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Abstract 
Subject Matter Experts (SMEs) are commonly used in cost risk analysis (and in other 

fields as well) for values that either are not available in historical data or for which no 
appropriate analogy can be found.  Problems commonly arise in two areas in particular: (1) 
when multiple experts give opinions on a single effect or entity and the inputs are not 
identical in distribution (which is almost inevitable), and (2) when a single expert provides 
distributional information that is intractable or suspiciously unlikely in its form (which is 
common). 

This paper will put forward correct solutions in case (1), in which the authors’ 
experience shows that practitioners (and even experts) use incorrect solutions.  It is 
important to note that the commonly exercised incorrect solution underestimates the 
dispersion, and thus the 80th percentile, in some cases by a large margin.  The authors 
believe that their solution is rare and, further, are unaware of any use of the solution, and 
will recommend tenets to guide the practitioner.  In preparation for the solutions laid out 
above, the authors will first describe the method of expert-based risk analysis, with the 
erroneous method for combining SME testimony, and then show the correction.  An 
analytical treatment will quantify the impacts of the erroneous approach.  The paper will also 
explain why the new method of conflating expert assessments is to be preferred to the 
common Delphi technique, which may fall prey to both anchoring and domination by a vocal 
minority. 

The paper will also briefly address case (2) by presenting common examples of 
problematic formulations and proposed resolutions.  These include intractable specification 
of a triangular distribution, specification of a discrete categorical distribution when triangular 
was intended, and specification of a triangular with low and high values that are not the true 
extremes as well as errors committed by the risk analyst. 

In any situation, correct treatment of risk is important.  In the current era, with 80th 
percentiles required for all weapon systems cost estimates by the Weapon Systems 
Acquisition Reform Act of 2009, and budgeting to the 80th percentile as the default practice, 
the correct determination of the distribution is more important than ever before. 

Overview 
 Expert-based risk methodologies are a common approach to cost risk.  Expert-

based risk methodologies are defined for the purposes of this paper as follows.  
Notwithstanding that the cost estimate may be based on actuals, expert-based risk methods 
rely on elicitation of the parameters of the risk distribution from expert opinion.  These 
parameters are for the distribution of various types of risk such as (typically, but not 
exclusively) triangles for cost risk, Bernoullis for technical risk and occasional normals.  
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Single or multiple experts may offer estimates (expert testimony) of a particular risk via 
some form of parameterization. 

This paper will discuss two topics in correction of expert testimony:  1) The “best” 
approach to converting extrema and quartiles from expert opinion into risk distributions, and 
2) The “best” approaches to conflating multiple views of the parameterization of a single risk. 

For completeness, the paper will also discuss some difficult characterizations that 
they have encountered and the approach that they have evolved for “correcting” them.  
Problems with inconsistent percentiles and problems with unusual characterizations will both 
be discussed. 

This topic was addressed in general in a prior paper by Coleman, Braxton, Druker, 
Cullis, and Kanick (2009) under the rubric “Omission of Elements of Variability.”  A paper by 
St. Louis, Blackburn, and Coleman (1998) espoused a form of combination of expert 
testimony that this paper now recommends against. 

The “Best” Approach to Converting Extrema and Quartiles from 
Expert Opinion into Risk Distributions 

Correcting Extrema and Quartiles for Truncation   

The Problem.  Our estimated distributions tend to be “too tight,” as shown by 
Brown (1973) and Alpert and Raifa (1982).   Without feedback, we provide extreme values 
near the 20th percentile and 80th  percentile when we are asked Min and Max. This can be 
improved, with feedback to the 10th and 90th percentile.  This can be improved by asking for 
more-extreme values.  For example, “astonishingly-low-probability outcomes” equate to the 
0.1th percentile and 99.9th percentile.   Without feedback, we give 25th and 75th quartiles that 
actually contain only 33% of the outcomes versus the expected 50%.  This can be improved 
with feedback to 43% versus the expected 50%.  Independent investigations of this over-
tightness are remarkably consistent in the degree to which it occurs, as shown by Brown 
(1973) and Alpert and Raifa (1982).  Our ability to probabilistically characterize the past or 
future or to estimate our certainty on general-knowledge facts are all about comparable, as 
noted by Lichtenstein, Fischhoff, and Phillips (1982).   

Correcting Extrema and Quartiles.  For extrema, assume that experts will 
return 20th and 80th percentiles when asked for the full range.  In other words, when given 
highs and lows, assume you are getting something more like standard deviations 
masquerading as extrema; it’s not quite that bad, but it’s close.  It’s about 0.316 of the real 
base (see Appendix A). This could be presumed to improve to 10th and 90th, but only if the 
experts can be assumed to have gotten specific feedback about their accuracy at this task in 
the past.  Note that this is not the same as saying they are very well qualified; it refers 
specifically to feedback training.  We believe that practitioners have mistaken expertise for 
being trained and that this is why many practitioners believe experts provide 10th and 90th 
percentiles.  For quartiles, although we don’t typically ask for quartiles, we recommend 
assuming that a claimed 25-75 inter-quartile range is actually a 33-67 percentile range.  This 
can be improved to a 28-72 range with specific feedback. The two distortions above are not 
strictly coherent, meaning that they yield different corrections.  The full range case is a 
greater understatement than the inter-quartile case.  The wider the confidence interval you 
ask for, the more the witness will understate it.  When given expert testimony, therefore, it is 
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appropriate to correct the testimony by adjusting the standard deviation or the end points 
using the two general results above, depending on the form given. 

Errors of Extrema—Pictorially.  The 20th percentile occurs at a point that is 
0.316 of the base, so the understatement of experts is on the order of 1/3.  Pictorially, then, 
we are experiencing a reduction in distribution on the order of the blue (claimed) to the white 
(actual) portrayed in Figure 1.  For a tutorial on computing percentiles, see Appendix A. 

 
Figure 1. Visualization of Expert Truncation of Dispersion 

The “Best” Approaches to Conflating Multiple Views of a 
Distribution 

Conflation 

By definition, conflation refers to the combining of different (independent) views of a 
thing to arrive at a single (better and more complete) view of it.  We seek to conflate expert 
testimony principally because we will arrive at a better estimate for the mean, but, what 
about the dispersion?  Conflation is the most difficult problem for expert-based risk 
methodologies; this is not immediately obvious, but it is so.  Dispersion is, in turn, the hard 
part of conflation.   Ad hoc conflations are often used for k experts each giving estimates for 
the same risk or WBS element.  For example: 

1. Use the individual expert testimonies in each run of the Monte Carlo: 

a. Make k random draws from the k different distributions and average 
them (as done by St. Louis, Blackburn, and Coleman (1998)).  

b. Make k random draws from the k different distributions with correlation 
and average them. 

1. Derive the parameters of a single distribution from the parameters of 
the expert testimony and then Monte Carlo: 

a. Make a new distribution with i) the mean of the k expert means and ii) 
the mean of the standard deviations, for normals, as demonstrated by 
Brown (1973), or the means of the respective end points for triangles 
[Average the Parameters]. 

b. Make a new distribution with the mean of the k experts and the lowest 
low and the highest high as end points.  

2. Sampling has been endorsed by Brown (1973).   Sampling is done as 
follows:  for each run of the Monte Carlo, pick the answer from a 
randomly selected expert who provided testimony. 
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We will only examine ad hoc methods 1a, 2a and sampling.  The others can be 
inferred from those.  Also, note that in backup, we prove that 1b and 2a are equivalent for 
symmetric triangles, and we speculate that for asymmetric triangles there is no significant 
difference, and so there is nothing to separate these beyond ease of implementation. 

The First Question  

The first question in conflation is to determine what we believe to be the underlying 
model.  No single conflation method will work for the two possible scenarios that can 
confront the estimator, namely single or multiple realities. 

“Single Reality.” There is a one (typically uni-modal) distribution, which we do not 
know, but which experts are presumed to know to some degree of accuracy.  Examples: 
What is your estimate for the GNP of Brazil for 2009? How big is a brown bear?  What is the 
range of technical risk for the cost of the engine? 

“Multiple Realities.” There are k (typically uni-modal) distributions; we generally 
know neither k nor the individual distributions, but experts are presumed to know at least 
one each to some degree of accuracy.  Examples: How far away is your favorite planet? 
(There could be up to 9 answers, depending on the inclusion of Pluto and Earth!) How big is 
a panda? (There is a lesser panda and a greater panda, but we don’t happen to know that 
and fail to specify) What is the cost risk for the engine on the F-35? (There is a main and an 
alternate engine, each has a range.) 

This problem may seem silly, but it is not, and our choice of conflation methods 
depends on the case we believe to apply.  We will recommend approaches for both; but 
first, decide which case applies.  The amount of spread in your expert testimony will give 
you an idea whether single or multiple realities is more likely.  We recommend against 
feedback or “drilling down” until after testimony is gathered because witnesses are 
notoriously vulnerable to witness leading, anchoring and all other sorts of mischief; you’ll 
never know if you lead the witness. 

Desiderata for Single and Multiple Realities. Cases dictate different 
characteristics for the conflation technique.  Single reality requires the best estimate for the 
mean, the best estimate for the dispersion and the best estimate for the distribution.  
Multiple realities dictate the best portrayal of the multiple choices we are confronted with.  
We will discuss each in turn.  

We will describe the apparent preferred solution for each method after asserting 
them.  For single reality, average the parameters and correct for the understatement of 
extrema (using method 1b or 2a from above).   For multiple realities, sample from the 
experts after correcting each for understatement of the extrema.  If we cannot discern 
whether we are in single or multiple reality, then we recommend sampling because this is 
more conservative, meaning it will have wider dispersion.  We reject the use of averaging 
answers on each iteration despite having used the method in a Conference Best Paper by 
St. Louis et al. (1998).  To see why, we will show its characteristics and indicate why it is 
probably unsuitable. 

Recommendation—Single Reality.  The mean of the single reality not 
troublesome, almost any reasonable approach will yield the same mean. (We use the word 
“reasonable” with trepidation.)  The standard deviation presents the problem, since 
individuals are known to under-report, and some methods are vulnerable to distortions.  We 
recommend averaging parameters of the expert testimony, as shown below, because it is 
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clear what is happening.  Correct each expert’s testimony for truncation of the standard 
deviation, or correct the average; there is no obvious difference in the order of the 
operations.  Techniques for correcting the standard deviation were shown in the first part of 
the paper.  

Conflation: Averaging on Each Iteration.  Averaging on each iteration can 
have an unexpected result:  Three very different sets of testimony by two experts will 
produce exactly the same picture.  This is not obvious at first, but it is so.  The standard 
deviation of k identical but scattered triangles, with SD = s, when iteration-averaged will 
produce a standard deviation s/√k.  The SD of the conflation can be thus be arbitrarily small, 
if k is sufficiently large.  This does not comport with our desire that the SD be well modeled.  
Correction for k can be achieved by a spreading with √k, but this is likely to be done wrong 
or omitted altogether, and at best, would require row-by-row corrections.  Correction for 
expert truncation can be achieved by treating the end points as if they were 20/80 points; 
this can be done before or after conflation. 
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Figure 2. Conflation by Averaging on Each Iteration 

We conclude that averaging on each distribution has some good and bad 
characteristics but, on the whole, is not desirable.  It produces a good confidence interval for 
the mean of the experts, but this is not what we want.  We already know the mean of the 
experts; the point estimate is the simple average of the means of each.  What we really want 
is the full range of the possible outcomes, but averaging on each iteration does not do this; 
instead, it shrinks the answer.  By analogy, this is the same problem as the confidence 
interval for a CER … it bounds the line, but not the data … what we really want is the 
prediction interval.  It is only a candidate (and flawed at that) for clear cases of single reality. 

Conflation: Averaging Parameters. Averaging parameters provides simple 
results:  Three very different sets of testimony by two experts will produce exactly the same 
picture.  The standard deviation of k identical but scattered triangles, with standard deviation 
of s, when iteration-averaged will produce a standard deviation s.  The standard deviation of 
the conflation will not vary with k.  Correction can be achieved by a spreading with √k, but 
this is likely to be done wrong or omitted altogether and, at best, would require row-by-row 
corrections. 
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Figure 3. Conflation by Averaging Parameters 

We conclude that averaging parameters has some good and bad characteristics but, 
on the whole, is simple and wieldy.  It produces good estimates of the mean and the 
standard deviation.  It is insensitive to scatter of expert testimony, so is only useable in clear 
cases of single reality.  Correct the parameters as shown earlier because each expert is 
likely to truncate.  The order of the operations does not matter. 

Conflation: Sampling “Average.” The probability distributions of the k experts, 
using one of two schemes, depending on the speed implications and the ease of 
implementation in your model.  Put all the distributions in the mix, and scale each by 1/k, 
creating a (probably) multi-mode custom distribution, as recommended by Brown (1973).  
We will see this pictorially on the next slide.  Alternatively, characterize each of the k 
distributions and choose a first random number to select which expert distribution to use for 
each run of the Monte Carlo and a second random number to draw from that expert’s 
distribution, as used by Flynn et al. (2010).  The two methods are mathematically identical.  
The resulting distribution will have two characteristics: 1) a better estimate of the mean and, 
generally, better predictive performance than other conflation schemes;  2) a wider (actually, 
“not narrower”) standard deviation for the conflated result than those of the original 
individual distributions.  We don’t know the degree to which conflation will correct dispersion, 
although the more experts the wider the dispersion; we plan to attempt a study of this.  We 
will give a demonstration of this effect with representative data. 

 To conflate two triangular distributions, “average” them as illustrated in Figure 4. 
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=

+

The first distribution

The second distribution

The conflated (averaged) distribution

Each triangle has area A = 0.5, 
or more generally, A = 1/k

 
Figure 4. Conflation by Sampling 

The charts in Figure 5 portray the conflation of two triangles as the respective 
experts who estimated them come into alignment.  Each original individual triangle is 
symmetric, has a base length of 200, and a standard deviation of 40.8.  Conflation is done 
by averaging the two probability density functions (PDFs), (also described as sampling).  
The two triangles move closer in such a way that the conflated mean remains constant at 
200 to allow us to discuss the CV in a meaningful way.  When the two triangles merge, we 
get a triangle that has the height and width of each individual triangle before conflation.  The 
standard deviation of the conflated distribution will be shown in Figure 6. 
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Figure 5. Conflation of Two Triangles by Sampling Maintaining a Constant 

Mean 
As two triangular PDFs move closer, the conflated standard deviation and CV drop 

until the triangles merge and achieve the same standard deviation as that of each triangle.  
Since we chose to maintain the mean of the conflation at 200, the CV drops.  The unsettling 
conclusion is that the CV of conflated expert opinion can be uncontrollably large, depending 
on how far apart their triangles.  Note that the variance of two identical triangles separated 
by distance 2d can be shown to be √(σ2+d2), which we prove in Appendix A.
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Figure 6. The Standard Deviation and Coefficient Deviation of Two Sampled Triangles 

as a Function of Their Separation 

The Dispersion of Sampled Distributions   
Let: 

σ = SD of the underlying risk 
Se = SD for the individual experts (we think it is about ½σ) 
Sm = SD for the meta-distribution of the experts opinions 
Sc = SD of the conflation 
Then, by examination, 

if Se = 0, then Sc = Sm  
if Sm = 0, then Sc = Se  
And, further 

Sc ≥ max(Se, Sm) 
This also implies that if Se is corrected to σ, then Sc exceeds σ.  We have shown, in 

backup, that once the experts have produced k triangles, then: 

Sc = √(Se
2
+St

2) 
where St is the calculated sum of the squares of the differences of the k triangles from their 
means.  We have yet to prove that   

Sc = √(Se
2
+Sm

2) 
but we believe it to be true. 

Thoughts on the Distribution of Expert Opinion.  We will now speculate on 
the distribution of the experts themselves, which we have come to call the meta-distribution.  
Our assumptions are that:  1) Experts will not be versed in the distribution of costs, but will 
be estimating the distribution based on the outcomes they have experienced and perhaps 
some hearsay; and 2) Experts are most likely to be technical people, not cost estimators, so 
will have experience in a handful of projects and hearsay of somewhat larger number. 
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The implications of the above are that: 1) Experts will perceive a mean (and perhaps 
the mode?) according to Chebyshev's inequality or a confidence interval bounded by σ/(√n), 
at best, where n is the number they have observed; and 2) Experts will perceive a standard 
deviation as a variance σ times a chi-square (n) divided by n, at best. 

The above thoughts do not yet consider the implications of truncation of the value of 
σ, but this needs to be incorporated.  

Combining Corrections for Extrema and Conflation.  We have shown that 
individual distributions can be corrected for a consistent pattern of understatement.  We 
have shown that sampling of multiple experts will improve the mean and widen the spread.  
But, we don’t have a good sense of how much the spread will be improved.  The implication 
is that we should not endeavor to both expand and sample expert distributions.  If we correct 
the individual distributions, then we will have the dispersion “about right.” If we then sample 
them, then we will have a dispersion that exceeds “about right.”  So, for “single reality,” do 
one or the other, but not both.  Expansion of a single distribution focuses on the dispersion.  
Sampling of diverse experts focuses on getting the mean right.  Since we generally 
recommend correcting lower order moments first, as recommended by Coleman, 
Summerville, and Gupta (2002), sampling is the priority.  Sampling of each distribution has 
excellent characteristics; it replicates what the experts told us exactly.  It has a problem in 
use for a single reality situation because the standard deviation is not easily correctible for 
scatter nor is it useable without correction.  We can easily correct each expert’s testimony 
for truncation, but we cannot undo the growth caused by expert scatter, which is 
theoretically unbounded … the adjustment would be a function of k, the number of experts, 
and has yet to be ascertained.  We conclude that, despite its popularity in the literature, the 
sampling technique is too tricky in a single reality case and should not be used. 

Recommendation—Multiple Realities. The mean of the multiple realities case 
is not troublesome; almost any reasonable approach will yield the same mean. (Again, that 
dangerous word “reasonable”!)  The standard deviation does not present as much of a 
problem in a multiple reality case because we believe each expert, like the six blind men, 
sees a piece of the truth.  We recommend using sampling.  Be sure to correct each expert’s 
testimony before sampling; you cannot easily correct it afterwards—order matters.  

Conclusion for the Conflation of Single and Multiple Realities  
As asserted, we have illustrated that the averaging of parameters for k triangles, is 

equivalent to averaging of draws from those k triangles with a single draw of a random 
number used to simulate expert’s draw, and then averaging the draws.  We have 
demonstrated why those two equivalent methods give the simplest and clearest result for 
single reality and seem the best representation of what the k experts seem to have meant.  
We have shown why sampling of k experts gives the best representation of what the k 
experts seem to have meant in the case of multiple realities.  The issue of deciding between 
single and multiple realities remains the most difficult issue.  Sometimes it will be as simple 
as learning that each expert has in mind “a different engine,” and sometimes it will be a 
concession to the wide dispersion and the recognition that there “must be a reason.”  We 
will now move to a different topic, that of correcting mischaracterization of distributions, 
without which this paper would seem incomplete. 

Correcting the (Mis)characterization of Distributions. The problem is that 
“experts” who may know a lot about the technical issues, and maybe even the cost of them, 
will not necessarily be well versed in probability.  Consequently, the characterizations they 
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will produce will not be easily used and will sometimes be incoherent (meaning, internally 
contradictory).  That said, expert testimony in risk analysis should be accorded the same 
respect that cost data is in cost analysis.  We recommend three tenets in correcting 
apparently erroneous expert testimony.  We will list them, and we will apply them in several 
actual examples of errors the authors have encountered, chosen because they are the most 
common. 

Tenet 1.  “Do no harm,” meaning preserve as much of what the expert said as is 
possible in achieving coherence. 

Tenet 2.  Preserve lower order moments above higher order moments. 

Tenet 3.  If particular aspects are more important than others, preserve those 
aspects (e.g., if the variability or upper percentiles are the focus, accord that greater priority). 

When making corrections, it is preferable to make the corrections with direct 
feedback to the expert, but this feedback should be done under the same precepts as the 
corrections, meaning follow the tenets in your persuasions and probing. 

Example One—Implausible Percentiles. The expert told us that “The 20/50/80 
are $0.0M/$0.9M/$3.6M.”   The difficulty is that no triangle can fit this, and the distribution is 
very skewed, so simplifying steps were taken.  We assumed that the stated “50% percentile” 
is really the mode.  We took the 20 and 80 as “about true,” and assume they are ±σ.  We 
used the rule that the half-base lengths of a symmetric triangle are √6*σ.  We noted that 
these triangles are not symmetrical, but we still used it as a factor that probably does a 
decent job.  The results are in the table in Figure 7. 

Inputs Outputs 
20%-ile 0 L -1.305 
50%-ile 0.9 M 0.900 
80%-ile 3.6 H 7.514 

Figure 7. Table of Inputs and Corrections 
Note that the correction may be distorting the central tendency, but this distribution is 

clearly intended to be skewed, and the mean is therefore above the median.  We cannot 
actually compute the mean with the information given.  We also knew that in this analysis, 
the ROS at the 80th percentile was a particular focus, so we felt that preservation of that 
point should take priority (Tenet 3). 

Example 2—Unlikely Distributions. The expert gave us three discrete points: 
20% probability of -$2M, 40% probability of $0, 20% probability of +$4M.  Suspecting that 
this was a just clumsy way to characterize a triangle, we asked if a triangle with the below 
characteristics was along the lines of what the expert meant:  20% percentile =-$2M, Mode 
= 0M, 80th percentile = +$4M.  The expert agreed readily that the precise distribution wasn’t 
what he meant, and the triangle captured the sense of it. 

Example 3—Errors of Characterization Induced by the Risk Analyst.  
Below are three typical errors of characterization introduced by the risk analyst after the 
expert has given his testimony.   They are actual examples, chosen because they are the 
most common. 

Categorical Risk Distributions.  Risk models cannot always easily (or, rather, 
obviously) implement a categorical random variable beyond a Bernoulli.  Categorical risk 
distributions are like Bernoulli’s but allow 2 or more values (the Bernoulli is a member of the 
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categorical family.)  Many models can handle categoricals, but most analysts don’t realize 
that.  For a 3-value categorical, with choices of 0, 1 and 2, many analysts implement it as 
two independent Bernoulli’s with values of 0 or 1 and 0 or 2.  This is an error as the results 
are not the same, the two Bernoulli’s can turn out as 1 and 2 at the same time, but the 
original formulation prohibits that.  To fix this problem, either implement it as a categorical or 
create two Bernoulli’s with the right characteristics. 

Triangular Risk Distributions. Sometimes the end points are set at the standard 
deviation of the formulation; sometimes triangles are used instead of normals, even when 
the normal was proposed—out of aversion to negative outcomes—even though in practice, 
negative outcomes are harmless in Monte Carlo; negative outcomes ought to be fairly rare 
anyway. 

Normals. Sometimes triangles are substituted incorrectly (see above.)  If the mean 
and standard deviation are captured correctly, then there is little harm; but this is often not 
done right.   Sometimes the negative portion of the normal is truncated, despite that this 
causes a shift of the formulated mean and a reduction in the standard deviation. 

Conclusion for Correcting Mischaracterizations. We have presented tenets 
by which apparent errors of characterization may be corrected and have listed the most 
common risk-analyst-induced errors.  We finish by reiterating that the testimony of the 
experts we consult should be handled much as we should handle data.  We must be careful 
in not ignoring the symptoms of the testimony and avoid such elementary errors as causing 
anchoring* and “leading the witness.”  We should, nonetheless, carefully repair any clear 
errors caused by the unfamiliarity with probability that can result in unlikely distributions. 

Final Thoughts 
The conflation of expert testimony has received some attention in the literature, but 

the conclusions seem to have permeated the cost risk discipline.  We hope that we have 
provided a reasonably thorough paper by which risk analysts might be guided.  We also 
hope that we have provided a few good tenets for correcting mischaracterization, along with 
some illustrative (actual) examples. 

We hope to be able to take on the issue of what we call the meta-distribution, the 
likely distribution of individual expert testimony.  Without a good model for the meta-
distribution, the full demonstration of the best answers will remain incomplete because the 
meta-distribution is the unseen ground truth against which these answers can be measured.  
Until we can be satisfied we have the meta-distribution, we are confined to showing the 
behavior of various methods and deciding if that behavior seems correct.   
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Appendix A. Derivations and Proofs 
The Geometry of Symmetric Triangles. For a symmetric Triangle(L, M, H), 

where M-L = H-M, find points l and h such that l and h are the pth and 1-pth percentiles (see 
Figure 8). 

If l-L = 1/4*(H-L), H-h = 1/4*(H-L), then p = 2*(1/4)2 = 1/8 = 12.5% 

If l-L = 1/9*(H-L), H-h = 1/9*(H-M), then p = 2*(1/9)2 = 1/18 = 5.6% 

The pth percentile corresponds to the √(p/2) base fraction, so the 20th percentile, 
expressed as 1/5, occurs at point √(1/10) = 0.316228 base fraction. 

L         l M          h         H L     l M             h      H

These two “tiled pictures” show two 
relationships of a fraction of the base 
to a fraction of the area, showing the 

above equation in a graphic way.  

 
Figure 8. Visual Aid to Demonstrate the Relationship of Percentiles and Base 

Fraction 

Triangles with Related Areas.  We wish to know how to draw triangular 
distributions that are related to one another for our illustrations: 

Triangles of Constant Area.  For area to remain constant, in this case A = 1, as 
the base increases by a factor, the height must be multiplied by the reciprocal of that factor: 
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Similar Triangles of Reduced Area.  The dimensions of a similar triangle must 
be reduced by the square root of that factor: 

 

 

Reduction of Height to Reduce Area with Constant Base.  For area to be 
reduced by a factor, the height must be reduced by that factor, if the base is to remain 
constant: 

 

 

Triangular Distribution—PDF and Mean.  For a Triangle(L,ML,H), denote L = 
a, H = b, ML = c denoted T(a,c,b).  Since the area of the triangle must be 1 (100%), the 
height is twice the reciprocal of the base.  We can then derive the PDF by using similar 
triangles. 

 

 

 

 

 

 

 

 

 

 

 

Triangular Distribution—Variance  
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Note that the variance is thus the square of the base minus the product of the half-
bases.
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Substituting a Triangular for a Normal: The √6 Factor.  For a symmetric 
Triangle(L, ML, H), let ML = m, L = m-w, H = m + w, where w is the half-base.  Then the 
mean is m, and the variance is w2/6 (see previous proofs) and the variance is thus w/√6.  It 
follows that the half-base is greater than the standard deviation by a factor of √6.  So, to 
approximate a normal, the factor of √6 is multiplied by the standard deviation of the original 
normal to be emulated to produce the half-base of the triangle we wish to use in emulation.  
By this means, end points are found that will produce a triangular distribution to emulate the 
underlying Normal(μ, σ)  in mean and standard deviation.  This symmetrical triangular 
distribution, Triangle(μ-√6σ, μ, μ+√6σ) differs from the underlying normal in all other 
moments, and at all percentiles other than the median and two “cross-over” points, but the 
difference is minor, as shown in Figure A-2.   
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Figure 9. Comparison of Triangle(μ-√6σ, μ, μ+√6σ) and Normal(μ, σ) 

Variance of Hybrid Distributions—A Pythagorean Relationship.  The 
Mean Suppose k distributions with PDF pi(xi), mean μi, and standard deviation σi are 
sampled. Then the PDF of the hybrid distribution is the “average” of the PDFs: 

 

 

The mean of the hybrid distribution is the average of the means 

 

 

The variance of the hybrid distribution is the average of the variances plus the 
variance of the means taken as a discrete probability distribution!  See the next proof for the 
derivation of the variance. 

Variance of Hybrid Distributions—A Pythagorean Relationship—The 
Variance. 
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In the special case of two congruent distributions with centers at m-d and m+d, the 
variance is: 

 

 

 
Equivalence of Averaging Distributions and Averaging Parameters for 

Symmetric Triangles. In the case of symmetric triangles, averaging the individual 
triangles (with perfect rank correlation) can be shown to be equivalent to averaging the 
parameters.  We will prove it in the case of two triangles, but the proof can easily be 
extended to more.   

As previously shown, the pth percentile (p<0.5) for a symmetric triangle is at the √(2p) half-
base fraction, so the pth percentiles of the two triangles and their average are: 

 

 

But this is clearly just the pth percentile of the average distribution.  A similar proof 
works for p>0.5.  Since all percentiles are equal, the resulting distributions are identical.  
Monte Carlo simulation could be used to explore the difference between the two methods for 
asymmetric triangles, but it is expected to be small. 
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