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Abstract 

The objective of this study is to apply recently developed techniques to infer causality 
from observational software engineering data. Determining causation rather than just 
correlation is fundamental to selecting factors that control outcomes such as cost, schedule, 
and quality. The Tetrad tool’s PC and FGES causal search algorithms were applied to 
software engineering data from 4940 programs written in the C programming language 
collected during Personal Software Process (PSP) training. PSP programs have previously 
been used in empirical research quantitative relationships between developer and project 
factors. Both algorithms successfully identified the expected relationships and did not find 
contradictory or implausible associations. Many of the available causal inference search 
algorithms require Gaussian distributional families with linear effects. The linear relationship 
may be especially important for software engineering research and may require prior 
knowledge and data transformation. Because software engineering has depended on small-
scale, low-power experiments, often using non-representative students, inferring causal 
relationships would expand the insight available to researchers. Inferring causation from 
observational software engineering data shows much promise, but is currently limited by 
researcher understanding of the capability and limits of causal inference, the quality of the 
underlying data, and the general requirement for linear effects. 

Introduction 
Despite repeated calls for empirical studies in software engineering (Perry, Porter, & 

Votta, 2000) and guidelines for their conduct (Kitchenham & Dybå, 2004) it is usually 
impractical to run controlled software development experiments. Thus, most data in software 
engineering are observational, presenting challenges to causal inference. Without 
causation, selection or control of factors will not have the desired effect on outcomes. 
Understanding causation is fundamental to the forward-looking control of the software 
development process.  

The epistemological problems of inferring causation from observational data are now 
being overcome (Pearl, Glymour, & Jewell, 2016; Spirtes, 2010) and accepted in research 
(Fedak et al., 2015). This study aims to apply causal search techniques to a previously-
studied software engineering data set to validate the overall approach and gain experience 
with the capabilities and limitations of these methods. 
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Tools for Causal Inference 
The University of Pittsburgh, Carnegie Mellon University (CMU), and the Pittsburgh 

Supercomputing Center serve as founding members of the Center for Causal Discovery 
(CCD). The CCD develops and maintains causal algorithms, software, and tools, including 
Tetrad. Tetrad enables users not only to search for causal graphs from a dataset, but also to 
estimate and evaluate parametric models. We applied the PC and FGES algorithms to 
selected data from PSP training. These two algorithms were chosen to exercise two different 
search approaches. 

The PC algorithm, named after its creators Peter Spirtes and Clark Glymour, sets a 
Fisher Z-based p-value cutoff for conditional independence testing. The FGES algorithm 
uses a fast greedy approach to search the space of causal Bayesian networks to return the 
most probable model(s) based on the Bayesian information coefficient (BIC) score 
(Sanchez-Romero et al., 2018). Both algorithms assume that each node is a linear function 
of its parents plus a Gaussian noise term. 

One advantage of score-based search algorithms over constraint-based search 
algorithms is that they can obtain quite accurate adjacencies within the causal graph 
equivalence class. Also, score-based algorithms typically output only directed or undirected 
edges. Because equivalence class scoring almost always favors one orientation over the 
other, bi-directed edges are rare. A limitation of score-based search algorithms is that they 
can be slow and might not scale as well as constraint-based searches. 

Generally in our analyses, we don’t have full knowledge of how well the assumptions 
of the various search algorithms are met, so we usually employ more than one algorithm. 
Also, because they rely on different mathematical mechanisms to construct the output graph 
(MEC), we favor applying one or more constraint-based searches and one or more score-
based searches, and comparing for commonalities in the direct causal relationships that are 
identified. This provides some protection against the uncertainties about how well the 
various assumptions are met by the dataset analyzed. Employing two or more search 
algorithms based on different mathematical approaches for inferring causal structure also 
allows us to take advantage of their respective strengths (e.g., there is less ambiguity in the 
direction of causality with score-based searches). 

Personal Software Process (PSP) Data 

Dataset Summary 

The Personal Software Process was developed by Watts Humphrey at the Software 
Engineering Institute to demonstrate how an individual can apply the process principles 
underlying the Capability Maturity Model for personal work. The PSP contains coherent 
frameworks for defining the development process and measurements for process and 
products. A progressive development process with activity steps, measurements, and a 
sequence of training assignment exercises is described in A Discipline for Software 
Engineering (Humphrey, 1995).  

PSP classes are taught by trained and authorized instructors who submit resulting 
data to the Software Engineering Institute for use in research. Several versions of the 
course have been taught over the years; this study uses the 10-assignment course taught 
primarily through 2006 because it contains a large sample and consists primarily of 
professional software developers rather than university students. Additional descriptions of 
the data and prior analyses can be found in Rombach et al. (2008) and Vallespir and 
Nichols (2012). For this study, because we wanted to reduce the number of potential hidden 
confounding factors, we selected only programs using the C programming language and 
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students who completed the entire 10-program sequence. Although using only a subset of 
the data introduces some risk for bias, lack of hidden confounders is a key assumption for 
both search algorithms.  

Data Attributes 

When using PSP for the program exercises, students record the direct (i.e., 
stopwatch) time engaged in particular activities (e.g., planning, design, design review, code, 
code review, compile, test, post mortem analysis) along with information on the defects 
injected and removed in each phase. For the more focused analysis that is the subject of 
this report, we used only the total effort (sum of all activities), the construction activity effort 
(design and code), and the total defects for the 494 students using the C programming 
language and implementing all 10 assignments. The data variables we examined were as 
follows: 

1. Assignment Average Minutes (abbreviated AsgAveMin)—for each of the 10 
program assignments, the average of the log-transformed effort required by 
the 494 students using the C programming language to complete that 
assignment. AsgAveMin can be thought of as a proxy for the requirements 
size of each program. (AsgAveMin is defined for 10 assignments.) 

2. Student Size Factor (abbreviated StuSizeFactor)—for each of the 494 
students, the ratio of total new lines of code written by the student for the 10 
program assignments compared to the total new lines of code written for the 
10 program assignments averaged across all 494 students. (StuSizeFactor is 
defined for 494 students.) 

3. Student Effort Factor (abbreviated StuEffFactor)—for each of the 494 
students, the ratio of the student’s total effort for the 10 program assignments 
to the overall student average. Thus, StuEffFactor is very similar to 
StuSizeFactor, but focuses on a student’s total effort rather than the total new 
lines of code written. (StuEffFactor is defined for 494 students.) 

4. Student Defect Arrival Rate (abbreviated StuDAR)—for each of the 494 
students, the ratio of defects introduced during program design and code 
activities (that is, during construction to the construction effort). This factor 
characterizes a student’s specific tendency to introduce defects while 
developing software, using “defects per hour” as the unit. Using hours as the 
unit instead of the more common minutes should not affect causal inference 
and provides a better scale for the log-transform. (StuDAR is defined for 494 
students.) 

5. Construction Minutes (abbreviated ConstMin)—for each of the 494 students 
and 10 program assignments, the effort expended in construction (design and 
code) activities, measured in minutes. Thus, ConstMin does not include effort 
expended in planning, reviews, compile, and test. (ConstMin is defined for 
494 students and 10 program assignments.) 

6. Lines of Code for the product (abbreviated LOC)—for each of the 494 
students and 10 program assignments, the sum of added and modified 
logical lines of code written. Thus, LOC does not include lines of code that 
were reused without modification. (LOC is defined for 494 students and 10 
program assignments.) 

7. Total Development Effort (abbreviated MinTot)—for each of the 494 students 
and 10 program assignments, the student’s total effort expended on the 
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program assignment, measured in minutes. (MinTot is defined for 494 
students and 10 program assignments.) 

8. Total Number of Defects Injected and Discovered (abbreviated DefTot)—the 
number of defects discovered after the step in which they were injected is 
completed. For example, any design defect discovered during coding would 
be counted, but not a defect both introduced and discovered in the same 
design phase. Also, a typo corrected during normal coding would not count, 
but a typo discovered by a compiler would. We asked students using 
interactive development environments to disable automated checking so that 
these defects would be visible and counted in compile. (DefTot is defined for 
494 students and 10 program assignments.) 

Note that AsgAveMin can be thought of as a proxy for the requirements size because 
each student must perform the same exact 10 exercises. The exercises vary in difficulty as 
does the amount of code required to implement those requirements. Thus, rather than using 
an estimate based on function points as a measure of requirements size, we estimate the 
relative size of specific exercises from the arithmetic average of the log-transformed effort 
expended on an exercise across all developers.  

By taking the log transformation, we accomplish several purposes. First, we reduce 
the effect of outliers, helping to make the search algorithms we utilize less sensitive to 
outliers, and thus the model(s) returned from causal search more stable. Second, 
transformed distribution is approximately Gaussian, which the theorems for consistent 
convergence of the chosen algorithms require. Third, the log transformation will later help to 
linearize factor effects. 

 

Figure 1. Individual Values Plot of Actual Effort for Each Programming 
Assignment 

Figure 1 shows that individual effort distributes widely for each programming 
exercise. The bulls-eye symbols indicate the median and the circles (connected by a line) 
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are the mean. The differences are statistically significant differences between program 
assignments. The mean values are also shown in a scatterplot of size versus effort in Figure 
2 , which also shows that the size varies by nearly a factor of three, while effort varies by 
roughly a factor of two. We interpret slope as code production rate and the intercept as a 
start-up cost. We decided to use only the effort factor for this study because for the 
aggregate, the correlation between size and effort is very strong, suggesting that adding 
size does not add much information. In this figure, the averages were computed from the log 
transformed data, then retransformed into the natural units of LOC and minutes. 

 

Figure 2. Correlation Between Program Size and Effort for 10 PSP “C” 
Programming Language Exercises 

We also included factors that account for programmer variability. The software 
engineering literature contains numerous studies reporting variation in programmer 
productivity (Sackman, Erikson, & Grant, 1968; Curtis, 1981; Valett & McGarry, 1989; 
DeMarco & Lister, 1999; Card, 1987; DeMarco & Lister, 1985; Sheil, 1981). Few studies, 
however, explicitly report individual differences in defects or size of solutions to similar 
problems. Nonetheless, a more recent work (Caliskan et al., 2018) reports that individual 
programmer characteristics can be identified from the compiled (and even optimized) binary. 
We decided to explicitly account for programmer idiosyncrasies in coding style, line counting 
standards, and solution approach with programmer-specific factors that affect product size, 
defect counts, and production rates. This is supported by a separate ANOVA analysis of the 
data that finds that such programmer factors are statistically significant and approximately 
doubles the amount of variance accounted for by the coefficient of determination (from R2 ≈ 
0.3 to R2 > 0.6). The untransformed distributions of student factors (StuSizeFactor and 
StuEffFactor) seem to follow lognormal distributions as shown in Figure 3 (note the heavy 
skew to the right); and the log-transformed data (lnStuSizeFactor and lnStuEffFactor) thus 
approximately follow normal distributions as shown in Figure 4. Defect arrival rates 
(StuDAR), untransformed and transformed, are shown in Figure 5 and Figure 6. 
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Figure 3. Histogram of Student Size and Effort Factors (494 Points) 

The untransformed student-dependent size and effort factors are shown in Figure 3. 
The log-transformed distributions approximate a Gaussian as shown in Figure 4. Please 
note that the scales in the paired plots may differ and ordinates are displayed below the left 
hand plot but above the right hand plot. 

 

Figure 4. Histograms of Log-Transformed Student Size and Effort Factors 

The defect arrival rate is the student’s rate of injecting defects during design and 
coding activities. Because this can be zero, we have added an offset of 1.0 in the 
transformation to prevent negative rates. This small offset will not affect the search provided 
that the distribution is approximately Gaussian. The StuDAR at zero are likely an artifact of 
data gathering practices. We are, however, reluctant to clean the data because of the threat 
of introducing bias. 
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Figure 5. Student Defect Arrival Rate (494 points) 

 

Figure 6. Log of the Student Defect Arrival Rate (494 Points)  

For our initial model, we examine the construction time (ConstMin) as a candidate 
causal contributor to lines of code and defects, and total effort (respectively LOC, DefTot, 
and MinTot). See Figure 7 for a histogram of ConstMin. Mathematically, construction time is 
a product of the construction rate times and the product size. Because this rate may already 
be implicit in other programmer factors, we avoided using it in this analysis. Moreover, that 
rate may be causal, but uncontrollable. Other factors, including estimation accuracy, effort in 
review, and review rates, will be considered in future work. For this analysis we use the 
construction effort because the expected model described in a later section is simple to 
construct and interpret, thus helping to validate the overall approach. 
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Figure 7. Distribution of Construction Effort and Log Transform of Construction 
Minutes of Effort (4940 Points) 

The outcomes of interest are the program size measured in Lines of Code (LOC; 
shown in Figure 8), total effort measured in minutes (MinTot; shown in Figure 9) and total 
defects (DefTot; shown in Figure 10). 

 

Figure 8. Students’ Sum of Added and Modified Logical Lines of Code (LOC) and 
Log-Transformed LOC for Each Student Exercise Pair (4940 points) 
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Figure 9. Students’ Total Effort in Minutes (MinTot) and Log-Transformed MinTot 
for Each Student Exercise Pair (4940 Points) 

 

Figure 10. Students’ Total Number of Defects Injected and Discovered (DefTot) and 
Log-Transformed DefTot for Each Student Exercise Pair (4940 Points) 
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Data Analysis Approach 

Research Objective 

For this study, we wanted to  

 evaluate the effectiveness of applying the causal search algorithms to the 
PSP software engineering data. 

 determine effective data transformations that facilitate correct use of the 
selected causal search algorithms. 

The PSP data is useful for this research because 

1. All students develop programs from the same specifications. 

2. The measurements framework is required and reinforced by instructors. 

3. The data has been analyzed before and is familiar (Rombach et al., 2008; 
Grazioli, Nichols, & Vallespir, 2014; Vallespir & Nichols, 2011; Vallespir & 
Nichols, 2012). 

Based on prior analysis and experience, we expected some correlating factors to 
exhibit a causal relationship. 

Expected Models 

PSP data is used in planning and tracking projects that are run according to the 
Team Software Process (TSP). In TSP planning, estimates of component size, conversion 
factors to lines of code, overall production rates, activity effort distributions, historical defect 
injection rates, and activity defect removal yield are used to predict likely outcomes (Nichols, 
2012).  

For a PSP programming assignment (i) and student (j) pair, we would expect—
without examining any process data—that the program size can be estimated by the 
untransformed values:  

𝐿𝑂𝐶 =  𝑅𝑒𝑞𝑆𝑖𝑧𝑒 × 𝑆𝑆𝐹      (1) 

In the above, we can use the average effort (AsgAveMin) as a proxy for ReqSize. 
The actual size will likely vary based on factors such as design versus code effort. This is 
not yet modeled.  

Likewise, we expect the student effort (j) for each program should be related to the 
assignment size and student dependent factor: 

𝑀𝑖𝑛𝑇𝑜𝑡 =  𝑅𝑒𝑞𝑆𝑖𝑧𝑒 × 𝑆𝐸𝐹      (2) 

Total development time should also be influenced by other factors, including design-
specific effort review time and review effectiveness (not included in this model) and the 
actual defect arrivals. The defect arrivals should be related to the student’s (j) defect 
tendencies, the program size (i), and the actual effort in construction (ij). It is during 
construction (design and coding) that most defects are injected. 

𝐷𝑒𝑓𝑇𝑜𝑡 = 𝐶𝑜𝑛𝑠𝑡𝑀𝑖𝑛 × 𝑆𝑡𝑢𝐷𝐴𝑅    (3) 

That these relationships are products is a problem for the search algorithms. We will, 
therefore, take advantage of the observation that the values from the left hand side of these 
equations distribute approximately lognormally, by using log transforms. The resulting 
transformed equations and data thus consists of a linear sum of normally-distributed data, 
making them more suitable for the search algorithms we intend to employ.  
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If the causal search is successful in finding consistent causal models involving these 
four introduced factors for problem requirements size and three developer traits 
(respectively, ReqSizei, SSFj, SEFj, and StuDARj), we will have added support to the case 
that these factors can be useful for prediction and mitigation in software development, at 
least at the individual and team levels for planning and tracking. 

Causal Discovery 

We ran the PC search algorithm with alpha = .05 (a hyper-parameter defining the p-
value cutoff for inferring conditional independence) and the domain-knowledge constraints 
described below.  

Tetrad allows users to add constraints regarding the required presence or absence 
of a particularly-oriented direct causal relationship between two nodes (i.e., parameters). For 
example, a causal link may be required or forbidden or the direction restricted. A known 
temporal order can be enforced by placing the nodes into knowledge-box tiers such that 
causality is only permitted forward, not backward. Adjacencies between nodes appearing 
within the same tier may be allowed or forbidden. We chose to structure tiers as follows: 

 Tier 1: Assignment Average Minutes (AsgAveMin), Student Size Factor 
(StuSizeFactor), Student Effort Factor (StuEffFactor), and Student Defect 
Arrival Rate (StudDAR)  

 Tier 2: Construction Minutes (ConstMin) 

 Tier 3: Lines of Code (LOC), Total Effort (MinTot), and Total Number of 
Defects Injected and Discovered (DefTot) 

Essentially the tiers correspond to pre-development inputs (characteristics of the 
problem or developers), in-process data (the construction effort in minutes), and process 
outputs (size, effort, and total defects). The default setting is that nodes in the same tier can 
have direct causal relationships between them, but a node in a lower tier (assigned a higher 
number) cannot have an oriented edge pointing to a node in a higher tier (assigned a lower 
number). 
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Results 

Node Links 

The search results are shown in Figure 11 and Figure 12. There are some 
differences but no explicit contradictions.  

 

Figure 11. Resulting DAG From Tetrads PC Search Algorithm for Data From 
Programs Written in C 
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Figure 12. Resulting DAG From Tetrads FGES Search Algorithm for Data From 
Programs Written in C  

The following direct causal edges occur in both graphs: 

1. AsgAveMin --> ConstMin 

2. AsgAveMin --> LOC 

3. AsgAveMin  --> MinTot 

4. ConstMin  --> MinTot 

5. MinTot  --> DefectTot 

6. StuEffFactor  --> ConstMin 

7. StuEffFactor  --> MinTot 

8. StuSizeFactor --> LOC 

The following undirected causal edge occurs in both graphs: 

1. StuEffFactor --- StuDAR (This means there’s evidence of a direct causal 
relationship between the two nodes, but there’s insufficient information to 
determine the direction.) 

The following directed causal edges occur in only one graph: 

1. ConstMin --> LOC (The graphs returned by PC shows as a bidirected 
edge, meaning there’s evidence for a hidden confounder of the two nodes.) 

2. StuDAR --> DefectTot (The graphs returned by PC shows as a 
bidirected edge, meaning there’s evidence for a hidden confounder of the two 
nodes.) 

3. StuEffFactor  --> LOC 

4. StuSizeFactor  --> ConstMin 

5. StuSizeFactor  --> DefectTot 
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The following undirected causal edge occurs in only one graph: 

1. StuSizeFactor --- StuDAR 

Threats to Validity 

Internal Validity  

That the PSP data collection forms filled out and collected during PSP training were 
consistent and completely filled in did not necessarily mean that students recorded complete 
and accurate data. Others (Johnson et al., 2003) found significant errors, though these 
seem primarily to be in hand calculations prior to automated tool support. Our analysis relies 
only upon direct measures for which all further calculations are performed by the data-
gathering spreadsheet used during training. Nonetheless, data correctness validation relies 
upon the diligence of the student and instructor. 

The difficulty of the exercises or rigor required by the course may lead to a survival 
bias. Excepting the LOC counter, which is the very first exercise, the series of exercises 
consists of writing programs that must perform statistical and floating-point math 
calculations. Some are more complicated and challenging to program than others, and 
many students failed to complete the course, perhaps in part due to challenges they 
encountered while working on these problems. Our analysis uses only data from students 
who completed the course. 

There may also be a bias in the experience of the students regarding domain 
experience with statistics or programming experience in general. The data used for the 
study includes 494 software practitioners who took part in the training at the Software 
Engineering Institute (SEI) or at external locations. The data provided limited information 
that could help us measure the programmers’ experience. We have indications of years of 
programming and the number of lines of code in the target language, but no information 
about domain experience. It is likely that more domain-experienced programmers (i.e., those 
with strong elementary knowledge of statistics and linear algebra) performed better.  

There is some risk of maturation bias. The PSP course deliberately teaches 
estimation, design techniques, and review of both code and designs, while the developers 
may gain experience within the numeric programming domain. The maturation effect on total 
defects and defects escaping into test is evident. Although total code production rate 
appears to be unchanged, the overall rate does initially slow, then return to near its original 
level. The risks with respect to inference on the effects of PSP training were addressed in 
Rombach et al. (2008) and Hayes and Over (1997); however, there could also be process-
drift effects. 

External Validity  

We report only on results from the C programming language. By selecting only data 
from students using C, we have mitigated issues arising from the use of different 
programming languages between subjects (e.g., in determining StuSizeFactor) at the 
expense of some generality. Different languages can be more or less suited to solving 
certain programming problems, and this could affect the assignment normalization factors. 
Future analyses will compare results with other programming languages. 

Because the work was performed in class settings rather than under normal 
industrial conditions, there is a risk that the results might not generalize beyond the 
academic setting.  
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Construct Validity 

The program assignment requirements were deliberately left vague on some key 
points, mostly related to the specifics of input and output formats, error checking, and so 
forth. Individual interpretations of the requirements could vary somewhat, adding some 
variation to implemented program size and effort.  

Our proxy for an independent measure of program size, the average effort in minutes 
(AsgAveMin), aggregated these individual programmer choices and thus might be subject to 
some systematic bias.  

Discussion 
All the identified causal relationships have face plausibility. Larger assignments 

cause more effort and larger amounts of code. The expected relationships for size and effort 
both appear reasonable. The relationship with defects is less clear. The FGES search 
algorithm finds the StuDAR and total effort (MinTot) rather than construction effort causing 
defects, while PC-Stable has a bidirected edge (double arrow) between DefectTot and 
StuDAR (indicating a hidden confounder). PC also has a connection from StuSizeFactor to 
DefectTot. 

It is possible that the algorithms lead to slightly different models because the data is 
from mixed-causal systems or is insufficient. Another possibility is that there is overlapping 
information in these specific variable constructs (creating dependencies with hidden 
variables). To avoid this problem it is often preferable to use only direct rather than derived 
values; however, that approach runs into the problem that both PC and FGES assume linear 
relationships between a child node and its parents, plus a Gaussian noise term. Additional 
work will be needed to find better variable selections with minimal variable overlap, paired 
with the most appropriately-selected causal search algorithms. In particular, there are 
search algorithms that were designed to search for non-linear causal relationships among 
variables having skewed noise distributions; and there are still variants, as well, that 
endeavor to take into account hidden confounders.  

We offer several observations of lessons learned during this exploratory work.  

First, it is imperative to visualize the data. We are not yet certain of the sensitivity to 
deviations from Gaussian, but single peaks and lack of outliers are surely important. 
Moreover, the distribution characteristics affect the available transforms. We have focused 
on simple relationships, but these will not get us from planning through production. Much 
work remains to model more complex and stepwise systems. 

Second, mechanistic relationships with direct measures can become complicated. 
Using derived measures risks including the same factor multiple times and can lead to 
mathematical artifacts because of ratios. The requirement for linear effects constrains the 
available choices in ways that are not immediately obvious. Moreover, it is not yet clear that 
the natural mechanistic models can be successfully transformed for analysis by the 
algorithms currently available. 

Third, while transformations can sometimes simplify the problem, they make the data 
relationships less intuitive.  

Forth, count data, such as defects, can be poorly behaved with low numbers. We 
counter this first by counting all defects, not just test, and by using an offset of “+1.” 
Nonetheless, the distributions can become noticeably discrete on the left-hand side of the 
peak. 
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Fifth, the data quality and consistency are a concern. Long lists of problems with 
software engineering data are available (Shull, Singer, & Sjøberg, 2008). The analyst must 
be keenly aware of the strengths and weaknesses of particular datasets.  

Ultimately, the causal mechanisms we expected to see do appear in the resulting 
models and implausible causal mechanisms do not. Which specific models are better 
predictors of future performance is left for future work.  

Conclusion 
The PC and FGES search algorithms returned results that are generally consistent 

with each other and with overall expectations.  

Causal inference methods should be applied in software engineering, but with 
caution. We have made only initial steps toward assessing the degree to which different 
search algorithms are sensitive to deviations from the assumptions about shape (Gaussian 
for some, skewed for others), outliers, linear effects, or homoscedasticity. Real datasets are 
likely to be subject to problems of construct validity, measurement inconsistency, 
determinism, and process drift. Guidelines on reporting data characteristics and the 
sensitivity of different algorithms will be included in future work. 

References 
Caliskan, A., Yamaguchi, F., Dauber, E., Harang, R., Rieck, K., Greenstadt, R., & 

Narayanan, A. (2018). When coding style survives compilation: De-anonymizing 
programmers from executable binaries. Network and Distributed Systems Security 
(NDSS) Symposium 2018. doi:10.14722/ndss.2018.23304  

Card, D. N. (1987). A software technology evaluation program. Information and Software 
Technology, 29(6), 291–300. doi:10.1016/0950-5849(87)90028-0  

Curtis, B. (1981). Substantiating programmer variability. Proceedings of the IEEE, 69(7), 
846. 

DeMarco, T., & Lister, T. (1985). Programmer performance and the effects of the workplace. 
Proceedings of the 8th International Conference on Software (pp. 268–272). 

DeMarco, T., & Lister, T. (1999). Peopleware: Productive projects and teams. New York, 
NY: Dorset House. 

Fedak, K. M., Bernal, A., Capshaw, Z. A., & Gross, S. (2015). Applying the Bradford Hill 
criteria in the 21st century: How data integration has changed causal inference in 
molecular epidemiology. Emerging Themes in Epidemiology, 12. doi:10.1186/s12982-
015-0037-4  

Grazioli, F., Nichols, W., & Vallespir, D. (2014, January). An analysis of student performance 
during the introduciton of the PSP: An empirical cross-course comparison. In TSP 
Symposium 2013 Proceedings (CMU/SEI-2013-SR-022; pp. 11–21). Retrieved from 
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1772&context=sei  

Hayes, W., & Over, J. W. (1997, December). The Personal Software Process (PSP): An 
empirical study of the impact of PSP on individual engineers (Report No. CMU/SEI-97-
TR-001). Retrieved from 
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1997_005_001_16565.pdf  

Humphrey, W. S. (1995). A discipline for software engineering. Boston, MA: Addison-Wesley 
Longman Publishing.  

Johnson, P. M., Agustin, J., Chan, C., Moore, C., Miglani, J., & Doane, W. E. J. (2003). 
Beyond the Personal Software Process: Metrics collection and analysis for the 



- 380 - 

differently disciplined. In Proceedings of the 25th International Conference on Software 
Engineering (pp. 641–646). doi:10.1109/ICSE.2003.1201249 

Kitchenham, B. A., & Dybå, T. (2004). Evidence-based software engineering. In 
Proceedings of the 26th International Conference on Software Engineering (ICSE’04). 
Edinburgh, Scotland. doi:10.1109/MS.2005.6 

Nichols, W. R. (2012). Plan for success, model the cost of quality. Software Quality 
Professional, 14(2), 4–11. 

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics : A primer. 
Hoboken, NJ: Wiley.  

Perry, D. E., Porter, A. A., & Votta, L. G. (2000). Empirical studies of software engineering: A 
roadmap. In Proceedings of the Conference on the Future of Software Engineering (pp. 
345–355). doi:10.1145/336512.336586 

Rombach, D., Münch, J., Ocampo, A., Humphrey, W. S., & Burton, D. (2008). Teaching 
disciplined software development. Journal of Systems and Software, 81(5), 747–763. 
doi:10.1016/j.jss.2007.06.004 

Sackman, H., Erikson, W. J., & Grant, E. E. (1968). Exploratory experimental studies 
comparing online and offline programming performance. Communications of the ACM, 
11(1), 3–11. 

Sanchez-Romero, R., Ramsey, J. D., Zhang, K., Glymour, M. R. K., Huang, B., & Glymour, 
C. (2018). Causal discovery of feedback networks with functional magnetic resonance 
imaging. Preprint, 1–54. 

Sheil, B. A. (1981). The psychological study of programming. Computing Surveys, 13(1). 

Shull, F., Singer, J., & Sjøberg, D. I. K. (Eds.). (2008). Guide to advanced empirical software 
engineering. London, England: Springer. doi:10.1007/978-1-84800-044-5  

Spirtes, P. (2010). Introduction to causal inference. Journal of Machine Learning Research, 
11, 1643–1662. Retrieved from https://dl.acm.org/citation.cfm?id=1859905  

Valett, J., & McGarry, F. (1989). A summary of software measurement experiences in the 
software engineering laboratory. Journal of Systems and Software, 148(2), 137–148. 
Retrieved from http://www.sciencedirect.com/science/article/pii/0164121289900162  

Vallespir, D., & Nichols, W. (2011). Analysis of design defect injection and removal in PSP. 
In TSP Symposium 2011 Proceedings (pp. 19–25). Retreived from 
https://www.fing.edu.uy/sites/default/files/biblio/22573/designdefectspsp.pdf  

Vallespir, D., & Nichols, W. (2012). An analysis of code defect injection and removal in PSP. 
In TSP Symposium 2012 Proceedings (CMU/SEI-2012-SR-015; pp. 3–19). Retrieved 
from https://resources.sei.cmu.edu/asset_files/SpecialReport/2012_003_001_34121.pdf  

Acknowledgments 
This material is based upon work supported in part by Cyber Security and 

Information Systems Information Analysis Center (CSIAC). We would also like to thank 
David Zubrow and Robert Stoddard of the SEI for encouragement, support, and sharing 
insights for the work in this paper. Additionally, we thank David Danks, Kun Zhang, Madelyn 
Glymour, and Joe Ramsey for their help in understanding causal discovery, the algorithms, 
and the tools. 



- 381 - 

Disclaimer and Distribution Statement 
Copyright 2018 Carnegie Mellon University. All Rights Reserved. 

This material is based upon work funded and supported by the Department of 
Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the 
operation of the Software Engineering Institute, a federally funded research and 
development center. 

The view, opinions, and/or findings contained in this material are those of the 
author(s) and should not be construed as an official Government position, policy, or 
decision, unless designated by other documentation. 

No warranty. This Carnegie Mellon University and Software Engineering Institute 
material is furnished on an “as-is” basis. Carnegie Mellon University makes no warranties of 
any kind, either expressed or implied, as to any matter including, but not limited to, warranty 
of fitness for purpose or merchantability, exclusivity, or results obtained from use of the 
material. Carnegie Mellon University does not make any warranty of any kind with respect to 
freedom from patent, trademark, or copyright infringement. 

[Distribution Statement A] This material has been approved for public release and 
unlimited distribution. Please see Copyright notice for non-US Government use and 
distribution. 

Internal use:* Permission to reproduce this material and to prepare derivative works 
from this material for internal use is granted, provided the copyright and “No Warranty” 
statements are included with all reproductions and derivative works. 

External use:* This material may be reproduced in its entirety, without modification, 
and freely distributed in written or electronic form without requesting formal permission. 
Permission is required for any other external and/or commercial use. Requests for 
permission should be directed to the Software Engineering Institute at 
permission@sei.cmu.edu. 

* These restrictions do not apply to U.S. government entities. 

Personal Software ProcessSM, PSPSM and TSPSM are service marks of Carnegie 
Mellon University. 

DM18-0425 



www.acquisitionresearch.net 

 


