Enforcing Obligations for Each OA Evolution Step

Smart contracts restrict the transactions that may occur to those believed to preserve
the OA system’s security as the system evolves. A transaction may only be enacted if the
actor doing to has been vetted and authorized for it, and has presented credentials
identifying himself appropriately; and also only if the current state of the OA system

Acquisition Research Program:
Creating Synergy for Informed Change - 324 -

development and the evolution step(s) proposed meet the conditions imposed by a smart
contract associated with the ledger. The smart contract in essence states obligations that
the actor, the evolution step, and the OA system must meet in order for the transaction to
occur; if the obligations are not met, then the transaction cannot be performed, at least not
with this smart contract. The obligations declared in a smart contract indicate which parties
or actors can access/update what OA system elements or other technical data arising during
software development or evolution processes. As before, these process obligations are
similar to those previously identified for controlling software system/data usage obligations,
along the rights to access and update the system/data provided to developer, system
integrators, or end-users (Alspaugh & Scacchi, 2012).

It is possible that more than one smart contract may potentially allow a specific
transaction, each contract presenting a different set of obligations. But in any case the
transaction cannot proceed until a smart contract for the ledger allows it to do so.

To help make clear what we are looking to accomplish through our efforts to
stimulate innovation in securing the development and evolution of OA software systems, we
now turn to present a case study focusing on updating the installed software configuration of
a deployed current OA C2/B software system.

Case Study: OA C2/B Software System Evolution Process Updates
In this case study, we describe how blockchains and smart contracts can be

employed to model and analyze cybersecurity requirements for OA software systems that
arise during the software evolution processes. As described previously, there are seven
types of software evolution process updates that take a current system, transform it one of
the seven ways, which produces an evolved system. This evolution process iteratively
cycles through software development processes that build, release, and deploy (Scacchi &
Alspaugh, 2013b, 2017) installed software configurations once the development life cycle
starts. The process continues to (slowly) cycle over time, until the system is retired or
abandoned. Our focus further narrows to evolving OA C2/B systems that incorporate
multiple end-user computing platforms, such as smartphones, tablets, or other Web-
compatible “edge” devices (Zheng & Carter, 2015), as we have addressed before (Scacchi
& Alspaugh, 2015, 2016).

Blockchain ledgers serve to verify in a decentralized manner the proper sequencing
of valid transactions for a user/device account. Such an account operates like a personal
bank account that can be used to deposit and withdraw funds (e.g., through account
transactions associated with a debit/credit card that is bound to the account). The enterprise
that manages accounts for users may charge a fee for account transactions, though such
fees may be assigned to a third-party (e.g., the party who receives payment via a card that
has been authorized to possess sufficient funds balance to cover the payment in the future).
The current “balance of funds” in a software evolution process account indicates the name,
size, and other meta-data that identify executable software applications (including mobile
apps, plug-in widgets, or other installed software). At present, computing platforms or
devices do not maintain software process transaction accounts, but in our scheme they
would.

Next, the blockchain ledger as a decentralized database would be distributed across
a (virtual private) network of computing systems, such as those with restricted, authenticated
access to a centralized C2/B system host/sub-network. Said differently, if we have
smartphones or mobile/laptop PCs that can roam in the wild, and intentionally or
unintentionally acquire software updates (e.g., known app updates but with revised access
rights; new social media apps; or cyber-penetration attack vectors via misdirected access to

Acquisition Research Program:
Creating Synergy for Informed Change - 325 -

a remote server), we want all such evolutionary software update transactions to be
reconciled and validated against the corresponding virtual private network’s blockchain
ledger in ways that maintain device/user autonomy, but reveal and can reject unvalidated
evolutionary updates. The ways and means for how valid or invalid transactions are
revealed (externally documented on the blockchain) or rejected (e.g., enforced automated
uninstallation, external network access blocked, or notify user of problematic update) are
determined by enterprise cybersecurity policies encoded into an associated smart contract
(a functional software program logically isolated from end-user application software).

Let us consider the following usage scenario. Suppose we have a mission platform
like a battleship or a multi-ship flotilla (or, alternatively, an aircraft flight wing, a ground-
based command post, or remote enterprise business office) assigned to operate within an
international location. Such a location may be in a region known to have a history of prior
cybersecurity attacks on personal computers, mobile, or Web-based devices that access the
public Internet. Mission personnel are restricted by policy from using their enterprise mobile
devices outside the cybersecurity perimeter of the mission platform. However, personnel
may also possess and use private personal devices, such as low-cost smartphones that are
used for non-mission purposes.

As anyone who possesses and routinely uses a mobile/edge device like a
smartphone or laptop PC now frequently experiences, software (evolution) updates are
common, sometimes one or more per week across the 30–60+ apps found on such devices.
Sometimes mistakes are made by personnel regarding which device to use for accessing
remote services like making phone calls to home, to informally coordinate with friends in
allied forces, to check for local restaurants offering interesting local cuisines, or to post data
for sharing on social media. Access control to some devices may be misconfigured due to a
prior update or unintentionally left open in a discoverable device pairing mode, so that other
unknown devices or remote computers can quietly/covertly make network connections that
enable data/files upload, download, or remote control. Mobile or web-based edge devices
will be relentlessly targeted for cyber attack, so when a cyber attack vulnerability is in the
hands of opposing forces or hostile competitors, we assume they will seek out and attack
these vulnerabilities at some time and place. It is therefore these invalid software evolution
updates to installed software configurations that denote potential cyber attacks that we seek
to detect, isolate, trace, expunge or prevent, using the capabilities of blockchains and smart
contracts. In this way, our use of blockchains and smart contracts is innovative, original, and
not previously associated with software evolution process transactions.

Consider a desktop PC with apps/widgets acquired from either a restricted-access
enterprise-specific app store, a Defense app store (George et al., 2014; George, Morris, &
O’Neil, 2014), or else from a public-access app store or OSS component repository. Web
browser-based apps like cloud-based word processors, calendars, and email app services
are frequently included in such stores. However, open access app stores (like those
operated by Apple, Google, Microsoft, and others) also offer free/low-cost apps that offer
many other remote, cloud-based services. In either situation, these remote service apps
may operate downloaded software code that runs within a platform-based Web browser that
accesses public or (virtual) private networks. Enterprise end-users with computer
programming expertise may even create and integrate multiple apps/widgets into mashups
as a kind of end-user software evolution process update (Endres-Niggemeyer, 2013;
Scacchi & Alspaugh, 2015). These mashups may enable the participating apps/widgets to
interoperate, exchange or update local data, or transfer data/files to/from remote networked
repositories (Scacchi & Alspaugh, 2015, 2016).

Acquisition Research Program:
Creating Synergy for Informed Change - 326 -

If our mobile device is a laptop PC, its current (or legacy) OA software configuration
may include open source software (OSS) or proprietary closed source software (CSS)
versions of a common Web browser, word processor, email, calendar, and more hosted on
the PC’s operating system. For instance, a laptop may have a Firefox web browser (OSS),
AbiWord (OSS) or Microsoft Word (CSS) word processor, Gnome Evolution (fOSS) or
Outlook (CSS) for email and calendaring, and host a PC operating system like a
Fedora/Linux distribution (OSS), Microsoft Windows (CSS), or Apple OSX (CSS and OSS).
The deployed, run-time executable version of this OA ISC system on the laptop PC may
appear to an end-user as an array of loosely-coupled applications, such as displayed in
Figure 3. Now, suppose a decision has been made to update this OA ISC system, to evolve
it from the current configuration to one where the word processor, email, and calendaring
applications hosted on the laptop PC are to be replaced with functionally similar remote Web
services that will operate within the existing Web browser. These remote services thus entail
reliance and usage of browser-based software components that are hosted in the cloud and
downloaded on user demand. This transition can simplify and reduce the costs of
corresponding software update services associated with locally hosted applications (e.g.,
recurring license fees for CSS elements). The resulting deployed and evolved laptop PC
software system may appear to the end-user as shown in Figure 6.

Each type of software evolution process update can have a smart contract
associated with it. Each such contract programmatically specifies what computational
actions need to be performed to complete the transaction with the affected technical data
and associated data repositories, and similarly, what actions need to be performed on the
blockchain. Let us consider the following transformation of a current ISC shown in Figure 3
to an evolved ISC seen in Figure 6. Figure 3 corresponds to its ISC model visualized in
Figure 4, which is derived from its specification in an architectural description language
(ADL), as we have established before (Alspaugh, Asuncion, & Scacchi, 2013a; Alspaugh,
Scacchi, & Asuncion, 2010). As the current system, we assume for this moment, that it has
previously been submitted via an earlier transaction on the blockchain that was verified by
miners and thus is now a recorded part of the blockchain. Thus we can determine the
provenance of the current ISC system and its specification. This blockchain contains a
record of the ISC specification and the results (e.g., blockchain hashcode values) that the
miners computed and agreed by anonymous vote to denote the ISC installed and
operational on the target machine/platform. The transformation from this current system to
the evolved system thus entails enaction of the associated smart contracts associated with a
set of embedded evolution update transactions that collectively denote what updates must
be verified as a block for the evolved ISC specification to be appended to the blockchain.

For example, we may elect to use a predefined smart contract (an executable
software script) whose transactions transform a component-based C2/B system with a Web
browser installed, into a remote service-based C2/B system, where Web/cloud-based
services provide functionally similar capabilities to end-users. This might entail a smart
contract that performs the following transactions (described in English for simplicity): (1)
check that the ISC blockchain hashcode value(s) match those for the current system; if
matching, then proceed; (2) deprecate and replace designated software application
components with remote service apps/widgets; (3) replace deprecated component licenses
with remote services licenses (e.g., ToS); (4) replace ISC interconnection topology with the
evolved ISC; (5) send request to miners to independently compute and verify the evolved
ISC specification hashcode value on the target machine/platform denotes the ISC and
associated meta-data they independently build to compute the evolved ISC hashcode; (6) if
miners’ vote independently verifies the ISC specification, then assert into the blockchain the
evolved ISC specification value as denoting the new current ISC ready for use; and (e)

Acquisition Research Program:
Creating Synergy for Informed Change - 327 -

perform end of contract transactions. Many low-level details are not described here, but
would need to be in a smart contract. These details can include, for instance, the installation
parameter settings that are selected or configured by either the end-user or installation
script, in line with a security technical implementation guide (STIG) for the targeted
machine/platform.

The software evolution conveyed in the smart contract example will change the
topological configuration of software components found in the system integration build
specification, release, and deployed run-time architectures. Here we see that in Figure 5,
the configuration model of the evolved OA system still incorporates the same kind of
components as the current system model (shown in Figure 4), but now the topology of
components interconnections and interfaces has been updated to realize the deployed, run-
time desktop software. Last, a transformation from the current software components with
their respective licenses, to the evolved configuration will also entail an update to new
licenses (e.g., Google Terms of Service), and how these components will be secured (from
end-user level assurance of locally installed components to end-user agreement with
remotely provided component security that is mostly invisible to end-users).

 Current Deployed OA ISC Corresponding to Figure 4, Utilized by End-
Users

Note. Firefox Web Browser (Upper Left), Evolution Calendar (Lower Left), AbiWord Word
Processor (Upper Right), and Fedora/Linux Desktop Operating System Platform (Lower

Right)

Acquisition Research Program:
Creating Synergy for Informed Change - 328 -

 Current ISC Specification for OA C2/B System
(Scacchi & Alspaugh, 2013, 2017)

Note. This is the current ISC specification for an OA C2/B system within security containers
at build-time, intended to denote a record on the blockchain for which components need to be

included during integration (and testing) of the software components and code APIs within
the released and deployed ISC.

 The Evolved OA ISC Specification at Build-Time
Note. The topology of the ISC has evolved, including where now legacy components have
been deprecated and likely marked for eventual removal, so as to eliminate any residual

vulnerability pathway still present.

Acquisition Research Program:
Creating Synergy for Informed Change - 329 -

 Evolved OA ISC Corresponding to Figure 5, Installed for Utilization by
End-Users

Note. Firefox Web Browser as Before (Upper Left), Google Calendar (Lower Left), Google
Docs (Upper Right), and Fedora/Linux Operating System Platform as Before (Lower Right)

The transformation of the current system in Figure 3 and Figure 4 to the evolved
system in Figure 5 and Figure 6 entails multiple types of software system evolution updates.
But now we must consider whether and how such evolution process transactions potentially
allow for introduction of cybersecurity vulnerabilities or attack vectors. This can happen, for
instance, in the following ways: If the current system is trusted, because its components
have individually had their security tested for known vulnerabilities and have passed
assurance checks, then evolution process update transactions may introduce unintended
vulnerabilities, either within the components replaced, within the new topological
configuration, via shifts in the obligations or rights (added, subtracted, revised) in the new
components, or via the overall incorporation of all of these evolutionary updates. So we
need to assure the security of the update transactions acquired from the component
producers and from the system integrators.

As these transactions entail request-response transactions with remote parties
across a network, then they may be vulnerable to “man-in-the-middle” attacks, as well as to
mistakes made in selecting the appropriate component versions for the specific edge device
platform. So we want these transactions to be coordinated and tracked using blockchains
and smart contracts, so that we can better trust the security of the evolution process
updates. Said differently, we want any and all updates that affect the OA software system
components, interconnections and interfaces, or licenses to be mediated and verified by
remote parties via blockchain transactions. This entails that each edge device or system
platform must be able to periodically (e.g., daily, after an application program exits, or by
mission-specific policy) identify itself and assert the “value” of its current ISC elements and
configuration specification, in a way that can be reconciled against the last known
corresponding verified values on the blockchain. If a discrepancy between the value of the
last known (and trusted) current system configuration, and the system evolved configuration

Acquisition Research Program:
Creating Synergy for Informed Change - 330 -

is detected, then some unknown evolution update has occurred, such that system security is
now unknown and may no longer be trusted. Such a condition may then produce a
notification of such discrepancy, automatically revert to the last known trusted current
system, or some other intervention action, depending on the evolution process update
security policies expressed in the corresponding smart contract. Subsequently, we now
have new ways and means for assuring, detecting, or preventing authorized/unauthorized
evolutionary changes to an OA ISC during the software development and evolution
processes which occur routinely during a system acquisition effort.

Overall, the purpose of this case study is to help describe and reveal that common
and widespread acquisition processes associated with the development, usage, or evolution
of OA software systems supporting C2/B mission applications is not necessarily secure, and
thus can allow for unknown or poorly understood evolutionary updates that are intended or
not. Our efforts begin to characterize the need to continuously secure and assure these
software engineering process updates and their provenance. Such continuous assurance
capabilities are needed in addition to other techniques that focus on assuring the security
and integrity of the individual software components acquired from diverse producers or
integrators through software ecosystems that release deployable run-time software
applications or remote services.

Discussion
There are three topics we find merit consideration, given what now appears possible

in the use of blockchains and smart contracts as mechanisms for assuring software
development and evolution process update transactions for OA C2/B systems. These are
(a) how cyberattacks that may potentially arise in traditional software engineering processes
can now be prevented, detected or marked for action; (b) innovations in acquisition research
that may follow; and (c) future extensions of this line of research and study.

Cyberattacks on Software Evolution, Release, and Update Processes

The types of software evolution updates in Figure 2 also classify comparable types of
attacks on OA systems during their development, build, deployment, and run time
processes. The difference being that cyberattacks on software denote unauthorized or
unverified updates from the current ISC during design-time, build-time, and deployment-time
software engineering activities, to an evolved ISC. This implies that covert software
evolution changes by an attacker may follow the same steps as those by a trusted software
producer or system integrator, namely replacement of a component by a newer version or
by a different component, access to a component through a different interface, replacement
of a connector, or replacement of the topological configuration. (We are presently unaware
of attacks involving replacement of a component license, but such attacks that
change/rewrite IP or security license obligations and rights are clearly possible [Scacchi &
Alspaugh, 2012, 2015, 2016].) The result is a compromised version of the system that is
functionally similar to the current (trusted) ISC system, but masquerading as one that is
authorized, validated, and functionally equivalent intended not to be recognized as
something different.

When the attack is made on a deployed instance of the ISC system, its presence can
be identified by the change in the size or hashcode value of the compromised system,
compared to the current system’s provenance established in the blockchain. The window of
time during which the attacked system may take effect is limited by the frequency with which
the edge device’s software is compared with what the blockchain ledger recorded as being
installed, as after any change is discovered the edge system’s software can be rolled back
to its (prior, now current) trusted configuration.

Acquisition Research Program:
Creating Synergy for Informed Change - 331 -

The process is more complex for attacks during development, build, and deployment,
because the context is more complex. Here we wish to prevent insecure components,
connectors, and configurations from being incorporated into the OA system, but an OA
system is by its nature typically the result of a distributed, decentralized development, with
components coming from other projects and developed and evolved by parties distant and
often unknown to the OA system’s integrators. We foresee the use of blockchains,
transactions, and smart contracts to record each component and connector’s provenance,
vetting, and authorization. Smart contracts restrict the possible transactions (evolution steps)
to those believed to preserve the OA system’s security. When an unexpected change is
discovered in an edge device system’s software, it is rolled back to a safe version; when a
security fault is discovered in a version of the system, a process that may be much more
involved, the components, connectors, and topology involved may be rolled back to a
trusted safe version, and the smart contracts through which the fault was introduced may be
updated to prevent a “similar” evolution in the future. This may be done either by
withdrawing authorization from actors involved, by blacklisting a component repository
whose vetting was careless, or by similar means. The blockchain ledger records the
information needed to take such steps.

This points to two further areas of research. First, the blockchain ledger system now
becomes a locus against which attackers will wish to operate, and further study is needed to
examine how to resist such attacks, isolate their effect, and to the extent possible reject
them through the blockchain and transaction mechanism itself. Second, can the ledger be
used as a database of information for effectively distinguishing fraudulent or corrupted
evolution steps? Further research will be necessary.

The only allowed OA evolution updates of the secure system are those that are first
verified as valid updates, from known trusted parties, and that satisfy a contract for the
blockchain ledger. In cases where a vulnerable or corrupted component, connector, or
topology successfully runs this gauntlet, the ledger provides a means for rolling back
transactions to a secure version of the system that can be deployed in place of the insecure
later version.

We note that in contrast to a procedural programming language such as the Solidity
language used for Ethereum contracts, a declarative scripting language mitigates against
recently discovered vulnerabilities of smart contract technologies, such as those found for
the Ethereum run-time interpreter (Atzei, Bartoletti, & Cimoli, 2016).

Innovation for Acquisition Research

The work prior to this paper in software cybersecurity is primarily focused on making
a particular version of the software system itself, as a product, secure. In this paper, we are
expanding our view to include the ecosystem within which the system evolves, the software
architecture specification that defines and constrains that ecosystem, the evolution of the
components and connectors that are integrated into the system, and the OA evolution
process by which any OA system evolves from version to version. To this, we are adding the
ability to record, track, verify, and maintain the security of the OA system throughout its
development and evolution processes.

We are proposing the use of blockchains and smart contracts to assure the security
of software engineering process update transactions. We are not at this time investigating
how blockchains and smart contracts may be used as potential mechanisms that support
the financial transactions or new business models for purchasing the services or products
associated with a OA software system acquisition (Scacchi & Alspaugh, 2016). That is a
topic for future research. Similarly, though blockchains and smart contracts are relatively

Acquisition Research Program:
Creating Synergy for Informed Change - 332 -

new, they also entail their own set of vulnerabilities associated with their different
technological implementations (Atzei, Bartoletti, & Cimoli, 2016) that must be addressed.
Whether or how such vulnerabilities may manifest within acquisition processes is also a
topic for future research.

Future Extensions and Elaborations of This Approach

We have discussed the application of a blockchain system for coordinating and
steering the evolution of an OA software system that is produced or integrated by a single
party. But a blockchain system is by its nature a distributed system, and though its
distributedness does not in itself give extra benefit in multi-producer, multi-integrator
software ecosystems, clearly it is as effective in recording evolution and provenance in
them, and it is already adapted to the challenges of interactions with many parties.

In our prior research, we have called for a declarative domain-specific language
(DSL) for specifying the obligations and rights incorporated into IP and security licenses for
OA software (Alspaugh & Scacchi, 2012; Scacchi & Alspaugh, 2013a). Now we see that
such a DSL can be extended to incorporate software engineering process transactions
using a process modeling language like PML (Noll & Scacchi, 2001; Scacchi, 2001) or a
similar notation and that such extension is advantageous for managing OA software security
system and engineering process challenges. The design and incorporation of these
extensions into the DSL is thus a next step for us to research, develop, and refine.

Last, we have also called for research and development of software obligations and
rights management systems (SORMS) as a core capability for the DoD, government
agencies, and other enterprises to help manage and improve their OA software system
buying power (Scacchi & Alspaugh, 2015, 2016). We envision a SORMS that interprets and
evaluates DSLs for software licensing as an essential tool for enterprises that manage OA
software systems, such as those found in most large organizations in industry, government,
and defense. Thus, we call for effort to add capabilities that extend the SORMS to
accommodate blockchain ledger repositories, as decentralized or centralized databases, on
which are enacted smart contracts for handling software development and evolution process
update transactions.

Conclusions
In this paper, we sought to stimulate the development of innovative approaches to

continuously assuring the cybersecurity of open architecture (OA) software systems. We
focused on exploring the potential for using blockchains and smart contract techniques and
how they can be applied to support acquisition efforts for software systems for OA command
and control or business enterprise (C2/B) systems. We further limited our focus to examining
the routine software system updates to OA software configuration specifications that arise
during the development and evolution processes arising during system acquisition. Our
efforts described through our case study and related efforts thus denote a promising line of
work in progress. Much remains to be done, but the direction forward appears robust and
productive. We welcome questions and comments that identify possible oversights, and we
suggest complementary capabilities that enhance the potential of blockchain and smart
contract tools, techniques, and technologies for continuously assuring the cybersecurity of
modular open architecture software systems.

References
Alspaugh, T. A., Asuncion, H., & Scacchi, W. (2013). The challenge of heterogeneously

licensed systems in open architecture software ecosystems. In S. Jansen, S.
Brinkkemper, and M. Cusumano (Eds.), Software ecosystems: Analyzing and managing

Acquisition Research Program:
Creating Synergy for Informed Change - 333 -

business networks in the software industry (pp. 103–120). Northampton, MA: Edward
Elgar.

Alspaugh, T. A., & Scacchi, W. (2012, September). Licensing security. In Proceedings of the
Fifth International Workshop on Requirements Engineering and Law (pp. 25–28).

Alspaugh, T. A., Scacchi, W., & Asuncion, H. A. (2010). Software licenses in context: The
challenge of heterogeneously licensed systems, Journal of the Association for
Information Systems, 11(11), 730–755.

Atzei, N., Bartoletti, M., & Cimoli, T. (2016). A survey of attacks on Ethereum smart
contracts. Retrieved from http://eprint.iacr.org/2016/1007.pdf

Blockchain. (n.d.). In Wikipedia. Retrieved March 15, 2017, from
https://en.wikipedia.org/wiki/Blockchain

DoD & GSA. (2013, November). Improving cybersecurity and resilience through acquisition.
Retrieved from https://www.gsa.gov/portal/getMediaData?mediaId=185367

DuPont, Q., & Maurer, B. (2015, June 23). Ledgers and law in the blockchain. King’s
Review. Retrieved from http://kingsreview.co.uk/articles/ledgers-and-law-in-the-
blockchain/

Endres-Niggemeyer, B. (Ed.). (2013). The mashup ecosystem. In Semantic mashups:
Intelligence reuse of web resources (pp. 1–50). Springer.

Ethereum. (n.d.). In Wikipedia. Retrieved March 15, 2017, from
https://en.wikipedia.org/wiki/Ethereum

George, A., Galdorisi, G., Morris, M., & O’Neil, M. (2014, June). DoD application store:
Enabling C2 agility? In Proceedings of the 19th International Command and Control
Research and Technology Symposium (Paper 104). Alexandria, VA.

George, A., Morris, M., & O’Neil, M. (2014). Pushing a big rock up a steep hill: Lessons
learned from DoD applications storefront. In Proceedings of the 11th Annual Acquisition
Research Symposium (Vol. 1, pp. 306–317). Monterey, CA: Naval Postgraduate
School.

Guertin, N. H., Sweeney, R., & Schmidt, D. C. (2015, April). How the Navy can use open
systems architecture to revolutionize capability acquisition: The Naval OSA strategy can
yield multiple benefits. In Proceedings of the 12th Annual Acquisition Research
Symposium (Vol. 1, pp. 107–116). Monterey, CA: Naval Postgraduate School.

Noll, J., & Scacchi, W. (2001). Specifying process-oriented hypertext for organizational
computing. Journal of Network and Computer Applications, 24(1), 39–61.

Reed, H., Benito, P., Collens, J., & Stein, F. (2012, June). Supporting agile C2 with an agile
and adaptive IT ecosystem. In Proceedings of the 17th International Command and
Control Research and Technology Symposium (Paper 44). Fairfax, VA.

Reed, H., Nankervis, J., Cochran, J., Parekh, R., & Stein, F. (2014, June). Agile, adaptive IT
ecosystem: Results, outlook, and recommendations. In Proceedings of the 19th
International Command and Control Research and Technology Symposium (Paper 11).
Arlington, VA.

Scacchi, W. (2001). Redesigning contracted service procurement for internet-based
electronic commerce: A case study. Journal of Information Technology and
Management, 2(3), 313–334.

Scacchi, W., & Alspaugh, T. (2012, July). Understanding the role of licenses and evolution in
open architecture software ecosystems. Journal of Systems and Software, 85(7), 1479–
1494.

Acquisition Research Program:
Creating Synergy for Informed Change - 334 -

Scacchi, W., & Alspaugh, T. (2013a, February). Advances in the acquisition of secure
systems based on open architectures. Journal of Cybersecurity & Information Systems,
1(2), 2–16.

Scacchi, W., & Alspaugh, T. (2013b, May). Processes in securing open architecture
software systems. In Proceedings of the International Conference on Software and
Systems Process (pp. 126–135). San Francisco, CA.

Scacchi, W., & Alspaugh, T. (2014). Achieving Better Buying Power through cost-sensitive
acquisition of open architecture software systems (NPS-AM-14-C11P07R01-036). In
Proceedings of the 11th Annual Acquisition Research Symposium. Monterey, CA: Naval
Postgraduate School.

Scacchi, W., & Alspaugh, T. (2015). Achieving Better Buying Power through acquisition of
open architecture software systems for web and mobile devices (NPS-AM-15-005). In
Proceedings of the 12th Annual Acquisition Research Symposium. Monterey, CA: Naval
Postgraduate School.

Scacchi, W., & Alspaugh, T. (2016). Achieving Better Buying Power for mobile open
architecture software systems under diverse acquisition scenarios (SYM-AM-16-033). In
Proceedings of the 13th Annual Acquisition Research Symposium (pp. 163–183).
Monterey, CA: Naval Postgraduate School.

Scacchi, W., & Alspaugh, T. A. (2017). Issues and challenges in the operations and
maintenance of open architecture software systems. CrossTalk: The Defense Software
Engineering Journal, 10–15.

Smart Contracts. (n.d.). In Wikipedia. Retrieved March 25, 2017, from
https://en.wikipedia.org/wiki/Smart_contract

Womble, B., Schmidt, W., Arendt, M., & Fain, T. (2011). Delivering savings with open
architecture and product lines. In Proceedings of the Eighth Annual Acquisition
Research Symposium (Vol. 1, pp. 8–13). Monterey, CA: Naval Postgraduate School.

Zheng, D., & Carter, W. (2015). Leveraging the internet of things for a more efficient and
effective military. Center for Strategic & International Studies. Retrieved from
https://www.csis.org/analysis/leveraging-internet-things-more-efficient-and-effective-
military

Acknowledgments
The research described in this report was supported by grant #N00244-16-1-0053

from the Acquisition Research Program at the Naval Postgraduate School, Monterey, CA.
No endorsement, review, or approval implied. The concepts, topics, and materials presented
are the sole responsibility of the authors.

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

