

Asymmetric Information in Defense Acquisition: Bid Protests and Containment Strategies

Peter J. Coughlan William R. Gates Francois Melese

1

Aval Postgraduate School Graduate Business Public Policy Why Information Asymmetries and Bid Protests?

- Information Aggregation
 - Information decentralized across DoD and contractors
 - DoD should gather and aggregate information
 - Update preferences FEAR OF PROTESTS
- Information Revelation
 - DoD has good a priori information
 - DoD should reveal its information to the contractors
 - Update preferences FEAR OF PROTESTS

Objectives

• Examine asymmetric information in defense procurement

- Scenario 1: DoD's possess imperfect information; information is decentralized across contractors
- Scenario 2: Information is centralized within DoD; DoD decides what to distribute across contractors
- Model asymmetric information environments and characterize implications
 - Iterated Information Aggregation Auction (I²A²) Mechanism
 - Centralized Information Multi-attribute Contracting Model
- Examine implications of the asymmetric information models for bid protests relative to alternative containment strategies

BID PROTEST PROCESS

- Probability (Merit)
- Probability (Sustained/Merit)

- Profit from Protest
 = Expected Benefits Expected Costs
- Expected Benefits

= Prob (merit)*Prob (Sustained/Merit)* Contract Revenues

Expected Costs

= Search & Information + Legal + Reputation + Opportunity Costs

Graduate Business Public Policy DoD (Principal) Governance Mechanisms

- Reduce Profit from Protest
 - Expected Benefits Expected Costs
- Reduce Expected Benefits
 - Lower Probability (Merit) and Probability (Sustained)
 - Reduce Revenues
- Increase Expected Costs
 - Raise: Search & Information, Legal, Reputation, Opportunity Costs

Increase Expected Costs

- Raise: Search & Information, Legal, Reputation, Opportunity Costs
 - Charge a protest fee that reflects DoD's transaction costs from a protest
 - Schedule delays; lapse in performance coverage; program cost overruns, etc.
 - Adopt UK court's principle that loser pays...
 - Unsuccessful protestors pay court costs and compensation

Reduce Expected Benefits

- Lower Probability Merit and Sustained
 - Carefully document decision process
 - Better educate procurement teams
 - Specify desired characteristics/attributes but not weights
 - Solicit GAO "Seal of Approval"
- Reduce Revenues
 - Provide more chances to win contract
 - Unbundle complex integrated contracts
 - Shared awards; variable shares based on proposal evaluation
 - Firms earn reputation of being protestors

Risks of Limiting Protests

- Bidders may raise their prices/bids to compensate
- Bidders may lower quality/performance/schedule
 outcomes to compensate
- Bidders may drop out reducing competition
- Reduces Transparency and Accountability of Acquisition Process
- Risk Trade-off : Performance, Cost & Schedule

LOGCAP IV – Evaluation

- Awards based on best value to the government, considering the evaluation factors of management, past performance, technical (scenario) &cost/price
- Management evaluation "moderately" more important than past performance & technical factors
- Past performance & technical factors "moderately" more important than final cost/price estimates.

Asymmetric Information in Defense Procurement

- DoD is uncertain about relevant attribute weights
 - Contractors have better tradeoff information
 - Incentive to sway DoD's preferences in their favor
 - DoD wants to aggregate decentralized trade-off information
- DoD has a priori preferences over relevant weights
 - DoD doesn't specify (all) weights to avoid contractor protests
 - Contractors face a lower probability of winning a protest
 - Disguising preferences compromises the quality of the proposals DoD receives

Graduate Business Public Policy DoD Uncertain About Attribute Weights

- True value of procured product/service depends on:
 - Performance along various attributes (A₁, A₂, A₃, ...)
 - Aircraft example: Speed, maneuverability, range, reliability, etc.
 - Relative importance/weighting of each attribute ($\alpha_1, \alpha_2, \alpha_3, ...$)
 - Information about appropriate weights incomplete, diffuse, and private

 \Rightarrow Value = $\alpha_1 A_1 + \alpha_2 A_1 + \alpha_3 A_1 + \dots - P$

- *Ex ante* information (before bids or announcements):
 - DoD and contractors have incomplete and independent information about optimal attribute weighting
 - Precision of information reflected in number of "draws from an urn"
 - DoD may have more, less, or same precision as any contractor
 - Each contractor knows its own cost function

Binomial Distribution

- Binomial Distribution
 - Actual Weight= .6
 - 68% of random observations within one standard deviation of mean

Draws	2	4	6	8	10	15	20
1 STD	±.346	±.245	±.200	±.173	±.155	±.126	±.110
+ 1 STD	0.946	0.845	0.800	0.773	0.755	0.726	0.710
-1 STD	0.254	0.355	0.400	0.427	0.445	0.474	0.490

Single Auction Alternatives

- 1) Publish (*optional*): DoD publishes its own estimates of weights
- 2) Auction: Each contractor submits bid based on own estimates and (perhaps) DoD estimates of weights
- 3) Update (*optional*): DoD updates its own estimates of weights based on contractor bids
- 4) Award: Winning contractor selected based on (possibly) updated weights

Two optional stages create four single auction variations:

– No Publish, No Update

- Publish, No Update

- No Publish, Update

- Publish, Update

Graduate Business Public Policy

I²A²: Iterated Information Aggregation Auction

- **1) Initial auction:** Each contractor submits bid (M₁, M₂, M₃, ..., P) based on own estimates of weights (α_1 , α_2 , α_3 , ...)
- 2) Update: DoD updates its estimates of appropriate weights based on contractor bids and announces new estimates
- **3) Elimination:** Contractors with least value initial bids (according to updated weights) are eliminated
- **4) Final auction:** Each remaining contractor submits a new bid based on updated weights
- 5) Award: Winning contractor selected based on updated weights

Mean Simulation Results

Implications

- Procurement mechanisms can be designed that:
 - Create incentives for actors to truthfully reveal information
 - Efficiently aggregate diverse and often conflicting information
 - Identify optimal choices based on aggregated information
- Updating requirements and evaluation criteria significantly increases DoD's value
 - Carefully designing how we procure can help determine what to procure, from whom and at what price

Graduate Business Public Policy

A Priori DoD Preferences – Weights Specified(?)

- True value of procured product/service depends on:
 - Performance along ten attributes ($A_1, A_2, A_3, \dots, A_{10}$)
 - Aircraft example: Speed, maneuverability, range, reliability, etc.
 - Relative importance/weighting of each attribute ($\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{10}$)
 - DoD has a priori values for attribute weights
 - Contractor information about appropriate weights incomplete

 $\Rightarrow \mathsf{Value} = \alpha_1 \mathsf{A}_1 + \alpha_2 \mathsf{A}_2 + \alpha_3 \mathsf{A}_3 + \dots + \alpha_{10} \mathsf{A}_{10} - \mathsf{P}$

DoD reveals weights for some/all attributes

- Withholds information to avoid protests

Monte Carlo Simulation Model

- DoD announces 0 10 attribute weights
 - 0% info; 10% info; …; 100% info (11 cases)
- Contractors choose product attributes (2, 4, 6, 8, 10 firms)
 - Imperfectly informed for unannounced attributes
 - Draws from an urn (2, 4, 6, 8, 10, 15, 20)
 - Contractors know their (random) cost functions
 - $P_j = C_j = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{10j}A_{10j}$
 - Choose A_{1j} , ... A_{10j} to maximize: $\alpha_{1j}A_{1j}$ + ... + $\alpha_{10j}A_{10j}$ P_j
- DoD chooses contractor maximizing DoD value
 - Pays to capture value of first excluded contractor

Graduate Business Public Policy DoD Surplus-% of Perfect Revelation

Graduate Business Public Policy Total Surplus-% of Perfect Revelation

Graduate Business Public Policy Consistency in Contractor Selection

Implications

- If DoD doesn't know a priori preferences
 - Aggregate information across contractors to improve efficiency
- If DoD knows but doesn't reveal a priori preferences,
 - Reduces DoD surplus value
 - DoD may reject preferred contractor
 - Creates uncertainty
 - Reduces expected value of contract protest

Future Research

- Combine decentralized information and revelation models
 - DoD's a priori knowledge varies across attributes
 - Revealed preferences can not be updated
- Model tradeoff between expected value of protest and DoD inefficiency
- Compare to alternative mechanisms to address contract protests
 - Split contracts with split based on relative value