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Abstract 
Increasingly, government managers are turning to cross-organizational networks for the 
acquisition and delivery of services. The use of networks is lauded as a means to eliminate 
service gaps, achieve synergistic benefits, and provide better buying power. Cross-
organizational networks now support a large number of local, state, and federal level 
activities (i.e., health care, social services, emergency management, and transportation). It 
has long been recognized that organizations are susceptible to the vagaries of their 
environment and that performance is often a function of how well organizations adapt to 
environmental fluctuations (Ashby, 1954; Holland, 1975). Despite the popularity of networks, 
little is known about the unique risks they encounter and the susceptibility of cascades. The 
objectives of this research are to (1) identify the exposure and vulnerability mechanisms that 
relate to cross-organizational network risk, contagion, and performance; (2) provide 
managerial recommendations on cross-organizational networks as a form of service delivery; 
and (3) provide a theoretical framework for conceptualizing cross-organizational networks as 
a service delivery option. This research models the Major Defense Acquisition Programs 
(MPADs) as a network of interconnecting programs and employs Contagion Modeling (mixed 
effects linear regression with a modularity maximization algorithm) as a method for 
understanding MDAP performance. The presentation will provide the statistical results gained 
from the contagion modeling and provide insights on risk susceptibility. Understanding the 
nature of how exposure triggers state changes across networks levels is likely to yield new 
strategies on how to manage network risk. 

Introduction 
Whether explicitly pronounced or implicitly performed, “jointness” has become a 

dominant means for modern warfare acquisition. For this research, jointness, 
interdependency, exchange, and partnerships all refer to a similar concept: the notion that 
autonomous organizations build relationships to obtain resources to provide capabilities 
that, when looked at in totality, form network structures. While it is true that at the individual 
pair-wise level, these exchanges exist as explicit transactions for the transfer of data, labor, 
capital, or materials, it is also true that the totality of the various dimensions, coupled with 
the turbulence of perturbations, influences the cost, schedule, and performance of the 
acquisition effort.  

Organizations in the past sought to limit interdependencies to maintain control over 
the environment. Concerned about environmental instabilities, organizations either limited 
the scope of their activities or sought to expand their domain by bringing mission critical 
activities internally. More recently, however, organizations have found that the costs and 
limitations of environmental control behaviors are both impractical and infeasible. 

Typically, jointness appears in the context of shared resources, supply chains, or 
shared requirements. The benefits of joint activities can be great. Jointness can eliminate 
redundancy, streamline activities, and lead to “Better Buying Power.” Jointness can also 
make possible what was previously improbable. Jointness has been known to result in 
critical synergistic opportunities, that is, battlespace awareness. 
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But jointness does not come without risk. Collaborative efforts are known to 
experience the problems of suboptimization and moral hazard and principal-agent issues 
(Pfeffer & Salancik, 1978). In ideal terms, the decision calculus to engage in a relationship 
would involve weighing the costs of lost opportunities (e.g., in terms of response time, 
flexibility, etc.) against the benefits of the relationship (e.g., synergy, shared resources, and 
economies of scale and scope). In the world of transaction costs, collaborative efforts are 
rarely free. Uncertainties regarding a partner’s ability to commitment to a relationship for the 
duration of the initiative can influence the decision to engage. Transaction risk, or the 
probability that a loss might occur due to a partner default, is a concern for many public 
managers. Recognizing that the environment of a given organization can exert powerful and 
unintended consequences on the relationship, collaboration, or jointness, is often avoided 
(Wilson, 1994).  

For this research, jointness, interdependency, exchange, and partnerships all refer to 
a similar concept: the notion that autonomous organizations build relationships to obtain 
resources to provide capabilities that, when looked at in totality, form network structures. 
While it is true that at the individual pair-wise level, these exchanges exist as explicit 
transactions for the transfer of data, labor, capital, or materials, it is also true that the totality 
of the various dimensions, coupled with the turbulence of perturbations, influences the cost, 
schedule, and performance of the acquisition effort.  

Unfortunately, by and large, the literature on interdependent activities is steeped in 
contradictory findings. For example, some argue that tight-knit arrangements are more likely 
to have the social traction needed to overcome environmental difficulties (Sosa, 2011), 
whereas others argue that loose coupling, or weak ties, may be a better solution 
(Granovetter, 1973). Some claim that more information is the key to benefit attainment 
(Comfort, 1994), whereas others claim that more information leads to a false sense of 
security (Hall, Ariss, & Todorov, 2007). Yet, despite the absence of consistent sage advice, 
resource limitations and a demand for comprehensive solutions continue to push 
organizations toward complex structures for the delivery of products and services.  

As discussed, jointness does not occur without some degree of risk. This research 
examines one particular form of risk: contagion. The discussion below examines the funding 
interdependencies that arise from shared program elements and begs the question, are 
neighborhood programs contagious when it comes to cost variance? The study examines 
MDAP performance in light of the cost variance reports in the annual SARs over a period of 
six years. 

Methods  
As alluded to above, MDAP programs often share program elements. Shared 

resources, that is, program elements, are a common form of jointness. The analysis below 
tests for the presence of contagion as it relates to the cost variances of neighbor programs. 

To test for the presence of contagion, mixed effects linear regression with a 
modularity maximization algorithm was employed. The modularity maximization algorithm 
allowed us to divide the network into groups and the mixed effects linear regression allowed 
us to obtain coefficients to test for the presence of contagion. With mixed effects we are able 
to model the random effect of the network community (j) by employing a modularity 
maximization algorithm.  

The modularity maximization algorithm splits the network into a number of 
communities or groups. In other words, it tells us which MDAP programs belong together in 
a single cluster and which do not. Put simply, employing iteration methods modularity is the 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 90 - 

fraction of the edges that fall within the given groups minus the expected such fraction if 
edges were distributed at random. The benefit of using the modularity algorithm is that no 
single program can be identified in two groups. Hence, the groups are orthogonal. 

Because we were testing the individual variance of each MDAP within each of the 
groups, a mixed effects model was needed (Raudenbush & Bryk, 2002). The mixed effects 
models that were estimated are linear regressions that account for the total cost variance of 
all network partners, B5 Model 1, and component cost variances of schedule, estimation, 
economic, and engineering that correspond with B6, B7, B8, and B9 in Model 2 respectively. 
The other predictors of interest in both models are β1, which models the effect of the 
number of network partners that are directly connected to the MDAP program yi. The β2 
estimator is the diversity of network partners based upon the rank abundance curve. The β3 
is the percent of network partners that are considered joint programs. The β4 is the percent 
of network partners that are classified as in production. The δk is a vector of year dummies 
to account for the years 2010–2014; therefore, the baseline year is 2009. The network 
community is the random effects term (j) in the model. The αj is the varying intercept based 
upon the network community upon which the MDAP program is classified. 

Model 1: yi = αji + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5 + δkXk +εi 

αj = μα + ηj 

Model 2: yi = αji + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β6Xi6 + β7Xi7+ β7Xi7+ β7Xi7 + δkXk +εi 

αj = μα + ηj 

Due to the leptokurtic nature of the untransformed yi, the yi was transformed using 
the cube root, yi

1/3, to make the error distribution further reflect the Gaussian assumptions of 
the linear mixed effects model. Because the cube root equally reduces the variance of large 
positive and negative values, this transformation was found to be the simplest 
transformation possible but other transformations are also possible. The nature of the 
transformation does not influence the estimation of the relationship between the linear 
predictors. The major influence that this has upon the model is to shrink the variance of the 
untransformed yi to make the model better fit the data. The interpretation of this 
transformation is discussed below. 

Measures 
As mentioned above, the goal was to test the cost variance of neighborhood partners 

and contagion to other programs. Consequently, the cost variances reported in the annual 
SARs were collected. Additionally, several control variables were employed. The first was a 
complexity metric that measures the number of programs that share a program element. 
The second was a diversity measure. Diversity was measured by the slope of the rank 
abundance curve. The percent of the partners that were explicitly joint as well as the percent 
of the partners that were in production were included in the models as controls.  

Findings 
The two best-fitting models are presented in Table 1, and they reveal that both 

complexity and the cost variances of the network partners influence the cost variances of 
the MDAP programs. Of the two theoretical classifications of variables, we find that the 
complexity variable is the better predictor of cost variances in the network. First, we describe 
the results of the first model of the total cost variance of the network partners, which does 
not seem to support the hypothesis that network partners’ cost variances should influence 
the MDAP program cost variance. Next, we describe the second model, which shows when 
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we look at the component cost variances of the network partners we see modest support for 
the network partner to MDAP program cost variance connection, at least for estimation cost 
variance. Throughout all of the models, the complexity and diversity measures are 
significant (p<.1) and of the sign predicted by theory.  

 Models of Network Partner Cost Variance Effects on the MDAP Program 
Total Cost Variance in the MDAP Financial Network, 2009–2014 

 

The first model shows that the network partner total cost variance is not a significant 
predictor of the MDAP program cost variance when we account for complexity, year, and 
network community. It is of the correct theoretical sign, which would indicate that when the 
network partners have greater cost variance, the MDAP programs also have greater cost 
variance. The fact that network partners’ total cost variance is not a significant predictor of 
the MDAP program total cost variance may be due to the fact that they are unrelated, but it 
may also be because there are simply too many cost variances being added together in the 
total network partner cost variance, which creates noise in the analysis and supports the 
analysis of the components of cost variance as we do in the second model. 

The complexity and diversity variables that were included in the model were 
significant predictors of cost variance in the model as well. The complexity variable number 
of network partners was significant (p<.1) and of the direction predicted by theory. The weak 
significance of this variable strengthens when we look at the second model, but it is 
substantively significant in terms of its effect on the cost of the MDAP program. One thing to 
remember is that these models are based on the cube root of the total MDAP program cost 
variance, due to the leptokurtic nature of the distribution. Therefore, the effect of all of these 
variables is nonlinear and is dependent on the current level of cost variance. Because of 
this, we observe that a unit change in the number of network partners is associated with a 
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change in the cost variance of 0.214 times the square of the cube root of the estimated cost 
variance.1 Given that the average cost variance of the programs in the dataset is $38 million, 
this means that a one-unit change in the number of network partners for the average 
program would result in a $2.42 million increase in the cost of the program.  

Likewise, the diversity of network partners services based upon the rank abundance 
curve is very strong. A one-unit change that takes us from no network partner diversity to 
most theoretical network partners diversity has a significant impact on the cost variance. The 
change, therefore, from least possible diversity to most possible diversity of network 
partners leads to an increase in the cost of the program of $201.34 million in the first model. 

Overall, the first model fit better (BIC = 1734.95) than the second (BIC = 1777.75). 
The network community variance estimate is 0.27 but is not significant. This variable is 
included in the model because preliminary data analysis suggested that the network 
community was associated with the MDAP program cost variance. Therefore, the random 
effects or hierarchical model of cost variances in the network is theoretically warranted but 
may not be needed given the other variables included in the model. In the conclusion, we 
provide suggested research approaches to further test if network communities have an 
influence on the cost of programs. 

Interpreting the significant coefficients from the second model, we see that both the 
complexity and diversity variables are now both significant at the p<.05 level and the 
substantive effect of the variables increases. The increase in the cost to a program based 
upon the regression coefficients in the second for complexity and diversity are $3.84 million 
and $214.94 million, respectively. In the second model, the sum of the network partners 
estimation variances is now associated with the MDAP program cost variance (p<.1). This 
effect, like the complexity and diversity variables, is non-linear based upon the underlying 
cost variance; however, unlike the diversity and complexity variables this effect is not nearly 
as strong in practice. For example, if network partners estimation variance increased by a 
million dollars, then the cost variance of the average MDAP program is predicted to increase 
by $10,172. In conclusion, this variable provides only weak evidence that network partners 
cost variances are associated with the MDAP program’s cost variances once the models 
account for the year of the cost variance, the complexity of the network partners, and the 
diversity of the network partners. 

Many of the variables in the model were not significant, including the total MDAP 
program cost variance in the first model and the component cost variances, with the 
exception of estimation cost variance. This suggests that much of the cost variance is 
strongly attributable to the complexity and diversity of the programs that are being 
developed. 

                                            
 

 

1 Because the linear model estimates the effect of the independent variable on the dependent 
variable as dY/dX and Y is to the 1/3 power, estimates of the effect must apply the chain rule of Y = 
(b0 + biXi)3, where x is the vector of regressors. The chain rule tells us that a unit change in any of the 
xi is associated with a change of Y such that dY/dxi = 3bi (b0+biXi)2 = 3biY2/3. If we concentrate on just 
the second form of the equation, we are be able to interpret the bi effect of a unit change on xi given a 
particular level of cost variance, which we do in terms of the mean cost variance in the dataset of $38 
million. 
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In sum, none of the neighbor cost variance measures (neither the production nor 
percent joint) proved instrumental in predicting individual program cost variance. However, 
both the diversity and the number of neighbors did prove instrumental and do appear 
correlated with cost variance growth. 

As discussed, jointness does not occur without some degree of risk. This research 
examined one particular form of risk—contagion—employing one particular statistical 
technique mixed effects linear regression with a modularity maximization algorithm. The 
results did yield interesting findings in terms of size of neighborhood and diversity. Further 
research will test a number of different algorithms for their strengths and weaknesses in 
providing insights on joint activities. 
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