
Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

SYM-AM-19-042

Proceedings
of the

Sixteenth Annual
Acquisition Research

Symposium

Wednesday Sessions
Volume I

Acquisition Research:
Creating Synergy for Informed Change

May 8–9, 2019

Published: April 30, 2019

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program:
Creating Synergy for Informed Change - 216 -
NAVAL Postgraduate School

Automatic Generation of Contractual Requirements From
MBSE Artifacts

Alejandro Salado—is an Assistant Professor with the Grado Department of Industrial and
Systems Engineering at Virginia Tech. His research focuses on applying decision analysis to improve
the practice of engineering, in particular in the areas of verification and validation, and on improving
problem formulation through modeling. Dr. Salado is a recipient of the NSF CAREER Award and the
Fulbright International Science and Technology Award. He holds a BSc and an MSc in electrical
engineering (Polytechnic University of Valencia), an MSc in project management and an MSc in
electronics engineering (Polytechnic University of Catalonia), the SpaceTech MEng in space systems
engineering (Delft University of Technology), and a PhD in systems engineering (Stevens Institute of
Technology). [asalado@vt.edu]

Paul Wach—is a PhD student in Systems Engineering at Virginia Tech. His research
interests include the mathematical formalism of model-based systems engineering (MBSE). Wach is
currently exploring the feasibility of underpinning the Systems Modeling Language (SysML) with the
mathematical Wymorian System Construct. He is also employed by the Department of Energy (DOE),
where he manages $4 billion of work. While at the DOE, Wach has led implementation of enterprise-
and program-level systems engineering and program management practices. He has previously
worked for two of the DOE national laboratories, Pacific Northwest National Laboratory and
Savannah River National Laboratory. Prior to work with the DOE labs, Wach was developing cutting
edge artificial kidney technology based on his Master of Science with the University of South Carolina
and medical research experience at the Medical College of Georgia. He also holds a Bachelor of
Science degree in Biomedical Engineering from the Georgia Tech. [paulw86@vt.edu]

Abstract
This paper is intended to disseminate initial outcomes of the NPS Research

Acquisition Program “Automatic Generation of Contractual Requirements from MBSE
Artifacts” project. The research addresses the automatic generation of contractual
requirements in textual form from models in a Model-Based Systems Engineering (MBSE)
environment, enabling the transition from document-centric systems engineering to MBSE in
acquisition programs. Textual requirements form the backbone of contracting in acquisition
programs. Requirements define the problem boundaries within which contractors try to find
acceptable solutions (design systems). At the same time, requirements are the criteria by
which a customer measures the extent to which their contract has been fulfilled by the
contractor. However, latent problems exist in acquisition programs stemming from poor
practices in requirements engineering. Research suggests that transitioning to model-based
requirements can be effective in coping with such challenges. We presented in prior work a
framework to construct true model-based requirements within the context of the Systems
Modeling Language (SysML). This research addresses the main question of whether
contractual requirements in textual form can be automatically generated from those
requirement models without loss of information or intent. We present in this paper an initial
template of requirements and a process to support this goal.

Introduction
Textual requirements form the backbone of contracting in acquisition programs.

Requirements define the problem boundaries within which contractors try to find acceptable
solutions (design systems; Salado et al., 2017). At the same time, requirements are the
criteria by which a customer measures the extent to which its contract has been fulfilled by
the contractor (e.g., INCOSE, 2015). Hence, it is not surprising that some authors consider
requirements “the cornerstone of … systems engineering” (Buede, 2009). However,

Acquisition Research Program:
Creating Synergy for Informed Change - 217 -
NAVAL Postgraduate School

literature shows latent problems in acquisition programs stemming from poor practices in
requirements engineering (e.g., Yeo, 2002; Dada, 2006; McConnell, 2001; El Eman & Birk,
2000).

In order to cope with such a challenge, academia and industry envision extending
the application of Model-Based Systems Engineering (MBSE) beyond conceptual design,
particularly addressing problem formulation. Two main paths to integrate requirements
within a complete MBSE environment are currently pursued. In the first path, major modeling
languages, such as Systems Modeling Language (SysML), incorporate elements called
requirement models (Friedenthal, Moore, & Steiner, 2015), which are intended to model the
requirements the system is expected to fulfil. Some authors have attempted to demonstrate
how those so-called requirement models can be used to move acquisition practice from
document-centric (textual) requirements to model-based requirements (e.g., Holt et al.,
2011; Holt et al., 2015). However, this approach is based on defining specific model
elements, called “requirements,” which contain a text property that takes the textual
requirement. The requirement element is then linked to a specific component in the system
architecture. Hence, the only modeling value of this approach is to achieve traceability
between requirements and architectural elements. Although this is valuable on its own merit,
requirements remain textual; thus, model-based requirements are not achieved.

In the second path, researchers propose to use behavioral models of the system of
interest as problem definition elements (requirements; e.g., Miotto, 2014). Such work has
been confined, though, to the technical challenges of modeling expected system behavior.
Therefore, the proposition remains positional, since such work has not addressed how
contracting in acquisition programs is affected, or needs to be adjusted, to incorporate
behavioral models as a contractual mechanism instead of textual requirements. Hence, the
near-term, practical feasibility of the approach is questionable.

In a third path, less extended, mathematical or formal structures are used to capture
requirements (e.g., Micouin, 2008). In these approaches, shall statements or similar natural
language statements are not used in the formulation of the requirement. In the context of the
research presented in this paper, these representations may be considered examples of
true model-based requirements. Their usage in the context of SysML is, however, not
evident.

The overarching research in which this paper is framed is aimed at overcoming those
obstacles by providing a translation mechanism that enables the engineering of true
requirement models, while automatically generating corresponding textual requirements.
Prior work by the authors has addressed the construction of such true model-based
requirements in SysML (Salado & Wach, 2019). This paper presents a template and
showcases a requirement translation process that enables the automatic generation of
contractual requirements in natural language (i.e., textual requirements) from model-based
requirements.

Background: Model-Based Requirements in SysML
The construct for model-based requirements in SysML described in Salado and

Wach (2019) is used in this paper. A summary of the construction specification for such
model-based requirements is provided in this section.

Justification

The key underlying construct of a model-based requirement lays upon “the central
proposition … that every requirement can be modeled as an input/output transformation”
executed through one or more physical interfaces (Salado & Wach, 2019). This proposition

Acquisition Research Program:
Creating Synergy for Informed Change - 218 -
NAVAL Postgraduate School

is founded on two main premises. First, every system can be modeled as a transformation of
input trajectories into output trajectories (Wymore, 1993). Second, a set of requirements
yields a solution space (Salado, Nilchiani, & Verma, 2017). Therefore, “it follows that a
solution space can be modeled as a set of transformations of input trajectories into output
trajectories” (Salado & Wach, 2019).

The suitability of this construct was explored by re-interpreting requirement
categories of a taxonomy that fulfills the partition criterion as input/output transformations
(Salado & Wach, 2019). Four requirement types, which are considered to be collectively
exhaustive to capture requirements, were considered: functional requirements (i.e., what the
system must do), performance requirements (i.e., how well the system must do it), resource
requirements (i.e., what the system may consume to do those things that well), and
environmental requirements (i.e., in which settings or contexts the system must do those
things, that well, with those resources; Salado & Nilchiani, 2014, 2017). The explanation of
how these types of requirements may be described as sets of input/output transformations
provided in Salado and Wach (2019) is reproduced verbatim here:

Functional requirements inherently describe input/output
transformations. Mathematically, a function is necessarily defined as a
mapping between a domain and codomain. From a General Systems
Theory perspective, engineered systems are necessarily open (von
Bertalanffy, 1969).

Performance requirements are, as defined, necessary

characteristics, properties, or attributes associated with the inputs and
outputs of the transformations that the system shall perform. In fact, this
condition is necessary because any attribute transparent to the interaction
between the system and external systems should not be considered a
requirement due to unnecessarily constraining the solution space (Salado
et al., 2017, INCOSE, 2012).

Resource requirements define limits on resources that the system

may consume. It is obvious that a resource must therefore be inputted to
the system and that it is consumed for producing something. Hence, any
limitation imposed on resource consumption is in fact part of a functional
exchange and can be modeled in such a way.

An environment for the system is an abstraction of boundaries

between the system and external systems. The environment provides
certain conditions under which the system must operate and imposes
certain limitations on how the system may affect the environment. In other
words, the environment provides certain inputs under which the system
must operate and imposes certain limitations on the outputs the system
may yield to the environment.

In terms of typology of inputs and outputs, the construct is consistent with Kossiakoff
et al.’s (2011) taxonomy for external interfaces and considers that systems operate in three
types of media (information, material, and energy) that become inputs to and/or outputs from
the system (Salado & Wach, 2019).

Acquisition Research Program:
Creating Synergy for Informed Change - 219 -
NAVAL Postgraduate School

Construction Rules

A complete description of the construction rules for the model-based requirements is
given in Salado & Wach (2019). A summary is provided here.

In line with the theoretical construct described in the previous section, the model-
based requirements are built according to the meta-model depicted in Figure 1.

Figure 1. Meta-Model of the Model-Based Requirements
(Salado & Wach, 2019)

Three main SysML constructs are used to capture requirements as models (Salado
& Wach, 2019):

1. A sequence diagram, which captures the required input/output exchanges. Each
input or output is modeled by signal elements, which capture the required
properties of each input and output. An example is provided in Figure 2.

2. An internal block diagram, which captures the physical interfaces that are
required to convey the required system inputs and outputs. Each interface is
modeled by ports, which capture the required properties of each interface and
the signals it conveys. An example is provided in Figure 3.

3. Mode requirements, which describe the sets of requirements that apply
simultaneously, modeled by state machine diagrams. Each state represents a
mode, which represents a collection of requirements that need to be fulfilled
simultaneously. An example is provided in Figure 4.

Acquisition Research Program:
Creating Synergy for Informed Change - 220 -
NAVAL Postgraduate School

Figure 2. Example of Input/Output Transformation As a Model-Based
Requirement

(Salado & Wach, 2019)

Figure 3. Example of a Required Physical Interface Through Which the Required
Input/Output Transformation Occurs as a Model-Based Requirement

(Salado & Wach, 2019)

Figure 4. Example of Requirement Sets as a Model-Based Requirement
(Salado & Wach, 2019)

Acquisition Research Program:
Creating Synergy for Informed Change - 221 -
NAVAL Postgraduate School

It should be noted that although existing SysML constructs are used to model
requirements, there are semantic differences with respect to their regular use to model
system solutions (Salado & Wach, 2019). Describing those differences is outside the scope
of this paper because they are addressed in the original source. It suffices to state that the
diagrams shown in this section extend (or modify in some cases) their traditional use in
SysML. In essence, they should not be interpreted as models of the behavior or physical
structure of the system, but as models of the input/output transformations the system is
required to execute.

An Approach to Transform Model-Based Requirements to Contractual Requirements
in Natural Language

Process

The process to transform the model-based requirements presented in the previous
section (Background: Model-Based Requirements in SysML) to contractual requirements in
natural language consists of four steps:

Step 1. For each port, generate corresponding textual requirements. This step
generates a list of physical interfaces that are characterized by a set of required
properties, which will be pointed at by the requirements resulting from the
sequence diagrams.

Step 2. For each mode, generate a simultaneity modifier. This step assigns tags to
each sequence diagram associated with a particular mode. These tags are used
later to associate a modifier with the textual requirements resulting from such
sequence diagrams that indicates the need to fulfill such requirements in the
context of all other requirements with the same modifier.

Step 3. For each sequence diagram, generate corresponding textual
requirements. This step generates a list that contains requirements associated
with the need to accept inputs and provide outputs, the characteristics of those
inputs and outputs, and the logical or temporal conditions for the acceptance of
those inputs and provision of those outputs. In addition, for each requirement
referring to the required inputs and outputs, a modifier referring to the physical
interface through which such input or output is conveyed is added. Furthermore,
the simultaneity modifiers in Step 2 are used to identify the subset of
requirements that need to be fulfilled simultaneously.

Step 4. Remove repetitions, if any. Because inputs and outputs may be used in
several sequence diagrams, this step will consolidate the list of requirements to
avoid repetitions. It should be noted that this step can be executed after all
textual requirements have been generated or as they are being generated, for
efficiency purposes.

The basic concept for generating textual requirements leverages a predefined
template of natural language requirements that maps to the different elements in the meta-
model depicted in Figure 1. A simplified view of this concept is shown in Figure 5. A
computerized algorithm is not used in this paper but is being developed as part of the
research program. It will be disseminated in future publications. The focus of this paper lays
on the template that will be employed to generate the textual requirements. Specific
template rules are defined, as will be described in the next section, to cope with the different
types of requirements captured by the model-based requirements.

Acquisition Research Program:
Creating Synergy for Informed Change - 222 -
NAVAL Postgraduate School

USER SYSTEM ENVIRONMENT

Item1

Item2

Item3

Item4

par

<2s

«block»
Item1
values

Id: Environment A
Type: e
Subtype: temperature
Range: [20, 50] degC
Def: IF‐2

«block»
Item2
values

Id: On command
Type: f
Subtype: ‐
Range: ‐
Def: IF‐3

Template (notional)
The system shall <action>
<object> <modifier 1>
<modifier 2> <modifier 3> …
<modifier n>.

Algorithm (notional)
for each element in Diagram 1
 createreq(element)
end

createreq(Item1):
 if item1.type=e & syst.direction(item1)=in
 <req1.action>=”operate”
 <req1.object>=”in” & item1.subtype & “range” & item1.range
 <req1.modifier1>=”when fulfilling requirements”
 <req1.modifier2>=reqs(Diagram1)
 <req1.modifier 3>=”Note: Interface defined in” & item1.Def
 if item1.type=f & syst.direction(item1)=in
 <req1.action>=”accept”
 <req1.object>=item1.Id
 <req1.modifier>=”according to IF defined in” & item1.Def
 if item1.type=f & syst.direction(item1)=out
 <req1.action>=”provide”
 ...

 Resulting textual requirements (notional)
 The system shall operate in temperature range [20, 50] deg C. Note: Interface defined in IF‐2.
 The system shall accept On commands according to IF‐3.
 The system shall provide On feedback according to IF‐4.
 The system shall provide On feedback in less than 2 s after receiving on command.
 The system shall provide...

M
o
d
el
‐b
as
e
d
 r
e
q
u
ir
em

e
n
t

Figure 5. A Representation of the Concept to Generate Textual Requirements Out
of Model-Based Requirements

Template

The basic template for a requirement takes the form of The system shall <action>
through <interface>. This form is refined to capture the richness of requirements offered by
the model-based requirements described earlier in the paper. The resulting forms are shown
next.

Consider the basic model provided by the sequence diagram in Figure 2 and the
internal block diagram in Figure 3. Table 1 shows the template for the requirement in natural
language and describes how each element of those model-based requirements is mapped
to an element of such template.

Acquisition Research Program:
Creating Synergy for Informed Change - 223 -
NAVAL Postgraduate School

Table 1. Mapping of Model Elements to Textual Template

Template of
textual requirement

Model element

The <object>
shall <accept> <Input>
according to
<Interface>.

Note 1:
<Input> is defined in
<Source 1>.

Note 2:
<Interface> is defined
in <Source 2>.

<object>: Block in diagrams referred to as System.

<accept>: Captured as an input directional port on the system in
the Sequence Diagram (incoming arrow in the sequence diagram).

<Input>: Name of the Signal connected to the input directional
port in the Sequence Diagram.

<Interface>: Connection between System block and external
block in the Internal Block Diagram, to which Signal is allocated. This is
described as a physical port in the System block.

<Source 1>: Properties of the Signal, directly described in the
properties of the element.

<Source 2>: Properties of the physical interface, directly
described in the properties of the Port element.

The <object>
shall <provide>
<Output> according to
<Interface>.

Note 1:
<Output> is defined in
<Source 1>.

Note 2:
<Interface> is defined
in <Source 2>.

<object>: Block in diagrams referred to as System.

<provide>: Captured as an output directional port on the system
in the Sequence Diagram (outgoing arrow in the sequence diagram).

<Output>: Name of the Signal connected to the output
directional port in the Sequence Diagram.

<Interface>: Connection between System block and external
block in the Internal Block Diagram, to which Signal is allocated. This is
described as a physical port in the System block.

<Source 1>: Properties of the Signal, directly described in the
properties of the element.

<Source 2>: Properties of the physical interface, directly
described in the properties of the Port element.

Consider now the model-based requirements in Figure 6, which capture required
dependencies between the inputs and outputs. It should be noted that the three examples
are not exhaustive, but other types of dependencies may be captured (Salado & Wach,
2019). Table 2 shows the templates for the requirement in natural language and describes
how each element of model-based requirements is mapped to an element of such
templates.

Acquisition Research Program:
Creating Synergy for Informed Change - 224 -
NAVAL Postgraduate School

Figure 6. Examples of Model-Based Requirements Capturing Various
Dependencies Between Inputs and Outputs

Note. Left: alternative required exchange based on conditions; Center: exchanges that need to be executed in
parallel; Right: continuous exchange until a condition is met.

Table 2. Mapping of Functional Dependencies Model Elements to Textual Template

Template of
textual
requirement

Model element

The <object>
shall <action>
<when> in
<condition>.

<object>: Block in diagrams referred to as System.
<action>: It takes the value of accept or provide depending on whether the Signal
element inside one of the branches of the conditional element is an input or an
output, respectively to the block System.
<when>: This value is used when the diagram element is alt.
<condition>: As described in the condition property of the alt element.

The <object>
shall <action 1>
<while> <action
2>.

<object>: Block in diagrams referred to as System.
<action 1>: It takes the value of accept or provide depending on whether the
Signal element inside one of the branches of the conditional element is an input or
an output, respectively to the block System.
<while>: This value is used when the diagram element is par.
<action 2>: It takes the value of accept or provide depending on whether the
Signal element inside another branch of the conditional element is an input or an
output, respectively to the block System.

The <object>
shall <action>
<while/for>
<condition>.

<object>: Block in diagrams referred to as System.
<action>: It takes the value of accept or provide depending on whether the Signal
element inside the conditional element is an input or an output, respectively to the
block System.
<while/for>: This value is used when the diagram element is loop.
<condition>: As described in the condition property of the alt element.

Acquisition Research Program:
Creating Synergy for Informed Change - 225 -
NAVAL Postgraduate School

It should be noted that defining required time dependencies or restrictions between
inputs and outputs may also be necessary (Salado & Wach, 2019). Figure 7 shows an
example. In this case, Table 3 shows the template for the requirement in natural language
and describes how each element of model-based requirements is mapped to an element of
such template.

Figure 7. Example of a Model-Based Requirement Capturing Time Restrictions
Table 3. Mapping of Timing Dependencies Model Elements to Textual Template

Template of textual
requirement

Model element

The <object> shall
<action 1> in <time
dependency> <after>
<action 2>.

<object>: Block in diagrams referred to as System.
<action 1>: It takes the value of accept or provide depending on whether
the Signal element is an input or an output, respectively to the block
System.
<time dependency>: This is formally defined as a range of [Min, Max],
which refer to dependencies such as: less than, more than, within.
<after>: This is implied by the temporal dependency given by the
duration constraint.
<action 2>: It takes the value of receiving or providing depending on
whether the Signal element is an input or an output, respectively to the
block System.

Two options are offered for the template for capturing simultaneity of requirement
applicability in natural language (as modeled for example in Figure 4). The first one is shown
in Table 4, together with a description of how each element of model-based requirements is
mapped to an element of such template. The second one consists in simply creating
separate sections of the requirement document for each mode requirement, with a
statement that reads, All requirements in this section shall be fulfilled simultaneously.

Acquisition Research Program:
Creating Synergy for Informed Change - 226 -
NAVAL Postgraduate School

Table 4. Mapping of Applicability Simultaneity Model Elements to Textual Template

Template of textual
requirement

Model element

<Req X>. The system shall…
Note: This requirement must be
fulfilled simultaneously with
[<Req Y>].

<Req X> is a requirement originating from a Sequence Diagram
linked to a state element.
[<Req Y>] is a list of all requirements originating from all
Sequence Diagrams linked to the state element to which
Sequence Diagram from which <Req X> originates is also
connected.

No template is prescribed for capturing the characteristics of inputs, outputs, and
interfaces in textual form. In general, they may be listed as columns containing the property
and the required values for each property. For physical interfaces, properties may be
organized, for example, following a layered approach, such as identifying a transport layer
and a physical layer.

Application Example

Case Design

The proposed template to transform the model-based requirements developed in this
research project into natural language requirements that can be used to support contractual
activities is applied to the case developed in Salado and Wach (2019). In such work, a
notional set of requirements in textual form (not necessarily following any template) was
transformed into a set of model-based requirements. In this paper, the resulting model-
based requirements in such work are transformed back into textual requirements, but using
the template presented in this paper. The resulting textual requirements are compared
against those used as source requirements in the original work.

It should be noted that a formal comparison of the efficiency, coverage, and accuracy
of the resulting requirements after applying the template presented in this paper is outside of
the scope of this paper. The focus of the paper is to illustrate how the proposed template
can be used to transform model-based requirements to textual requirements, without
assessing its performance.

Problem Statement: Model-Based Requirements

The model-based requirements used in this case are depicted in Figures 8 through
15 and directly taken from Salado and Wach (2019). They represent the requirements for an
optical space instrument with the purpose to take images of the Earth and send them to the
satellite platform under command by the platform. In parallel, the instrument is required to
provide health status data continuously to the satellite platform for monitoring purposes. The
requirement set, which has been adapted from Salado and Nilchiani (2014) and includes
new requirements that were added for coherence and partial completeness, provide
nevertheless a limited set of requirements with respect to a real-life project. However, the

acceptability and suitability of the sample requirements [were]
validated by deriving and contrasting them against requirements of actual
operational and scientific optical space systems developed by different
manufacturers for different customers and with a similar level of complexity,
which is represented by an instrument mass of around 1 ton. (Salado &
Nilchiani, 2014)

Acquisition Research Program:
Creating Synergy for Informed Change - 227 -
NAVAL Postgraduate School

Figure 8. Mode Requirements
(Salado & Wach, 2019)

Figure 9. Conditions for Applicability of Each Subset of Requirements
(Mode Transition in Figure 8)

(Salado & Wach, 2019)

Figure 10. Exchange Related to the Mechanical Load Requirement
(Salado & Wach, 2019)

Acquisition Research Program:
Creating Synergy for Informed Change - 228 -
NAVAL Postgraduate School

Note. There is an error in the figure: Command A is an input to the Instrument, and Image data is an output of

the Instrument.

Figure 11. Required Exchanges in Nominal Operations
(Salado & Wach, 2019)

Acquisition Research Program:
Creating Synergy for Informed Change - 229 -
NAVAL Postgraduate School

Figure 12. Required Characteristics of the Required Inputs and Outputs
(Salado & Wach, 2019)

Figure 13. Requirements on the Allocation of Logical Inputs and Outputs to
Physical Interfaces Through Which They Must Be Conveyed

(Salado & Wach, 2019)

Figure 14. Required Characteristics of the Physical Interfaces Through Which
Inputs and Outputs Must Be Conveyed

(Salado & Wach, 2019)

Figure 15. Modeling of Transport Layer Aspects as Proxy Ports for Leveraging
Model Complexity

(Salado & Wach, 2019)

Acquisition Research Program:
Creating Synergy for Informed Change - 230 -
NAVAL Postgraduate School

Resulting Contractual Requirements in Natural Language

Application of Step 1. Each interface block in Figure 14 is converted to a table form with
two columns, one listing the property and one listing the corresponding value. It should be
noted that, as part of those properties, the information in Figure 15 is nested for some of the
interfaces in Figure 14. The resulting tables are not shown in this paper because of length
limitations. For referencing purposes in other requirements, they will be referred to as Tables
E1 through E4, which correspond to IF-1 through IF-4, respectively.

Application of Step 2. For simplicity, the approach to divide the requirement set in sections
is used. Two sections are therefore created. Section 1 corresponds to Launch requirements,
and Section 2 corresponds to Nominal Operations requirements.

Application of Step 3. First, all signals in Figure 12 are converted to a table form with two
columns, one listing the property and one listing the corresponding value (ref. Table 5). A
template in Table 1 is applied to Figures 10 and 13, yielding a single requirement for the
Launch requirements subset. All templates are then used on Figures 11 and 13 to generate
the requirements for the Nominal Operations subset. The resulting requirements are given in
Table 6. Requirements R2 through R7 are generated using template in Table 1.
Requirement R8 is generated using templates in Table 3. Requirements R9 and R10 are
generated using templates in Table 2. Note that R9 and R10 have been simplified because
of paper length limitations. Essentially, the requirements should be extended to every action
that is paralleled and every action that is part of the lifetime loop, respectively.

Table 5. Required Characteristics of Inputs and Outputs
Property Value

S1
Flow type Continuous

Min 5g in all directions
S2

Spectral radiance *Plot
Flow type Continuous

Area >= 2 deg
Distance [600 km, 650 km]

S3
Message [current image, last image]

Flow type Trigger
S4

Flow type Continuous
Temperature [-10 deg C, 45 deg C]

S5
Max 600 W

Flow type Continuous
S6

Flow type Trigger
Field of

View
>= 2 deg

Resolution < 1 unit
S7
Flow type 1 Hz

Acquisition Research Program:
Creating Synergy for Informed Change - 231 -
NAVAL Postgraduate School

Table 6. Resulting Textual Requirements

ID Requirement

Launch

Note: All requirements in this section must be fulfilled simultaneously.

R1 The system shall accept Acceleration according to IF-4.

Note 1: Acceleration is defined in Table S1.

Note 2: IF-4 is defined in Table E4.

Nominal Operations

Note: All requirements in this section must be fulfilled simultaneously.

R2 The system shall accept Earth spectral features according to IF-1.

Note 1: Earth spectral features are defined in Table S2.

Note 2: IF-1 is defined in Table E1.

R3 The system shall accept Command A according to IF-2.

Note 1: Earth spectral features are defined in Table S3.

Note 2: IF-2 is defined in Table E2.

R4 The system shall accept Electrical power according to IF-3.

Note 1: Earth spectral features are defined in Table S4.

Note 2: IF-3 is defined in Table E3.

R5 The system shall accept Heat according to IF-4.

Note 1: Earth spectral features are defined in Table S5.

Note 2: IF-4 is defined in Table E4.

R6 The system shall provide Image data according to IF-2.

Note 1: Earth spectral features are defined in Table S6.

Note 2: IF-2 is defined in Table E2.

R7 The system shall accept Telemetry according to IF-2.

Note 1: Earth spectral features are defined in Table S7.

Note 2: IF-2 is defined in Table E2.

R8 The system shall provide Image data in less than 0.2 s after having received
Command A.

R9 The system shall accept Earth spectral features while accepting [Command A,
Electrical Power, Heat] and providing [Image data, Telemetry].

R10 The system shall <all actions> for 7 years.

Acquisition Research Program:
Creating Synergy for Informed Change - 232 -
NAVAL Postgraduate School

Step 4 has not been applied in this example.

Comparison and Discussion

The resulting textual requirements for the required properties of the physical
interfaces captured in Figures 14 and 15 are identical to those in the benchmark given in
Salado and Wach (2019), although they have not been explicitly shown in this paper.
However, a comparison of the description of the resulting requirements in table form with
those tables in the source paper yield this conclusion.

With respect to requirements in Tables 5 and 6, it is necessary to look at the
benchmark textual requirements, which are listed in Table 7 directly from the original source
in Salado and Wach (2019). The requirement sets look different at first sight and, in fact,
present also some differences with respect to the solution space. They are discussed next.

Table 7. Benchmark Textual Requirements
(Adapted from Salado & Wach, 2019)

Req ID Description

BR1 The instrument shall image a target at 600 km–650 km according to IF-1.

BR2
The instrument shall image a target with spectral radiance of ABC (*plot) according to IF-
1.

BR3 The instrument shall accept Command A according to IF-2.

BR4
The instrument shall transmit image data according to IF-2 in less than 0.2 s after
receiving Command A.

BR5 The instrument shall have a resolution better than 1 unit.

BR6 The instrument shall have a FOV greater than 2°.

BR7 The instrument shall provide telemetry data every 1 s according to IF-2.

BR8 The instrument shall accept power according to IF-3.

BR9 The instrument shall consume less than 600 W of electrical power.

BR10 The instrument shall withstand a mechanical load of 5 g in any direction on IF-4.

BR11
The instrument shall fulfill its performance when subjected to a temperature between -10
deg C and +45 deg C at IF-4.

BR12 The instrument shall have a lifetime of at least 7 years.

Note 1
R10 only applies during launch. All other requirements only apply once the instrument is
powered on through IF-3.

In terms of visual differences, a different approach is taken for describing the
different modes. However, this is purely a stylistic matter and of no real concern for the
definition of the solution space. In addition, the benchmark employed a single requirement
for each required property of the required system inputs and outputs, whereas the resulting
set in this paper employs a table form for the properties linked to a single requirement for
each input and output. We believe that both options have pros and cons with respect to
requirement management. For example, the benchmark option may be easier to manage in
terms of traceability in requirements management tools. However, it does not present any
structure to facilitate consistency during requirement elicitation. Certainly, there may be

Acquisition Research Program:
Creating Synergy for Informed Change - 233 -
NAVAL Postgraduate School

ways to overcome both problems with both approaches. Hence, these differences remain
aesthetic and with no impact on the definition of the solution space. Therefore, they can be
considered equivalent.

Wording employed in the textual statements is also different. The free form employed
in the benchmark yields the use of verbs that provide a description of the intent or purpose
expected to be fulfilled by the system, whereas the proposed template uses only
accepting/providing statements. We argue that the proposed approach is actually more
effective. We base this assertion on two aspects. First, the purpose of deriving stakeholder
needs into system requirements is to devoid the requirements of context, so that only what
the system has to do is defined, not what an external actor will do with the actions of the
system. In this sense, and using systems theory, a system can be fully characterized by the
inputs it accepts from the environment and external systems and the output it provides to
them. Second, natural language lends itself towards diversity of interpretation. This
difference can cause a difference in the content of the solution space, as different engineers
work towards finding an acceptable solution. Therefore, limiting the types of actions that the
system can take, as proposed in this paper, may be beneficial to cope with such limitation of
natural language.

In terms of effects on the solution space beyond wording interpretation, the only
apparent difference is that the benchmark did not explicitly refer to the need to execute
certain actions in parallel, while the models did. We believe that this difference is just an
artifact of the limitations of the case study but felt it was necessary to mention for
completeness. Therefore, we consider both sets of requirements to be equivalent from this
perspective.

Finally, it should be noted that the transition requirements captured in Figure 9 have
not been transformed to textual requirements. The reason is that the model-based
requirements were incomplete and did not capture the external conditions for the different
mode requirements as external inputs (particularly, pressure conditions), but just as
operational conditions of the transitions. Because of this lack of completeness, the
templates cannot be applied in this case.

Conclusions
Prior work in the frame of this research project demonstrated an approach to capture

requirements directly in model-based form without using requirements in natural language,
such as the traditional shall requirement statements. This paper has shown a template to
generate contractual requirements in natural language directly out of those model-based
requirements. These templates can enable a technical team to transition to model-based
requirements while guaranteeing fulfillment of the expectation of contractual departments
and acquisition programs. The former can work directly in developing models, while the
latter can still provide shall statements to vendors and suppliers.

It should be noted that the effort is ongoing and is planned to be completed within
the timeframe of the NPS Research Acquisition Program's “Automatic Generation of
Contractual Requirements from MBSE Artifacts” project.

References
Buede, D. M. (2009). The engineering design of systems: Models and methods. Wiley.

Dada, D. (2006). The failure of e-government in developing countries: A literature review.
Electroninc Journal of Information Systems in Developing Countries, 26, 1–10.

Acquisition Research Program:
Creating Synergy for Informed Change - 234 -
NAVAL Postgraduate School

El Eman, K., & Birk, A. (2000). Validating the ISO/IEC 15504 measure of software
requirements analysis process capability. IEEE Transactions in Software Engineering,
26, 541566.

Friedenthal, S., Moore, A., & Steiner, R. (2015). A practical guide to SysML—The systems
modeling language. Waltham, MA: Morgan Kaufman.

Holt, J., Perry, S., Payne, R., Bryans, J., Hallerstede, S., & Hansen, F. O. (2015). A model-
based approach for requirements engineering for systems of systems. IEEE Systems
Journal, 9, 252–262.

Holt, J., Perry, S. A., & Brownsword, M. (2011). Model-based requirements engineering. IET.

INCOSE. (2012). Guide for writing requirements. The International Council of Systems
Engineering.

INCOSE. (2015). Systems engineering handbook: A guide for system life cycle processes and
activities. Hoboken, NJ: John Wiley and Sons.

Kossiakoff, A., Sweet, W. N., Seymour, S. J., & Biemer, S. M. (2011). Systems engineering
principles and practice. Hoboken, NJ: John Wiley & Sons.

McConnell, S. (2001). From the editor—An ounce of prevention. IEEE Software, 18, 5–7.

Micouin, P. (2008). Toward a property based requirements theory: System requirements
structured as a semilattice. Systems Engineering, 11(3).

Miotto, B. L. A. P. (2014). Model-based requirement generation. 2014 IEEE Aerospace
Conference, Big Sky, MT.

Salado, A., & Nilchiani, R. (2014). A categorization model of requirements based on Max-
Neef's model of human needs. Systems Engineering, 17, 348–360.

Salado, A., & Nilchiani, R. (2017). Reducing excess requirements through orthogonal
categorizations during problem formulation: Results of a factorial experiment. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 47, 405–415.

Salado, A., Nilchiani, R., & Verma, D. (2017). A contribution to the scientific foundations of
systems engineering: Solution spaces and requirements. Journal of Systems Science
and Systems Engineering, 26, 549–589.

Salado, A., & Wach, P. (2019). Constructing true model-based requirements in SysML.
Systems, 7, 19.

Von Bertalanffy, L. (1969). General systems theory—Foundations, development, applications.
New York, NY: George Braziller.

Wymore, A. W. (1993). Model-based systems engineering. Boca Raton, FL: CRC Press.

Yeo, K. T. (2002). Critical failure factors in information system projects. International Journal
of Project Management, 20, 241–246.

Acknowledgements & Disclaimer
This material is based upon work supported by the Acquisition Research Program

under HQ0034-18-1-0006. The views expressed in written materials or publications, and/or
made by speakers, moderators, and presenters, do not necessarily reflect the official
policies of the Department of Defense nor does mention of trade names, commercial
practices, or organizations imply endorsement by the U.S. Government.

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

