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Abstract 

This research, under the direction of the principal investigators and support from the Naval 

Postgraduate School, the Systems Development & Maturity Laboratory at Stevens Institute of Technology, 

and the Complex Logistics Cluster at the University of North Texas, achieved its overarching goal of 

developing novel models and analytical techniques to increase the defense acquisition communities’ return 

on investment.  Three studies were undertaken using a mixed methodological approach.  In the first study, 

qualitative research methods (surveys, grounded theory, and case studies) were used to uncover key 

characteristics and metrics that are important for a successful performance-based contract (PBC) between a 

customer and a post-production service provider.   In the next two studies, quantitative research methods 

(econometrics, operations research techniques, and diffusion models) were used to develop analytical 

models, incorporating the key characteristics and metrics, to assist the acquisition, design, and support 

communities in making informed business decisions. The analytical models determined the optimal price, 

length, and investment of a PBC and provided the mechanisms to allocate investment budget between 

system design and the post-production network needed to support the design.  Key findings and business 

implications are discussed for each study. 
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1. Introduction 

This research, under the direction of the principal investigators and support from the 

Naval Postgraduate School, the Systems Development & Maturity Laboratory at Stevens 

Institute of Technology, and the Complex Logistics Cluster at the University of North Texas, has 

successfully 

a. uncovered key characteristics and metrics that define successful performance-based 

contracts (PBCs; Randall, Hawkins, & Nowicki, 2011); 

b. developed an analytical model to determine the optimal price, length, and investment of a 

PBC (Nowicki, Murynets, Ramirez-Marquez, & Randall, 2011); and 

c. determined optimal investment strategies in system design and supply chain 

improvements; 

i. developed an algorithm to improve the computational efficiency of the Multi-

Echelon Technique for Recoverable Item Control (METRIC) class of inventory 

optimization problems (Nowicki, Randall, & Ramirez-Marquez, 2011b); 

ii. developed a model that analyzes the trade-off between system design and supply 

chain performance (Nowicki, Randall, & Ramirez-Marquez, 2011a). 

This technical report is organized as follows.  First, we discuss performance-based 

acquisition strategies with an emphasis on how performance-based logistics (PBL) strategies 

differ from traditional logistics support strategies.  We then discuss PBL successes that span 

across industry sectors from government (e.g., defense) to for-profit (e.g., rail, airline, housing, 

and utilities).   Next, we present the specifics of our research.   Three research objectives are 

addressed: (1) identify the key characteristics and metrics of successful performance based 

contracts (PBCs), (2) determine the optimal price and contract length of a PBC, and (3) 

determine optimal investment strategies in system design and supply chain improvements.   

 For each research objective, we provide an overview, a brief discussion of the 

models, key findings, business implications, and future research.  Modeling and algorithmic 

details are in the appendices.  Finally, we list our project accomplishments. 
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2. Discussion of Performance-Based Acquisition Strategies 

Performance-based acquisition strategies are receiving increased attention in systems 

engineering, operations management, economic, supply chain and logistics research (Kim, 

Cohen, Netessine, & Veeraraghavan, 2010; Kim, Cohen, & Netessine, 2007; Ng, Maull, & Yip, 

2009; Nowicki, Kumar, Steudel, & Verma, 2008; Randall, Pohlen, & Hanna, 2010; Sols, 

Nowicki, & Verma, 2007).  Quite often, the logistics ecosystem associated with performance-

based acquisition strategies, specifically a PBL strategy, is a three-tier system composed of 

suppliers, system integrators, and customers.  We refer to this three-tier system, with its 

resources, technologies, policies, procedures, and flows, as the PBL ecosystem.  PBL is a post-

production service strategy that is highly dependent on the supply chain supporting its logistics 

ecosystem.  Complex systems being supported through a PBL strategy rely on activities and 

decisions that span a broad array of functional areas, including research and development, 

engineering, operations, maintenance, support, logistics, purchasing, and supply chain.  An 

example in the defense industry is the Joint Strike Fighter (JSF) with Pratt & Whitney (supplier) 

supplying the engines to Lockheed Martin (system integrator and original equipment 

manufacturer [OEM]) who will then integrate all of the components to provide mission-capable 

JSFs for the U. S. Department of Defense (customer) and its allied partners (F-35 Program 

Office, 2011).  Similar relationships and structures exist in commercial industry, such as the 

high-speed rail industry where the operator, the end customer, and the OEM are different 

agencies (Siemens, 2011).  Other examples can be found in the transportation sector 

(Transportation Research Board, 2009) and the health services sector (The World Bank, 2008).   

PBL strategies have been credited with reducing life cycle costs and improving system 

performance when compared to more traditional, transactional approaches to post-production 

logistics and support. Programs that have adopted PBL have experienced system up- time 

increases of 40% and logistics response-time cuts of 70%, all while generating billions of dollars 

in savings over traditional approaches (Fowler, 2008, 2009).  For instance, the U. S. Navy saved 

$688 million on the F/A-18 program by using PBL, and the United Kingdom’s Defense Ministry 

saved $250 million by converting its CH-47 post-production logistics and support contract to 

PBL (Fowler, 2008).  There are similar PBL success stories dealing with projects in the for-profit 

sector.  For instance, one recent study of a major Dutch housing project showed that life cycle 

cost was reduced by 20% using a PBL approach (Straub, 2009). 
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In order to compare and contrast PBL with traditional approaches to logistics and post-

production support, we provide a series of systemigrams.  Systemigrams provide researchers 

with the ability to convey, in a conceptual manner, the inter-relationships of a complex system 

(Boardman & Sauser, 2008).  Figure 1 provides a systemigram of traditional post-production 

logistics and support.  In traditional post-production logistics and support, the major business 

entities are suppliers; OEMs; maintenance, repair and overall (MRO) providers; system 

operators; and customers.  Here we use the airline and rail industries as examples of the 

traditional post-production support structure.  The overarching concern of the system operator 

(e.g., airline or rail company) is to meet customer requirements while profitably operating the 

system. For the airline and rail industries, this means profitably operating routes and schedules at 

a particular price and comfort level (Flint, 2007; Siemens, 2011). 

 

Figure 1. Representation of a Traditional Post-Production Logistics and Support 

Systemigram 

 

As shown in Figure 1, the system operator’s primary core competency revolves around 

determining profitable routes and schedules, and operating a system that meets these schedule 

requirements while dealing with disruptions (e.g., weather, change in customer desire, system 

failure) as they occur.  Within a traditional post-production logistics and support system, the 

operators (e.g., the airline or the rail company) manage a network of warehouses, inventory, 
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equipment, and people that keep the system in service or return the system to service when it 

breaks (Hypko, Tilebein, & Gleich, 2010).  Considering the complexity of determining routes 

and price, it can be argued that running, maintaining, and integrating the post-production 

logistics and support infrastructure is a secondary competency of the rail and airline operator.  As 

depicted in Figure 1, a great deal of the expertise needed to run the post-production infrastructure 

actually resides with the OEMs and MRO providers. Further, the operator seldom has the 

technical capability to control, much less reduce, cost as systems age and fatigue, manufacturing 

sources diminish, and corrosion takes a toll (MaClean, Richman, Larsson, & Richman, 2005). 

This traditional strategy puts the end customer and the system operator at a disadvantage.  

They are saddled with such issues as corrosion, diminishing manufacturing sources (e.g., parts 

that are no longer being produced), and fatigue (MaClean et al., 2005) yet their core competency 

is typically not consistent with dealing with such issues (Prahalad & Hamel, 1990).  As issues 

emerge, the system operators typically do not have the expertise, time, or funding needed to 

control and reduce the life cycle costs of the system (―Keeping Him Awake,‖ 2010).  Further, the 

operator, who is not the OEM, typically has little in-house capability to improve the reliability 

and design of the fielded system.  In this traditional approach, the organization most capable of 

reducing life cycle cost, the OEM, typically moves on to the next research design and production 

effort, leaving post-production support in the hands of a hodgepodge of suppliers and operators 

(Randall, 2009). 

This structure devolves into competing objectives (e.g., OEM and supplier desires to sell 

more spares and repairs, customer desires to reduce spending) with little incentive to invest in 

life cycle cost reduction beyond production (Geary & Vitasek, 2008).  Without innovation and 

involvement from the OEM and suppliers, the efficiency of the post-production support 

infrastructure—characterized here as the operator’s ability to integrate its warehouse, inventory, 

transportation, procurement, and labor functions—is limited (Randall et al., 2010).   

As depicted in Figure 2, PBL corrects incentive misalignment in the post-production 

logistics and support network, and transfers roles and responsibilities to the entities most capable 

of performing these tasks efficiently and effectively.  As a result, PBL manifests itself as a 

solution that effectively leverages the existing expertise that resides with the OEMs, suppliers, 

and MRO providers.  PBL drives a governance structure that codifies the role of a systems 

integrator as the entity that establishes and performs critical supply chain integration functions 
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across the life cycle of the system (Randall et al., 2010).   Because the system integrator is now 

responsible for integrating and orchestrating the post-production logistics and support 

infrastructure (e.g., warehouses, inventory, and transportation), the operators are now free to 

focus on their expertise—the actual operations of the system (e.g., route scheduling and pricing). 

 

Figure 2. Representation of a PBL Post-Production Logistics and Support 

Systemigram  

 

PBL integration is, therefore, particularly effective when the integrator (e.g., the OEM) 

keeps elements of the research, design, and production supplier network in place to manage and 

logistically support the system during post-production.  This means that the integrator and 

suppliers are now capable of balancing and optimizing the cost of inventory, transportation, 

warehousing, on-equipment maintenance, and MRO against the potential to reduce those costs 

through redesign.  This makes sense for a number of reasons.  The OEM and the suppliers are in 

the best position to make initial forecasts of the reliability and subsequent demand for parts, and 

then to update those forecast models as the system evolves during use (Kim et al., 2010; Nowicki 

et al., 2008; Randall et al., 2010).  Further, the OEM and suppliers are typically most capable of 

affordably redesigning components to drive out costs or bad actors.  As new technology, 

materials, and logistics processes become mature, these suppliers, who are further back in the 

supply chain, are most capable of affordably improving the design of both consumable and 
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repairable products.  In coordination with the integration expertise of the OEM, these products 

can then be infused into the system as the system fails—thus, reducing future logistics costs.   

There are two keys differences between a PBL contract and traditional post-production 

support.  The first involves contracting for performance, or an outcome, rather than repeatedly 

contracting for discrete products and services (Geary & Vitasek, 2008).  Under a PBL contract, 

the buyer contracts for system performance, typically characterized as system ―up time,‖ as 

opposed to contracting for spare parts and repair services.  System up time is defined as the 

amount of time the system either is ready to perform (e.g., aircraft fleets) or does perform (e.g., 

power generation networks) divided by the amount of time possible for that system to be up.  

The supplier is then free to ensure this contractual up time is achieved as efficiently and 

effectively as possible.  The second key to PBL involves its reliance on a multi-year relationship.  

The multi-year relationship gives the supplier network time to determine whether certain 

reliability issues might be better served through redesign, as opposed to continued procurement 

of support resources and services, such as spares and repairs.  These contract dynamics of PBL 

result in a structure where the integration, accountability, and risk for achieving performance 

objectives are left with those organizations that have the greatest set of relevant knowledge, 

skills, and abilities. 

3. Study 1:  Successful Performance-Based Contracts (PBCs)—Key 

Characteristics and Metrics 

3.1. Overview 

Performance-based logistics (PBL) strategies are providing governments and for-profit 

organizations with a contractual mechanism that reduces the life cycle costs of their systems.  

PBL accomplishes this by establishing contracts that focus on the delivery of performance, not 

parts. PBL establishes a metrics-based governance structure where suppliers make more profit 

when they invest in logistics process improvements, or system redesign, that reduce total cost of 

ownership. While work has been done to outline an overall PBL theoretical framework (Randall 

et al., 2010), testing is required on the underlying theory that explains the enablers that lead to 

organizational and team-level, team-goal alignment associated with the PBL governance 

structure.  The purpose of this research, therefore, was to quantitatively test previously posited 

relationships between enablers of PBL and PBL effectiveness.  An additional objective was to 

explore any differences in PBL effectiveness between different business sectors.   
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3.2. Model 

A multiple regression model was developed, tested, and validated to explain the 

effectiveness of PBL.  The model was externally validated with exploratory cross-sectional 

survey data of 61 practitioners.  For a detailed discussion of the theoretical development of the 

multiple regression model see Appendix A. 

3.3. Key Findings and Business Implications 

This study strongly supported recent PBL theory explaining PBL effectiveness (Randall 

et al., 2010).  Key antecedents included investment climate, relational exchange, PBL leadership, 

and business sector.  This investigation also found that government organizations lag behind 

their commercial counterparts in PBL effectiveness and PBL leadership.  Model results 

suggested that this lag had a negative moderating effect on PBL outcomes. 

PBL business arrangements are more effective in more favorable investment climates.  

Thus, leaders should welcome new ideas, empower employees, and encourage entrepreneurship.  

Because PBL effectiveness increases with relational exchange, building trust and communicating 

with suppliers is key.  Leadership is also important to PBL effectiveness.  Leaders should accept 

risk, focus on long-term affordability and performance, and align activities to achieve end user 

goals.   

3.4. Future Research 

This study was not without limitations.  First, the research design relied upon self-

reported data from respondents that may have introduced common method bias.  Second, 

whereas the model explained 53% of the variance in PBL effectiveness, we wonder whether PBL 

effectiveness, while a distinct construct in the minds of the practitioners, may in fact be multi-

dimensional, yet highly correlated in each dimension. There appears to be reason to consider 

whether PBL effectiveness is in fact an amalgamation of PBL-driven innovation and alignment.  

Follow-on research should address this possibility.  Third, survey responses were drawn from a 

convenience sample, rather than a random sample, and a sample size of 61 is relatively small 

when making statistical inferences from the data.  This could have impacted the normality of the 

investment climate.  Fourth, the survey narrowly targeted defense industry applications of PBL.  

Despite its limitations, the findings are important and, as such, demonstrate the promise of this 

line of inquiry—which should be expounded.  Indeed, the Joint Strike Fighter program will use 

only PBL for post-production support.  With its $1 trillion life cycle cost, the Joint Strike Fighter 
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program is the largest government program ever (Government Accountability Office, 2008).  

Fifth, future NPS research could test other determinants of PBL effectiveness, such as team 

innovation, metric appropriateness, and team learning (Geary, Koster, Randall, & Haynie, 2010).  

In addition, contingency theory could be applied to show contextual differences in PBL 

effectiveness (Bowersox, 1990; Fawcett, Magnan, & McCarter, 2008; Moorman & Slotegraaf, 

1999).  Differences could be explored to determine whether PBL effectiveness differs (1) by 

contract type (i.e., when operators and systems integrators use firm-fixed price versus cost-

reimbursement contracts) and (2) by industry.  Finally, future research should expand the 

generalizability of findings by expanding the population beyond defense systems. 

4. Study 2:  Determining the Optimal Price, Length, and Investment of a PBC 

4.1. Overview 

Performance-based contracting (PBC) has altered the fundamental relationship between 

buyers and suppliers engaged in the support of capital-intensive systems, such as high-speed rail, 

defense, and power generation.  This shift is a movement away from a traditional transactional-

based (return-on-sales) business approach and a movement toward a collaborative, performance-

based (return-on-investment), multi-year contractual model.  With PBC, the supplier is 

compensated for system performance, rather than for each maintenance, repair, and overhaul 

(MRO) transaction.  The success of the PBC approach lies in the incentive structure.  Under PBC, 

the profits are highest, performance is improved, and operator costs are ultimately reduced when 

smart investment decisions are made that trade year-after-year MRO costs for upfront investments 

that reduce total cost of ownership. The amount of money to invest in improving the system 

performance is both an important design decision and a critical business decision that must be 

made prior to engaging in a PBC.  This strategic investment decision is bound by five key 

variables: (1) PBC contract length, (2) initial system reliability,(3) willingness of a customer to 

engage in a PBC at a given offering price, (4) multi-year price break, and (5) average and 

variability of the cost to perform a maintenance task.   

4.2. Model 

A decision-theoretic model was developed that determined the optimal contract length, 

optimal investment, and pricing strategies for performance-based, post-production service 

contracts that simultaneously maximize the profit to the supplier while satisfying the customer’s 

needs. The model accounted for reliability as a function of investment and the average and 
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variance of the cost to perform maintenance tasks, and for customers’ willingness to pay for a 

contract depending on its length.  For a detailed discussion on the decision theory and 

mathematical model used to determine the optimal price, contract length, and investment see 

Appendix B. 

4.3. Key Findings and Business Implications 

Optimal strategies depend on potential market size, expected cost per failure, and other 

parameters of the model. In summary, the following conclusions can be drawn:  

 Optimal investment is an increasing function of the expected cost per failure, market size, 

and customers’ willingness to pay, but is a decreasing function of the initial reliability.  

 Optimal periodic contract fee is an increasing function of the contract’s length, customers’ 

willingness to pay, and an expected cost per failure, but is a decreasing function of the 

initial reliability and market size.  

 Longer post-production service contracts require higher optimal investments, but provide 

higher system reliability.  

 Optimal contract length is a decreasing function of the discount per period, expected cost 

per failure, and marginal investment parameter, and it is an increasing function of the 

market size and the maximal price that customers are willing to pay for a single-period 

contract.  

4.4. Future Research 

We believe this is just the beginning of an area of research that focuses on managerial 

decisions at the intersection of system design, supply chains, and sustainment.   Cost avoidance 

strategies run the gamut from improving the reliability of a system to investing capital into 

spares to satisfy a customer’s requirements.   A possible research question is how to optimally 

allocate funds among competing cost avoidance alternatives?  As it relates to PBC, a future area 

of research is to determine how to invest in these competing, and sometimes complementary, 

cost avoidance alternatives to increase the likelihood of contract capture and to further increase 

profit.  We also wonder if the PBC environment represents a Nash Equilibrium, and, if so, how 

game theory might be used to explain and predict PBC market behavior. 
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5. Study 3: Determined Optimal Investment Strategies in System Design and 

Supply Chain Improvements 

Our initial research focus was to develop analytical models to evaluate the trade-offs at 

the intersection of a system’s architecture and its support network.  Central to this problem was 

the ability to solve complex equations that spanned the PBL ecosystem.  

5.1. Improving the Computational Efficiency of Multi-Echelon Technique for 

Recoverable Item Control (METRIC) Inventory Optimization Problems 

5.1.1. Overview 

We developed a new heuristic algorithm to improve the computational efficiency of the 

general class of Multi-Echelon Technique for Recoverable Item Control (METRIC) problems.  

The objective of a METRIC-based decision problem is to determine systematically the location 

and quantity of spares that either maximize the operational availability of a system subject to a 

budget constraint or minimize the system’s cost subject to an operational availability target.  This 

type of sparing analysis has proven essential when analyzing the sustainment policies of large-

scale, complex repairable systems, such as those prevalent in the defense and aerospace 

industries.  Additionally, the frequency of these sparing studies has recently increased as the 

adoption of performance-based logistics (PBL) has increased.  

5.1.2. Model 

We developed and validated a practical algorithm for improving the computational 

efficiency of a METRIC-based, inventory optimization approach.  Details on the underlying 

theory and mathematical development of this novel, heuristic model are in Appendix C. 

5.1.3. Key Findings and Business Implications 

The accuracy and effectiveness of the proposed algorithm were analyzed through a 

numerical study.  The algorithm showed a 94% improvement in computational efficiency while 

maintaining 99.9% accuracy.  

PBL represents a class of business strategies that converts the recurring costs associated 

with maintenance, repair, and overhaul (MRO) into cost avoidance streams.  Central to a PBL 

contract is a requirement to perform a business case analysis (BCA), and central to a BCA is the 

frequent need to use METRIC-based approaches to evaluate how a supplier and customer will 

engage in a performance-based logistics arrangement where spares decisions are critical.  Due to 
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the size and frequency of the problem, there exists a need to improve the efficiency of the 

computationally intensive METRIC-based solutions. 

5.2. A System-of-Systems Design Decision under a Performance-Based Supplier- 

Customer Relationship 

5.2.1. Overview 

More often, the design community, often spearheaded by systems engineers, and the 

sustainment community are looking collaboratively for more cost- effective and profitable ways 

to provide simultaneously a better performing system and improved post-production support to 

their customers (Nowicki et al., 2008; Randall, Nowicki, & Hawkins, 2011; Randall et al., 2010).  

In times of shrinking margins, reduced funding, and increased competition, it makes sense that 

managers would seek innovative strategies to facilitate such competitive challenges.  

Performance-based logistics (PBL), also known as performance-based contracting (PBC) or 

power by the hour (PBH), is successfully providing new sources of customer value and supplier 

network profitability in the arena of complex system post-production support (also called 

sustainment).   

A natural trade-off space exists between the system design and the makeup of the post-

production support network necessary for its successful, on-going operation.  Within this trade-

off space reside competing investment opportunities.  An example includes investing in 

improved system reliability (e.g., redundancy, higher quality components, etc.) with the 

consequence of avoiding out-year support costs (e.g., spares, transportation, etc.)  On the other 

hand, investments in the support network (e.g., more spares, faster replenishment times, etc.) 

may provide the same desired system-level effect without the investment of more time and 

money in the research, design, and development cycles.   Competing and complimentary desired 

system performance attributes often exist, such as reliability, maintainability, availability, life 

cycle cost, and logistics footprint.  Design and support decisions are often made in isolation of 

each other and are often made with the consideration of only one system-level performance 

measure.  We have made progress on developing multi-objective, decision support models to 

assist decision-makers. These models simultaneously consider the effects on system design and 

its post-production support network. 
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5.2.2. Model 

We are in the process of developing a meta-heuristic model that enables optimal design 

decisions to be made when evaluating competing design alternatives using an analytical method 

capable of simultaneously considering multiple criteria.   The proposed meta-heuristic model is 

an evolutionary algorithm defined in an iterative, four-step process. These four steps are based 

on the generation of the system design configuration via Monte Carlo (MC) simulation, solution 

analysis, and estimation of the system-level, profit-based spares algorithm to provide the 

necessary support to the system.  This is accomplished with a new meta-heuristic algorithm that 

drives the simultaneous selection of a primary system configuration (where and how much 

redundancy to design in) and design of the enabling support network (location and quantity of 

spares).  For details on the theoretical development of this new, evolutionary algorithm see 

Appendix D. 

5.2.3. Key Findings and Business Implications 

This is an on-going research effort.  We are in the process of testing our model.  When 

the model is complete, we will then be in a position to uncover key findings as we attempt to 

examine real-world problems and exercise the model to make inferences about trade-offs 

between system design and support network investments. 

In this research, we adopted the perspective of an original equipment manufacturer 

(OEM) who would like to choose a design, from competing design alternatives, that 

simultaneously examines five fundamental systems engineering metrics—availability, reliability, 

maintainability, supportability, and total ownership cost.  Existing design evaluation models only 

consider one metric, and possibly two, as an objective to make a design decision.  With the 

continuing emphasis on PBL contracts, it is now even more imperative that design decisions are 

made in the presence of competing system-level performance metrics in order to judge both 

profitability and the ability to satisfy customer requirements.  
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the Future of Logistics, Arlington, VA. 
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6.3. Doctoral Student Research Supported/Supervised 

Murynets, I. (2010). Optimal investment and marketing strategies for technologically 

innovative services (Doctoral dissertation). Available from ProQuest Dissertations 

and Theses database. (UMI No. 3428880) 

Hernandez, I. Emergency preparedness framework:  A multi-objective approach. Doctoral 

dissertation in progress. 

6.4. Awards 

Best Dissertation in the School of Systems and Enterprises 

Awarded to Ilona Murynets for her dissertation, Optimal Investment and Marketing 

Strategies for Technologically Innovative Services.   Part of her dissertation focused on 

investment and pricing strategies for performance-based, post-production support contracts. 
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Appendix A.  A Multiple Regression Model used to Uncover PBC Key 

Characteristics and Metrics 

The material we present in this appendix elaborates on the how we developed a 

theoretical model to evaluate the relevance of five hypotheses in uncovering key characteristics 

and metrics of PBL effectiveness.  We tested five hypotheses using linear multiple regression: 

H1:  There is a positive relationship between investment climate and PBL effectiveness. 

H2:  Relational exchange positively influences PBL effectiveness. 

H3:  PBL leadership positively influences PBL effectiveness.   

H4:  Business sector affects PBL effectiveness. 

H5:  Measures of PBL effectiveness and enablers of PBL will be greater for PBL than for 

traditional post-production support.  

 

 Consistent with Hair, Black, Babin, Anderson, and Tatham (2010), the scale items were 

summed on each construct and introduced into the regression analysis.  We tested the pertinent 

assumptions of regression (i.e., normality, heteroscedasticity, and independence of error terms) 

as follows.  Since the sample size was small, we applied the Shapiro-Wilks test of normality.  

Only relational exchange was normally distributed; thus, the remaining metric constructs were 

transformed (PBL Effectiveness–cubed; PBL Leadership–squared; Investment Climate–

squared). Only Investment Climate did not achieve a non-significant Shapiro-Wilks statistic (p < 

0.02).  Next, we tested the constructs for homoscedasticity using the Levene’s test (1.59; p < 

0.25).  Results indicated satisfaction of the assumption of constant error variance.  Finally, we 

examined the Durbin-Watson statistic (2.24) to ensure that error terms were independent.  Since 

it was within the range of 1.5 to 2.5, we concluded that the error terms were independent. 

Although the independent variables were significantly correlated, all of the variance inflation 

factors were less than 1.7, indicating that multicollinearity did not pose a problem. Table A1 

displays parameter estimates, significance levels, and the explanatory power of the model.   The 

model is given in Equation 1: 

Y
3
 = b0 + b1X1

2
 + b2X2 + b3X3

2
 + b4X4 + εi,             (1) 

where:   

Y  = PBL Effectiveness (PBL) 

X1 = Investment Climate (IC) 

X2 = Relational Exchange (RE) 

X3 = PBL Leadership (L) 

X4 = Business Sector 
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Variable X4 was a dummy variable with the for-profit firms serving as the reference 

group (coded 0).  With a negative coefficient, the not-for-profit group shows lower PBL 

effectiveness (summated scale mean 31.90) than does the for-profit group (mean 37.96).  As an 

additional test of H4, we tested the differences in the three key enablers of PBL using ANOVA.  

Only PBL leadership differed (F = 17.64; p < 0.001) with the for-profit sector exhibiting 

significantly greater PBL leadership (mean 12.02) than the not-for-profit sector (mean 9.63).  As 

seen in Table 1, all four predictors show significant path estimates, with relational exchange 

having the greatest effect on PBL effectiveness.  Additionally, a respectable amount of variance 

in PBL effectiveness (53%) was explained by the four independent variables. Given these 

results, the four main hypotheses were supported.  Correlations among the constructs are shown 

in Table 2. In nearly all items, the means of PBL exceed those of traditional post-production 

support.  Thus, support is found for hypothesis five. 

Table 1. Regression Results 

DV: PBL Effectiveness Standardized 

Coefficient 

t P > |t| Sig. 

     

Intercept -8939 -0.74 0.46  

     

Explanatory Variables:     

     

Investment Climate 0.21 2.04 0.046 ** 

Relational Exchange 0..35 3.51 0.001 * 

PBL Leadership 0..22 1.89 0.064 *** 

Business Sector -0.28 -2.73 0.009 * 

     

Adjusted R2 0.53    

Prob > F 17.86  .000 * 

     

Note:  Significance level * < 0.01, **< 0.05, ***< 0.10 

 

Table 2. Correlation Matrix 

 Investment 

Climate 

Relational 

Exchange 

PBL 

Leadership 

PBL 

Effectiveness 

Investment 

Climate 
0.86    

Relational 

Exchange 
0.34* 0.64   
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PBL Leadership 0.44* 0.31** 0.74  

PBL Effectiveness 0.46* 0.44* 0.55* 0.94 

Note: Values on the diagonal represent the construct’s reliability. 

*Significant, p < 0.01 

**Significant, p < 0.05 

Appendix B.  Developing a Decision-Theoretic Model to Determine a PBC 

Optimal Price and Contract Length 

The material we present in this appendix elaborates on how we developed the decision-

theoretic model to determine the optimal price, contract length, and investment of a PBC.   

Suppose a supplier offers a system for sale to its addressable market M with each 

potential customer having the option to engage in a post-production service contract. The salable 

system has an initial reliability of r0; however, the supplier has the ability to improve the system 

design by investing x toward increasing the system’s reliability according to r(x), where r(x) ≥ r0. 

A customer purchasing the system is offered a post-production service contract at a fixed 

periodic fee p in exchange for a full complement of maintenance services. If the customer 

purchases the post-production contract, then the customer receives the system, with reliability 

r(x), and the supplier is now responsible for the costs and risks associated with sustaining the 

proper operation of the system over the length (k) of the contract. A supplier’s addressable 

market consists of M potential customers whose willingness to pay the periodic fee for the post-

production service contract directly depends on the reliability of the system r(x) and on the 

length of the service contract k. Let wr(x),k(v), v >0 be the probability density function of 

reservation fees, that is, the maximum fee that a customer is willing to pay for the k-period 

contract if the system reliability is r(x). A customer buys the post-production service contract if 

the supplier’s actual periodic contract fee p is less than or equal to the customer’s reservation fee. 

The fraction of the M potential customers that will engage in a post-production service contract 

of length k with the supplier is  

     

(2) 

The total profit to the supplier, assuming the supplier invests x into improving the 

reliability of its system’s design is  


Wr, k(p)  wr(x) ,k(v)
p



 dv.
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,  (3) 

where p is a periodic contract fee, i is an interest rate; and f((r(x)) is the total cost of all 

system failures for a single period within a k-period contract given that the system has a 

reliability of r(x). 

Model Notation and Assumptions  

The new decision-theoretic post-production service model developed in Appendix B, is 

greatly influenced by the reliability of the system the supplier is contracted to sustain, the cost to 

the supplier each time a maintenance action is required, the supplier’s total ownership cost of a 

system failure, and the willingness of a customer to engage into a post-production service 

contract with the supplier. Each of these variables are discussed Table 3 highlighting the defining 

assumptions and key interrelationships.  

Table 3. Notation 

M number of potential customers 

k length of a contact 

m inumber of missions in a single time period of a contract of length k 

r0 initial reliability of the system for the mission time tm 

r(x)  reliability of the system for a cost avoidance investment of x 

γ marginal investment parameter 

f(r(x))  total cost of all system failures for a single period, given that the system has a reliability 

r(x) 

μc average cost per failure 

σc standard deviation of the cost per failure 

p periodic contract fee 

i interest rate 

d discount per period expected by customers 

λ maximal fee that customers are willing to pay for the single-period contract if r(x) = 1 

wr(x),k probability density function of customers reservation fees 

Wr(x),k(p)  fraction of customers that will engage in the k-period contract with the periodic fee equal 

to p and the reliability of the system is r(x) 

Π(x,p,k)  total profit to the supplier when investing capital x into the system reliability design for a 

k-period post-production contract with periodic fee p 

 



(x,p,k)M
1

j

(1i)j1

l

 (p f (r(x))) wr(x) ,k(v)
p



 dvx
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We made the following four assumptions, denoted by (A1)-(A4):  

(A1) The system reliability r depends on cost avoidance investment x in the following 

way:  

,                                               (4) 

Where γ > 0 is a marginal investment parameter, defined as the marginal investment 

required to achieve an incremental improvement of system reliability. The function r(x) satisfies 

the assumption regarding the initial reliability of the equipment (r(0) = r0). The signoid shape of 

the curve r(x) describes the relationship between system reliability and investment, observed in 

reality fairly well (Levesque, 2000).  

(A2) The cost per failure is a normally distributed random variable with the mean μc and 

variance σc
2.  

(A3) The expected cost of all system failures per period decreases with reliability 

improvements is , where m is the number of missions in a single time 

period.  

(A4) The customers’ reservation fees follow the triangular distribution:  

,                            (5) 

where λ is a maximal fee that customers are willing to pay for the contract if reliability of 

the equipment will be improved to r(x) = 1 and d is a discount per period expected by customers 

if they buy a multi-period contract.  The use of a triangular distribution to represent reservation 

fees is consistent with the current state of the pricing literature (Kirman, Schulz, Hardle, & 

Werwatz, 2005). 

Optimization 

The goal of the supplier is to identify an optimal investment x*, optimal periodic contract 

fee p* and optimal contract length k* that maximize the supplier’s expected profit E[Π(x,p,k)] 

from a k-period contract (k = 1,...,n) :  

,                                         (6) 

where, 



r(x)ro(1ro) 1
1

x 1










xro

x



f (r(x) ) cm(1 r(x) )



wr(x ) ,k(v) 

2
((1 d(k 1))r  p)

2
((1 d(k 1))r)

, 0  p  (1 d(k 1))r

0, o.w.














E(x*,p*,k*) 
k1,. . . ,n
maxE(x*,p*,k) 
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,                                         (7) 

with a set of feasible solutions:  

,                                     (8) 

where the upper bound for the price follows from triangularly distributed customers 

reservation prices. Under the assumptions (A1)-(A4), an expected profit is given by  

  (9) 

 

where Dk = (1 - d(k - 1)) and Ik = (1 + i- (1 + i)-k)∕i.  

The optimal investment x* and the optimal periodic fee p* for the k-period contract are 

either critical points determined from the first order necessary conditions:  

and  ,                       (10) 

or belong to the boundary of the feasible set Fxp. With Equation 9, Equation 10 reduces to  

                                                                         (11)    

and 

        (12) 

where X = x + r0γ. If (x*,p*) is a critical point, it satisfies the second order sufficient 

conditions: 

and

                      (13)

 

and 

   (14)

 

The optimal solution (x*,p*) is obtained numerically for all k = 1, ..., n and the optimal 

contracting period k* follows from Equation 6. 

  



E(x*,p*,k*) 
{x,p}Fx,p
max E(x,p,k) 



Fx , p  {x, p} | x  0,0  p  )1 d(k 1) )r 



E (x,p,k) 

2
MIk(p(x)cm(1ro))(p(x)Dk(xro))

2


2
Dk

2
(xro) (x)

x, 0 pDkr(x)

0, o.w.










(x*,p*,k)

E (x,p,k) 
x

0



(x*,p*,k)

E (x,p,k) 
p

0



p
2cm(1ro)DkX

3(X(1ro))



4MIk(1ro)
2

(XDkcm(1ro)) (cm(3X2(1ro))XDk)27 3
X

2


2
Dk

2
(X(1 ro)) 0



(x*,p*)

2
 E (x, p) 

2
 x

 0,



(x*,p*)

2
 E (x, p) 

2
 p

 0,



(x* ,p* )

2
 (x,p)

2
 x

2
 (x,p)

2
 p


2
 (x,p)

xp

2
 (x,p)

px
0,
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Appendix C.  —A Practical Algorithm to Improve the Computation Efficiency 

of METRIC Models 

The material we present in this appendix provides the underlying theory and 

mathematical formulation of our new, meta-heuristic algorithm that improves the computational 

efficiency of METRIC models.  Let us start by first defining the notation we used in developing 

this practical algorithm. 

Table 4. Notation 

Sets and Indices 

E = set of echelons within the support infrastructure, with index e = 0, 1, 2, …, | E|; 

where | E| is the cardinality of set E, less one; 

L
e
 = set of locations within echelon e, with index l = 1, 2, …, |L

e
 |;  and 

I
le

 = set of items at location l within echelon e, with index i = 1, 2, …, |I
le
 |. 

 

Decision Variables 



i
le
is  = initial stock level of item i at location l within echelon e; and 

i
le
s  

= stock level of item i at location l within echelon e. 

 

Model Parameters 

 

EBO
min 

= minimum expected backorder value needed to qualify an item for the 

preprocessing algorithm; 

γ = fraction applied to the EBO of qualified items, γ [0,1]; 

n = number of systems; 

BO( i
le
s )  = random variable (r.v.) representing the backorder of item i at location l within 

echelon e given stock level i
le
s ; 

E BO( i
le
s )éë ùû = expected backorder of item i at location l within echelon e given stock level i

le
s

; 



i
le
N (t) = r.v. representing the demand quantity of item i at location l within echelon e in 

any fixed interval of length, t; 

E i
le
N (t)éë ùû = expected demand quantity of item i at location l within echelon e in any fixed 

interval of length, t; 



i
le

  = failure rate of item i at location l within echelon e; 



i
l e

MTTR  = mean time to repair item i at location l within echelon e; 

i
le

UC  = cost of item i at location l within echelon e; 



i
le

  = average quantity of item i at location l within echelon e in the overall pipeline; 



i

le

R
  = average quantity of item i at location l within echelon e in the repair pipeline; 



i

le

T
  = average quantity of item i at location l within echelon e in the transit pipeline; 


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

i

le

BO
  = average quantity of item i at location l within echelon e in the backorder 

pipeline; 



i
le
r  =probability of repairing item i at location l within echelon e; 



i

le

R
  = average time to replenish item i from location l in echelon e-1 to  location in 

echelon e; and 

i

10

P
F  = average time to procure item i from a vendor to the depot (location 1 in 

echelon 0). 

Algorithm 

The objective of the proposed heuristic algorithm is to reduce the number of iterations to 

determine the location and quantity of spares that are needed to meet a specified operational 

availability at a minimum cost.  This is achieved by bounding each location’s stock level from 

below by its mean demand during lead-time. The solution approach leverages the convexity of 

the expected investment cost curves beyond the mean demand during lead-time. The risk is that 

by artificially constraining the search space, the heuristic may never find the true optimal stock 

levels. This risk, however, is somewhat overstated because the impact on costs of being one or 

two units from the optimal should not affect the overall costs significantly. This is due to the 

relative ―flatness‖ of the expected cost functions of METRIC about their minimum values. The 

benefit is that the number of iterations required to derive the necessary set of stock levels is 

drastically reduced and, therefore, the algorithm can quickly find a pseudo-optimal solution. 

Figure 3 is a flow chart that graphically represents the steps and interactions of this new 

heuristic algorithm.  The major contributions of this research are in Steps 1 and 3.The algorithm 

reduces the number of iterations to reach a quasi-optimal solution in two ways.  First, the 

algorithm essentially functions as an efficient preprocessor before the augmented METRIC-

based approach begins.  The algorithm calculates the expected backorder (EBO) for each item at 

each location assuming no stock level and then identifies which (item, location) combinations are 

eligible for the preprocessing stage.  An (item, location) combination is eligible for the 

preprocessing stage if its EBO exceeds the minimum EBO threshold, EBO
min

.   The result of the 

preprocessing stage determines the initial stock levels, 



i
le
is , for each eligible (item, location) 

combination.   The modified METRIC algorithm is then executed with its first iteration assuming 

these initial stock levels. 

Secondly, the algorithm modifies the METRIC-based approaches by potentially adding 

more than one item at a particular location in a single iteration.  For eligible (item, location) 
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combinations identified in Step 1, or for an eligible (item, location) combination chosen within 

Step 3, the incremental number of spares of an item added to a location is determined by a 

fraction (γ) of its EBO. The computational efficiency algorithm is heavily influenced by the 

values for γ and EBO
min

.  Both γ and EBO
min

 are inputs to the algorithm.  

 

Figure 3. Flow Chart of the Computationally Efficient Algorithm 

 

Details of the 4 step computationally efficient algorithm follow: 

STEP 1. Calculate 



i
le
is  for each i, l, e combination.  For each item i, calculate the

E BO( i
le
N (t) | i

le
Q , i

le
s = 0( )é

ë
ù
û



i, l,e.If E BO( i
le
N (t) | i

le
Q , i

le
s( ) = 0é

ë
ù
û> min
EBO

 
then set the initial stock 
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level



i
le
is  to a fraction (γ) of the E BO( i

le
N (t) | i

le
Q , i

le
s = 0( )é

ë
ù
û



 i
le
is = g ´ E BO( i

le
N (t) | i

le
Q , i

le
s = 0( )é

ë
ù
û

é
ê

ù
ú; 

otherwise set i
le
is = 0 . 

STEP 2. Apply Sherbrooke’s (2004) METRIC model, setting the stock values of 



i
le
s  

equal to 



i
le
is  to calculate the E BO( i

le
N (t) | i

le
Q , i

le
séë ùû and DE i

le
BOéë ùû for each I ,l ,e combination.  

The details of how to derive these expressions are shown in Appendix A. 

STEP 3. Choose the (item, location) combination with the largest marginal benefit, 

i,l,e
max DE i

le
BO[ ] i

le
UC{ }, to the support network. Increment the stock level of the chosen (item, 

location) combination 



i
le
s  by g ´ E BO( i

le
N (t) | i

le
Q , i

le
s( )é

ë
ù
û

é
ê

ù
ú if E BO( i

le
N (t) | i

le
Q , i

le
s( )é

ë
ù
û> min
EBO

; 

otherwise increment 



i
le
s by 1. 

STEP 4. Calculate operational availability (Equation 7).  If the operational availability 

meets its target, then stop. Otherwise go back to Step 2. 

The result is a pseudo-optimal solution obtained in a fraction of the time compared with 

any METRIC-based algorithm. 
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Appendix D.  Theory and Mathematical Model Development for a System of 

Systems Design Decision in the Presence of a Performance-Based Contract 

The material we present in this appendix is a detailed discussion on the theory used and the 

mathematical model developed in support of simultaneously making both system design and 

support network decisions. 

Model 

The general problem formulation for maximizing the supplier’s profit, within a PBL 

context, of a series-parallel system is presented as the general model (GM) in Table 5.   

Table 5. General Model 

max        Profit(x, s) = Rev(x, s)-Cost(x, s)

s.t.

MTBF(x) ³ T
MTBF

LF(x, s) £ T
LF

ijx Î (0,1)  "i Î I, j Î
i

J

ij
le
s ³ 0

ij
le
s = integer

 

The intent of the GM is to determine the primary system’s (PS) configuration (x) and 

spares allocation (s), within the existing support infrastructure (SI) that results in the largest 

profit to the supplier while respecting the maximum allowable customer’s logistics footprint 

requirements 

   

T
LF  and minimum mean time between failure 

  

T
(MTBF )requirement.  The SI is 

represented by the vector s where   

  

s = ( 11
10
s ,, ij

le
s ,, IJ

LE
s ) and x is the vector representing the 

configuration of the PS where   

  

x = ( 11x ,, ijx ,, IJx ). 

The revenue portion of the objective function is the result of the revenue paid to the 

supplier by the customer for the supplier’s performance delivered to the customer.  Nowicki et 

al. (2006) introduces revenue into the decision-making process to show how it has a critical 

impact on spares allocation decisions.  The revenue model used here is the reward and penalty 

model (Brown & Burke, 2000) commonly used in the PBL domain.  In this revenue model is 

expressed as a function of both the configuration of the primary system as well as of the spares 

profile of the enabling system.  The revenue is a function of the SoS performance with 

  

oA Î (0,1) and is bounded by 

  

a £ Rev( oA (x,s)) £ a+ b. 
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Rev( oA (x,s)) =

0 if 0 £ oA < minA

1a + 1b ´ ( oA - minA ) if minA £ oA < penaltyA

2a + 2b ´ ( oA - penaltyA ) if penaltyA £ oA < acceptA

3a + 3b ´ ( oA - acceptA ) if acceptA £ oA £ maxA

ì 

í 

ï 
ï 

î 

ï 
ï 

.   (15) 

The cost is the sum of the design cost as well as the support cost.  The design cost is the 

cost to provide items, including the redundant items, in the primary system’s design.  The 

support cost is defined here as the total cost of spares needed to populate the support 

infrastructure to maximize the overall system performance: 

   

Cost(x,s) = ij
le
c

e= 0

E

å
l=1

e
L

å
j=1

iJ

å
i=1

I

å ´ ij
le
s + ij

le
n ´ x( ).                                                                      (16) 

Under this formulation, the GM is unsolvable using traditional optimization techniques, 

such as integer programming, since the objective function and the constraints are non linear in 

nature.  The new meta-heuristic SoS algorithm proposed in Appendix D provides a good solution 

to the general model. 

Step 1. Primary System (PS) Design Development 

In the PS design development step, simulation is used to generate H potential PS series-

parallel design configurations.  A specific design is characterized by the vector 

  

h
x = ij

h
x[ ] for i = 

1, …, I;  j = 1, .., Ji and h = 1, …, H, where 

  

ijx Î (0,1).  
 
is the initial 

probability of inclusion vector and defines the probability that a redundant component is 

included in a specific PS design, x
h
.  A value, a, is randomly generated according to a U(0,1).  If 

, then 

   

ij
h
x =1 . Otherwise, 

   

ij
h
x = 0. The first step also contains the stopping rule of the 

algorithm. The algorithm will stop once  or 

  

"i Î I,"j Î iJ  (i.e., once all initial 

―appearance‖ probabilities are either zero or one).
 

Assigning initial values to the vector  is based on the lack of knowledge regarding 

which components will actually constitute the final PS configuration to optimally solve the 

general model. This lack of knowledge, also known as the Laplace principle of insufficient 

reason, translates into initially providing the same probability of appearing in the final solution 

to each component.  Thus, the initial probability of occurrence is , where j > 1 and 

 for j = 1, since at least one component in each subsystem needs to function or the system 

does not function. 







i I
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Step 2. Performance Analysis 

The second step, performance analysis, estimates the profit, MTBF, and logistics 

footprint for the PS potential designs previously obtained through simulation. This step derives 

the values for s
h
 using the profit-based, multi-echelon, multi-item spares algorithm described in 

Nowicki et al. (2006).  As a consequence of the spares algorithm, the following values are now 

also known for primary operating system x
h
 and for supporting infrastructure s

h
:

  

Profit( h
x , h
s ), 

  

Rev( h
x , h
s ), 

  

Cost( h
x , h
s ), 

  

MTBF( h
x , h
s ), and 

  

LF( h
x , h
s ).   

Step 2a. Calculate the pipeline values for the lowest echelon location (i.e., the central 

inventory location at echelon zero). The central inventory location’s pipeline value, 

   

ij
10

Q = ij
10
d ´

ij

10

P
F , is defined as the average number of items in repair at the central inventory 

location or requested for procurement from the procurement source. 

The 

   

i
10

Q is commonly referred to as the expected number of demands during lead-time, 

where the lead-time is the procurement lead-time



i

10

P
 .   The expected number of demands at the 

central inventory location in an arbitrary time interval t is stated as 

   

i
10
d (t) = ij

le
d (t) ´ 1- ij

le
r( ) ´ abd

j=1

i
J

å
i=1

I

å
l=1

e
L

å
e=1

E

å where,  

   

abd =
1 if location al  in echelon ae  feeds location bl  in echelon be , where a > b

0 o.w.

ì 
í 
î 

. 

Step 2b.  The pipeline value is then used to calculate the expected backorder value, 

   

E BO( ij
10
d (t) | ij

10
s )[ ] = x - ij

10
s( )

x=
ij
10
s +1

¥

å ´ P ij
10
d (t) = x[ ], given a specified stock level at the central,

   

ij
10
s

.When

   

ij
10
s = 0, the expected backorder reduces to

   

ij
10

Q  with  

  

E BO( i
10
d (t) | ij

10
s = 0)[ ] = E BO( ij

10
d (t =

ij

10

R
F )[ ] =

ij

10

R
F ´ E ij

10
d (t)[ ] = ij

10
Q

.
 

Step 2c.  After the expected backorder for the central inventory location is derived, the 

expected backorder at each of the locations it supplies with inventory needs to be calculated.   

For echelons other than the central, the pipeline number is further broken down into three 

numbers, as expressed in Equation 4.  Specifically, pipeline values are the sum of the average 

number of units in repair expressed in Equation 5, the average number of units in transport in 

Equation 6, and the average number of units in backorder in Equation 7. 
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ij
le

Q =
ij

le

R
Q +

ij

le

T
Q +

ij

le

BO
Q                                                 (17) 

  

ij

le

R
Q = ij

le
d (t) ´ ij

le
r ´ ij

le
MTTR  (18) 

  

ij

le

T
Q = ij

le
d (t) ´ ij

le
(1- r ) ´

ij

le

R
F  (19) 

   

ij

le

BO
Q = i

le
d (t) ´ ij

le
(1- r ) ´

E[BO( ij
le
d (t) | i

le
s )]

E ij
le-1
d (t)[ ]

i=1

I

å
l=1

iL

å
 (20) 

Step 2d. The pipeline values are then used to derive the expected backorder values for 

items at each location within each echelon.  The average number of units in the pipeline for a 

fixed period of time can be interpreted as a rate with the fixed period of time as the denominator, 

assuming a Poisson process.  For example, if the average number of units in a pipeline is 10 over 

a one-year period, this is equivalent to having 10 demands per year.  With this in mind, the 

expected backorder is represented as, 

   

E BO( ij
le
d (t) | ij

le
Q , ij

le
s[ ] = x - ij

le
s( )

x= ij
le
s +1

¥

å ´ P ij
le
d (t) = x[ ] = x - ij

le
s( )

x= ij
le
s +1

¥

å ´

x

ij
le

Q( ) ´ ij
le

-Qe

x!
 (21) 

When Equation 21 is evaluated for a stock level of zero, this reduces to simply, 

  

E BO( ij
le
d (t) | ij

le
Q , ij

le
s[ ] = ij

le
Q  (22) 

Step 2e. For values of 

   

ij
le
s > 0, Equation 22 is difficult to solve, so the allocation problem 

will utilize the first difference of the expected backorder; that is, the allocation routine will evaluate 

the change in the expected backorder when one item is added to stock.  First, differences are used 

to solve Equation 21 recursively, leveraging the known expression in Equation 23: 

                                           (23) 

Step 2f. For each subsequent iteration, the quantity of the winning spare, 



i
le
s , will increase 

by 



E  BO( i
l e
N (t) | i

l e
 , i

l e
s  0   . 

Step 3. Penalize the Design 

The final step in the approach uses a penalty model to penalize the profit of a potential PS 

design and its corresponding enabling infrastructure when the solutions do not meet either the 

MTBF or LF contractual constraints.   The resulting value of the penalty model is 

  

Value( h
x , h
s ), 
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representing the combined System of Systems (SoS) value of the primary system configuration, 

, and the enabling support infrastructure, , expressed as  

   

Value( h
x , h
s ) =

Y( h
x , h
s ) ´ Profit( h

x , h
s ) if Profit( h

x , h
s ) ³ 0

Profit( h
x , h
s ) Y( h

x , h
s ) if Profit( h

x , h
s ) < 0

ì 
í 
î                                    (24)

 

The composite penalty factor is the multiplication of the MTBF and LF penalty factors 

  

Y( h
x , h
s ) = MTBF

Y ( h
x ) ´ LF

Y ( h
x , h
s ) for each randomly generated series-parallel design alternative 

h = 1, …, H.  The penalty factors for each of the two performance metrics MTBF and LF are 

defined as 

   

MTBF
Y ( h

x ) =
MTBF( h

x ) T
MTBF if MTBF( h

x ) £ T
MTBF

1 o.w.

ì 
í 
î                            (25)

 

   

LF
Y ( h

x , h
s ) =

T
LF LF( h

x , h
s ) if LF( h

x , h
s ) ³ T

LF

1 o.w.

ì 
í 
î                                           (26)

 

The solutions are then ranked in decreasing order of magnitude with 

  

  

Value( (1)
x , (1)
s ) ³Value( (2)

x , (2)
s ) ³³Value( (h )

x , (h )
s ) ³³Value( (H )

x , (H )
s ).  A subset of size 

   

b

of the whole set of solutions (H) is then used to update .  The 

updated  is then used as the new starting condition. 

The subsample size 

   

b  is used to update the probabilities defined by the initial probability 

vector .  The rational for setting this value is based on work developed by Bäck and Schwefel 

(1996) and Schwefel and Bäck (1995) in the area of evolutionary strategies and its application to 

optimization algorithms that imitate certain principles of nature. In this respect, a population of 

individuals (a possible PS configuration in the context of the present research) collectively 

evolves toward better solutions by means of a parent’s selection process, a reproduction strategy, 

and a substitution strategy.  

These studies, Bäck and Schwefel (1996)and Schwefel and Bäck (1995), define a type of 

evolutionary strategy, where µ initial individuals generate λ offspring and selection takes place 

only among these λ offspring.  They suggest a ratio of λ / µ 7 as a good setting for the relation 

between parent and offspring population size. The meta-heuristic algorithm developed in this 

paper works in a similar fashion since from a sample (H) of potential PS designs, the algorithm 

selects B among the best configurations, according to the penalized profit factor 

  

Value( h
x , h
s ). 



h
x



h
s



i  I,j  iJ


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This means that, for example, from 100 potential PS designs, the best 14 configurations are 

selected. 

Penalization Factor (ψ) 

The penalization factor (ψ) is fundamental in deriving a good solution that determines the 

PS design (the type and amount of redundancy in a series-parallel configuration) and its 

corresponding support infrastructure (quantity and location of spares).  The intent is clear: 

maximize the supplier’s profit while adhering to contractually agreed upon constraints 

represented in this research by MTBF and LF. With the evolutionary nature of this algorithm, it 

is crucial to establish a basis of comparison to evaluate competing PS design configurations.  The 

overall objective is to decide on a PS design configuration (x) and corresponding support 

infrastructure (s) that maximizes profit, Profit(x,s).  However, some of the competing designs 

may not meet specified contractual constraints and must be accessed a penalty.  Herein is the 

underlying rationale for defining a penalization factor (ψ).   The penalty factor adjusts the profit 

contribution of a competing design in the following manner:  

Value( h
x , h
s ) =

Y( h
x , h
s )´ Profit( h

x , h
s ) if Profit( h

x , h
s ) ³ 0

Profit( h
x , h
s ) Y( h

x , h
s ) if Profit( h

x , h
s ) < 0

ì

í
ï

îï
 (27) 

If a profit exists, 

  

Profit( h
x , h
s ) ³ 0, it is fractionally reduced by the penalty factor, 

  

Y( h
x , h
s ).  If there is a deficit, 

  

Profit( h
x , h
s ) < 0, the profit is also reduced.  However, since the 

profit is a negative value, the value of the profit reduction is determined by dividing the profit by 

its corresponding penalty factor.  As mentioned previously, the penalty factor is a function of not 

meeting one or both of the specified contractual performance parameters, LF
T
 or MTBF

T
: 

  

Y( h
x , h
s ) = MTBF

Y ( h
x , h
s ) ´ LF

Y ( h
x , h
s ) where,  (28) 

   

MTBF
Y ( h

x , h
s ) =

MTBF( h
x ) T

MTBF if T
MTBF £ MTBF( h

x )

1 o.w.

ì 
í 
î 

; (29) 

   

LF
Y ( h

x , h
s ) =

T
LF LF( h

x , h
s ) if T

LF £ LF( h
x , h
s )

1 o.w.

ì 
í 
î 

.  (30) 

Both the LF and MTBF penalty factors only have an impact when their respective target 

values are not achieved, that is, when either 

  

T
MTBF £MTBF( h

x )or 

  

T
LF £ LF( h

x , h
s ).  There is 

no additional positive contribution to the profit margin associated with overreaching either the 

LF or MTBF performance metrics.   
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