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Research Question 

• Improve Requirements Definition 
• Can we identify a quantitative 

approach to determine the “right 
requirements” for a new system? 

– New system must work in a “fleet” with 
existing systems 

– Adding new system to improve “fleet-
level” objectives 

– Make use of methods from operations 
research, operations analysis 

• Can this approach address 
uncertainties? 

– New system design  
– Fleet-level operations 

• Application here is military air cargo 
– Introduce new aircraft  
– Minimize fuel consumption, maximize 

productivity 
– Display tradeoffs 

What are the right requirements for a new 
strategic cargo aircraft? 



Strategy: Subspace 
Decomposition 

Approach: Decomposition Strategy 
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Optimization-based Approach  

• Objectives 
– Minimize Fleet fuel consumption 
– Maximize Fleet productivity (speed of payload delivered) 

• Variables 
– New aircraft  requirements (pallet capacity, range, speed) 
– New aircraft design variables  (NLP: Nonlinear Programming) 

• Wing loading, aspect ratio, thrust-to-weight ratio, etc. 
– Assignment variables (MIP: Mixed integer programming) 

• Flights, payload on a particular route 
• Constraints 

– Cargo demand  
– Aircraft performance (takeoff distance, landing distance etc.)  
– Fleet operations (maximum operational hours, number of each aircraft 

types etc.)  
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Aircraft Design (Sizing) Uncertainty 

• Uncertain parameters 
characterized via scaling 
factors with triangular 
distributions 

• Aircraft performance 
predictions follow 
distributions 

0 0  ( )
D predictedD C DC k C= × 



Operational Uncertainty in Pallet Demand 
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• GATES dataset shows large variation in daily cargo 
transported, asymmetric demand between base pairs 

• From this, treat future daily pallet demand as uncertain 

 



Approach: Handling Uncertainty 

• Reliability-based design optimization (RBDO) formulation to 
handle uncertainty in new system design 

• Descriptive sampling approach to handle uncertainty in 
pallet demand 

• Propagation of uncertainty from aircraft sizing subspace 
– Performance of new aircraft is uncertain 
– Coefficients in assignment problem are distributions 

• Used a ‘Robust Optimization’ approach 
– Interval Robust Counterpart (IRC) formulation: Optimize the 

worst-case values of parameters within an uncertainty set  
– Insensitive to data uncertainty in the problem 
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Case Study: 25-base Network 
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• Determine the requirements for a new aircraft (type 
X) that would improve fleet-level objectives 

• 25-base problem consisting of 219 directional routes 
– Extracted from the GATES dataset, so reflects actual 

levels of demand 
• Existing fleet for AMC 

– 28 C-5, 44 C-17, and 21 B747-F operated on 25 base 
subset 

The fleet can add five new aircraft (all of type X) 

Source: www.amc.af.mil 
B747-F chartered from Civil Reserve Air Fleet 

C-17 

C-5 



Combined Results 
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• “Optimal” requirements and design of new 
aircraft to improve fleet-level capabilities 

• Tradeoff of fuel consumption and 
productivity 

• Formulation addresses uncertainty 

New Aircraft X: 
Pallet capacity   = 24 
Design range     = 2992 nmi 
Cruise speed     = 550 knots 
AR = 9.20 T/W = 0.24 W/S = 161 lb/ft2 

Engine BPR    = 13.13 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.25 

New Aircraft X: 
Pallet capacity   = 16 
Design range     = 3800 nmi 
Cruise speed     = 549.37 knots 
AR = 9.06 T/W = 0.24  W/S = 161 lb/ft2 

Engine BPR    = 12.11 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.30 



Concluding Statements 

• Decision support framework to assist decision-maker 
or acquisition practitioner 
– Assess tradeoffs of different  fleet-level metrics 
– Each tradeoff solution describes the design requirements 

for the new system 
– Addressed multi-domain uncertainty and uncertainty 

propagation 
• Tradespace evaluation based on quantitative metrics  

– Shows impact of system requirements on fleet-level 
capabilities 

– Results here are limited by the accuracy of the aircraft 
sizing methodology 
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Thank You 



BACKUP SLIDES 



Application: Air Mobility 
Command (AMC) 

• AMC: One of the major command centers 
of the U.S. Air Force 

• AMC is the DoD’s single largest aviation 
fuel consumer* 

• Non-deterministic nature of AMC 
operations 

– Demand is highly asymmetric 
– Demand fluctuation on a day to day basis 
– Routes flown vary based on demand 

• AMC’s mission profile includes 
– Worldwide cargo and passenger transport** 

• Used Global Air Transportation Execution 
System (GATES) dataset  
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*Aviation fuel savings: AMC leading the charge. Air Mobility Command 

**This work only addresses cargo transport 
 

Sample route network from GATES 

 



Air Mobility Command 

• Used Global Air 
Transportation Execution 
System (GATES) dataset  
 

• Filtered route network from 
GATES dataset 
– Demand for subset served 

by C-5, C-17 and 747-F 
(~75% of total demand) 

– Fixed density and dimension 
of pallet (463 L) 
 

• Our aircraft fleet consists of 
only the C-5, C-17 and 747-F.  
 

Source: www.amc.af.mil 
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Subspace Decomposition Approach 
(Deterministic Formulation) 
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Top Level 

 minimize:       Fuel consumed 

 variable:   PalletX, RangeX, SpeedX  

Aircraft Sizing Subspace 

minimize:  Design mission fuel 
 consumption  

subject to: Performance constraints 

variables: ARX, (T/W)X, (W/S)X, 

PalletX 
RangeX 
SpeedX 
 

FCpkij  

Fuel consumed 

PalletX 
SpeedX 

 

AMC Assignment Subspace 

minimize:       Fuel consumed 

subject to:       pallet capacity, 
       scheduling constraints, 

       demand 

variables:       xpkij 



Results: 25-base Network 
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Non convex Pareto front 
Some non-dominated 

solutions 

 Non-dominated solutions 



Results: 25-base Network 
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New Aircraft X: 
Pallet capacity   = 16 
Design range     = 3800 nmi 
Cruise speed     = 549.37 knots 
AR      = 9.06 
T/W    = 0.24 
W/S    = 161 lb/ft2 

Engine BPR    = 12.11 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.30 



Results: 25-base Network 
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New Aircraft X: 
Pallet capacity   = 17 
Design range     = 3800 nmi 
Cruise speed     = 525.28 knots 
AR      = 9.37 
T/W    = 0.24 
W/S    = 161 lb/ft2 

Engine BPR    = 12.92 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.26 



Results: 25-base Network 
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New Aircraft X: 
Pallet capacity   = 24 
Design range     = 2991.7 nmi 
Cruise speed     = 550 knots 
AR      = 9.2 
T/W    = 0.24 
W/S    = 161 lb/ft2 

Engine BPR    = 13.13 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.25 
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Top level subspace Minimize Fleet fuel consumption 

Subject to Bounds on PalletX , RangeX , SpeedX   

Aircraft sizing 
subspace 

Minimize  Fuel consumption of Aircraft X for design mission 

Subject to Performance constraints 
Bounds on AR, W/S, T/W 

Fleet assignment 
subspace 

Minimize Fleet fuel consumption 

Subject to Demand constraints 
Node balance constraints 
Starting location of aircraft constraints 
Daily utilization limits 
Trip limits 

Subspace Decomposition Approach 
(Deterministic Formulation) 



25-base, 219-route Network 

• Top level 
– Three decision variables 
– Bounds on decision variables 

• Aircraft sizing 
– Six continuous decision variables 
– Four nonlinear constraints 
– Five uncertain parameters 
– Bounds on decision variables 

• Fleet assignment 
– 183,750 binary decision variables 
– 134,203 constraints 
– Uncertainty in pallet demand on each route along with 

uncertainty propagation from aircraft sizing 
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INTERVAL ROBUST COUNTERPART 
MODEL 
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Deterministic Formulation 
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IRC Model 

• 𝜀𝜀, 𝛿𝛿 -Interval Robust Counterpart (IRC) formulation* for 
bounded uncertainty 
– 𝛿𝛿: infeasibility tolerance, 𝜀𝜀 – data uncertainty 
                 𝑎𝑎𝑖𝑖𝑖𝑖� − 𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 𝜀𝜀 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖� − 𝑏𝑏𝑖𝑖 ≤ 𝜀𝜀 𝑏𝑏𝑖𝑖  
– Uncertainty in objective function: Transform objective function 

as constraint 
– 𝜀𝜀 and 𝛿𝛿 can change for each constraint 

 
•  A solution 𝒙𝒙 is robust if 

– 𝑥𝑥 is feasible for the nominal values 
– Whatever are the true values of the coefficients and RHS 

parameters within the corresponding intervals, must satisfy the 
i-th inequality constraint with an error at most 𝛿𝛿 × max (1, 𝑏𝑏𝑖𝑖) 
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*Lin et al., A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty 



IRC 𝜺𝜺,𝜹𝜹  Formulation 
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• The additional constraints consider the worst-case values of 
the uncertain parameters 
– With tolerable violations of the constraint 
– Enforced using user-defined factors, 𝛿𝛿𝑖𝑖   

 

 



Demand Uncertainty 

• Applying IRC model to the demand constraint 
– ‘Immunized’ against the worst-case scenario 

(maximum value) of demand 
– Leads to a ‘conservative’ solution 

• Instead, handled through a stratified sampling 
technique to reduce computational expense 
– On-demand nature of fleet operations 
– Large fluctuations in pallet demand 
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How can our approach help AMC? 

• Our methodology 
– Helps determine the requirements for – and describe 

the design of – a new aircraft for use in the AMC fleet 
– Optimize fleet-level metrics that address performance 

and fuel use 
– Account for uncertainties in fleet operations and new 

aircraft performance 
• Describe how design requirements of the new 

aircraft would change for different tradeoff 
opportunities between productivity and fuel 
consumption 
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Descriptive Sampling 

• Discretize the distribution to generate B demand scenarios 
– Sample more from high-density and less from low-density 

regions  
• Random permutation of the demand values for each route 
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Random sampling  =  random set × random sequence 
Descriptive sampling  = deterministic set × random sequence 

Saliby, E., “Descriptive sampling: A better approach to Monte Carlo simulation”  
Listes, O. and Dekker, R., “A scenario aggregation–based approach for determining a robust airline fleet composition for 
dynamic capacity allocation” 
 



Aircraft Sizing Problem 
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Decision variables  Lower Bound Upper Bound 

Wing Aspect Ratio 6 .00 9 .50 

Thrust-to-weight Ratio 0 .18 0 .35 

Wing Loading [lb/ft2] 65 .00 161 .00 

Engine Bypass Ratio 4 .50 14 .50 

Wing Leading Edge Sweep [deg] 10 .00 35 .00 

Wing Taper Ratio  0 .10 0 .40 

Constraints Value   

Takeoff Distance [ft] ≤ 8500   

Landing Distance [ft] ≤ 5500   

Second segment climb gradient ≥ 0.025   

Top-of-climb rate [ft/min] ≥ 500   

Uncertain Parameters:  𝐶𝐶𝐷𝐷0 multiplier, SFC, Cruise altitude, Pallet mass, Oswald 
efficiency multiplier 



Fleet Assignment Subspace 
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Uncertainty in Aircraft Sizing 
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Uncertain Parameters 𝝃𝝃  Lower limit Mode Upper Limit 
𝐶𝐶𝐷𝐷0multiplier, 𝑘𝑘𝐶𝐶𝐷𝐷 0.90 1.0 1.10 

SFC 0.45 0.5 0.55 
Oswald efficiency multiplier, 𝑘𝑘𝑒𝑒0 0.95 1.0 1.05 

• Two major types of uncertainty 
– Aleatoric uncertainty: Inherent 

or natural randomness 
– Epistemic uncertainty:  

Imprecise or absence of 
complete information  

• Some uncertain parameters used 
as scaling factors 

• Represented using assumed 
triangular distributions 
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Uncertainty in Pallet Demand 

• Reported AMC operations 
show large variations in daily 
cargo transported and 
asymmetrical cargo demand 
between base pairs 
– From this, treat future daily 

pallet transport demand as 
uncertain 

– Demand must address 
direction in route network 
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Actual Data from GATES 

 



Multi-objective Formulation 

• Two objectives 
– Maximize fleet-level 

productivity 
– Minimize fleet-level fuel 

consumption 
– Epsilon (Gaming) 

constraint formulation  
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