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Abstract 

Life Cycle Cost (LCC) assessments are of interest during the design phase 

for new systems. These often involve costs that must be estimated from a variety of 

different sub-models, including cost models constructed from historical data, forecast 

models that attempt to predict future economic conditions, and economy-of-scale 

models that impact production schedules, and more. When these disparate models 

are put together to obtain an overall cost model, many of these individual sources of 

uncertainty end up being aggregated or ignored. Consequently, the cost estimates 

may not provide program managers with appropriate assessments of the risk and 

overall variability of the new systems. We propose a structured approach for 

obtaining robust LCC estimates by taking into account a broad set of environmental 

noise conditions. This will enable program managers to better understand the 

uncertainty in their overall estimates, and to identify any decision factor 

combinations that result in both low costs and low cost variability. This may provide 

guidance on which of the many potential uncertainty sources require close 

monitoring, and which can safely be disregarded. We illustrate this approach with a 

model the USMC is evaluating for use in cost/benefit analysis of alternative energy 

systems. 

Keywords: life cycle cost (LCC), modeling, cost estimating 
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A Robust Design Approach to Cost 

Estimation:  Solar Energy for Marine Corps 

Expeditionary Operations 

Introduction 

Taguchi made a major contribution to the quality engineering literature 

through his vision of building quality into the product at the manufacturing design 

level (Taguchi, 1986, 1987; Taguchi & Wu, 1980).  He recognized that a careful 

choice of settings for design decision factors (or parameters) could lead to products 

that were insensitive to uncertainties in the manufacturing and customer 

environment.  The uncertainties, or noise factors were uncontrollable (or controllable 

only at great expense) in the real world, and could either be internal (based on 

endogenous characteristics of the system) or external (resulting from exogenous 

effects).  However, by manipulating both the decision factors and the noise factors 

during laboratory experiments, a statistical design-of-experiments approach could be 

used to systematically seek improved product designs. 

In the parameter design (or robust design) stage, the analyst conducts a 

designed experiment to gather information about the expected system performance 

across the noise space.  The ideal system configuration is one that results in a mean 

performance equal to the target τ, and a performance variability of zero.  Since in 

practice the ideal is unattainable, a loss function serves to trade off average 

deviation from the target with consistency of the output.  The “best” system is thus 

often not that associated with the best mean performance.  For example, Quinlan 

(1985) described how a redesigned speedometer cable resulted in an over ten-fold 

savings in expected warranty claims because of reductions in the mean and 

variance of cable shrinkage.  Sanchez et al. (1998) examine a job shop where loss 

is a function of the time jobs are in the system.  They found the optimal shop floor 

layout and control resulted in over 35% savings when compared to the configuration 

yielding the lowest mean.  Risk and performance trade-offs are routinely considered 

in other fields, such as financial portfolio management, although they have not yet 

benefitted from the formal application of the robust design approach. 

The final stage in Taguchi's framework is called tolerance design (Taguchi 

1986, 1987; see also D’Errico & Zaino, 1988.)  At this stage, the levels for the 

decision factors have already been chosen to achieve a good product design.  The 

analyst conducts a further statistical experiment to evaluate the overall system 

performance and attribute variation in the response to variation in the noise factors.  

Any decision factors that cannot be precisely controlled in the manufacturing 
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environment, but are randomly distributed about their chosen values, are also 

considered sources of noise.  By incorporating the loss function, the tolerance 

design results can suggest several ways for further improving the product design.  

They indicate whether or not upgrades in the consistency of component parts are 

cost-effective, or whether any specifications could be relaxed without adversely 

affecting product quality.  In addition, by quantifying the impact of the noise factors 

on the expected loss, they highlight which (if any) sources of noise should be 

targeted for improvement in the future. 

In this paper, we focus on using designed experiments to evaluate the life 

cycle cost of a particular system, where the noise factors represent uncertainties in 

future component costs.  In manufacturing applications, tolerance design 

experiments are typically set up to detect only main effects, either using Taguchi's 

orthogonal arrays or other classic orthogonal designs.  Analysts have, by 

construction, guaranteed that the noise factor settings are uncorrelated during the 

experiment.  However, it is still possible for some of these factors to be correlated—

perhaps strongly—in the real world setting under normal operating conditions.  If so, 

this raises several questions: What effect does correlation have on the tolerance 

design results? How can data obtained from an orthogonal experiment be used for 

noise factor assessment when two or more of these factors are correlated?  Are 

there better alternatives for the experimental design if correlation is known to exist a 

priori?   

Our goal in this paper is to show that it is possible to construct robust cost or 

performance estimates for situations where strong pairwise correlations are present 

among the noise factors.  We motivate the need for robust cost estimation using an 

example of current interest to the Marine Corps Expeditionary Energy Office.  We 

then review a response-surface modeling approach for tolerance design (Vining & 

Myers, 1990; Myers et al., 1991; Ramberg et al. 1991), describe modifications in the 

analysis to account for such correlation, and present a class of elliptical designs that 

can be used when orthogonal designs over the entire range of interest are 

inappropriate. 

Motivating Example:  Marine Corps Expeditionary 

Energy 

Our motivating example is drawn from Morse (2014), who explores in great 

detail the performance of a model that can be used to predict the energy needs for 

Marine Corps expeditionary operations.  In this paper, we consider a single use-case 

from Morse's study to illustrate the need for robust cost estimates, as well as how 

appropriate experimental designs can be used to provide more insight to program 
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managers and planners about the projected operational cost/benefit of investments 

in alternative energy.   

Marine Corps Expeditionary Energy Initiatives 

General Amos published the Marine Corps Expeditionary Energy Strategy on 

March 21, 2011.  This energy strategy sets an objective of making 50% of Marine 

Corps bases “net-zero energy consumers” by 2020  (ALMAR011/11, 2011).  In 

2011, fuel consumption in Afghanistan was estimated at 8 gallons per Marine per 

day (Hersterman, 2011). In the Expeditionary Energy Strategy, General Amos 

focused on the deployed environment and called for a 50 percent reduction in fuel 

consumption per Marine down to 4 gallons per Marine per day (Amos, n.d.).  The 

Marine Corps’ reduction in fuel consumption will result not only in increased 

maneuverability and sustainability, but also in reduced fuel-supply related casualties.   

To accomplish this reduction in fuel consumption, the Marine Corps first 

focused on reducing the fuel consumption of forward operating bases (FOB).  The 

Marine Energy Assessment team identified that 32 percent of fuel consumed by the 

Marine Expeditionary Brigade (MEB) deployed to Afghanistan in 2009 was used for 

electric power generation (Schwartz, Blakeley, & O'Rourke, 2012).    

Through the efforts of the Expeditionary Energy Office, the Office of Naval 

Research (ONR), and their interaction with industry, the Marine Corps has 

developed robust, renewable technologies to meet the energy objectives laid out in 

the Commandant's energy strategy. Through the EEO the Marine Corps has 

investigated energy solutions in such areas as photovoltaic arrays for power 

harvesting, light emitting diodes (LED) for decreased energy consumption, and 

improved battery and smart power controller technologies for better energy 

management. 

Two successful renewable energy assets developed by the Marine Corps are 

the Ground Renewable Expeditionary Energy System (GREENS) and the Solar 

Portable Alternative Communications Energy System (SPACES).   GREENS is a 

power generation and conversion system that allows Marines to power systems with 

solar energy. Each GREENS is comprised of eight photovoltaic array panels, four 

high-energy lithium batteries (HELB), and a central controller.   Figure 1 shows how 

all components of a GREENS are combined to harvest solar power, receive AC and 

DC power, employ the HELB batteries, and to provide DC output for a load.  
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Figure 1. GREENS employed with all photovoltaic arrays and High Energy 
Lithium Batteries  

(from USMC Warfighting Laboratory, 2012) 

The SPACES system is much smaller, lighter, and less powerful than 

GREENS.  Powered by two (12) volt folding portable solar panels, a single SPACES 

is designed to recharge two BB-2590 lithium batteries or power battery operated 

devices such as laptops or radios; SPACES can also be powered from batteries or 

running vehicles if solar power is unavailable (United States Marine Corps Marine 

Corps Warfighting Laboratory, 2012). 

While a single GREENS can provide 300 watts of power for 24 hours, 

GREENS systems are modular and can be combined into as large as a five 

GREENS system, providing for peak power requirements of up to 1000 Watts (1kW).  

The GREENS' modular design also allows the user to employ fewer than the full 8 

solar panels and fewer than the full four HELB batteries if desired, to configure the 

GREENS to meet smaller load requirements. The first GREENS unit was tested in 

July 2009.  The CMC approved accelerated fielding of GREENS and SPACES in 

April 2011, and fielding began in early 2012 (United States Marine Corps Center for 

Lessons Learned, 2012).   

There are two general approaches for employing renewable energy 

technologies to reduce fuel consumption.  The first approach decreases the peak 

levels of a load by removing components of that load and powering them separately 

with renewable energy technology such as PV arrays, batteries, and wind turbines.  

To ensure reliable availability of power, this will usually also include using a 

conventional generator as a backup to supply power in times of poor weather.  The 

Marine Corps currently employs the GREENS in this way.  The second approach 

employs the renewable energy technologies to decrease the operating time of any 

AC generator(s) covering the load.  This combines the generator and renewable 
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energy source into a hybrid system that passes the load between renewable power 

sources and diesel generators depending on load size and renewable power 

production.  In many situations, this method of employing a renewable energy 

technology can do more to decrease fuel consumption and allow for higher 

generator operating efficiency than the first technique described.  The Marine Corps 

began its pursuit of hybrid systems capable of powering 3kW to 300kW micro-grids 

(United States Marine Corps Expeditionary Energy Office, 2013).  In this paper, we 

focus on using GREENS in off-the-grid capacities. 

 

Figure 2. Examples of common Marine Corps equipment the GREENS 
system can power, with associated power requirements  

(from MCWLGuide) 

The Hybrid Optimization of Multiple Energy Resources 

(HOMER) 

Beyond the renewable technologies and hybrid systems themselves, another 

tool the Marine Corps has pursued as part of its energy strategy is the Hybrid 

Optimization of Multiple Energy Resources (HOMER) model (HOMER energy, n.d.).  

HOMER is a deterministic, time-step model of micropower systems.  It can model 

both conventional systems such as diesel-powered generators, and renewable 

power sources such as photovoltaic arrays and wind turbines.  The HOMER model 

has been utilized for years by organizations and companies across the globe, to 

assist them in their cost effective employment of renewable energy sources and 

appropriately sized generators for the long term powering of facilities.  There is 

potential for HOMER to serve as a useful Marine Corps Modeling and Simulation 

tool for planning efficient and effective expeditionary micropower systems, by 

helping Marine Corps power planners and logisticians anticipate the fuel 

consumption savings to be gleaned from employing hybrid systems to support a 

given load requirement for a particular location and time frame.  To be useful for 

modeling expeditionary microgrids, HOMER must be robust across a wide range of 

locations, microgrids, compositions, and load profiles.  

The U.S. National Renewable Energy Laboratory (NREL) developed HOMER 

in 1993 as a part of its Village Power Program.  The model was designed to assist 
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users in designing micropower systems and modeling their performance under 

specific conditions.  Although originally built only for consideration of off-the-grid 

micropower systems, the model was updated in 2000 to accommodate the modeling 

of grid-tied systems as well.  The HOMER application simulates and measures the 

performance of each power generation asset available, both individually and in 

hybrid configurations.  In this way, the model is used to identify the most cost-

efficient micropower system design for meeting long term electric load requirements.   

In order for the HOMER model to simulate the performance of the solar 

panels, the user must load the solar resource and temperature profile into the model.  

For years, the solar industry has relied upon NREL's Typical Meteorological Year 

(TMY) data set for modeling the performance of solar power systems (Williams & 

Kerrigan, 2012).  A TMY is a statistically derived profile of a typical meteorological 

year for certain locations across the United States.  NREL's TMY data consists of 

hourly measurements of solar irradiance and certain meteorological elements and 

has been updated three times since its establishment in 1978 by Sandia National 

Laboratories (Wilcox & William, 2008).  The current TMY, TMY3, was created with 

measurements acquired from 1976 to 2005. TMY3 data can be imported into 

HOMER for given localities.   

Previous HOMER Assessment 

Marine Corps expeditionary operations involve relatively small units 

conducting fast paced and short duration operations.  The units depend on robust, 

space efficient, and weight efficient sources of power.  Logistics planners and 

commanders must be able to rely on their energy source, and variability in solar 

irradiance is one element that brings that reliability into question.  Solar irradiance 

variance can be caused by multiple factors, including varying cloud cover and 

pollution. 

In 2010, Major Brandon Newell conducted an experiment where he assessed 

the capabilities of the HOMER model in forecasting the power output of a solar panel 

at the Naval Postgraduate School (Newell, 2010).  This initial research found that, 

when employing monthly temperatures averages and synthetic solar irradiance 

profiles built using the algorithm of Graham & Hollands (1990) for model inputs, the 

HOMER model performed with an unacceptable degree of fidelity, with HOMER 

estimating “an energy production level that was over 25 percent higher than the 

actual measured energy" (Newell, 2010).  Major Newell attributed this overestimate 

of power production to three factors: a disparity between measured and anticipated 

surface solar irradiance, a disparity between measured and anticipated ambient 

temperature, and an underestimate of the de-rating value for the solar panels. 
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Major Newell's 2010 thesis research demonstrated that solar irradiance 

variance from the anticipated values will result in inaccurate power production 

predictions by the HOMER model.  He also demonstrated that the percentage of 

solar irradiance disparity does not account for the percentage of inaccuracy created 

in predicted power output.  While the anticipated solar irradiance profile 

overestimated actual solar irradiance by 9.35%, this did not equate to the model 

overestimating PV power production by 9.35%—instead, the HOMER model 

overestimated the PV power production by 27%.   As Newell (2010) pointed out, this 

is “due to the nature of the comparison, which only compared the total kW per m 

squared for the month and disregarded when the disparities occurred.”  The amount 

of solar irradiance variability that occurs for a given scenario does not necessarily 

equate to an equivalent amount of PV power production variability, but there is a 

direct relationship between solar irradiance and PV production variability that must 

be identified.   

The 27% overestimate in energy production, identified in Newell's thesis work, 

was predicted using solar irradiance and temperature profiles.  Solar irradiance 

profiles were created using average monthly solar irradiance values acquired from 

NASA Surface Solar Energy Data Set and employment of the Graham-Hollands 

algorithm to create a synthetic profile based on the average monthly solar irradiance 

values.  Temperature profiles consisted of monthly temperature averages for the 

location.  To identify the impact of discrepancies between the anticipated and real 

temperature and solar irradiance profiles, Major Newell reran the model with the 

measured temperature and solar irradiance profiles for that period of time.  The 

results of these new HOMER runs showed that the differences between real world 

and anticipated temperature and solar irradiance profiles accounted for a 10% 

overestimate:  a 6% overestimate in power production was due to differences 

between real and anticipated temperature profiles, while a 4% overestimate in PV 

power production was due to differences between real and anticipated solar 

irradiance profiles (Newell 2010).  This still leaves a large gap between the predicted 

and actual performance of the PV arrays. 

Assessing the Robustness of the HOMER Model 

HOMER is designed to identify the most fuel-efficient (i.e., cost-effective) 

solution for a given load profile at a fixed location, as described above.  The answer 

is a single “optimal” configuration, and a specified fuel usage/overall cost.  We now 

examine several extensions that seek to reveal the robustness of this type of 

solution.   
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Exploring Spatial Variability 

The nature of Marine Corps expeditionary operations makes the effects of 

irradiance variance even more important than in the commercial settings of the solar 

industry.  Due to the unpredictable nature of combat and humanitarian operations, 

the Marine Corps does not have the luxury of being able to gather data on the solar 

radiance and weather patterns of a location for months (or years) prior to 

deployment.  Figure 3 shows how the TMY3 data varies by location in the United 

States.  Clearly, the location plays a vital role in determining the utility of PV arrays.  

Microclimates also have an effect.  For example, arrays set up near tall trees, tall 

buildings, or a steep hillside produce noticeably less power than arrays set up a 

short distance away without obstructions. 

 

Figure 3. Annual solar irradiance in the United States 
(from USEIA, 2013). 

For purposes of illustration, we restrict our investigation to 60-day operations 

taking place in Salt Lake City, Utah beginning on the 75th day of the year.   For a 

much broader investigation of ten U.S. cities, other operation start times, and other 

operation duration times, see Morse (2014).  To be useful for deployment to 

unanticipated locations, HOMER must be robust enough to handle the solar 

irradiance and temperature variances of those locations.  Profiles for generic regions 

(desert, jungle, mountain, etc.) are desirable.  Such profiles will be associated with 

greater uncertainty than those for a known location, but are beyond the scope of this 

paper. 

map_pv_us_annual10km_dec2008.jpg (JPEG Image, 792 × 612 pi... http://www.nrel.gov/gis/images/map_pv_us_annual10km_dec2008.jpg
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Exploring Temporal Variability 

The shorter term duration of expeditionary operations means that PV systems 

used by the Marine Corps are also quite susceptible to the effects of temporal solar 

irradiance variability.   This is not surprising:  TMY3 data is intended for use in 

simulating solar power systems over “a longer period of time, such as 30 years" 

(Wilcox and William, 2008). In fact, the first page of the TMY3 User Manual warns in 

italics:  “The TMY should not be used to predict weather for a particular period of 

time" (Wilcox and William, 2008).  The subplots in Figure 4 make this temporal 

variation apparent on a monthly basis, but still portray only a portion of the true 

variability. 

 

Figure 4. Monthly direct normal irradiance (DNI) interannual coefficient of 
variation (COV) in the United States  
(from Gueymard & Wilcox, 2011). 

As an example, consider two graphs that show the variability in 60 days of 

solar irradiation for Salt Lake City (Figures 5 and 6), beginning on the 75th day of the 

year.  The first indicates that although the TMY average is 317 kilowatt-hours per 

square meter (kWh/m2), it ranges from a low of 263 kWh/m2 to a high of 359 

kWh/m2:  the coefficient of variation       is 7.14%.  
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Figure 5. Histogram of total solar irradiation over days 75-134  
for Salt Lake City, by year, 1961-2010. 

A closer look at the data reveals much more.  Figure 6 plots the annual solar 

irradiation by year.  The line represents the least-squares regression trend, the dark 

pink region represents a 95% confidence interval for the mean response, and the 

light pink region represents a 95% prediction interval for an individual year's 

response.  The trend is statistically significant (p-value < 0.0001).   

 

Figure 6. Scatterplot of total solar irradiation over days 75-134 for Salt Lake 
City, by year, 1961-2010. 

Morse (2014) found similar patterns for the other nine cities he studied.  After 

further inquiry, he found this trend was a manifestation of a phenomenon known as 

"global dimming" (Muller, 2014).  Global dimming is described as the "decadal 

decrease of surface solar radiation" (Wild, 2009).  The name "global dimming" was 

coined by Stanhill & Cohen in their 2001 article “Global Dimming: A Review of the 

Evidence for a Widespread and Significant Reduction in Global Radiation” (Stanhill 

& Cohen, 2001).  The “global” portion of the name does not refer to the phenomenon 

having a universal effect across the world but instead refers to “the sum of diffuse 

and direct solar radiation,” that is to say global radiation (Wild, 2009).  The dimming 

refers to a decrease in that global radiation which was measured as occurring at 
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different rates across the world.  In the 1980s and 90s climate modelers began to 

distinguish a trend of decreasing surface solar radiation in available surface solar 

radiation records dating back to the 1950s.  The rates of the decrease differed by 

location but were mostly seen as occurring from the 1950s up to the 1980s Muller, 

2014).  Later studies, focusing on the period from the 1980s to 2000s, identified an 

apparent shift in the trend to a possible increase in solar irradiance.  This trend was 

named “global brightening.”   

The performance of the model with regard to long-term solar irradiance trends 

is important because of its effect on each solar power system’s performance over its 

life cycle.  GREENS performance estimates based off of ten-year-old TMY data, for 

example, will overestimate the solar irradiance available to power the system where 

there is a negative linear relationship between time and solar irradiance.  Morse 

(2014) provides a more detailed discussion of the global dimming effects as they 

relate to the use of HOMER. 

Exploring the Impact of Correlated Costs 

We have already discussed several of the inputs to the HOMER model, 

including the resources available (e.g., generators, PV arrays), the location and 

associated solar and temperature information (either as typical years, or actual 

data), load profile requirements, operational duration, and operational start.  Other 

inputs that we have not yet discussed include cost information—specifically, costs of 

capital, replacement, fuel, and operations and maintenance (O&M) costs of power 

components (generators, PV arrays, wind turbines, and others modeled by 

HOMER).  The user specifies these costs before HOMER is executed.  Once all this 

information is set, then HOMER will output the configuration it deems “optimal” for 

the specific deterministic setting, and provide as deterministic outputs the expected 

costs and energy usage associated with each platform.  Presumably, this is the 

system configuration that will be chosen for that type of operation. 

The default inputs for HOMER assume that the relative costs of conventional 

fuel and alternative energy sources remain constant.  However, this is unlikely to 

hold.  For example, one could argue that as non-renewable energy sources are 

depleted and become scarcer, they will become more expensive—and that the costs 

for renewable energy generators will tend to be higher as well, because of 

competing demands for limited resources.  If so, this assumes there will be a 

positive correlation between the two types of costs in the future.  Alternatively, one 

could argue that high costs for non-renewable sources will result in additional R&D 

efforts put toward renewable energy platforms, so there will be a tendency for these 

two costs to be negatively correlated in the future.  Indeed, such projections are 

already available.  For example, Figure 7(a) (US Energy Information Administration, 

2014) shows three variants of oil cost projections over the next 25 years:  a 
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reference line, as well as low and high oil price projections.  Figure 7(b) (adapted 

from US Department of Energy, 2014) shows a single cost projection for PV arrays 

over a different time frame.  We see that if the low oil price projection holds, the two 

energy costs will be positively correlated over the 2014-2020 time frame.  In the 

other two circumstances, the two energy costs will be negatively correlated. 

 

Figure 7. Oil cost projections (from USEIA, 2014) and  
PV array cost projections  

(adapted from USDOE, 2014). 

What is the potential impact of this source of uncertainty on the life cycle cost 

outputs from the HOMER model?  To answer this question, we will leverage the field 

of design of experiments (DOE) in order to quickly calculate the results.  However, 

the standard DOE approaches are not suitable in the presence of correlation.  We 

provide technical justification in the next section, and then return to our example. 

Methodological Development:  Designs for Correlated Noise Factors 

Let Y denote the performance measure of interest, W1,…,Wk denote the noise 

factors controlled during the course of the experiment, and let μi  and σi denote the 

mean and standard deviation of Wi       , … ,   .  Then, assuming that the noise 

factor ranges are small enough that a linear model is appropriate, we have 

                            (1) 

An orthogonal experimental design (often a factorial or fractional factorial) is 

used for collecting data regarding the process.  Under an independence assumption, 

setting the levels for noise factor Wi at       will result in a two-point distribution 

with the same mean and standard deviation as the underlying distribution.  After 

data are gathered, a linear model is fit: 
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 ̂   ̂   ̂     ̂       ̂         (2) 

Assuming that the Wi are independent and normally distributed, then the 

model of equation (2) can be used to determine the overall system mean and 

variance by treating the estimated coefficients as constants: 

     ̂   ̂     ̂       ̂       (3) 

  
   ̂ 

   
   ̂ 

   
     ̂ 

   
      (4) 

From equation (4), we can estimate a transmitted variance for each noise 

factor i, which is the variability in the response that is attributable to Wi: 

       (5) 

The dependence of σt,i on the regression coefficient means that it is possible 

for a particular noise factor's variance to be magnified or dampened as it is 

transmitted through to the response. The ratio (σt,i / σY)2 is the proportion of the 

variability in the response that is attributable to Wi.  Potential changes to the noise 

factors, that affect only the variance, not the mean, can then be evaluated by 

considering the reduction on the overall performance variability   
  and the 

corresponding reduction in cost.  

Now suppose that two of the k noise factors (W1 and W2) have a correlation of 

ρ in the real world, and all other noise factor pairs are independent.  In this case, the 

value of μY remains unchanged from that computed in equation (3).  However, the 

overall variance now is 

    (6) 

which is greater than the value in equation (4) if ρ > 0 and less than this value if ρ < 

0. This means that the overall estimate of system variability and the transmitted 

variance proportions are different than those calculated assuming independence. 

If the           , … ,    are truly independent, the transmitted variances 

completely separate the effects for the various noise factors. This does not occur 

when W1 and W2 are correlated, although orthogonal experimental designs might be 

desirable because of the increased precision of the estimated coefficients.  

However, the results are no longer separable in the real world.  Rather than compute 

individual transmitted variances for each of the two factors, we use a joint 

transmitted variance: 

    (7) 
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Potential changes to the system components can then be assessed by 

determining the resulting changes in the joint transmitted variance and the overall 

system variance. 

This approach can be generalized in a straightforward manner to situations 

where multiple pairs of correlated noise factors exist.  As above, we construct linear 

models for the mean and variance of the performance measure Y as functions of the 

noise factors Wi (i    ,…,k):   

       (8) 

Treating the regression coefficients in equation (7) as constants, we obtain 

   (9) 

where ρi,j denotes the correlation between Wi and Wj.  Joint transmitted 

variances can be computed as in equation (6). 

In some situations, the correlation in the real world may restrict the choice of 

the design:  a factorial or fractional factorial design covering the entire range of 

interest may be impossible to conduct.  For example, a queueing system might be 

unstable if all noise factors are held at their high levels.  If this situation were unlikely 

to occur in practice because of negative correlation among the variables, then a 

sampling scheme that makes use of the underlying dependence structure would 

seem more appropriate.  Alternatively, it may be that the statistical response-surface 

models are developed from observational rather than experimental data.  Although 

such models can be analyzed post hoc by conducting orthogonal experiments 

involving the noise factor settings, this approach is questionable if the model was not 

constructed using similar combinations.  Large extrapolations of the fitted model 

might not be at all close to the true response surface.  In addition, if certain 

combinations of the factors are not likely to occur in practice, then we lose the 

benefit of sampling at levels such as     in order to achieve the same variability in 

the sampling distribution as in the underlying normal distribution. 

Once again, for simplicity, we assume that the noise factors are normally distributed 

but only the first two (W1 and W2) are correlated.  We also assume, without loss of 

generality, that     = 0 and    = 1 (i = 1,…,k).  This corresponds to standardizing 

each of the noise factors by subtracting its mean and dividing by its standard 

deviation before conducting the experiment.  The joint distribution of W1 and W2 is then a 

bivariate normal.  Letting W1 be on the x-axis and W2 on the y-axis, the contours of the 

bivariate distribution are elliptical, satisfying 
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      (10) 

as long as |ρ| < 1 (Dudewicz & Mishra, 1987).  

If ρ = 0, then equation (10) reduces to a circle with radius r centered about 

the origin.  If ρ > 0, then the major axis of the ellipse falls on the line y = x  and the 

minor axis is along the line y = -x, as shown in Figure 8.  If we ran our experiment as 

if W1 and W2 were independent, then a 2-level factorial would result in sampling at 

the 4 points (  ,  ). These correspond to sampling each of the two factors at 

     , so that the discrete sampling distributions for W1 and W2 have the same 

mean and variance as the marginal distributions.  An alternative, which looks much 

more reasonable in the presence of correlation, is to sample at points on one of the 

elliptical contours. 

 

Figure 8. Density contours for a bivariate standard normal with  
correlation coefficient ρ = 0.9. 

From equation (10) and basic geometry (Beyer, 1987) one can compute 

coordinates of the major and minor axial points for given r.  Equations (11) and (12) 

hold when ρ > 0, when standardized units are used for both noise factor designs.  If 

ρ < 0 then equation (11) gives the minor axial points and equation (12) gives the 

major axial points. 

Major Axial Points 

 (
 

√      
,

 

√      
)     (11) 

Minor Axial Points 

 (
  

√      
,

  

√      
)      (12) 
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If we sample at the four axial points, then the variance of the sampling distribution 

for either W1 or W2 will be 

  
  

 

 
(

  

     
 

  

     
)                  (13) 

 
  

 
(

       

          
)  

  

       
        

In order to achieve appropriate marginal variances, set equation (13) equal to the 

marginal variance (σ1
2   σ2

2  = 1) and solve for r.  This yields r2 = 2(1-ρ2), so the 

experimental design will consist of sampling at the major and minor axial points of 

the ellipse specified by 

                        (14) 

A plot of such ellipses is shown in Figure 9, with correlations ranging from 

zero (a circle) to 0.9.  For negative correlations, the mirror image of this figure is 

appropriate.  The standard two-level factorial design (with sampling of both factors at 

one standard deviation below and one standard deviation above the mean) is the 

limiting case as ρ approaches zero.  However, the design is quite different if 

correlation is present:  the individual factor ranges are larger than      , but the 

two-dimensional region over which sampling takes place is narrower. 

 

Figure 9. Elliptical design points for two-level sampling under correlation, 
for ρ = 0 (circle), 0.1, 0.3, 0.5, 0.7, and 0.9. 

These elliptical designs were introduced in Sanchez (1994b), where they 

were illustrated for two diverse applications:  a deterministic circuit model, and a 

stochastic home mortgage portfolio model.   
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For a deterministic model, such as the HOMER example used in this paper, 

the transmitted variances for the noise factors sum to the overall system variance.  

In discrete-event simulation experiments, this is generally not the case: although 

many noise factors can be explicitly controlled, the system is characterized by some 

inherent variability that remains unexplained by any noise factors. Tolerance design 

analysis must therefore be modified to take this into account (Sanchez, 1994a; 

Sanchez et al. 1998).  In order to reflect the true system variability, the overall 

system variance estimate of equation (4) is augmented by incorporating estimates of 

the system variability obtained within simulation runs.  This augmented analysis 

should be used for either orthogonal or elliptical tolerance experiment designs so the 

results reflect the true system variability.   

Correlated Costs for the HOMER Example 

We now illustrate the approaches for the HOMER example.  We simplify the 

setting for illustration purposes.  Our assumptions follow. 

 Let F denote the number of liters of diesel fuel used.  

 We are concerned with two noise factors:    is the cost of diesel fuel 

($/liter), and     is the purchase cost of PV arrays ($/kW peak load 

requirement).  We assume that these noise factors are normally 

distributed:        ,       and  {  }      ,          

 Our peak load requirement for the 5 GREENS system is 1 kW, and the 

liters of fuel used are determined from HOMER.   

 We remove the linear global dimming trend from the data, and treat the 

variation around this trend line (due to variation in solar irradiation and 

temperature) as the intrinsic variability in the system.  

 Our response Y  is computed by considering the peak requirement for 

the 5 GREENS system (    5) and the liters of diesel fuel saved (  ): 

              

This is the energy cost if the PV arrays are used for a single operation. 

A more realistic assumption is that they will be used for multiple 

operations, in which case the cost of the arrays would be prorated 

accordingly.  In our simple example, we use   to compare the relative 

merits of different alternatives. 

 We ignore all other costs and discount factors. 

Consider three different correlations for the noise factors    and    :     

(no correlation),       (strong positive correlation), and        (strong negative 

correlation). Figure 10 illustrates the differences between several of the estimates 
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that we have discussed.  In Figure 10(a) we plot (i) the deterministic answer from 

HOMER, using TMY inputs for both solar and temperature, and the expected noise 

factor costs; (ii) the distribution one might use based on the recorded solar 

irradiation and temperature variability if one assumed the data from different years 

were independent and identically distributed; and (iii) the predicted distribution based 

on the different solar irradiation and temperature variability—this removes the global 

dimming trend, and represents the intrinsic variability in the system (at least for 

short-term projections).  This clearly illustrates the importance of exploring the 

uncertainty in the potential operational environmental conditions, in order to convey 

the resulting risk to the decision maker. For example, while Marine Corps officers 

might not be interested in estimating cost when planning an expeditionary operation, 

the amount of conventional fuel saved might directly affect the length of time they 

can sustain this operation before resupply. 

In Figure 10(b) we include uncertainties in the noise factors (future PV array 

cost and diesel fuel cost) to the one-year projection that incorporates global 

dimming.  Note the vastly different scales in Figures 10(a) and 10(b).  This shows 

how uncertainties in future costs—and the correlations in these uncertainties—

translate to probabilities of cost overruns.  This may be of interest to program 

managers as they seek to acquire new systems.  In our example, all three of the 

correlation assumptions yield distributions with the same mean ($5189), but the 

standard devations (     differ. The smallest   occurs when the future costs of PV 

arrays and diesel fuel are negatively correlated, and the largest   occurs when they 

are positively correlated. 
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Figure 10. Distributions of Y (combined cost) based on different 
assumptions for uncertainties in future solar, temperature, and cost 

component distributions. 

The different distributions translate to different risks of exceeding particular 

cost thresholds. Numerical comparisons are easier to show using cumulative 

distribution plots, as in Figure 11, instead of the density plots in Figure 10(b).  Figure 

11 shows that a program manager interested in estimating the probability of 

exceeding a cost threshold of $7000 can use the appropriate curve.  This probability 

is 0.894 (89.4%) when      , 0.918 when    , and 0.958 when         

(Alternatively, if one were interested in the cost threshold that would be exceeded 

with probability at most 0.10, this translates to cutoffs of $7047, $6833, and $6533, 

for      ,  , and -0.7, respectively.  In some instances, differences in risk might be 

enough to change a decision to continue with a program, and care should be taken 

to select appropriate noise factor distributions and correlations. In our example, the 

striking differences between estimates in Figures 10(a) and 10(b) indicate that 

including the noise factor distributions at even a rough level is extremely informative.  

Ignoring these (Figure 10(a)) would lead a program manager to assume there was 

essentially no risk of cost exceeding $5400, when the Figure 10(b) and Figure (11) 

show that the real risks would be over 44%. 

These simple numerical examples are for illustration purposes only.  To truly 

be useful for program managers, life cycle cost estimates (rather than one-year-out 

projections)—and a more comprehensive examination of the breadth of operational 

requirements and operational environments—are necessary.  Furthermore, robust 

design principles can be used to seek system configurations that are robust to 

uncertainties in the environment, which is an important consideration for equipping 
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expeditionary units.  Once again, we refer the reader to Morse (2014), who 

conducted a much larger experiment over operations of start times, durations, and 

locations for units with different configurations of energy supply resources. 

 

Figure 11. CDFs of Y (combined cost) based on different assumptions for 
cost component correlations, using global dimming results for solar 

and temperature uncertainties. 

Concluding Remarks 

In this paper, we provided motivation for the need to develop methods for 

conducting designed experiments involving correlated noise factors.  We show how 

these can be used to obtain a more representative distribution of potential life cycle 

costs, so that program managers and planners can have better assessments of the 

potential risks associated with acquiring or employing particular systems.  These 

robust assessments are important.  By revealing the risk of budget overruns 

associated with going forward with a particular system, they provide the decision 

makers with much more information than a simple “yes or no” comparison to a fixed 

budget constraint.  At the same time, a designed experiment approach can be much 

more efficient than Monte Carlo simulation. We are currently evaluating other types 

of space-filling designs that may be more suitable for situations where the 

uncertainties may be far from normally distributed.   

From the applications perspective, this example in this paper is intended as a 

simple illustration of the need for robust cost estimation, rather than a definitive 
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estimate for solar PV arrays.  Other uncertainties in the environmental conditions, 

such as temperature variations, will also play a role.  Many other components 

influence life cycle costs—O&M cost, cost of spare parts, and discount rates, to 

name a few.  There are also intangibles that may be more difficult to quantify, but 

that play major roles in determining the value of these systems.  For example, the 

ability to partially offset energy needs with PV arrays may increase the time an 

expeditionary unit conducting disaster relief efforts is self-sustainable: this, in turn, 

may influence its relief effort plans. Yet our preliminary work is promising.  We hope 

the solar energy example in this paper motivates the need for obtaining robust cost 

estimates, and shows how robust design principles can assist in this estimation 

process. 
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