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Abstract 

The aim of this research work is to develop a framework for making coordinated 
acquisitions decisions, integrating: (i) schedules of maintenance based on the 
condition of system components, and (ii) trigger acquisition of multiple vendor 
maintenance, repair, and overhaul (MRO) supplies and services. To do so, we 
develop a multi-objective optimization maintenance/acquisition scheduling algorithm 
where tradeoffs are made between two competing objectives: maximizing condition-
based component reliability while maximizing the sensitivity of condition-based 
reliability to changes in the component’s condition (e.g., degradation).  This 
scheduling algorithm integrates with an acquisition algorithm to addresses vendor 
lead-time.  Case studies broadly inspired by Tinker Air Force Base, the largest Air 
Force MRO hub in the US, in Oklahoma City, OK, illustrate the framework. 

 

Keywords: maintenance, repair, and overhaul; proportional hazards; 
scheduling; greedy heuristic 
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Improved Acquisition for System 
Sustainment: Multiobjective Tradeoff 

Analysis for Condition-Based Decision-
Making 

Research Summary 
Large-scale systems across the global landscape are aging, in many cases 

well past their intended useful life. This is a significant concern for the Department of 
Defense (DoD), particularly the Air Force, as budgets tighten and the replacement of 
weapons systems becomes infeasible. Acquisition for system sustainment is a chief 
budgetary and performance concern. This research addressed the issue of 
maintenance, repair, and overhaul (MRO) acquisition with three tasks, summarized 
as follows: 

Task 1. Formulate the multiobjective condition-based decision-making 
approach for triggering MRO operations. MRO activities are very important for 
the sustainment of aging systems, the failure of which can have widespread, 
adverse consequences. This paper presents an approach for maintenance 
scheduling that models condition data and system degradation with a proportional 
hazards model, which is commonly used for describing reliability from time-based 
and condition-based perspectives but has little use in maintenance decision-making. 
We introduce a sensitivity function for describing the extent to which reliability is 
impacted by degrading state variables, thus providing a temporal multiobjective 
maintenance optimization framework, trading off reliability and sensitivity. We also 
relax the common assumption of a finite condition state space governed by a 
stochastic process with the use of fitted models of state variable degradation. 

Task 2. Expand Task 1 to multi-component systems. As many large-scale 
systems age, and due to budgetary and performance efficiency concerns, there is a 
need to improve the decision-making process for system sustainment, including 
MRO operations and the acquisition of MRO parts. To help address the link between 
sustainment policies and acquisition, this work develops a greedy heuristic-based 
local search algorithm to provide a system maintenance schedule for multi-
component systems, coordinating recommended component maintenance times to 
reduce system downtime costs, thereby enabling effective acquisition. 

Task 3. Develop an algorithm to coordinate multiple vendor acquisition 
of component parts. As large-scale systems such as aviation fleets continue 
operation well beyond planned use, the costs associated with maintainability greatly 
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depend on the quality of allocating resources. This work uses a reliability model of 
system and environmental covariates incorporating information at the component- 
through the system-fleet levels to provide a decision-making approach for MRO and 
inventory operations to collaboratively address multiple components. We explore a 
conditional reliability calculation, driven by the Cox proportional hazards model, to 
determine lead-time requirements and suggest a dynamic maintenance trigger. Such 
information will inform MRO and inventory decisions. 

Task 4. Illustrate the above developments with a small case study 
addressing U.S. Air Force system sustainment. Illustrative examples for Tasks 2 
and 3 have been inspired by conversations with employees at Tinker Air Force 
Base, though due to the sensitive nature of such systems, no real data could be 
used. 

Research Output 
The remainder of this report provides the primary methodological 

developments and research findings of the funded work, provided in the form of 
scholarly journal manuscripts. Complete references across all tasks are provided in 
the References at the end. 

In total, the following papers and presentations were submitted or are still in 
progress (with support acknowledged): 

1. Chapel, T., Barker, K., & Ramirez-Marquez, J. E. (in press). 
Conditional reliability for acquisition decision making. Manuscript 
submitted for publication. 

2. Chapel, T., & Barker, K. (2013, May). Maintenance, repair, and 
overhaul inventory decision making for multi-component systems. 
Paper presented at the Industrial and Systems Engineering Research 
Conference, San Juan, PR. 

3. Kalam, S., Barker, K., & Ramirez-Marquez, J. E. (2013b). Scheduling 
multi-component maintenance with a greedy heuristic local search 
algorithm. Manuscript submitted for publication. 

4. Kalam, S., Barker, K., & Ramirez-Marquez, J. E. (2013a). Improving 
multi-component maintenance acquisition with a greedy heuristic local 
search algorithm. In Proceedings of the Ninth Annual Acquisition 
Research Symposium. Monterey, CA: Naval Postgraduate School. 

5. Wilson, K. J., & Barker, K. (2012). Multiobjective sensitivity analysis for 
condition-based sustainment decision making. Manuscript submitted 
for publication. 
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Also, the following two theses were completed as a result of this work: 

1. Chapel, T. (2013, Spring). Maintenance, repair, and overhaul inventory 
decision making for multi-component systems (Master’s thesis). 
Norman, OK: University of Oklahoma. 

Tiara Chapel is currently employed by MITRE Corporation. 

2. Kalam, S. (2013, Spring). Improving multi-component maintenance 
with a greedy heuristic local search algorithm (Master’s thesis). 
Norman, OK: University of Oklahoma. 

Sifat Kalam is currently employed by Boeing. 

Task 1. Formulate the Multiobjective Condition-
Based Decision-Making Approach for Triggering 
MRO Operations 

This section is based on the following: 

Wilson, K. J., & Barker, K. (2012). Multiobjective sensitivity analysis for 
condition-based sustainment decision-making. Manuscript submitted for publication. 

Introduction and Motivation 
Maintenance, repair, and overhaul (MRO) activities are very important for the 

Department of Defense (DoD), the Federal Aviation Administration, and private 
industry organizations that deal with sustainment of aging systems (Charles, Raman, 
& Starly, 2011). The failure of these systems has widespread adverse 
consequences, from the safety of individual aircraft, to issues of homeland security, 
to the success of defense missions. For example, most major commercial airlines 
and U.S. Air Force (USAF) have extended the life of their air fleet with few 
replacements planned in the near future due to decreasing budgets, including a 
USAF KC-135 fleet that is reaching 50 years in age and must be viable until 2040. 
And while the previous discussion concerns aerospace systems (e.g., aircraft, radar 
systems), the problem of sustaining aging systems is a widespread concern across 
many infrastructure systems. 

Performing MRO operations typically comes in the form of repairing existing 
components or replacing worn or obsolete components. Proactive MRO operations 
often result from preventive maintenance or scheduled downtime, which occurs 
periodically (e.g., number of cycles, amount of service time). In terms of 
replacement, this could occur in the form of “block upgrades,” when substitutions are 
delayed until a specified number of components become obsolete (Concho, 
Ramirez-Marquez, Herald, & Sauser, 2011). Predictive maintenance, or condition-
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based maintenance, occurs when the system failure signatures are assessed before 
failure actually occurs. Understanding the impact that MRO operations have on the 
reliability of systems and their components is important for decision-making 
(Martorell, Sanchez, & Serradell, 1999). Similar to Yacout, Ghasemi, and Ouali’s 
(2007) work, our work suggests that MRO decision-making should incorporate 
condition data for scheduling maintenance well in advance.  

Much of the emphasis of existing condition-based maintenance optimization 
is limited to single-objective analysis, neglecting consideration of competing 
objectives (e.g., MRO costs versus availability). Constraints are often imposed within 
single-objective optimization to account for multiple criteria, which presents a 
disadvantage because of an inability to assess tradeoffs between objectives in order 
to provide a solution that best represents the preference of the decision-maker (Tian, 
Lin, & Wu, 2012). In maintenance optimization, common optimality criterion include 
reliability, availability, and maintenance cost (Sharma & Yadava, 2011). This paper 
provides a multiobjective maintenance optimization approach where tradeoffs are 
made between two competing objectives: (i) maximizing the condition-based 
reliability function, and (ii) maximizing the sensitivity of the condition-based reliability 
function to changes in the state-of-the-system. A proportional hazards model, which 
is very useful in the study of repairable systems (Bendell, Wightman, & Walker, 
1991), describes reliability here. The multiobjective framework in this paper is 
multistage, as maintenance is performed more than once, and provides an in-
advance maintenance scheduling framework.  

Methodological Background 
This section describes some of the modeling ideas that comprise our 

methodological approach, including the condition-based proportional hazards model, 
degradation models, sensitivity metrics, and multiobjective optimization. 

Proportional Hazards Models 

Models describing failure probability often only incorporate time at failure, 
thereby modeling reliability, R(t), only as a function of time. Such suggests that the 
primary driver of failure is duration of use (e.g., time, repetitions, cycles). The Cox 
proportional hazards model (CPHM; Cox, 1972) provides a means to model 
reliability (or survival) with the incorporation of covariate effects, or the effects that 
the state of the system, not only time, have on hazard function and thus reliability. 
Provided in Equation 1, the hazard function describing the rate at which failures 
occur is a function of a time-driven baseline hazard function, h0(t), and the state of 
the system, vector x(t). β is a vector of regression coefficients reflecting the effect of 
the state-of-the-system on the hazard function. The reliability function can then be 

found as ܴሺݐሻ ൌ exp ቀെ ݄ሺݔሻ݀ݔ
௧
 ቁ. 
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                                            ݄൫ݐ; ሻ൯ݐሺܠ ൌ ݄ሺݐሻexp൫்ܠሺݐሻ൯                                         (1) 

The use of CPHM is widespread in medical research (Crowley & Hu, 1977; 
Prentice, Williams, & Peterson, 1981; Lee & Wang, 2003) and has had several 
applications in reliability engineering (Dale, 1985; Kumar & Klefsjo, 1993; Ansell & 
Phillips, 1997; Leemis, 2009). A primary reason for its popularity is that it allows the 
ability to assess reliability with a nonparametric approach, not needing to specify a 
baseline hazard, h0(t). As such, the typical use of the CPHM has been descriptive in 
nature (i.e., identifying the factors that significantly impact reliability), not prescriptive 
(i.e., actually estimating reliability given a set of covariates), which requires a specific 
h0(t) (e.g., Krivtsov, Tananko, & Davis, 2009).  

However, as a Weibull hazard function is often used to describe the failure of 
engineered components, such a function is a nature choice for h0(t) when such an 
assumption can be made. A baseline Weibull hazard distribution is provided in 
Equation 2, where ݇ and ߣ are the shape and scale parameters, respectively, of the 
Weibull distribution. Other explorations into baseline hazard functions include log-
logistic (Hutton & Solomon, 1997), Gompertz (Bender, Augustin, & Blettner, 2005), 
and constant (Kalbfleisch & Prentice, 1973), among others. Note that we continue to 
use the term CPHM for this model, as is often the case in the reliability literature, 
though (i) we are specifying a baseline hazard function and not using the traditional 
Cox nonparametric approach, and (ii) as Allison (1995) pointed out, the analysis of 
time-varying covariates is technically a non-proportional hazards model. 

݄ሺݐሻ ൌ


ఒ
ቀ௧
ఒ
ቁ
ିଵ

 (2) 

The baseline Weibull reliability function R0(t), which models reliability only as 
a function of time and without effects of degrading state variables, is shown in 
Equation 3. Reliability as a function of both t and x(t), the result of the CPHM, is 
shown in Equation 4. With k = 1, the failure rate is constant, and increasing with time 
when k > 1. 

ܴሺݐሻ ൌ exp ൬െቀ
௧

ఒ
ቁ

൰     (3) 

ܴ൫ݐ, ሻ൯ݐሺܠ ൌ exp ൬െቀ
௧

ఒ
ቁ

൰
ୣ୶୮ቀܠሺ௧ሻቁ

   (4) 

For CPHM to be useful in condition-based maintenance applications, a 
baseline hazard must indeed be chosen. Several works have explored a Weibull 
baseline hazard function in CPHM for maintenance decision making strategies, 
whether they be replacement decisions (Jardine, Banjevic, Makis, & Ennis, 2001); 
Wu & Ryan, 2011), inspection interval decisions (Chen, Chen, Li, Zhou, & 
Sievenpiper, 2011), procurement decisions (Louit, Pascual, Banjevic, & Jardine, 
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2011), and maintainability decisions (Barabadi, Barabady, & Markeset, 2011). 
Yacout et al. (2007) suggested that further research should be done for preventative 
maintenance that benefits from condition data with the power to schedule in 
advance.  

Degradation Models 

The classification of covariates with the stochastic processes described 
previously makes the assumption of a finite state space, potentially leading to 
subjectivity in how states and their transition probabilities are defined. Alternative 
approaches to modeling the degradation of the state-of-the-system include  
Brownian motion and other stochastic processes (Doksum & Hoyland, 1992; Liao, 
Elsayed, & Chan, 2006) and Bayesian methods for remaining life distributions 
(Gebraeel, Lawley, Li, & Ryan, 2005), among others (Shiau & Lin, 1999; Yuan & 
Pandey, 2009). The approach used here describes the state of the system, x(t), with 
a continuous fitted degradation model. System condition is not updated at discrete 
inspection intervals as with a finite state space stochastic process but degrades 
continuously. Such is an assumption that has more flexibility in describing how 
characteristics degrade over time but has no flexibility for modeling very sudden, 
pronounced degradation. 

Degradation is assumed to be a monotonic function, either increasing or 
decreasing, as shown in Figure 1. For example, if xi(t) describes the diameter of an 
inspected part, one would expect to see a decreasing function for xi(t), whereas an 
increasing function xj(t) may describe the amount of metal filings in motor oil over 
time. It is assumed that the models in Figure 1 are fitted from observation data, 
though it could represent physical models if such are known (Rathod, Yadav, 
Rathore, & Jain, in press). 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 7 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

 

Figure 1. Monotonic Degradation Examples, Increasing and Decreasing, for 
xi(t) 

In this work, we assume that μi(t), the mean of xi(t), follows the trajectory by a 
monotonic function, like in Figure 1, though with some randomness introduced. 
Similar to Rathod et al. (in press), a probabilistic approach is taken to assume the 
actual value of xi(t).   

Uncertainty Sensitivity Index Method 

The Uncertainty Sensitivity Index Method (USIM; Haimes & Hall, 1977; Li & 
Haimes, 1988) addresses the sensitivity of optimal response of a model to potential 
variation in the parameters of the model, allowing a decision-maker to compare 
options that optimize an objective function while minimizing sensitivity to uncertainty 
with a multiobjective formulation.  

We assume f(u,α) is an objective function to be minimized subject to a set of 
constraints, g(u,α), where u represents a vector of decision variables and α a vector 
of parameter in the model. Sensitivity analysis of such an optimization problem 
would typically involve the study of changes to the optimal solution of f(u,α) with 
respect to changes in the bounds of g(u,α). However, with the USIM, sensitivity of 
f(u,α) is measured with respect to changes in model parameters, α, with sensitivity 
function, ψ(u,α).  

For a single parameter αi, the choice of ψ(u,α) from Haimes and Hall (1977) 
squares the partial derivative of the objective function with respect to αi, or 
߰ሺܝ; ሻߙ ൌ ሾ߲݂ሺܠ; ሻߙ ⁄ߙ߲ ሿଶ. Li and Haimes (1988) show that a change in an 
objective function of multiple uncertain parameters, α = (α1, α2,..., αn), is minimized 
when the sensitivity index in Equation 5 is minimized.  
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Adding sensitivity to the single objective f(u,α) results in the multibojective 
problem in Equation 6. The objective function and sensitivity index are both 
minimized with respect to decision u and are evaluated at a nominal value હෝ (e.g., 
the original estimate of α). It is assumed that α, though its true value may be 
uncertain, varies in the neighborhood of હෝ. 

Multiobjective optimization problems can be challenging to solve because the 
objectives are often competing where any improvement in one objective comes only 
at the expense of another objective. Common approaches to solving multiobjective 
optimization problems include (i) combining the multiple objectives into a single 
objective with a lone optimal solution, and (ii) generating a set of non-inferior, or 
Pareto-optimal, solutions. Often, objectives are not only competing but also non-
commensurate, and as such, devising a single objective may not be appropriate 
(e.g., through a weighted-sum method, goal programming, utility theory). The 
advantages of a Pareto-optimal frontier, generated through the ε-constraint method 
or multiple realizations of the weighted-sum method (Chankong & Haimes, 2008), 
allows the decision-maker to directly view tradeoffs between objectives for actual 
feasible solutions to those objectives. Once the Pareto-optimal frontier is generated, 
a decision-maker can choose a non-inferior solution that most appropriately 
balances his/her preferred tradeoffs for the two objectives. Figure 2, for example, 
depicts the Pareto-optimal frontier for the multiobjective optimization problem in 
Equation 6, with the instantaneous tradeoff among ݂ሺ∙ሻ and ߰ሺ∙ሻ	illustrated for a 
particular decision-maker–defined optimal decision u*. Examples of reliability-based 
multiobjective decision-making from a Pareto-optimal frontier include those by 
Huang, Tian, and Zuo (2005); Certa, Galante, Lupo, and Passananti (2011); and 
Taboada, Baheranwala, Coit, and Wattanapongsakorn (2007). 

߰ሺܝ, હሻ ൌ
߲݂
ߙ߲

ሺܝ, હሻ൨
ଶ

ୀଵ

 (1)

min
ܝ
݂ሺܝ, હෝሻ

min
ܝ
߰ሺܝ, હෝሻ

s. t. ,ܝሺ હෝሻ  

 (2)
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Figure 2. A General Representation of the Pareto-Optimal Frontier for the 
Multiple Objectives of Equation 6 

Methodological Development  
In this paper, we adapt sensitivity analysis to understand the contribution of 

states-of-the-system that lead to fluctuations in reliability. These fluctuations can be 
recognized in three forms: (i) the states-of-the system evolve in the form of 
degradation; (ii) the states-of-the system are changed with maintenance; and (iii) the 
estimated mathematical expression for predicting degrading states-of-the-system is 
not exact, and, as a result, uncertainty is introduced. An ideal maintenance trigger is 
one that is most sensitive to changes in states-of-the system, thus preventing 
significant drops in reliability due to degradation, increasing the influence of 
maintenance, and preventing large error in predicted reliability versus the actual 
reliability that may exist from uncertainty in the degradation models. 

We assumed that maintenance is performed to improve the condition of 
-to a nominal observable state, its “preferred condition.” For example, the solid	ሻݐሺݔ
line trajectory in Figure 1, which takes the form of ݐௗ for 0 < di < 1, suggests 
degradation occurs as ݔሺݐሻ increases; therefore, the preferred condition would occur 
when ݔሺݐሻ ൌ 0. The methodology is founded on ability to explicitly model 
maintenance impact in this way without the assumption of renewal upon repair. The 
maintenance decision-making framework is dynamic in nature; thus, as maintenance 

occurs at a point in time, it is denoted by ܶ
  , the decision variable for the jth 

maintenance iteration.   

Modeling Reliability, Maintenance, and Degradation 

The CPHM is used here for modeling reliability for two reasons: (i) the model 
allows for consideration of time-dependent covariates (e.g., xi(t)) and (ii) the use of 

 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 10 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

the model prevents the need of a “renewal upon repair” assumption, illustrated with 
the baseline reliability function in Equation 3.   

A Weibull baseline hazard function is adopted here, and Figure 3 illustrates 
how the baseline reliability function varies in ݇	ܽ݊݀	ߣ. Recall, ݇	  	1 results in an 
increasing failure rate, and ߣ	  	1 from parameter restriction for a Weibull 
distribution. The shape of the baseline reliability, defined with the specification of ݇, 
dictates many of the properties within the methodology and will provide better 
understanding for methods later mentioned.  

 

Figure 3. The Change in R0(t) From (a) Varying ࣅ While Keeping 	Constant 
and (b) Vice Versa 

The general form of the CPHM-driven reliability function is found in Equation 

7. Assuming degradation of the form ݐௗ for 0 < di < 1, the limܠሺ௧ሻ→ exp൫்ܠሺݐሻ൯ ൌ 1. 

This suggests that when the state of the system is at its preferred value, xi(t) = 0, 
then ܴሺݐ, ሻሻݐሺ࢞ 	ൌ 	ܴሺݐሻ. Baseline reliability 	ܴሺݐሻ can then be considered an upper 
bound for reliability at any point in time, and repair can only achieve at best 	ܴሺݐሻ; 
improving this value would require replacement.  

ܴ൫ݐ, ሻ൯ݐሺܠ ൌ ܴሺݐሻ
ୣ୶୮ቀܠሺ௧ሻቁ    (7) 

The behavior of ܴሺݐ,  .ሻሻ with a decreasing βTx(t) term converges to R0(t)ݐሺ࢞
Figure 4 represents how R(t, x(t)) behaves with an increasing βTx(t) term. Three 
functions with the same value for x(t) and different β vectors will result in a differing 
rate of decline in reliability. The influence of xi(t) is defined with βi. In order for 
degradation to increase hazard (thereby decreasing reliability), βi > 0. Therefore, R(t, 
x(t)) = 	ܴሺݐሻ only when x(t) = 0. This demonstrates the usefulness of using the 
CPHM for modeling maintenance paired with the assumption that a nominal 
condition can be defined at 0.  
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Figure 4. The Trajectory of R(t, x(t)) for Increasing β 

The time at which the jth iteration of maintenance is performed is denoted by 

ܶ
 . Maintenance returns the state variables to their preferred condition, or ܠ൫ ܶ

 ൯ ൌ
. As such, component reliability is increased to its baseline reliability, or reliability 
calculated only from age, with no observable degradation but is not renewed, as 
illustrated in Figure 5 for two maintenance iterations. It is assumed here that the 

entire state vector is restored to zero, ܠ൫ ܶ
 ൯ ൌ , but maintenance could easily 

target specific state variables, ݔ൫ ܶ
 ൯ ൌ 0. If specific state variables are selected at 

ܶ
  rather than the entire vector, reliability will approach, but not equal, R0(t). 

 

Figure 5. The Value of R(t, x(t)) When ܠ൫ࢀ
 ൯ ൌ  Is Restored to R0(t) 

Stated previously, when a maintenance operation takes place at time ܶ
 , xi(t) 

returns to the preferred condition of xi(t) = 0, but the original rate of degradation 
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should persist. If degradation is assumed to be modeled with xi(t) = ݐௗ for 0 < di < 1, 
then a different representation of degradation would have to account for 

maintenance at ܶ
 . This is found in Equation 8, effectively allowing the “time” 

immediately after maintenance to taken on the value zero. Iterations of maintenance 
following Equation 8 are illustrated in Figure 6. 

ሻݐሺݔ ൌ ݐ൫ݔ െ ܶ
 ൯, for	 ܶ

 ൏ ݐ ൏ ܶ
ାଵ     (8) 

 

Figure 6. The Degradation Path Following Maintenance Operations at ࢀ
  

Formulating the Multiobjective Framework 

The contribution of this methodology lies with the use of a sensitivity metric 

for concentrating maintenance efforts to determine ܶ
 . This is done by calculating 

the sensitivity of reliability to changes in xi(t), thus providing (i) the states of the 
system that have the largest influence on the degradation of reliability, and (ii) the 
time at which these states have this influence. The USIM approach is used to 
incorporate sensitivity; thus, the partial derivative of the reliability calculation with 
respect to xi(t) must be found, as in Equation 9.  

డோሺ௧,ܠሺ௧ሻሻ

డ௫
ൌ െߚ ቀ

௧

ఒ
ቁ

exp	൫்ܠሺݐሻ൯exp ൬െቀ

௧

ఒ
ቁ

൰
ୣ୶୮ቀܠሺ௧ሻቁ

  (9) 

Equation 10 provides the sensitivity metric ߰
ோ൫ݐ,  ሻ൯, describing theݐሺܠ

sensitivity of component reliability to changes in particular state variable xi(t). One 
would anticipate a sensitivity metric much less than one, as reliability is on [0, 1]. A 
sensitivity function for all state variables, modeled from Equation 5 for p state 
variables, is defined in Equation 11. 
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߰
ோ൫ݐ, ሻ൯ݐሺܠ ൌ െߚ ൬

ݐ
ߣ
൰


exp൫்ܠሺݐሻ൯exp ቆെ൬
ݐ
ߣ
൰


ቇ
ୣ୶୮ቀܠሺ௧ሻቁ



ଶ

 (10)

߰ோ൫ݐ, ሻ൯ݐሺܠ ൌ߰
ோ൫ݐ, ሻ൯ݐሺܠ



ୀଵ

 (11)

The multiobjective formulation is defined in Equation 12, maximizing both the 
component reliability and maximizing sensitivity (or finding the time at which 
reliability is most sensitivity to changes in x(t). Only non-negativity constraints are 
considered in Equation 12, though other possibilities include cost and/or reliability 
constraints (Tian et al., 2012). The states-of-the system are ultimately a function of t; 
therefore, the decision variable is the time at which maintenance should be 
performed. Recall, as maintenance scheduling is multistage (e.g., maintenance is a 

repeated event), the time at which maintenance is scheduled for iteration j is ܶ
 . 

The sensitivity metric for the ith state variable, ߰
ோ൫ݐ,  ሻ൯, has a commonݐሺܠ

component regardless of xi(t). This term is defined as ߰൫ݐ,  ሻ൯, found in Equationݐሺܠ

13. ߰
ோ is then only a function of βi and ߰, shown in Equation 14. Similarly, the 

sensitivity metric for all state variables is provided in Equation 15. 

߰൫ݐ, ሻ൯ݐሺܠ ൌ ൬
ݐ
ߣ
൰


exp൫்ܠሺݐሻ൯expቆെ൬
ݐ
ߣ
൰


ቇ
ୣ୶୮ቀܠሺ௧ሻቁ

 (13)

߰
ோ൫ݐ, ሻ൯ݐሺܠ ൌ ൣെߚ߰൫ݐ, ሻ൯൧ݐሺܠ

ଶ
 (14)

߰ோ൫ݐ, ሻ൯ݐሺܠ ൌ ൣ߰൫ݐ, ሻ൯൧ݐሺܠ
ଶ
ߚ

ଶ



ୀଵ

 (15)

As βi is a constant with respect to t, ߰ோ൫ݐ,  ሻ൯ is maximized with maximumݐሺܠ

߰൫ݐ, ሻ൯ݐሺܠ
ଶ
. As such, the multiobjective formulation is updated in Equation 16. 

max
௧
ܴ൫ݐ, ሻ൯ݐሺܠ

max
௧
߰ோ൫ݐ, ሻ൯ݐሺܠ

s. t. ݐ  0

 (12)
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Identifying Pareto Optimal Frontier Boundaries 

Understanding the form of R(t, x(t)) and ߰൫ݐ, ሻ൯ݐሺܠ
ଶ
 will assist in determining 

the boundaries for the generation of the Pareto-optimal frontier balancing R and ߰ଶ. 
Figure 3 presents the shape of R(t, x(t)) dictated by the bounds of the parameter k, 

and a similar statement is made about the shape of ߰൫ݐ, ሻ൯ݐሺܠ
ଶ
. Figure 7 illustrates 

the shape of both functions on shared axes. The value on the horizontal axis will 

vary between the current t, which is 0 initially, and tmax. Beyond ߰൫ݐ୫ୟ୶, ୫ୟ୶ሻ൯ݐሺܠ
ଶ
	, 

both functions decrease in t; therefore, the two objectives no longer compete (thus 
not generating a Pareto-optimal frontier). 

 

Figure 7. Portrayal of the Bounds of t 

The upper bound of t, tmax, is found by maximizing ߰൫ݐ, ሻ൯ݐሺܠ
ଶ
, or setting its 

partial derivative with respect to t to zero and solving for tmax. This derivative yields a 

complex equation decomposed into components L and M, or ߲߰൫ݐ, ሻ൯ݐሺܠ
ଶ
⁄ݐ߲ ൌ  ,ܯܮ

where LM is graphed in Figure 8 with shape defined from the bounds of k, as in 
Figure 3. Components L and M are found in Equations 17 and 18, where d = (d1,..., 
di,..., dp), the degradation coefficients for all state variables. An optimization 
algorithm (e.g., Newton’s method) can be used to solve for tmax. Although time is a 

max
௧
ܴ൫ݐ, ሻ൯ݐሺܠ

max
௧
߰൫ݐ, ሻ൯ݐሺܠ

ଶ

s. t. ݐ  0

 (16)
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continuous variable, the value of tmax is more realistically rounded to an integer 
value.  

ܮ ൌ
2ܴሺݐሻଶୣ୶୮ ሺ

ܠሺ௧ሻሻexpሺ2்ܠሺݐሻሻ ቀߣݐቁ
ଶ

ݐ
 

(17)

ܯ ൌ ݇  ሾdiagሺ܌ሻሿ்ܠሺݐሻ െ ݇exp൫்ܠሺݐሻ൯ ቀ
௧

ఒ
ቁ

 ሾdiagሺ܌ሻሿ் exp൫்ܠሺݐሻ൯ ln൫ܴሺݐሻ൯   (18) 

 

Figure 8. Solving for tmax With LM = 0 

The Pareto Frontier and Reiteration of the Decision Framework 

A Pareto-optimal frontier is defined within the boundary of 0 and tmax. Figure 9 
illustrates the Pareto-optimal frontier from which ܶ

ଵ  will be selected and represents 
the competition among the objectives where R(t, x(t)) decreases in t while 

߰൫ݐ, ሻ൯ݐሺܠ
ଶ
 increases in t. We know that the maintenance trigger will lie on [0, tmax]. 
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Figure 9. The Pareto-Optimal Frontier Generated for Equation 16 

Figure 10 provides the depiction of the changing Pareto optimal frontier with 
each iteration. The reliability decreases with each iteration. Replacement of the 

component may be preferable at ܶ
  if ܴሺ ܶ

 , ൫ܠ ܶ
 ൯ ൌ 0ሻ is too low based on 

decision-maker preference. 

 

Figure 10. Depiction of the Iterative Maintenance Decision Framework 

Criteria for Determining the Value of the Decision Variable (ࢀ
 )  

Using Figure 11, the maximum value of ߰൫ݐ, ሻ൯ݐሺܠ
ଶ
 occurs at ݐ୫ୟ୶

  while the 

maximum value of R(t, x(t)) occurs at ܶ
  on the Pareto-optimal frontier. Knowing 

ܶ	
 ൏ ݐ ൏ ݐ

୫ୟ୶	
ାଵ , we illustrate the loss in each objective function with respect to t in 

Figure 11. Although both functions still depend on x(t), the equations used in Figure 
11 are only for demonstration of loss in each objective with respect to t. A value for t 

such that a compromise among the loss in each objective is achieved will label ܶ
ାଵ.  
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Figure 11. The Loss in Objective Values With Respect to t on the Pareto 
Frontier 

Let  ߣటሺݐሻ be a unitless ratio of the deviation from the maximum functional 

value of ߰൫ݐ, ሻ൯ݐሺܠ
ଶ
 over t divided by the total possible loss in ߰൫ݐ, ሻ൯ݐሺܠ

ଶ
. And 

similarly, let ߣோሺݐሻ be a unitless ratio of the deviation from the maximum functional 
value of ܴሺݐ,  ሻሻ over t divided by the total possible loss in R(t, x(t)). We representݐሺܠ
 ሻ as in Equation 19, which provides a means to quantify theݐటோሺߣ ሻ withݐோሺߣ/ሻݐటሺߣ

tradeoff between the two non-commensurable objectives at time t. The value of this 
ratio is subject to the decision-maker: some decision-makers may give more focus to 
changes in reliability over time, while others may emphasize the sensitivity of 

reliability to degradation in x(t). This point of compromise gives value to 
ܶ	
ାଵ, the 

time at which the j+1 maintenance iteration is performed. For example, a risk neutral 
decision-maker may assume ߣటோሺݐሻ ൌ 1, an equal balance between the two 

objectives: this work does not elicit decision-maker preference and therefore 
assumes risk neutrality for determining each maintenance trigger. 

ሻݐటோሺߣ ൌ

ቌ
߰ ቀݐ୫ୟ୶

ାଵ , ୫ୟ୶ݐ൫ܠ
ାଵ ൯ቁ

ଶ
െ ߰൫ݐ, ሻ൯ݐሺܠ

ଶ

߰ ቀݐ୫ୟ୶
ାଵ , ୫ୟ୶ݐ൫ܠ

ାଵ ൯ቁ
ଶ
െ ߰ ቀ ܶ

 , ൫ܠ ܶ
 ൯ቁ

ଶቍ

ቌ
ܴ ቀ ܶ

 , ൫ܠ ܶ
 ൯ቁ െ ܴሺݐ, ሻሻݐሺܠ

ܴሺݐ୫ୟ୶
ାଵ , ୫ୟ୶ݐ൫ܠ

ାଵ ൯ሻ െ ܴሺ ܶ
 , ൫ܠ ܶ

 ൯ሻ
ቍ

			for	 ܶ
 ൏ ݐ ൏ ୫ୟ୶ݐ

ାଵ  (18)

Illustrative Example  
This section provides an illustrative example of implementation of the 

methodological components for scheduling maintenance on an aircraft engine.  

Specification of Input Parameters for Modeling Reliability and 
Degradation 

Due to the proprietary nature of the problem at hand, we provide simulated 

data for five general state variables, ܠሺݐሻ ൌ ൫ݔଵሺݐሻ, ,ሻݐଶሺݔ ,ሻݐଷሺݔ ,ሻݐସሺݔ  ሻ൯, whereݐହሺݔ

the unit of time is measured in hours flown. The degradation paths of these state 
variables are assumed to follow the monotonically increasing functions in Table 1, 
and the trajectories are depicted graphically in Figure 12. In order to simulate states 
of the system, it is assumed that xi(t) is normally distributed with mean μi(t) and 
constant standard deviation σi. Likely, σi would be small at early time periods and 
increase over time. 
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Table 1. Functional Mean Trajectory of State Variable Degradation With 
Standard Deviations 

State Variable μi(t) σi 

x1(t) t1/3 3 

x2(t) t1/4 3 

x3(t) t1/5 2 

x4(t) t1/7 2 

x5(t) t1/10 2 

From historic data, a Weibull baseline hazard function was fit with parameters 
k = 4 and λ = 816.75. Failure data were then simulated from this Weibull baseline: 
actual observations were not used. The time scale is limited to 1200 flight hours, 
which is the point where failure is assumed to occur with a likelihood of 1. 

 

Figure 12. The Trajectories of Degradation for Each State Variable 

A CPHM was fit to the data simulated and the maximum likelihood estimates 
of the coefficients are provided in Table 2. All state variables were found to be 
significant, and each coefficient estimate is positive indicating decreasing reliability 
with degradation as expected. 
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Table 2. CPHM Coefficient Estimates 
State Variable ߚ Standard Error p-value 

x1(t) .0400 .0200 .0459 
x2(t) .0471 .0239 .0484 
x3(t) 
x4(t) 
x5(t) 

.0667 

.1006 

.0878 

.0333 

.0464 

.0434 

.0457 

.0301 

.0431 

Implementation of the Multiobjective Decision Framework 

The reliability function, R(t, x(t)) given the set of input parameters, is 
simulated over 0 to 1200 flight hours, resulting in Figure 13. The sensitivity function, 

߰൫ݐ, ሻ൯ݐሺܠ
ଶ
	, as well as its derivative with respect to t, is simulated in Figure 13 to aid 

in determining ݐ୫ୟ୶ଵ . The value for ݐ such that ߰൫ݐ, ሻ൯ݐሺܠ
ଶ
 is maximized, where a 

maximum is implied by ߲߰൫ݐ, ሻ൯ݐሺܠ
ଶ
⁄ݐ߲ ൌ 0, is 584 flight hours. Therefore, ݐ୫ୟ୶ଵ  = 

584 and is used for forming the Pareto optimal frontier for iteration ݆ ൌ 0. 
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Figure 13. The Functions (a) R(t, x(t)), (b) ࢉ࣒൫࢚, ሻ൯࢚ሺܠ

, and (c) ࣔࢉ࣒൫࢚, ሻ൯࢚ሺܠ


ൗ࢚ࣔ  

Simulated for  ൌ  

The plot of R(t, x(t)) versus ߰൫ݐ, ሻ൯ݐሺܠ
ଶ
	is displayed in Figure 14. In addition, 

Figure 14 provides the Pareto optimal frontier that is defined with ݐ୫ୟ୶ଵ  = 584. We 
can now express the range of values of the first maintenance trigger, ܶ

ଵ , with the 
interval [ ܶ

 ൌ 0, ୫ୟ୶ଵݐ  ൌ 	584].  

In order to determine ܶ
ଵ ,  such that a ݐ ሻ is used for uncoveringݐటோሺߣ

compromise among the loss in each objective is attained. The ideal maintenance 
trigger is mathematically defined as the value of t such that ߣటோሺݐሻ ൌ 1. This 

maintenance trigger represents the point in time that the ratio of the loss in both 
objectives is equivalent. Using ߣటோሺݐሻ ൌ 1, ܶ

ଵ  is rounded to 466. Maintenance is 

performed by restoring degradation levels to nominal values and is modeled 
mathematically using ܠሺ ܶ

ଵ ൌ 466ሻ ൎ 0. 
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Figure 14. The (b) Pareto-Optimal Frontier Defined With ࢞ࢇ࢚  to Remove the 
Inferior Solutions From (a) 

Table 3 presents a summary of the results of the decision-making framework 
using the steps illustrated for ݆ ൌ 0. As previously mentioned, ܶ

ଵ ൌ 466 and the 
reliability at ܶ

ଵ  before maintenance is R(466, x(466)) = 0.68. After performing 
maintenance, R(466, x(466)) = 0.89 and is equal to the baseline reliability, ܴሺ466ሻ. 
For the next iteration j = 1, R(t, x(t)) is simulated over the interval ܶ

ଵ  = [466,1200]. 

The point of maximum sensitivity, ߰൫ݐ, ሻ൯ݐሺܠ
ଶ
, is found to be ݐ୫ୟ୶ଶ ൌ 633; therefore, 

ܶ
ଶ  is on the interval [ ܶ

ଵ ൌ ୫ୟ୶ଶݐ ,466	 ൌ 633]. The second maintenance trigger 
defined using ߣటோሺݐሻ ൌ 1, is ܶ

ଶ ൌ 533 as provided in Table 3. The same steps are 

implemented in subsequent iterations for determining each maintenance trigger in 
order to create a full maintenance schedule. 

Table 3. Summary of Results for Each Iteration 
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The evolution of the Pareto-optimal frontier is presented in Figure 15. The 
time between each maintenance trigger decreases with each iteration, and this trend 

is mathematically realized using the lim→ஶሺ ܶ
ାଵ െ ܶ

 ሻ ൌ 0 . Additionally, the 

lim→ஶሺ ܶ
 െ ୫ୟ୶ݐ

ାଵ ሻ ൌ 0; therefore, the final maintenance trigger ܶ
ାାଵ	is on the 

interval ൣ ܶ
ା, ୫ୟ୶ݐ

ାାଵ ൌ ܶ
ା൧, and the action at ܶ

ାାଵ is restricted to replacement 

rather than maintenance. Replacement is signified mathematically by setting ݐ ൌ 0. 
The point where this occurs is at 718 flight hours, but we also know that intervals 
between maintenance triggers are decreasing. Realistically, maintenance intervals 
can be considered infeasible. A simple example of infeasibility due to an interval that 
is too small is when the maintenance interval is less than the minimum required 
hours of flight. Reliability in this illustrative example is heavily influenced by 
degradation causing maintenance intervals to lessen rapidly. The maintenance 
interval between j = 4 and j = 5 is only nine flight hours. The decision to replace at an 
earlier time than the forced replacement due to the natural progression of the 
decision framework is up to the decision-maker for ensuring feasibility of 
maintenance intervals. The final maintenance trigger selected for this example is ܶ

  
as the maintenance intervals lessen. 

 

Figure 15. The Progression of the Pareto Optimal Frontier Over j 

Assessment of Performance 

An ideal maintenance schedule will increase an engine’s life cycle, decrease 
the amount of maintenance required, and decrease the risk of failure. It is common 
practice for maintenance optimization models to impose reliability constraints, 
imposing that maintenance operations be performed prior to some minimum 
reliability level. As such, we compare the method presented in this research with 
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maintenance scheduling solely based on a predetermined reliability requirement. 
Given the required level of reliability, maintenance is scheduled as soon as the 
requirement is violated. 

A simplified version of a cost function for a maintenance schedule can be 
thought of as the sum of the cost of maintenance, and the expected cost of failure to 
the schedule is terminated at j = 5 because of the decreasing time and reliability 
increments between maintenance triggers. As such, we compare the different 
scheduling approaches at a reference point of six maintenance tasks, which allows 
us to assume that the cost of maintenance on the engine is the same for each 
scheduling procedure. Although the cost of maintenance between the different 
methods is equivalent due to a baseline of six maintenance tasks, the expected 
failure cost is different between the approaches due to the likelihoods of failure 
differing between the approaches.  As such, the differing failure likelihoods provide 
insight for distinguishing between the costs of each method in a relative manner 

without need to enumerate explicit monetary values. തܴ൫ ܶ
 ൯ is derived by averaging 

the reliability at each discrete maintenance trigger, thus providing insight on the 

differing failure costs between the approaches using 1 െ തܴ൫ ܶ
 ൯.  As the actual cost 

of failure is constant between the methods, the expected failure cost (e.g., (1 െ
തܴ൫ ܶ

 ൯ሻܥୟ୧୪୳୰ୣሻ differs by the value of 1 െ തܴ൫ ܶ
 ൯. Other performance measures 

include the age of the engine at ܶ
  represented by t, the life cycle of the engine 

represented with max t, the average maintenance interval ∆ ܶ
 , and lastly the 

average maintenance interval after the first maintenance task. 

Table 4. Performance Comparisons at a Baseline of ࢀ   

 

The number of maintenance tasks between the methods is the same due to 
the baseline of ܶ

 ; therefore, it may appear that one should choose a reliability 
constraint of R = 0.8 to decrease the expected cost of failure. Although we used this 
baseline for a means of comparison between the approaches, it is incorrect to 
assume that each approach requires the same extent of maintenance. The value of t 
provides the engine age at ܶ

 ;	thus, t provides a means for reasonably comparing 
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the amount of required maintenance between the approaches. We wish to maximize 
each of the performance measures, with the exception of failure likelihood, in order 
to decrease both maintenance and failure cost. 

A comparison of values of t at ܶ
  shows that a low threshold of reliability 

(e.g., R = 0.5), not surprisingly the risk of failure is increased while the maintenance 
required is decreased. By imposing more stringent reliability constraints (e.g., R = 
0.8), the risk of failure is decreased while the maintenance requirements are 
increased. In addition, the R = 0.8 constraint converges to an infeasible maintenance 
interval faster than the R =0.5 constraint. By applying a reliability constraint, one 
naturally imposes higher amounts of required maintenance or higher risk of failure 
necessitating one to have a preset idea of failure cost versus maintenance cost in 
order to reach a desirable tradeoff. Further, when implementing reliability 
constraints, one must also have an idea of when replacing is more cost effective 
than additional maintenance actions to increase engine life cycle. 

It is not sufficient to impose reliability constraints without fully understanding 
the ramifications from doing so. The method presented in this paper, denoted by ܴ߰ 
in Table 4, does not require that a fixed level of reliability be preserved. This method 
performance closely matches a middle ground reliability constraint as with the 0.6 
constraint, but does not require replacement to occur as quickly. Using this method 
allows one to model reliability as an objective rather than constraint to avoid some of 
the impacts of incorporating a rigid reliability constraint, the impacts of which include 
(i) inherent inflation in maintenance cost or (ii) inherent rise in failure cost, and (iii) a 
constraint driven replacement schedule. Future work lies in using this new method 
paired with cost constraints for determining an economical maintenance schedule. 

Concluding Remarks  
This paper contributes a novel methodology that integrates (i) models of 

reliability that incorporate time-varying covariates with (ii) models of degrading state 
variables that (iii) lead to maintenance scheduling designed around reliability and 
sensitivity. We adopt degradation models for describing state variables in the 
proportional hazards model, where many previous uses of the CPHM rely on a 
stochastic process approach with a finite state space. 

Further, the use of condition variables allows for the direct modeling of 
maintenance impact with the assumption that a nominal value, perfect diagnostic 
condition, exists. With this information, maintenance can be scheduled as well as 
planned for what degree of maintenance is required. There is no “renewal upon 
repair” assumption within this work. 

Sensitivity analysis is commonly used for understanding uncertainty impact, 
but in this paper it is uniquely paired with reliability for a more mathematical 
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(multiobjective) treatment of prompting the time at which maintenance occurs. A 
Pareto-optimal frontier is found during each iteration of the multistage problem 
where a tradeoff function is used to define the decision variable representative of a 
best compromise solution. Future research will be done to assess the usefulness of 
the method with elicited preference from a decision-maker. 

Moreover, in many optimization problems, reliability is often implemented as a 
constraint. By doing so, one must understand the relationship between maintenance 
cost and failure cost beforehand, which can be very difficult to do as maintenance 
cost depends on the amount of maintenance required. This paper provides the 
foundation for implementing reliability as an objective with future work centered on 
incorporating a cost constraint to create an economical maintenance schedule in 
order to avoid inherent influences on performance from imposing an inflexible 
reliability constraint. 

Task 2. Expand Task 1 to Multi-Component 
Systems 

This section is based on the following: 

Kalam, S., Barker, K, & Ramirez-Marquez, J. E. (in press). Scheduling multi-
component maintenance with a greedy heuristic local search algorithm. Manuscript 
submitted for publication. 

Introduction  
Large organizations such as the Department of Defense (DoD) have to 

devote a significant amount of their budgets to system maintenance. According to a 
2007 Government Accountability Office (GAO) report, the DoD spends 
approximately 40% of its budget on operations and management (O&M) activities to 
ensure system readiness ($209.5 billion in 2005). The GAO reported that since fiscal 
year 2001, the DoD’s O&M costs are increasing, and the Air Force, in particular, had 
to increase its O&M cost by 29%. As many large-scale DoD systems age, and due 
to budgetary and performance efficiency concerns, there is a need to improve the 
decision-making process for system sustainment, including maintenance, repair, and 
overhaul (MRO) operations and the acquisition of MRO parts.     

The DoD’s acquisition costs have seen growth in recent years (GAO, 2013). 
The GAO (2013) recommended that the DoD improve its strategic management plan 
to make maintenance supply chain operations more cost effective. Further, the DoD 
was advised to “link acquisition and sustainment policies” for depot maintenance 
improvement and ultimate cost efficiency (GAO, 2011). To help address the link 
between sustainment policies and acquisition, this work develops a framework to 
provide a system maintenance schedule for multi-component systems. As the 
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multiple components of a system have their own life cycles, an efficient means to 
schedule overall system maintenance should consider these individual components 
to maximize long-term availability of the system. This framework coordinates 
recommended maintenance times, such as those found as a result of reliability 
centered maintenance (RCM) or from original equipment manufacturer (OEM) 
suggestions, to formulate a system-level maintenance schedule for a finite time 
horizon. Such a framework will increase the acquisition efficiency of components 
with a more effective system level maintenance schedule.   

With recent computational advances, several preventive maintenance models 
have been proposed for complex multi-component systems considering component 
interactions. In the preventive maintenance scheduling problem (PMSP), different 
kinds of component interactions are taken into account (Dekker, Wildeman, & van 
der Duyn Schouten, 1997).  

Several model formulations, as well as solution techniques, have been 
proposed to address preventive maintenance decision-making. Stinson and Basheer 
(1987) formulated a heuristics-based mixed integer linear program (MILP) model for 
a finite horizon preventive maintenance problem for maintaining machines in series. 
Budai, Huisman, and Dekker (2005) proposed a heuristics-based MILP solution for 
scheduling railroad network maintenance. Recently, Roux, Duvivier, Quesnel, and 
Ramat (2010) developed a hybrid model by integrating optimization and simulation 
to minimize unavailability of the system due to preventive block maintenance policy. 
Other few noteworthy approaches are the Bayesian network model (Celeux, Corset, 
Lannoy, & Ricard, 2006), goal programming for a multiobjective problem (Bertolini & 
Bevilacqua, 2006), and dynamic programming (Dekker, Wildeman, & Van Egmond, 
1996).  

In terms of algorithm development, Dekker, Smit, and Losekoot (1991) 
presented an optimal maintenance model using set-partitioning algorithm for multiple 
maintenance activities. One downside of their model was that they considered each 
activity time to be negligible relative to the total planning horizon. Later, Dekker et al. 
(1996) solved the above-mentioned problem with a dynamic programming 
formulation, concluding that the dynamic algorithm is a good heuristic for rolling 
horizon based problems which can incorporate short-term system information for 
decision support. Dekker et al. (1997) provided a review of maintenance models for 
multi-component systems which covered economically dependent systems. The 
Markov decision chain-based approach was also studied by Dekker et al. (1996) for 
the multi-activities maintenance problem, which was applicable to system consisting 
of many components. Previous Markov chain-based models were limited to few 
components. An opportunistic maintenance policy was modeled by Gürler and Kaya 
(2002) and van der Duyn Schouten and Vanneste (1993) for identical multi-
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component system. Sheu and Jhang (1996) modeled a similar kind of problem with 
a two-stage opportunistic policy. In case of non-identical components maintenance, 
the tradeoff of repair cost of one component versus another should be considered, 
including the resulting increase in the complexity of the model. 

PMSP remains a very active area of research. Little work in this field has 
used heuristics and meta-heuristics–based methodologies to model preventive 
maintenance framework (Nicolai & Dekker, 2008). A new meta-heuristic based on a 
genetic algorithm was applied in train maintenance scheduling problems by 
Sriskandarajah, Jardine, and Chan (1998), primarily optimizing cost. Nicolai and 
Dekker (2008) presented a review of preventive maintenance and recommended 
that more researches need to be done in this area developing more heuristic and 
meta-heuristic approaches like simulated annealing and local search. Meta-
heuristic–based algorithms have proven very successful for flowshop scheduling 
problems (Pan & Ruiz, 2012), which has similar characteristics to preventive 
maintenance scheduling.  

This work presents a greedy heuristic-based local search algorithm for 
preventive maintenance of multiple components, which would be a new contribution 
in this field of research. This work develops a local search-based algorithm with the 
objective in mind to minimize the total maintenance cost over a finite planning 
horizon.  

Methodological Development 
Here we develop a new formulation and solution algorithm to address 

preventive maintenance scheduling for a multi-component system. It is assumed that 
maintenance results in a “good-as-new” condition. Baseline individual component 
maintenance times for planning horizon T (i.e., system-in-use time) are known and 
recommended based on a mean time between failure (MTBF) calculation (e.g., by 
RCM calculations or OEM recommendations). We assume these recommended 
component maintenance times are given in their in-use-time or up-time. The kth 

recommended maintenance time for component l, or ܶ
, is illustrated in Figure 16 for 

components A, B, and C. 
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Figure 16. Example Recommended Maintenance Times for Components A, 
B, and C 

Our goal is to recommend altering the recommended maintenance schedule 
for a multi-component system in a joint manner for as many components as 
possible. Performing many individual component maintenance events at once can 
potentially lead to cost savings due to reduced setup costs and reduced downtime. 
However, varying too far from recommended MTBF guidance can lead to 
unnecessary maintenance (in the earliness situation) and risk of failure (in the 
tardiness situation). Earliness refers to the performance of maintenance earlier than 
recommended, with tardiness representing the performance of maintenance at a 
time later than recommended. As such, there are penalties associated with both 
earliness and lateness, as well as a penalty for system downtime while maintenance 
is being performed. If the jth system maintenance is performed at time ݐ, Figure 17 
provides an example of earliness and tardiness for three components relative to their 

recommended individual component maintenance times, ܶ
. 

 

Figure 17. Example Earliness and Tardiness System Maintenance Times for 
Components A, B, and C 

Different potential maintenance schedules can be compared and evaluated 
using a penalty function approach (Yousefi & Yusuff, 2013). In this approach, without 
being explicit on the dollar values associated with “costs,” a penalty function 
quantifies (i) setup related costs, (ii) downtime costs, and (iii) the expenses of 
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earliness (i.e., costs of unnecessary maintenance) and costs potential failure due to 
tardiness. By implementing this approach, a maintenance schedule can be found 
that will minimize these penalties. These penalties, as well as other notation, are 
defined as follows: 

T planning horizon 
n number of components in the system 

ܶ
 kth recommended maintenance time for component l 

CS system setup penalty per maintenance 
CD system downtime penalty per unit time 
CE,l earliness penalty for component l, per unit time 
CL,l tardiness penalty for component l, per unit time 
  component maintenance duration for component lܦ

∆  deviation of individual component recommended maintenance times  
from jth system maintenance time 

ܶ construction phase time-span 

ܶ
୫ୟ୶ maximum possible construction phase time-span 
 [ϵ (0, 1 ߜ construction phase time-span parameter where ߜ
 [ϵ (0, 1 ߛ joint maintenance time parameter ߛ
࣮1 set of first component recommended maintenance times 
࣮2 set of second component recommended maintenance times 
  candidate solutionߨ
 ௗ discard solutionߨ
ܵ candidate combination set 
ܵௗ candidate discard set 
ܵ algorithm solution vector 

Decision variables for the scheduling formulation include the following: 

   jth system maintenance timeݐ

  total number of system maintenance events scheduled in planning ܯ
horizon T 

ݔ	
 if feature earliness is present in component l for maintenance j (ݔ

 ൌ 1) or not 

ݔ) 
 ൌ 0) 

ݕ
 if feature tardiness is present in component l for maintenance j (ݕ

 ൌ 1) or not 

ݕ)
 ൌ 0) 

ݖ
 if component l should be repaired at time ݐ (ݖ

 ൌ 1) or not (ݖ
 ൌ 0) 

Performing joint repair has the potential to save maintenance cost, because for 
many multi-component systems it is possible to perform component maintenance 
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simultaneously. Thus, total repair time for joint maintenance depends on individual 
instance and can be predicted from previous system maintenance data.  

Total Penalty Minimization Problem 

One objective is to minimize system downtime due to maintenance over a 
finite time horizon T. As a proxy for downtime, several penalty functions comprise 
the objective function, ultimately presented in Equation 24. This total penalty function 
consists of system set-up penalty, system downtime time penalty, and penalty for 
any deviation of individual component maintenance times from system maintenance 
time. Note that the cost of performing actual repair, including the cost of acquisition, 
and the cost of labor, among others, is not included under the assumption that this 
cost would be the same whether individual component repair or joint repair is 
performed. 

The setup penalty in Equation 20 accounts for the time to arrange system for 
maintenance. System setup penalty penalizes all associated costs for maintenance 
setup, charged only once regardless of the number of multiple components involved 
in a maintenance work, thus incentivizing the repair of multiple components at one 
system maintenance operation. Not included is component set-up time, as that is not 
expected to be a factor in determining individual or joint maintenance: any 
maintenance performed on a component would require component setup time. 
There is fixed system penalty per maintenance work ܥௌ	 for each of the total number 
of system maintenance operations ܯ. 

System setup penalty ൌ ௌܥ (20) ܯ

There is a penalty for executing the component maintenance at a time other 
than the recommended schedule (e.g., from OEM suggestions, RCM calculations). If 
system maintenance is scheduled earlier than the recommended time, then there is 
a penalty for early maintenance work for that component. This penalty attempts to 
penalize the performance of maintenance unnecessarily too far in advance of the 
recommendation, and it is a function of (i) the total amount of earliness determined 

by ห ܶ
 	െ  ா,, and (iii) whether or not component lܥ ห, (ii) the earliness penaltyݐ

maintenance is performed early at the jth system maintenance iteration, determined 

by ݔ
.   

Earliness	penalty ൌ   ห ܶ
 െ หݐ

ெ

ୀଵ
ݔா,ܥ




ୀଵ
 (21)

If system maintenance is scheduled later than individual component 
maintenance, then there is a penalty for late maintenance work for that component. 
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This penalty is a function of deviation of recommended individual component 
maintenance times from actual system maintenance time. The penalty is higher for 
tardiness than earliness here due to aversion to performing maintenance later than 
recommended, which could lead to a higher potential for component failure. This 
aversion is represented, in part, by the square on the amount of tardiness time, 

൫ ܶ
 	െ ൯ݐ

ଶ
, though a stronger penalty (larger exponent) could be imposed. Other 

elements include tardiness penalty ܥ, and whether component l maintenance is 

performed after the recommended maintenance time during the jth system 

maintenance iteration, determined by ݕ
. 

Tardiness	penalty ൌ   ൫ ܶ
 െ ൯ݐ

ଶெ

ୀଵ
,ܥ ݕ




ୀଵ
 (22)

There is a cost associated with system downtime due to an unproductive or 
idle system. The system downtime penalty per unit time ܥ is known. Expected 
component maintenance duration for component l is parameterized as ܦ. Parameter 
 ,.represents the percentage of total expected component maintenance duration (i.e ߛ
  for all l that are present in jth system maintenance) that would be the expectedܦ∑
joint maintenance duration for jth system repair. We assume this ߛ value to be 
constant for all iterations. Value of joint maintenance time parameter γ can be 
chosen from historical data of related system such that ߛ ϵ (0, 1]. The larger the 
value of ߛ, the higher the downtime maintenance cost would be. Higher ߛ values 
suggest less time savings in joint repair relative to separate, individual maintenance. 
Expected downtimes are same for joint repair and separate repair when ߛ ൌ 1. This 

value defines joint maintenance times for a multi-component system. The term ݖ
 

determines whether the jth maintenance operation for component l is performed.  

System	downtime cost ൌ   ݖܦܥߛ


ெ






 (23)

Equation 24 presents the objective function and constraints incorporating the 
previous penalty functions. 
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min
	
	 ܯ	ௌܥ   ห ܶ

 െ หݐ
ெ


ா,ܥ ݔ




ୀଵ
  ൫ ܶ

 െ ൯ݐ
ଶெ


ݕ,ܥ




ୀଵ

	  ݖܦܥߛ


ெ






 

s. t. ,ܯ ݐ  0
ݔ
, ݕ

, ݖ
 ∈ ሼ0,1ሽ

γ ∈ ሺ0,1ሿ
 

(24)

As maintenance scheduling is multistage (i.e., maintenance is a repeated 
event), one of the decision variables is the system-in-use time, ݐ, at which the jth 
system maintenance (or iteration j) should be performed. Equation 24 is solved over 
a finite time horizon for several MRO iterations, finding a series of ݐ values at which 
maintenance should occur. Individual component maintenance occurrence time 

recommendations are denoted by ܶ
 for component l. Here, ݐ values attempt to 

coordinate the downtime of several components to maximize long-term availability of 
the system (or equivalently, minimize downtime). Equation 24 also attempts to 

improve upon ܶ
 to minimize the deviation of individual component maintenance 

times from system maintenance time, found in the neighborhood of ܶ
. As such, 

maintenance schedule for the system is provided, determining whether the jth 
maintenance operation will repair an optimal subset of the n components in the 
system.    

Greedy Heuristic With Local Search Algorithm 
The maintenance optimization model described above is solved with a 

proposed iterative greedy heuristic with local search algorithm (GHLSA). The 
proposed algorithm is similar to the general structure of the greedy randomized 
adaptive search procedure (GRASP; Feo & Resende, 1995). In contrast to the two 
phases of GRASP, our proposed algorithm has three phases: (i) a construction 
phase, (ii) an improvement phase, and (iii) a local search phase. In the GRASP 
algorithm, the initial solution is constructed using a randomized sampling technique, 
whereas our algorithm uses a greedy heuristic to construct initial partial solution. We 
also use an additional improvement phase, where the greedy heuristic-based 
improvement ends. An overview of proposed algorithm is presented in Figure 18. 
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Figure 18. Pseudo-Code Overview of the Proposed Greedy Heuristic With 
Local Search Algorithm 

In brief, the three phases of the algorithm achieve the following: 

1. The construction phase determines how many components in the 
system should be initially examined to include in system maintenance 
of multiple components and an initial estimate for the time at which that 
multi-component maintenance operation should occur. The window of 
time considered during the construction phase is a proportion ߜ of 

ܶ
୫ୟ୶, and shown later, algorithm results are sensitive to ߜ. 

2. The improvement phase improves the construction phase result by 
dividing the set of multiple components into two sets (a candidate set 
and a discard set) to determine whether dividing the maintenance 
operation will produce lower penalties than the construction phase. 
This phase iterates by removing a component out of the candidate set 
one at a time and placing it in the discard set and calculating penalty 
improvement. 

3. The local search phase focuses on the resulting candidate set from the 
improvement phase and iterates across the different times associated 
with recommended component maintenance to balance the penalties 
of earliness and tardiness of individual components. 

These three phases are performed at each system maintenance iteration j, 
thereby resulting in (i) the set of components involved in the jth system maintenance 
operation and (ii) the time at which the jth system maintenance operation should be 
performed. The algorithm stopping criterion is the pre-determined planning horizon 
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T. Let I be the set of discrete time periods where each element represents 
recommended (e.g., from RCM or OEM suggestions) repair times of a component 
during planning horizon T.   

The final solution of this algorithm is essentially an ܯ ൈ 1 vector for all system 
maintenance operations, where each element of the vector represents the 
recommended jth system maintenance. The result of each iteration j is referred to as 
the jth partial solution of the over final solution. Each element of the algorithm 

solution is comprised of two parts: ߨ[0] refers to the set of repair times ቄ ܶభ
భ, … , ܶ

ቅ 

of components to be performed jointly at the jth system maintenance operation 

(where ܶ
 is the ܽth maintenance operation for component A), and ߨ[1] refers to 

the recommended time ݐ at which the jth system maintenance is to be performed. 

For example, ߨ ൌ ቂ	ߨሾ0ሿ, ሾ1ሿቃߨ ൌ ൣ൛ ܶ
, ܶ

, େܶ
ൟ,  ൧ suggests that the athݐ

maintenance operation of component A, the bth maintenance of component B, and 
the cth maintenance of component C will all be performed jointly at time ݐ, the time 
chosen for the jth system maintenance operation to occur. Thus, during each 
iteration of this algorithm, an element that we refer to as a partial solution for 
algorithm solution set is found. At each iteration j, the three phases of the algorithm 
are performed, each of which is subsequently explained in detail. Through these 
three phases of construction and improvement, a partial solution is found, and this 
partial solution is then added to the solution set to update the algorithm solution for 
the scheduling maintenance problem. This iterative process is completed when the 
solution is found for the given planning horizon. 

Using input instance I and chosen value ߜ, an initial partial solution ߨ
 is 

created in the construction phase. During the improvement phase, this initial partial 
solution ߨ

 is improved using greedy heuristic based procedure GHBI. This 

improved partial solution is represented by ߨ
ᇱ. During local search phase of the jth 

iteration, partial solution ߨ
ᇱ is further improved using the LocalSearch procedure, 

and the third phase returns the final partial solution ߨ
ᇱᇱ. After finding the best partial 

solution ߨ
ᇱᇱ	in the third phase, we need to update the existing algorithm solution 

ܵ	and input set ܫ. This partial solution ߨ
ᇱᇱ	is then added as the jth element to solution 

vector S, to update the algorithm solution All scheduled component maintenance 

times ܶ
, at iteration j are removed from set I for next (j + 1)st iteration and rest of 

the unscheduled component repair times of set I is updated according to their 
earliness or tardiness deviation for jth system maintenance.  
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Phase 1: Initial Partial Solution Construction 

At each iteration j, the first phase is a construction phase where the initial 
partial solution is generated. General pseudo-code for this partial solution 
construction phase is presented in Figure 19. ܶ

୫ୟ୶ is the time duration that 
expresses the maximum time-span that includes all the component repair times to 
be initially considered for repair during jth system maintenance. The construction 
phase time-span is selected according to the ߜ value, which reduces the length of 

time originally considered by proportion ߜ. All component repair times ܶ
 during 

time-span Tc are included in the joint repair component set for the initial partial 
solution ߨ

	for iteration j. This constructs the first part of the initial partial solution, 

ߨ
[0].  

Step 1.1. Calculate ܶ
୫ୟ୶

. The maximum time-span of construction phase ܶ
୫ୟ୶ 

represents the time duration between the recommended time for the earliest first 
repair of all components and the recommended time for the earliest second repair. 
Let sets of first and second repair times of each component out of all unscheduled 
maintenance times be ࣮1 and ࣮2, respectively. The minimum value of set ࣮1 is 
denoted by EarliestFirstRepairTime and the minimum value of set ࣮2 is expressed 
by EarliestSecondRepairTime in the pseudo-code in Figure 19. The absolute value 
of their difference is the value of time-span ܶ

୫ୟ୶
. 
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Figure 19. Pseudo-Code for GHLSA Phase I, the Partial Solution 
Construction Phase 

Step 1.2. Calculate ܶ. Construction phase time-span, ܶ can be calculated by 
multiplying the value of the maximum time-span of construction phase ܶ

୫ୟ୶
 by ߜ. In 

a sense, ߜ is the scope of granularity. A small value of ߜ suggests a tight granularity 
of maintenance option set, meaning that a shorter time frame will be considered for 

ܶ with which to consider multiple component maintenance options. For a larger 
value of ߜ, ܶ  approaches ܶ

୫ୟ୶
 value. And ܶ  is equal to ܶ

୫ୟ୶
 when  1= ߜ.  

Step 1.3. Partial Solution Component Set. Insert all recommended component 

maintenance times ܶ
	that are originally scheduled during construction phase time-

span ܶ, into joint repair component set ߨ
[0] of initial partial solution ߨ

. If there are 

݊ଵ	elements in set ଵ࣮, then it would take ݊ଵ iterations to construct the initial partial 
solution component set.     

The time at which system maintenance is performed on the components in 
ߨ
[0] constitutes the second part of the initial partial solution, ߨ

[1], which can be 

chosen according to several heuristics including 
 the mid-point of time-span ܶ, 
 a component repair time of component set ߨ

[0] where the deviation ∆ is 
minimized, or 

 the earliest component repair time (i.e., the minimum value of component 
set ߨ

[0]). 
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In our implementation, the third heuristic is used to construct the later part of 
initial partial solution. That is, the second part of the initial partial solution, ߨ

[1], is 

chosen according to the heuristic convention of scheduling system repair at earliest 
component repair time. Thus, this phase schedules all possible component 
maintenance during time-span ܶ at the earliest possible time to produce an initial 
partial solution.  

Phase 2: Greedy Heuristic-Based Improvement 

During the second phase of iteration j, the algorithm improves the initial partial 
solution ߨ

 constructed in Phase 1, focusing primarily on the components in ߨ
[0] to 

be repaired jointly (e.g., ൛ ܶ
, ܶ

, େܶ
ൟ). A search is performed in the neighborhood of 

ߨ
 to find a better partial solution. This combination of component repair times is 

improved according to a greedy heuristic of removing the last-one-out (i.e., latest 
component repair time) from existing combinations. 

Let initial partial solution ߨ
 be the existing partial solution ߨ

ᇱ (i.e., jth solution 

element). If there are ݊ elements in joint repair component set (ߨ
[0]) of existing 

partial solution, then there would be ݊ possible combinations of component sets 

that can be created according to the last-one-out greedy heuristic. The best 
combination set among ݊ possible combinations is selected in (݊ െ 1) iterations. At 

each iteration of the (݊ െ 1), two temporary partial solution elements called 

candidate solution ߨ and discard solution ߨௗ (i.e., temporary jth and (j + 1)st) are 
generated from existing partial solution ߨ

ᇱ. The best candidate solution is selected 

as new existing partial solution ߨ
ᇱ according to an acceptance criterion. Each 

iteration of this greedy heuristic based improvement method, which is the 
ImproveCombination procedure in Figure 20. 

Step 2.1. Determining ߨ
ᇱሾ0ሿ. The first part of a solution element presents the 

component repair times to be repaired jointly. An improved combination of this joint 
repair component set is searched using the last-one-out heuristic. To generate an 
improved combination of the jth solution element, two sets (i.e., candidate 
combination set ܵ and discard set ܵௗ) are created from the existing joint repair 
component set. The candidate set will eventually be repaired during the jth iteration, 
and the discard set will be saved for the (j + 1)st iteration or beyond. Let the existing 
joint repair component set be the initial value of candidate combination set ܵ. By 
applying the last-one-out greedy heuristic (i.e., latest component repair time), a new 
discard set ܵௗ is created. To generate the discard set ܵௗ, the latest component repair 
time (i.e., max ܵ ) is removed from candidate solution set ܵ and inserted into 
discard set ܵௗ. Candidate set ܵ and discard set ܵௗ construct the first part of the 
candidate solution ߨ and discard solution ߨௗ, respectively (i.e., ߨሾ0ሿ and ߨௗሾ0ሿ).  
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Step 2.2. Determining ߨ
ᇱሾ1ሿ. The time at which the elements of the candidate 

solution ߨሾ0ሿ are repaired is found from the earliest component repair time heuristic 
for the set (i.e., min ܵ). This time of repair is ߨሾ1ሿ. Similarly, the components in 
discard solution ߨௗሾ0ሿ are repaired at ߨௗሾ1ሿ, or min ܵௗ. Other heuristics that could be 
used in this step were presented in Step 1.3 of the previous phase.  

Step 2.3. Acceptance Criterion. The candidate solution is selected as the 
existing partial solution ߨ

ᇱ, according to the acceptance criterion of the minimum 

penalty function. The existing candidate solution is chosen as the partial solution ߨ
ᇱ 

if the combined penalty function value of candidate and discard solutions is less than 
the penalty function value of the existing partial solution ߨ

ᇱ. Figure 20 presents the 

procedure of developing new combination set according to the greedy heuristic. 

 

Figure 20. Pseudo-Code for Improving Combination Stage 

As long as the number of elements ݊ of existing partial solution ߨ
ᇱ is greater 

than 1 and minimizes the penalty function value, ߨ
ᇱ is divided into two new parts: 

candidate solution ߨ and discard solution ߨௗ. This iterative improvement is done 
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while in the loop presented in procedure GHBI. Figure 21 describes the procedure 
GHBI using pseudo-code.    

 

Figure 21. Pseudo-Code for GHLSA Phase II, the Greedy Heuristic-Based 
Improvement Phase 

Phase 3: Local Search-Based Improvement  

In the last phase of system maintenance iteration j, an improved partial 
solution is selected by searching the neighborhood of current partial solution ߨ

ᇱ, 

building the best candidate set of components repair at the jth iteration. Let this 
improved partial solution be ߨ

ᇱᇱ and its initial value be ߨ
ᇱ. Emphasis in this third 

phase is placed primarily on searching different values of ݐ in the neighborhood of 
ߨ
ᇱሾ1ሿ to determine when the jth maintenance operation should occur. Pseudo-code 

for this local search phase is shown in Figure 22. During this improvement phase, ݐ 
iteratively takes the values of component maintenance time generated from the final 
combination set ߨ	

ᇱ ሾ0ሿ during previous phase and create a temporary partial solution. 

During this iterative process, the partial solution is updated according to the penalty. 
According to our selected method, it takes ݊ iterations to search the neighborhood 

of ߨ
ᇱሾ1ሿ, if number of elements in combination set ߨ

ᇱሾ0ሿ is ݊. At each iteration of ݊, 

a new temporary partial solution called temp is generated. Steps of each iteration 
are as follows:  
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Step 3.1. Determining ߨ
ᇱᇱሾ0ሿ. The joint repair component set comprising ߨ

ᇱᇱሾ0ሿ 

takes the value of the final combination set (i.e., ߨ
ᇱሾ0ሿ	) found in the second phase.  

Step 3.2. Determining ߨ
ᇱᇱሾ1ሿ. During this improvement phase, ݉݁ݐሾ1ሿ (i.e., 

 ) iteratively takes the values of component maintenance time generated from theݐ

final combination set ߨ	
ᇱ ሾ0ሿ during the previous phase. At iteration ݊, ݐ would take 

the value of ݊th element of combination set ߨ	
ᇱ ሾ0ሿ.   

Step 3.3. Acceptance Criterion. The acceptance criterion is the value of 
penalty function presented. At each iteration of ݊, the temporary partial solution 

temp is selected as new existing partial solution only if the new temporary partial 
solution minimizes the penalty function value.  

At the end of ݊ iterations, the LocalSearch procedure returns the best value 

found in the search. The return value, ߨ
ᇱᇱ, of this local search-based improvement is 

the partial solution representing the jth element of the final solution vector.  

 

Figure 22. Pseudo-Code for the GHLSA Phase III, the Local Search Phase 

GHLSA Experimental Results 
An example problem briefly illustrates the algorithm and some insights. 
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Problem Specification 

Our example problem examines a series system composed of ten 
components. We assume the initial start time TNOW is zero. We assumed earliness 
penalty and tardiness penalty value to equal and same for all components (i.e., 
deviation penalty Cp). Maintenance duration ܦ is assumed to be five time units for 
all components. The recommended individual maintenance times of these 
components are assumed here to be the MTBF from a two-parameter Weibull 
distribution with individual shape and scale parameters, ߚ and ߟ, respectively. The 
assumed values of the planning horizon, setup cost, downtime cost per unit time, 
earliness penalty and tardiness penalty values are presented in Table 5. 

Table 5. Parameters of the Illustrative Example 
Component ߟ ߚ Other values 

A 15 2 TNOW =0 
B 20 3 T = 200 time unit   
C 15 3 CS =30,000 
D 17 4 CD =5,000 
E 23 5 Cp=CE,l= CL,l=500, for all l 
F 37 4 ܦ = 5 time unit, for all l 
G 30 7  
H 22 3  
I 19 2  
J 26 4  

Baseline Case 

The baseline case follows a simple procedure for maintenance. Each system 
maintenance operation is performed at the earliest component repair time (i.e., min 

ܶ
), out of unscheduled component maintenance times. It is assumed that all repair 

times are in the system repair window (i.e., min [ ܶ
 +	ܦሿ) will be scheduled to be 

repaired at the same time. We used the same penalty function to calculate the 
objective function value for the baseline case. Note that the tardiness penalty will 
always be zero in baseline case instance, as system maintenance is done at earliest 
component repair time and there is no push back of component maintenance.  

Figure 23 graphically depicts the recommended individual maintenance 
schedules for the 10 components, plus the baseline system maintenance schedule 
and GHLSA system maintenance schedule. 
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Figure 23. Graphical Depiction of the Recommended Repair Times for the 10 
Components (MTBF), and the System Maintenance Schedules Found 

From the Baseline Case and the GHLSA, Over 100 Time Periods  

Sensitivity of ࢽ and ࢾ Parameters 

We solved the problem described above with the baseline case and the 
GHLSA. Experimental penalty function data were transformed into percent deviation 
value (PD). We calculated the PD with Equation 25, where Objୠୟୱୣ represents 
penalty function value for the baseline case and Objୋୌୗ represents the penalty 
function value produced using GHLSA procedure. A positive PD suggests that the 
objective function value has improved (reduced) using the proposed algorithm and 
vice versa. All calculated results for different ߜ values are depicted graphically in 
Figure 24. 

Percentage	Deviation	ሺPDሻ ൌ 	ୠ୨ౘ౩	ି	ୠ୨ృౄైఽ
ୠ୨ౘ౩

ൈ 100   (25) 

Sensitivity Analysis on ߛ 
Figure 24 shows that for a given instance, the proposed algorithm produced 

very high objective function values that resulted in negative PD value for lower ߛ 
values (i.e., γ = 0.1 to γ = 0.3). For ߛ greater than 0.3, calculated PD resulted in 
positive values. As such, for larger ߛ values (i.e., to γ > 0.3), the best solutions found 
using the GHLSA improved the objective function value of baseline case. As ߛ 
increases, the PD value decreases for both positive and negative deviation trends. 
Results were not very sensitive to ߛ value. The trend of PD remained the same, and 
the objective function value changed very little with a change in ߛ.  
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4.3.2. Sensitivity Analysis on ߜ  
For all ߛ values, objective function percent deviation change was logarithmic 

with ߜ, shown in Figure 24. For smaller values of ߜ, GHLSA produced some 
negative deviation. As ߜ increased, it generated a positive deviation, as the objective 
function value decreased with higher ߜ value.  

 

Figure 24. Change in Percent Deviation Value With ࢾ  

Sensitivity of Penalty Terms 

We performed comparative study of baseline case and GHLSA-based results 
by generating different instances by changing given value of ܥௌ, ܥ, and ܥ. 

Sensitivity Analysis on Setup Penalty ܥௌ 
The GHLSA proved to be more effective (i.e., better improvement of objective 

function value) in the cases where joint maintenance of components has higher 
potential of minimizing system downtime and where system maintenance is more 
likely to incur higher setup cost. Results for the baseline and GHLSA cases for 
different instances for six different setup costs are presented in Figure 25. For all 
values ܥௌ, GHLSA was able to improve (i.e., positive PD values) the penalty function 
value relative to the baseline case for the same ߛ. For a given ܥௌ, penalty function 
value increased as ߛ decreased. Here, ߛ is the fraction of sum of all recommended 
component maintenance times representing the total joint repair time for jth system 
maintenance. Results signify the effectiveness of the proposed meta-heuristic–
based algorithm where joint maintenance time is more likely to reduce the system 
downtime. It showed an increasing trend in PD value with increasing ܥ௦, for any 
given ߛ, demonstrating the potential of this GHLSA for multi-component system 
maintenance where setup cost is comparatively high.  
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Figure 25. Percent Deviation Values for Different Setup Penalties Across 
Values of  

Sensitivity on Downtime Penalty ܥ  
Results were generated for 10 different ܥ values ranging from 1,000 to 

10,000. Percentage deviation values are representative of the best solution found 
using proposed GHLSA at granularity level 0.2 = ߜ, shown in Figure 26. The 
decreasing nature of PD with increasing ܥ suggests that the benefit of performing 
GHLSA decreases as the downtime is penalized more. The PD value ranged from 
3.80% to 23.88%, suggesting that when 0.2 = ߛ, the improvement relative to the 
baseline case is at its largest.  

 

Figure 26. Percent Deviation Values for Different Downtime Penalties Across 
Values of  
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Sensitivity on Deviation Penalty ܥ 
Different ܥ values ranging from 100 to 1000 were used to generate 

experimental instances, depicted in Figure 27. As the penalty increased, the PD of 
the performance of the GHLSA relative to the baseline decreased. Such a result 
would be expected, as the more the penalty placed on when system maintenance 
iteration deviates from the individual component maintenance recommendation, the 
more likely one is to stay away from earliness or tardiness when performing 
maintenance. 

 

Figure 27. Percent Deviation Values for Different Deviation Penalties Across 
Values of  

Optimal ߜ Value 
Table 6 and Table 7 present the optimal ߜ values at granularity level 0.1 for 

generated instances for ܥௌ and ܥ. Note that optimal ߜ values for downtime 
instances were not reported in tables. For all 100 instances for Cୈ, generated 
optimal delta value was 0.8-1.0 at granularity level 0.1. For setup cost, all instances 
for cost ranging from 15,000 to 30,000, optimal ߜ was 0.8-1.0. For 10,000 setup 
penalty instances, optimal delta value was 1.0, and it decreased to 0.5 for lowest 
setup penalty 5,000. 
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Table 6. Optimal ࢾ Values for Different Setup Penalty Instances Across ࢽ 

 

Table 7. Optimal ࢾ Values for Different Deviation Penalty Cost Instances 
Across ࢽ 

 

For deviation penalty instances, the optimal ߜ value was constant for all 
values of ܥ, except 900. For ܥ = 900 and for lower ߛ values (i.e. γ = 0.1-0.2), ߜ 
value for best found results was 0.7-1.0; and for remaining ߛ values, it was 0.7. 
According to the PD analysis, ߜ is a significant factor in finding a good solution when 
implementing this greedy heuristic based methodology. Experimental results 
suggest that higher values of ߜ, at granularity level 0.1 is a safer choice, when 
penalty function for all the ߜ values cannot be evaluated. In those cases, our 
recommended ߜ value would be 0.5-1.0, at granularity level 0.1. 

Results were very sensitive to ߜ. The tuning of this construction phase time-
span parameter depends on the number of components in the system and available 
computation power. If possible, initial tuning can be done at granularity level 0.1. 

Granularity level 0.1 suggests changing the scope of granularity ߜ value by 0.1. If ܶ
 

values result in a very small ܶ
୫ୟ୶,	then higher granularity level may not produce an 

improved result, as the number of components repair times may remain same for 
resulted construction phase time-span ܶ.  

Concluding Remarks  
The problem addressed here is one where many (or all) of the multiple 

components of a system each have different recommended maintenance times. 
Such recommended maintenance times could be established from OEM suggestions 
or through reliability-centered maintenance (RCM) program, or likely some 
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combination thereof. As the expense of performing maintenance at each of those 
recommended schedules may be too great, in terms of budget or downtime, a 
means to schedule system downtime for maintenance is needed. Such a problem 
exists regularly in DoD weapons systems. 

We address this problem with the development of a greedy heuristic local 
search algorithm for multi-component preventive maintenance scheduling problems. 
The proposed algorithm provides a coordinated system maintenance schedule for 
multi-component system according to minimizing maintenance penalties, including 
penalty functions for earliness, tardiness, system setup, and downtime. This work 
contributes a new heuristic and meta-heuristics based algorithm in the field of 
preventive maintenance scheduling problems.  

We used a sensitivity analysis to understand the impact of joint repair time 
parameter γ, construction phase time-span parameter	ߜ, setup penalty	ܥ௦, downtime 
penalty	ܥ, and deviation penalty	ܥ on the objective function value. These analyses 
suggest that the optimal value of construction phase time-span parameter	ߜ depends 
on the granularity level and provided the importance of tuning parameter	ߜ.  

The proposed novel algorithm has been shown to make significant 
improvement of the objective function criterion of penalty value, compared to a 
baseline case where maintenance is performed at earliest recommended 
maintenance times. We have implemented the presented GHLSA for both objective 
function criterions, for 260 generated instances and found remarkable results. 
Deviation analysis showed significant improvement of objective function value for all 
260 problem instances for penalty criterion. The greedy heuristic based algorithm 
appears to be promising in solving preventive maintenance scheduling problems. 
Experimental results have demonstrated the prospect of the GHLSA for multi-
component system maintenance where setup cost is comparatively high and where 
joint component maintenance has the potential to reduce system downtime due to 
repair activities.    

Depending on the interest of the maintenance decision-maker, an alternative 
objective to minimizing downtime could be maximizing system reliability. Future work 
will explore this second objective in a multiobjective framework. It is hypothesized 
that a system reliability objective may change the maintenance schedule, particularly 
when the system schedule suggests that some components be maintained after 
their recommended maintenance times (tardiness), potentially resulting in an 
undesired system reliability. 

Task 3. Develop an Algorithm to Coordinate Multiple Vendor 
Acquisition of Component Parts 

This section is based on the following: 
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Chapel, T., Barker, K, & Ramirez-Marquez, J. E. (2013). Conditional reliability 
for acquisition decision making. Unpublished manuscript. 

Introduction 
As aging aircraft fleets continue in operation well beyond their planned use, 

operational costs are primarily composed of the support operations, such as 
maintenance, repair, and overhaul in order to maintain the fleet. The United States 
Air Force (USAF) has cited that its O&S (operations and sustainment) costs are 
increasing twice that of the rate of inflation. According to the GAO, many aspects of 
the DoD acquisitions process are currently on the “High Risk List” and have been 
there since 1995, including DoD’s Business Systems Modernization, Supply Chain 
Management, and Weapon Systems Acquisitions. The GAO has recommended on 
several occasions that military departments and the Defense Logistics Agency 
“improve demand forecasting” and move toward “automated methods,” and DoD 
responded by setting goals to reduce excess inventory categorized as on-order and 
on-hand. Aside from the GAO, much of the documented milestones and future plans 
of the DoD are provided by the Defense Acquisitions University (DAU). According to 
the DAU, the current maintenance policy of the DoD is condition-based 
maintenance–Plus (CBM+), though several other maintenance policies and many 
maintenance metrics are have been implemented with various degrees of success. 

Common in literature when analyzing a CBM or reliability-centered 
maintenance (RCM)–driven maintenance framework, system analyses and 
optimization primarily consider only a single objective The primary hurdle seems to 
be with noncommensurate and competing objectives; because “optimal” solutions do 
not exist with multiple objectives, decision-maker preferences are elicited to 
appropriately balance such competing objectives. When operating a government-
owned fleet, there are many performance metrics that must be incorporated because 
the DoD does not, and should not, determine a policy’s success or failure on a single 
metric. If a multiple objective analysis is developed, it is for a single spare part of a 
fleet; and so it seems that an analysis must choose to optimize for either multiple 
parts by a single objective or a single objective allowing for multiple parts. Recently, 
there has been some interest in merging the two topics of spare part allocation, 
reliability allocation for research due to their interactions within an operational 
system. Similar approaches have been discussed in the context of nuclear power 
plants, reservoirs, and various industrial processes. 

This work addresses the gap between (i) CBM/RCM modeling approaches 
and (ii) acquisition of MRO components and parts by introducing an acquisitions 
trigger that integrates conditional reliability and the acquisitions lead time for a given 
component and supplier. We model conditional reliability with the well-documented 
Proportional Hazards Model (PHM) (Cox 1972), treating suppliers as covariate 
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effects. In addition, this research also encompasses the possibility of multiple 
suppliers because it is not often that the DoD is solely dependent on a single 
supplier due to the nature of performance-based contracts. 

The two following sections lay the background and development of the 
described approach. This is followed by reviewing several examples from literature 
that highlight various steps in the approach followed by an illustrative example that 
shows the potential of the ideas outlined. Finally, we give several concluding 
remarks that will help with future research. 

Methodological Background 
The following sections describe several aspects that together will aid in the 

development of the proposed methodology. 

 

Figure 28. Depiction on When to Order Without Consideration Variability or 
Conditional Reliability With a Failure Defined as R = 0.3 

Reliability: Conditional and System  

Due to the emphasis on the order of events a conditional reliability calculation 
can be found and can be projected onto a planning horizon to allow for temporal 
decisions to be made. From Bayes’ theorem, Equation 26 can be defined for the 
conditional reliability of τ time beyond the current time. Starting with Bayes’ theorem 
of ܲሺܤ|ܣሻ ൌ ܲሺܣ|ܤሻ ∗ ܲሺܣሻ/ܲሺܤሻ	and assigning event ܣ as surviving the time interval 
of ߬   .ݐ being survival to time ܤ and event ݐ

ܴሺݐ  ,ݐ|߬ ሻܠ ൌ ோሺఛା௧,ܠሻ

ோሺ௧,ܠሻ
     (26) 

Equation 26 shows the conditional reliability or the unreliability of the 
component surviving the time next time interval of ߬. Figure 29 is an example of a 
comparison between the baseline reliability, reliability given covariate information, 
and finally reliability based on a conditional reliability.  
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Figure 29. Depiction of Reliability and Conditional Reliability Over Time 

To translate the multiple component reliabilities into the systems reliability 
several assumptions must be made. Using a reliability block diagram, we can 
assume the critical components both fail individually and the system can be 
described as a system in series the following equation can be used to calculate the 
probability that the system will survive the next time interval of ߬. 

					ܴ௦ሺݐ  ,ݐ|߬ ሻܠ ൌ ෑܴ

ே

ୀଵ

ሺݐ  ,ݐ|߬ ሻ   (27)ܠ

Proportional Hazard Model 

The PHM provides a means to incorporate covariates into the reliability 
(survivability) of a given interest (e.g., component, aircraft, and fleet). Reliability is 
most often provided as a function of time that is less accurate than a model utilizing 
covariate information. The CPHM primarily depicted through the hazard function that 
is the instantaneous conditional probability in a small time period is shown in 
Equation 28. 

݄ሺݐ, ሻܠ ൌ ݄ሺݐሻexpሺ்ܠሻ     (28) 

Where baseline hazard function is hሺtሻ and βand x are the transpose of the 
regression coefficients and covariate vector. The robustness of the model has 
allowed its wide use in medical research. Though the CPHM is primarily used as a 
descriptive model, this research hopes to show that through the model’s 
assumptions (primarily the hazard ratio being a constant value), the model in the 
application of aviation maintenance can provide a useful estimation of reliability at 
multiple levels. Adjusted survival curves or reliability curves are provided as step 
functions like those commonly viewed in the Kaplan–Meir method. Reliability, which 
is primarily calculated with sole dependence on time, it can be redefined from 
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ܴሺݐሻ ൌ exp ቀെ ݄ሺݔሻ݀ݔ
௧
 ቁ to Equation 2 so as to utilize the additional information. 

When reliability is of an engineered component, the baseline reliability is initially 

assumed to be	ܴሺݐሻ ൌ exp ൬െቀ
௧

ఒ
ቁ

൰. Through an investigation of how the CPHM 

updates the originally assumed baseline (still assuming the choice of the parametric 
distribution is correct). Equation 29 provides the use of this in the use of the 
reliability calculation. 

ܴሺݐ, ሻܠ ൌ 	ܴሺݐሻୣ୶୮൫
ܠ൯     (29) 

 

Figure 30. Depiction of a Situation Where Degradation Is Faster Than the 
Baseline 

Weibull Distribution 

Though there are many possible distributions in which to describe the 
behavior of components, the Weibull distribution has been shown as the best 
starting point from which to describe the degradation and failure of aviation 
components. Though much of the instrumentation in use may use software, which is 
commonly described by the exponential function, that is not the focus of this 
research because the nature of the exponential function and components with 
similar failure characteristics do not allow for the opportunity to make inventory 
decisions due to the durations necessary for the acquisitions processes. 

There are two key parameters that drive the characteristics of the Weibull 
distribution: ݇, the shape parameter, and ߣ, the scale parameter.  
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Figure 31. Failure Time Probability Distribution Function 

Figure 31 provides an illustration of the PDF over time and expresses that the 
overall behavior of the distribution is more sensitive to changes in the shape 
parameter compared to the scale parameter. When increasing the shape parameter, 
the distribution is more sensitive to changes in parameters and the rate of change 
experienced is much higher than with similar changes in the scale parameter (when 
holding the other parameter constant). When changing the scale parameter makes 
the overall curve less sensitive to change in and increased to an extremely large 
number, the slope of such a function would have an asymptote of zero. In comparing 
the two parameters, the scale parameter is more accepting of large amounts of 
variability, and so it is chosen later in the illustrative example to allow for a larger 
difference in the scale parameter among the multiple components. 

Methodological Development 
The following development is a product of the building blocks set and is 

outlined in the previous section. It is also how this research proposes integration for 
such an application to allow for a decision-making aid for the supporting operations 
of MRO and spare parts acquisitions. To narrow the presented ideas into a specific 
application, we make several additional assumptions to proceed with the 
methodology. 

Assumptions: 

݁݉݅ݐ	݀ܽ݁ܮ .1  ߬. If not, then reducing spare parts cannot be a 

recommendation because the system would be in a constant state of 
unnecessary risk. 

2. Suppliers are willing to provide necessary information. Such an 
assumption can be made because the process of manufacturing and 
delivery of spare parts is a type of service; thus, the dynamics of the 
provider user take place. The dynamics of the service industry are 
grounded on a competitive nature to be the provider deemed by the 
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user as the best, fastest, cheapest, highest quality, most flexible, and 
others. 

3. A model can be abstracted from the system, and such an abstraction 
does not introduce enough variation as to invalidate an analysis of the 
system through the model. 

Because there is inherent error in point estimates, we propose to use an 
interval of the covariate found through the regression model. Figure 32 portrays the 
range of the estimated reliability changes over time. 

 

Figure 32. (a) Depiction of the Effect of the Covariate Estimation and Its 
Interval on the Estimated Reliability; (b) The Covariate Estimate Was 

Increased by 0.5 to 1.0 

As the covariate estimate increases, the upper and lower values of estimated 
reliability widen, which shows that the system must generate covariate information 
low enough for acceptable ranges on reliability calculations. For the illustration of the 
methodology it is assumed that 

,መଵߚൣ መଶ൧ߚ ൌ േߚመ  ܼఈ
ଶൗ
 (30)      ߪ

Illustrative Example 
The following illustrative example is of a very simple and theoretical system 

and is provided purely as an exercise of the methodology developed in the 
preceding sections. Though assumptions in the previous sections have been 
discussed to allow for applications in aviation, MRO operations, and support 
operations, additional assumptions are necessary as input for the methodology. The 
abstraction of the system is described as a two component in a series subsystem 
with three similar subsystems described as the systems in parallel. Additionally, 
there are three suppliers with the ability to supply both components in use by the 
subsystems, and there are no restrictions on how many parts are to be supplied by 
which supplier or whether the parts of various suppliers create a conflict in the same 
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system. Though the components have been tested and can be defined as both 
reliable and maintainable, the conflict that arises is that MRO acquisitions costs are 
too high and that a need for more optimal decisions are necessary given the 
constraints of a budget. This work is interested in using provided information 
describing the various suppliers that provide a more detailed picture than just the 
price of a component, such as the details described in Table 8. Each supplier has 
shown its components meet certain requirements of reliability (i.e., their shape and 
scale parameters to which the parts have been built are the same) but there seems 
to be a difference in their operational performance. The scale parameters are shown 
as 1000, 1800; and the shape parameters are 3 and 6. 

 

Figure 33. Component Baseline Reliabilities 

Each supplier has a different price and lead time. 

Table 8. Supplier Characteristics 
 Supplier 1 Supplier 2 Supplier 3 

Lead Time, 
Variability 

350 90 200 85 520 80 

Cost (x2000) 780 820 660 770 520 840 

The following regression coefficients were found by simulating data based on 
the scale and shape parameters 100 times for each supplier. Though the 
parameters of the Weibull distribution were the same, there were differences in their 
performance, which is visible in comparing with the regression values. 

Table 9. Regression Coefficients 
Supplier 1 Supplier 2 Supplier 3 

Component 
1 

0 0.0360 0.0386 

Component 
2 

0 0.0587 -0.0652 
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Given that the conditional reliability maintenance trigger has happened, it is 
now necessary to determine the optimal maintenance decisions. At the decision 
point, several items must be determined: which operations should take place; and if 
overhaul is an operation, how many and which components will be overhauled, and 
from which supplier will they be replaced? 

Table 10. Acquisition Times Without Covariate Input 
Supplier 1 Supplier 2 Supplier 3 

Component 1 882 1276 603 
Component 2 1326 1962 1388 

Table 11. Acquisition Time Incorporating Covariate Information and 
Conditional Reliability 

Supplier 1 Supplier 2 Supplier 3 
Component 1 870 909 1288 1339 589 621 
Component 2 1582 1624 1874 1921 1346 1386 

It is clear there are differences in the actual times in which to start the 
acquisitions process depending on the current supplier of the part in use and on the 
possible supplier options when a component is to be overhauled. This is clearer in 
calculating the costs associated with and without the incorporation of covariate 
information. 

The objectives considered at the time of the decision are reliability, 
maintainability, and cost. Although in many DoD documents, availability is an added 
objective, it is not seen as necessary to optimize because it is dependent on 
reliability and maintainability values. Operations, maintenance, repair, and overhaul 
can be described in their ratios of time necessary, costs associated, and effect on 
reliability.  
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Performance Metrics 

 

Figure 34. Case Study Output 

Table 12. Corresponding Points of Single Supplier, Single Acquisitions 
Time 

Database Number  Cost  Ao  Action  
1  13,361,504  0.93304  Supplier 1 – Early  
9332  15,351,984  0.93304  Suppler 1 – Late  
18663  13,546,161  0.97971  Supplier 2 – Early  
27994  14,537,604  0.97971  Supplier 2 – Late  
37325  11,450,866  0.86009  Supplier 3 - Early  
46656  13,624,902  0.86009  Supplier 3 – Late  

Table 13. Subset of Pareto Points 
Database Point  Cost  Availability C11  C12  C13  C21  C22  C23  
18,579  13,389,793  0.97101  2, Early 2, Early 2, Early 1, Early  1, Early  2, Early 
19,009  12,708,485  0.94897  2, Early 2, Early 3, Early 1, Early  1, Early  1, Early 
19,025  12,769,545  0.95384  2, Early 2, Early 3, Early 1, Early  2, Early  3, Early 
21,673  12,183,543  0.93716  2, Early 3, Early 3, Early 2, Early  1, Early  1, Early 
37,239  11,736,786  0.91546  3, Early 3, Early 3, Early 2, Early  2, Early  2, Early 

At this point, the analysis would be given to the decision-maker or group for 
consideration, if the analysis were to continue using a utility where the decision-
maker is interested in maximizing the gain of availability compared to increased cost. 

Conclusions 
Instead of designing out maintenance, because the benefits cannot outweigh 

the costs, design instead in maintenance where the maintenance schedules of 
critical components align. This alignment can be reached either through design or by 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 57 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

varying the suppliers. For example, for a two-component system, supplier 1 can 
provide both with renewal times of 4 and 7; and supplier 2 provides times of 2 and 3. 
Respectively, the suppliers have a least-common factor of the renewal process of 28 
and 6. 28 may be too many cycles to go with an unbalanced schedule with supplier 
1, but supplier 2 may be too often. In mixing the acquisitions process and ordering 
component 1 from supplier 1 and component 2 from supplier 2, the schedules line 
up every 12 cycles. Of course, this is a point estimate, but this idea may be of use to 
fleet managers. Additionally, being able to coordinate the components maintenance 
jointly will improve the achieved availability of the system. Furthermore, in looking at 
the subset where all components are supplied by a single supplier at a single time, 
the early triggering times always outperformed the latter trigger times. This may be 
due to the costs associated with failure and holding; but based on the actual system, 
such a conclusion has the possibility of changing. As changing the metrics to 
represent systems may lead to alternate collusions, so too could the introduction of 
additional metrics, especially those concerned with the experienced service of the 
supplier. 

The other more dominant insights of this approach come from its 
development. The goal was to incorporate the acquisitions process and dynamic 
maintenance schedule (based on RCM) into a cohesive model. With an integrated 
model, it will be easier for the managers of the acquisitions department to 
communicate with those in charge of maintenance procedures. Through this model, 
the analysis develops and incorporates the needs of both departments. 
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