
Architecting Out Software
Intellectual Property Lock-in:
a method to advance the efficacy of BBP

Chris Berardi, Major, USAF

Coauthors:
Bruce Cameron, MIT
Dan Sturdevant, Silverthread Inc.
Carliss Baldwin, Harvard
Ed Crawley, MIT

Requirements Procurement Sustainment

Motivation

Sustainment Plan:
Utilize third-party parts to save
life-cycle costs
• Attempt results in failure

Requirement
Printer stops working while
printing urgent document (PhD
Thesis, presentation slides, etc.)

Procure new printer:
1. Conduct market research
2. Conduct trade analyses
3. Select lowest cost printer

55-byte program on print head
1. Only use 1 volume of ink
2. Performs encrypted checksum

sequence

Problem Framing
Intellectual Property (IP) direction in law:

“The Secretary of Defense shall require program managers for major weapon
systems … to assess the long-term technical data needs of such systems and

subsystems and establish corresponding acquisition strategies that provide for
technical data rights needed to sustain such systems and subsystems over their

life cycle”
10 U.S.C. § 2320(e)

Intellectual Property direction in Policy (BBP 3.0 initiatives):
• Remove Barriers to Commercial Technology Utilization
• Increase the Productivity of Corporate IRAD
• Use Modular Open Systems Architecture to Stimulate Innovation

 Intent of each is to manage intellectual property and/or avoid traps (lock-in, hold-

up, etc.), but no guidance on “how-to”

Software Problem Illustration

C++ Network

Java Network

Run-time Networks

Singletons

Which pieces of IP are “needed to sustain” the system (flight sim)?

Software Architecture Characteristics
Number of files 6,362
Number of networks 25
Number of cyclic groups 245
Largest cyclic group 665
of direct dependencies 52,385

Objective

MacCormack et al., 2007 demonstrates files with high Visibility Fan-in and high Visibility Fan-out are
statistically significant indicators of hardness-to-kill. However, high VFI is more dominant.

Lock-in
• Occurs “when switching costs outweigh the

benefit of adopting a superior new product, a
consumer is locked in to her incumbent supplier”
(Breuhan, 1997, p. 2)

Switching Cost • Based on substitutability of a new technology or
component

Theoretical Basis (lock-in)

Substitutability

• Survival “is an indicator of the degree to which
components can be removed or substituted”
(MacCormack et al., 2007, p. 4)

• Tightly-coupled components have a higher
probability of survival in software, making them
“harder-to-kill”

Hardness-to-kill
• As a proximal measure for substitutability, it

serves to identify those components which have
high switching costs and; ergo, a large potential
for lock-in

Subjective • Occurs “when switching costs outweigh the
benefit of adopting a superior new product, a
consumer is locked in to her incumbent supplier”
(Breuhan, 1997, p. 2)

• Based on substitutability of a new technology or
component

• Survival “is an indicator of the degree to which
components can be removed or substituted”
(MacCormack et al., 2007, p. 4)

• Tightly-coupled components have a higher
probability of survival in software, making them
“harder-to-kill”

Gap between subjective measures of lock-in
and objective measures of architecture

• As a proximal measure for substitutability, it
serves to identify those components which have
high switching costs and; ergo, a large potential
for lock-in

Visualizing Software Architecture

D

C

A B

A B C D
A
B
C • •
D •

A B C D
A
B
C • •
D • • •

Simple Network* (Direct)

Simple DSM (M) Visibility Matrix (Transitive Closure)

Simple Network* (Transitive Closure) 𝑉𝑉 = � 𝑀𝑀𝑛𝑛 , 𝑛𝑛 = 0,1,2,3

𝑀𝑀0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝑀𝑀1 =

0 0 0 0
0 0 0 0
1 1 0 0
0 0 1 0

𝑀𝑀2 =

0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0

𝑀𝑀3 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

D

C

A B

*Unit of analysis = source file, dependency type between units of analysis = function call

Hard-to-kill

Calculating Metrics / Classifying Files

 Fan-out Visibility (VFO) – Sum along rows of visibility
matrix and divide by total number of elements:
 An element with high VFO depends on (or calls functions within)

 many other files

 Fan-in Visibility (VFI) – Sum down columns of visibility
matrix, and divide by total number of elements:
 An element with high VFI is depended upon by many

other files (or call functions within it)

A B C D
A
B
C • •
D • • •

Visibility Matrix

VFO

VFI

Four Canonical Types of Components
Core
Components:

Core files are “seen by” many files and “see” many
files.

Shared
Components:

Shared files provide functionality to many parts of
the system. These files are “seen by” many files,
but do not “see” many files.

Peripheral
Components:

Peripheral files are neither “seen by” many files
nor “see” many files.

Control
Components:

These files “see” many other files, but are not “seen
by” many files.

In
di

re
ct

 F
an

-O
ut

Indirect Fan-In

Control
Component

Core
Component

Shared
Component

Peripheral
Component

Case Study (AF Flight Sim)

• Must comply with IP
law/policy

• Limited to subjective
evaluation

• Limited budget for
data rights

• Objectively measure
file-level importance

• Prioritize files based
on computed metrics

Problem Method Solution

In acquiring the rights to just 18% of files, we argue it increases likelihood of sustained competition because
DoD has rights to the subset of files which are hardest to operate the software without

C++

Java

Flight Sim Percent Open

Other Method Applications

Shared Core

• Metric for assessing “openness”
• A method to implement BBP Promote Real Competition

• Potential uses
• Source Selection decisions (more open ≈ lower sustainment costs)
• Used as a KPP: Must not exceed core size of 30% (objective way to regulate software complexity) or Core must

contain >50% open source (objectively measured incentive)

New Sim Percent Open*

Core

GNU BSD

1. Scrape copyright information from each source file using RegEx
2. Scraped data is arrayed over visibility matrix

Two additional steps:

GNU BSD
72% 13%

80% 86% 4%

Stakeholder Feedback & Way Forward

• Future Work
• Build inductive theory around ex-ante choices to reduce risk of IP lock-in
• Need additional DoD codebases to further research

• If interested please email: cberardi@mit.edu

Feedback from Flight Sim contractor: Results are accurate, “[we] were unable to claim any of
code as proprietary nor make business case for sale of the software to USAF given the use of
open source code and the full USAF funding since inception.” Flight Sim Contractor PM

Feedback from AF Senior Leadership: “I only understood 10% of the method, but this area is
so vitally important . . . you have my full support” AF PEO

Feedback from AF Senior Leadership: “For years I have argued with contractors over the
‘rights’ to certain pieces of software. Having the information you propose could entirely
change the course of the discussion.” AF PEO

Feedback from Defense Contractor: “I don’t like it. This is just another hammer the
Government will use to hit us with.” Anonymous

Thank You

	Architecting Out Software Intellectual Property Lock-in: �a method to advance the efficacy of BBP
	Motivation
	Problem Framing
	Software Problem Illustration
	Theoretical Basis (lock-in)
	Visualizing Software Architecture
	Calculating Metrics / Classifying Files
	Case Study (AF Flight Sim)
	Other Method Applications
	Stakeholder Feedback & Way Forward
	Thank You

