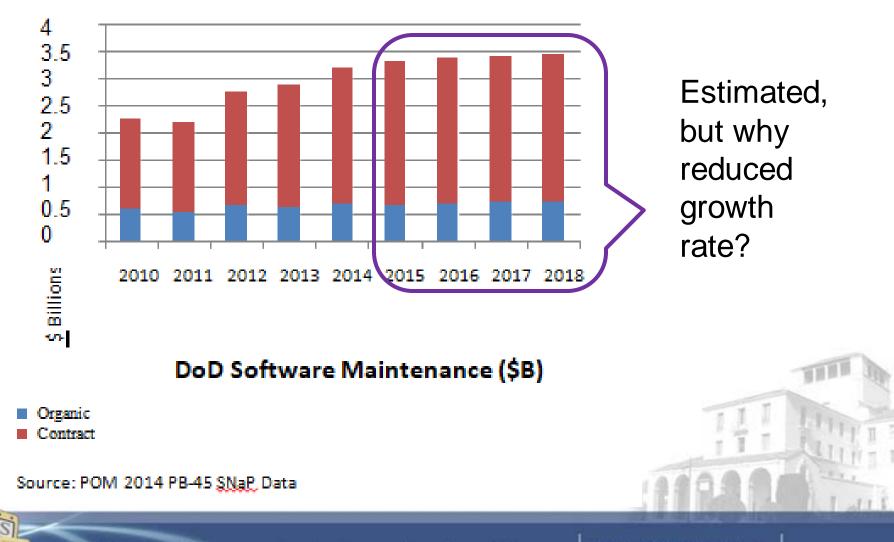


Software is Consuming DoD Total Ownership Costs

Brad R. Naegle


The Problem

 Software sustainment cost growth rate means DoD will not be able to afford all of the software-intensive systems it desires

The Symptoms

- Accelerating software sustainment costs
- Software size routinely underestimated
 - FCS initial SW estimate; 34 mil SLOC. LRE at cancellation; 960 mil SLOC
- Software sustainment costs more than expected
 - B1 bomber annual SW sustainment cost: \$100 mil

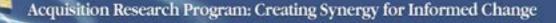
DoD Software Maintenance Costs

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Monterey, CA

Software Sustainment Drivers

- Size Source Lines of Code (SLOC)
- Complexity Interfaces, Algorithms, Structure
- Architecture Designed for Maintainability?
- Software Maintainers
 - Same skill sets as developers: Engineers
 - Overwhelmingly contractors
 - Must contract for Software Engineers!


The Underlying Causes

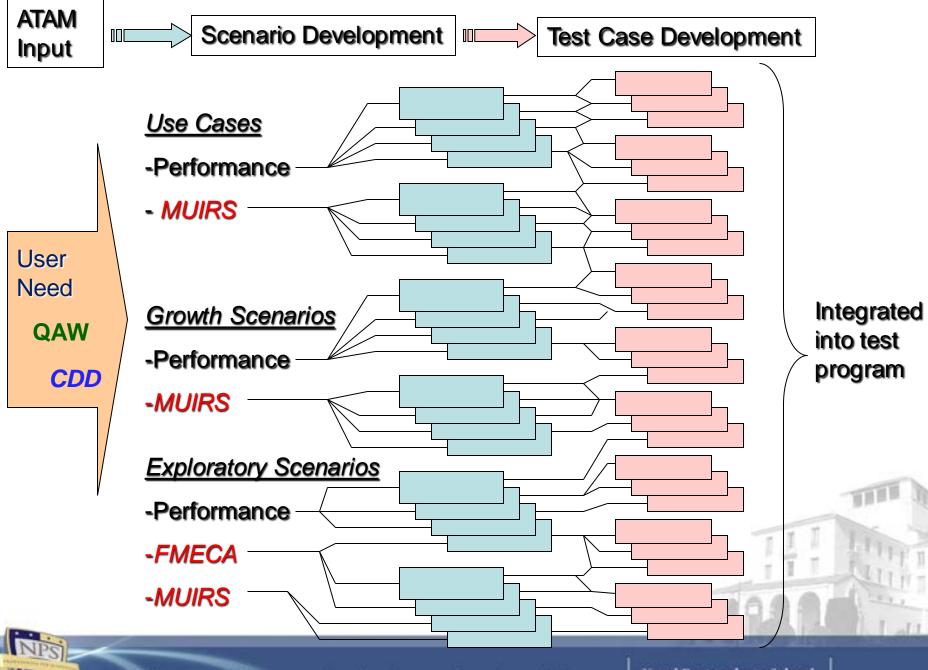
- The DoD Requirements Generation System
 - Requires interpretation between Capabilities-Based terms (JCIDS) and Performance-Based terms (Performance Spec), and again to Detailed Specification
 - Purposely vague to garner maximum innovation
 - Dependent on the developer to correctly interpret and propose innovative solutions
 - Typically does not specify sustainability performance in detail
 - Accustom to Hardware Engineering environments, which do compensate for missing or vague supportability requirements

Causes continued

- Immature Software Engineering Environment
 - No industry-wide standards, protocols, formats, architectures, tools, or languages
 - No sustainability standards or architectures
 - No ability to compensate for missing or vague sustainability requirements
 - Totally dependent on clear, unambiguous, and complete requirements
 - Requirements creep and late definition disastrous to the *architectural design, complexity, and size*
 - All of the above contribute to software supportability burden and system TOC

Causes Continued

- Estimating Software Size
 - Extraordinarily difficult to do, especially with unprecedented software functionality (weapon systems)
 - Inaccurate estimating methodologies: "COCOMO demonstrated an accuracy of 20% of actuals 46% of the time" – USC experience with in-house development
 - Analogy method inaccurate: F-22 6 mil SLOC, F-35 24 mil SLOC (and counting!)
 - Reused or COTS software typically add so much complexity to the design, that the known SLOC count is negated and sustainment cost remains high


Attacking the Causes

- Implementation of analyses, tools, and processes
 - MUIRS Analysis
 - Analyses for sustainability and safety/security needs
 - SEI's Quality Attribute Workshop (QAW)
 - A more complete inventory of requirements
 - SEI's Architectural Trade-off Analysis Methodology sm
 - Clarifies context and drives architectural design
 - Connects user needs to system design to test program
 - FMECA
 - Identifies critical and non-critical system attributes

MUIRS Analysis

- Maintainability
 - Does design support software maintenance? PDSS?
- Upgradeable
 - Can planned and unplanned upgrades be accomplished without reengineering?
- Interoperability
 - What are interface requirements for current and future Net-Centric and interoperable systems?
- Reliability
 - Will Maintenance/Upgrades degrade reliability?
- Safety/Security
 - Does sustainability impact cyber vulnerabilities?

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Monterey, CA

QAW & ATAM Integration into SW Lifecycle Management

	Mgt	QAW	ATAM	Build, Test, & Production Mgt	Operations & Support Mgt
		Requirements Elicitation	Design Metrics	Development Metrics	
		CDD		CPD	
	ICD User Needs	Explicit, Derived & Implied	Scenario Development & Prioritization	Prototype LUT & IOT&E EUTE	IOC
		Requirements	Design Reviews		
	Activities	RFP Source Selectio	Boolgira	Rapid Prototyping, Code, Build, Integrate, Test	Accept, Field & Support
ŀ	Tech Reviews/ Audits	SSR		lopment	PCA
-	NPSI				

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Monterey, CA

Summary

- The MUIRS and FMECA analyses will help capture missing or vaguely stated sustainability requirements
- The analyses and systems engineering tools help to compensate for the immature software engineering environment, which cannot fill any gaps in the communicated requirements
- Using these analyses within the enhanced Systems Engineering tools will help improve sustainability design and performance