UCI-AM-16-010

P M

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Achieving Better Buying Power through Acquisition of Open
Architecture Software Systems
Volume Il

Understanding Open Architecture Software Systems: Licensing and
Security Research and Recommendations

6 January 2016

Dr. Walt Scacchi Dr.

Thomas A. Alspaugh

Institute for Software Research University

University of California, Irvine

Approved for public release; distribution is unlimited.
Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Kp"’s ACQUISITION RESEARCH PROGRAM
\ &7 GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY

V NAVAL POSTGRADUATE SCHOOL

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval Postgraduate
School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

‘ - 7 ACQUISITION RESEARCH PROGRAM
\~ NPS b/ GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY

\\// NAVAL POSTGRADUATE SCHOOL

http://www.acquisitionresearch.net/

Abstract

This research focuses on continuing investigation and refinement of techniques for identifying
and reducing the costs, streamlining the process, and improving the readiness of future
workforce for the acquisition of complex software systems. Emphasis was directed at identifying,
tracking, and analyzing software component costs and cost reduction opportunities within the
acquisition life cycle of open architecture (OA) systems for Web-based and mobile devices,
where such systems combine best-of-breed software components and software products lines
(SPLs) that are subject to different IP license and cybersecurity requirements. The investigation
focuses on four project work activities:

Investigating the interactions between software system acquisition guidelines and
processes, and the cost consequences of alternative software system architectures
incorporating different mixes of OSS and CSS components subject to different licenses
within secure OA SPLs [ScA08, ScA12b, ScA13a, ScA13b, ScA13c]. This entails
exploring the balance between development, verification, and validation of software
licenses and security rights, as well as the software component/license costs while
managing the development and evolution of OA systems at design-time, build-time, and
release and run-time.

Developing formal foundations for establishing acquisition guidelines program managers
can use in reduced cost acquisition of software-intensive systems that rely on
development and deployment of secure OA systems using OSS and SPL technology
and processes [AIS10, AIS13, ScA11, ScA12a, ScA12b, ScA13a, ScA13b, ScA13c].

Continuing to develop concepts contributing to the emerging design of an automated
approach supporting acquisition of secure OA systems by (a) determining their
conformance to acquisition guidelines/policies, contracts, and related license
management issues, and (b) giving future acquisition workforce support and insights to
properly review, approve, and manage the acquisition of complex systems that
incorporate cost-sensitive acquisition of OA systems and software components [AIS10,
ScA11, ScA12a, ScA12b, ScA13a, ScA13b, ScA13c].

Documenting the investigation, foundations, and results of the research in: (a) a
technical Final Report delivered to the Technical Point of Contact at NPS; (b) a research
presentation at the 11th Annual Acquisition Research Conference, in Monterey, CA, May
2014; (c) a progress report with the OSD sponsor and others of interest within the OUSD
(AT&L) offices; and (d) related research venues and publications, including periodic
research progress reports.

THIS PAGE LEFT INTENTIONALLY BLANK

About the Authors

Dr. Walt Scacchi is a senior research scientist and research faculty member at
the Institute for Software Research, University of California, Irvine. He received a PhD in
information and computer science from UC Irvine in 1981. From 1981 to 1998, he was
on the faculty at the University of Southern California. In 1999, he joined the Institute for
Software Research at UC Irvine. He has published more than 150 research papers and
has directed 60 externally funded research projects. In 2011, he served as co-chair for
the 33rd International Conference on Software Engineering—Practice Track, and in
2012, he served as general co-chair of the 8th IFIP International Conference on Open
Source Systems.

Dr. Walt Scacchi, Senior Research Scientist
Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3455 USA

E-mail: wscacchi@ics.uci.edu

Dr. Thomas Alspaugh is a project scientist at the Institute for Software
Research, University of California, Irvine. His research interests are in software
engineering, requirements, and licensing. Before completing his PhD, he worked as a
software developer, team lead, and manager in industry, and as a computer scientist at
the Naval Research Laboratory on the Software Cost Reduction or A-7 project.

Dr. Thomas Alspaugh, Project Scientist
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455 USA

E-mail: thomas.alspaugh@acm.org

mailto:wscacchi@ics.uci.edu
mailto:thomas.alspaugh@acm.org

THIS PAGE LEFT INTENTIONALLY BLANK

UCI-AM-16-010

P M

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Achieving Better Buying Power through Acquisition of Open
Architecture Software Systems
Volume Il

Understanding Open Architecture Software Systems: Licensing and
Security Research and Recommendations

6 January 2016

Dr. Walt Scacchi Dr.

Thomas A. Alspaugh

Institute for Software Research University

University of California, Irvine

position of the Navy, the Department of Defense, or the federal government.

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy

GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
\V NAVAL POSTGRADUATE SCHOOL

‘PS ACQUISITION RESEARCH PROGRAM
@ISl

THIS PAGE LEFT INTENTIONALLY BLANK

-Vi-

Executive Summary

The goal of this research was to create a new approach to address Better Buying Power
challenges in the acquisition of software systems for the Department of Defense. Program
managers, acquisition officers, and contract managers will increasingly be called on to review
and approve choices between functionally similar low or no cost open source software
components, and commercially priced closed source software components, to be used in the
design, implementation, deployment, and evolution of open architecture (OA) systems. We
seek to make this a simpler, more transparent, and more tractable process. Such a process
must identify, track, and analyze software component costs throughout the system life cycle,
and be easy to reuse for different system application domains, in order to realize cost
reductions and improve acquisition workforce capabilities. Our recent research demonstrates
how complex OA systems can be designed, built, and deployed with alternative components
and connectors resulting in functionally similar system versions, to satisfy overall system
security requirements and individual system component intellectual property (IP) requirements
[DODOSA13, SEI13]. Our next step, described in this two volume Final Report, is to identify,
track, and analyze software component costs associated with different types of component IP
licenses when acquiring OA systems, and to do so in ways that highlight opportunities for cost
reduction. We believe our results will be applicable to enterprise software systems in other
government agencies and industrial firms, as well as to enterprise and mission-critical systems
for the DoD community.

This research focuses on continuing investigation and refinement of techniques for identifying
and reducing the costs, streamlining the process, and improving the readiness of future
workforce for the acquisition of complex software systems. Emphasis was directed at
identifying, tracking, and analyzing software component costs and cost reduction opportunities
within acquisition life cycle of open architecture (OA) systems for Web-based and mobile
devices, where such systems combine best-of-breed software components and software
products lines (SPLs) that are subject to different IP license and cybersecurity requirements.

The Department of Defense, other government agencies, and most large-scale business
enterprises continually seek new ways to improve the functional capabilities of their software-
intensive systems. The acquisition of OA systems that can adapt and evolve through
replacement of functionally similar software components is an innovation that can lead to
lower cost systems with more powerful functional capabilities. This research seeks to identify
and analyze how software component costs for Web-based and mobile devices, component IP
license and cybersecurity requirements interact to drive down (or drive up) total system costs
across the system acquisition life cycle. The availability of such new scientific knowledge and
technological practices can give rise to more effective expenditures of public funds and
improve the effectiveness of future software-intensive systems used in government and
industry. Thus, the principal purpose of this research supports and advances a public purpose.

Finally, our principal research results are documented in two volumes.

Volume | includes four contributions. In Chapter 1 we summarize details of our research
efforts in the past 12 months. These efforts have been well received in presentations to
different audiences, including within the larger Defense community, and the Federal
Government more broadly. In particular, our research results have been picked up for use
within the Assembled Capabilities Working Group (ACWG, previously identified as the DoD
Widget Working Group, through early 2014), under the guidance of the C3CB (Command,
Control, Communications, and Business Systems) office within the OUSD (AT&L). This effort
was facilitated through collaboration with many people from The MITRE Corporation, who
along with the C3CB office are working in support of the Defense Intelligence Information
Enterprise (DI2E) and related mission partners. Summary presentations that have been
publicly shared resulting from our research appear in Chapter 2, 3, and 4. Chapter 2 includes
the abstract and slide deck that were presented at the 2014 Acquisition Research Symposium

(May 2014). Chapter 3 is the slide deck from MITRE-ATARC Workshop in Washington, DC
(August 2014) addressing Cost-Sensitive Acquisition of Open Architecture Software Systems
for Mobile Devices. Chapter 4 is the slide deck from the Federal Mobile Computing Summit
also held in Washington, DC (August 2014). Further, in response to many requests for
additional information on our research approach, methods, and results, we have compiled an
integrated report of ten chapters that bring together our research results that span from 2007
through this project year's effort. These chapters address: (1) Cost-Sensitive Acquisition of
Open Architecture Software Systems; (2) Open Architectures for Software Systems; (3)
License Challenges for Open Architectures; (4) Software License Legal Foundations; (5)
Automating License Analysis; (6) Understanding the Role of Licenses and Evolution in Open
Architecture Software Ecosystems; (7) Processes in Securing Open Architecture Software
Systems; (8) Addressing Challenges in the Acquisition of Secure Software Systems with Open
Architectures; (9) Ongoing Software Development without Classical Requirements; (10)
Discussion and Recommendations. Specific recommendations that follow from our research
that address the question, How best to improve and streamline acquisition processes for secure

OA systems, can be identified as follows (and elaborated in Chapter 10, Volume I, this
Report):

* Encourage the adoption of acquisition business models in open source formats

* Encourage the development, (re)use and refinement of open source models of acquisition
processes

* Develop and employ techniques for streamlining acquisition of secure OA systems, via
o Acquisition process measurement and assessment
o Acquisition process redesign and evolution
o Design new acquisition processes
o Cost management as an acquisition process design element

These technical details, research integration, and more are found within Volume Il of this Final
Report. Last, it is our opinion that the compilation and integration of concepts, techniques, and
materials presented in Volume Il is a work in progress, and so it will benefit from ongoing
refinement going forward, hopefully to be shown as part of our new (2015-16) acquisition
research project now in progress.

Overall, we welcome any comments or questions on our research efforts, results, or
recommendations.

References

[DoDOSA13] Department of Defense Open Systems Architecture Data Rights Team (2013).
DoD Open Systems Architecture Contract Guidebook for Program Managers (Version 1.1).
DoD, June 2013. https://acc.dau.mil/OSAGuidebook

[SEI13] Software Engineering Institute (2013). Managing Intellectual Property in the
Acquisition of Software-Intensive System, November.

https://www.csiac.org/spruce/resources/ref_documents/recommended-practices-managing-intellectual-property-acquisition-software-in
https://www.csiac.org/spruce/resources/ref_documents/recommended-practices-managing-intellectual-property-acquisition-software-in
https://acc.dau.mil/OSAGuidebook

Table of Contents

Volume I: Achieving Better Buying Power through Acquisition of Open Architecture Software Systems
for Web and Mobile Devices

EXECULIVE SUMMAIY.....ooiiiiiiiiiiiiie et e e e e et e e e e e s e s e e e e e e e e e s nssnneeeaaeeeeannneeees 1
1. RESEAICH OVEIVIEW.......oiiiiii ettt ettt et e e e et e e et e et e e et e e eaaeeeeseeeeans 4
2. Presentation: Achieving Better Buying Power through Cost-Sensitive Acquisition of Open

Architecture SOftWare SYSEMIS.ooii i 15
3. Presentation: Cost-Sensitive Acquisition of Open Architecture Software Systems for Mobile

[TV o SR 26
4. Presentation: Reasoning about the Security of Open Architecture Software Systems for Mobile

DTSNV ot TR 40

Volume II: Understanding Open Architecture Software Systems: Licensing and Security Research
and Recommendations

1. Cost-Sensitive Acquisition of Open Architecture Software Systems...............cooiiiiiiiiiiiiinn, 4
2. Open Architectures for Software Systems.o 21
3. License Challenges for Open ArchiteCtures.coveii i 34
4. Software License Legal Foundations. ..o, 45
5. Automating LiCense ANalYSiS.c.uiuiuii 62
6. Understanding the Role of Licenses and Evolution in Open Architecture Software

B OOy S M . s 82
7. Processes in Securing Open Architecture Software Systems................c.ccceeii . 13
8. Addressing Challenges in the Acquisition of Secure Software Systems with Open

ATCNIIECIUNES. ..o 134
9. Ongoing Software Development without Classical Requirements..........cccccceevviiiiiiiiiiiinnnes 158
10. Discussion and ReCOMMENdatioNS.o e 181

Chapter 1.

Cost-Sensitive Acquisition of Open Architecture
Software Systems

Chapter 1.

Cost-Sensitive Acquisition of Open Architecture
Software Systems

Abstract

This chapter focuses on introducing our ongoing investigation and refinement of techniques for
identifying and reducing the costs, streamlining the process, and improving the readiness of
future workforce for the acquisition of complex software systems. Emphasis is directed at
introducing our approach to identifying, tracking, and analyzing software component costs and
cost reduction opportunities within acquisition life cycle of open architecture (OA) systems
[DoDOSA11], where such systems combine best-of-breed software components and software
products lines (SPLs) that are subject to different intellectual property (IP) license requirements.

The Department of Defense, other government agencies, and most large-scale business
enterprises continually seek new ways to improve the functional capabilities of their
software-intensive systems. The acquisition of OA systems that can adapt and evolve through
replacement of functionally similar software components is an innovation that can lead to lower
cost systems with more powerful functional capabilities. Our research identifies and analyzes
how software component costs and IP license requirements interact to drive down (or drive up)
total system costs across the system acquisition life cycle. The availability of such new scientific
knowledge and technological practices can give rise to more effective expenditures of public
funds and improve the effectiveness of future software-intensive systems used in government
and industry. Thus, a goal of this book and the chapters that follow is to support and advance a
public purpose through acquisition research and results.

Overview

Interest within the U.S. Department of Defense (DoD) and military services in free and open
source software (OSS) first appeared in the past five or so years [cf. Bol03]. More

recently, it has become clear that the U.S. Air Force, Army, and Navy have all committed to a
strategy of acquiring software-intensive systems across the board that require or utilize an
“open architecture” (OA) and “open technology” (OT) which may incorporate OSS technology or
OSS development processes [HeS07].

Across the three military services within the DoD, OA means different things and is seen as the
basis for realizing different kinds of outcomes. Thus, it is unclear whether the acquisition of a
software system that is required to incorporate an OA as well as utilize OSS technology and
development processes [cf. Whe07] for one military service will realize the same kinds of
benefits anticipated for OA-based systems by another service. Somehow, DoD acquisition
program managers must make sense or reconcile such differences in expectations and

outcomes from OA strategies in each service or across DoD. Yet there is little explicit guidance
or reliance on systematic empirical studies for how best to develop, deploy, and sustain
complex software-intensive military systems in the different OA and OSS presentations and
documents that have so far been disseminated [cf. Wea07]. Instead, what mostly exists are
narratives that serve to provide ample motivation and belief into the promise and potential of OA
and OSS without consideration of what socio-technical challenges may lie ahead in realizing
OT, OA, and OSS strategies.

Acquisition officers are familiar with the challenges of acquiring systems that meet the
necessary requirements with regard to correct behavior: the correctness of the overall system
depends on the correctness of its components and how they are interconnected; correctness is
a relative quality, in that a system may meet its behavioral requirements to a greater or lesser
degree, but almost by definition a system is never completely correct, and its degree of
correctness cannot be definitely established in a finite time; a lack of correctness has an effect
when that part of the system is executing; and the correctness of a system in meeting its
requirements is determined, by engineers and the system’s users, through testing it and using it.
Openness is both similar to and different from correctness, however. We argue that the
openness of a system depends, like correctness, on the system’s components, how they are
interconnected, and how they are configured into an overall software system architecture.
Unlike for correctness, however, a system may be completely open, or may fail to be open in
various ways; and because the software elements that define a system are finite and
enumerable, its openness can in principle be determined. Also unlike correctness, a system is
either open or not open even when it is not operating, and DoD may pay the consequences of a
lack of openness (in the form of license fees) before the system is ever used, or even if it is
never used. Finally, unlike for correctness, openness may ultimately by the province of lawyers
and policy makers, not of engineers or users.

We believe that a primary challenge to be addressed is how to determine whether a system,
composed of subsystems and components each with specific OSS or proprietary licenses, and
integrated in the system’s planned configuration, is or is not open, and what license(s) apply to
the configured system as a whole. This challenge comprises not only evaluating an existing
system, but planning for a proposed system to ensure that the result is “open” under the desired
definition, and that only the acceptable licenses apply; and also understanding which licenses
are acceptable in this context. Because there are a range of kinds of licenses, each of which
may affect a system in different ways, and because there are a number of different kinds of
OSS components and ways of combining them that affect the licensing issue, a first necessary
step is to understand kinds of software elements that constitute a software architecture, and
what kinds of licenses may encumber these elements or their overall configuration. OA seem to
simply suggest software system architectures incorporating OSS components and open
application program interfaces (APIs). But not all software system architectures incorporating
OSS components and open APIs will produce OA, since OA depend on: (a) how/why OSS and
open APIs are located within the system architecture, (b) how OSS and open APIs are
implemented, embedded, or interconnected, (c) whether the copyright (Intellectual Property--1P)

licenses assigned to different OSS components encumber all/part of a software system's
architecture into which they are integrated, and (d) many alternative architectural configurations
and APIs that may or may not produce an OA [cf. AIA07, Sca07]. Subsequently, we believe this
can lead to situations in which if program acquisition stipulates a software-intensive system with
an OA and OSS, then the resulting software system may or may not embody an OA. This can
occur when the architectural design of a system constrains system requirements—that is, what
requirements can be satisfied by a given system architecture, when requirements stipulate
specific types or instances of OSS (e.g., Web browsers, content management servers) to be
employed, or what architecture style [BCKO03] is implied by given system requirements. Thus,
given the goal of realizing an OA and open technology strategy [cf. HeS07] together with the
use of OSS components and open APIs, it is unclear how to best align program acquisition,
system requirements, software architectures, and OSS license regimes to achieve this goal.

It now appears there are a new set of requirements that are emerging that will need to be
addressed in any acquisition of a software-intensive system that is stipulated to employ an OA
that accommodates OSS components or connectors. ldentifying specific requirements for a
given program acquisition or system development contract can benefit from consideration of the
the following guidelines for how best to realize an OA:

Determining how much openness is required or desired.
Identifying guidelines and incentives for software development contractors that
encourage them to develop, provide, and distribute/deploy OA systems with OSS
components, connectors, and configuration that minimize conflicting OSS IP license
obligations.

e Determining the restrictions, if any, that the OSS IP licenses used by different
software system components, connectors, or configurations within a OA system.

e Identifying alternative OSS component, connector, or configuration candidates that may
satisfy a specified overall system architecture.

e Determining scenarios that help reveal whether there are OSS IP licensing
conflicts for a given set of OSS components, connectors, or configuration.

e Identifying and analyzing any OSS IP licensing obligations that must be satisfied for the
resulting system to be available for redistribution.

e Identifying and validating OSS IP license conformance criteria for configured
systems intended for redistribution.

e Determining when OA systems are to be constructed from OSS or proprietary
software components, each subject to distinct and possibly conflicting IP license
obligations, the resulting systems becomes heterogeneously-licensed, thus how best to
determine whether, where, and to what extent these software IP license conflicts can be
resolved.

e Determining how cybersecurity requirements are mediated or transmuted by
software IP licenses, as well as whether these requirements may better be expressed in
a similar manner to IP obligations and rights.

The Role of OA in Improving the Effectiveness and Reducing System Cost

The Department of Defense, other government agencies, and most large-scale business
enterprises continually seek new ways to improve the functional capabilities of their
software-intensive systems with lower acquisition costs. The acquisition of OA systems that can
adapt and evolve through replacement of functionally similar software components is an
innovation that can lead to lower cost systems with more powerful functional capabilities. OA
system acquisition, development and deployment are thus seen as an approach to realizing
Better Buying Power (BPP) goals for lowering system costs while improving competition.

Our research identifies and analyzes in the chapters that follow how new software component
technologies, like large OSS applications or small apps and widgets for Web-based and/or
mobile devices, along with their IP license and cybersecurity requirements interact to drive down
(or drive up) total system costs across the system acquisition life cycle. The availability of such
new scientific knowledge and technological practices can give rise to more effective
expenditures of public funds and improve the effectiveness of future software-intensive systems
used in government and industry. Thus, a goal of this presentation is to explore new ways and
means for achieving cost-sensitive acquisition of OA software systems, as well as identifying
factors that can further decrease or increase the costs of such systems at this time.

We begin by briefly reviewing to identify a set of recent trends in the development of OA
software systems that intend to develop more capable OA systems. These trends include the
transition to adoption of small-form factor software components as distinct applications (“apps”)
and widgets that exploit modern Web capabilities. We then turn to examine some key goals of
the BBP 2.0 and 3.0 initiatives that direct attention to adoption of OA system development
practices that affect acquisition practices. Next, we identify a new set of emerging challenges to
achieving BBP through OA software systems. We then identify three new practices to realize
the cost-effective acquisition of OA Software systems.

Recent Trends Affecting Better Buying Power through OA Systems

We find there are four broad trends that mediate the cost-effectiveness and buying power of
emerging OA system acquisition efforts. These include: (a) the move towards shared,
multi-party acquisition and agile development of new OA systems across compatible software
ecosystems; (b) exploitation of new software component technologies compatible with Web and
mobile devices; (c) growing diversity of cybersecurity challenges to address during system
development; (d) new software development business models for app/widget development and
deployment. Each is examined in turn.

A. Multi-party acquisition and development system ecosystems — Many in the
Defense community seek to embrace the acquisition and development of agile command and
control (C2) and related enterprise systems [GBC14, GMH13, GuW12, RBC12, ScA13c,
SBN12]. Such systems are envisioned to arise from the assembly and integration of OA system
elements (application components, widgets, content servers, networking elements, etc.) within a
software ecosystem of multiple producers, integrators, and consumers who may supply or share

the results of their efforts. The assembly and integration of system elements produces “C2
system capabilities” (C2SCs). Our purpose is to identify how our approach to the design of
secure OA systems can be aligned with this emerging vision for agile C2 system development
and adaptive deployment. Along the way we focus on design of OA system capability involving
office productivity components that must be configured as a secure C2SC.

The design and development of agile C2 systems follows from two sets of principals: one set
addressing guidelines/tenets for multi-party engineering (MPE) of C2 system components; the
other set addressing attributes of agile and adaptive ecosystems (AAE) for producing C2SCs or
C2 system elements. For brevity, we identify the principals for MPE and AAE, as they are more
fully explained elsewhere [RBC12], but we do so in ways that foreshadow and more clearly align
with our approach that follows in later sections.

Multi-Party Engineering Tenets:

e Provide small system components that can be rapidly developed, and accommodate
different functionally equivalent variants, or functionally similar versions (software
product lines).

e Certify components are consistent with “shared agreements” regarding security
requirements, system architecture, data semantics, production and integration processes
or process constraints, and other aspects of mission-specific or mission-common domain
models.

e Supply diverse C2 system components via a market of component producers or system
integrators.

e Assemble and integrate C2SCs from components available in the market that are
consistent with relevant shared agreements.

e Provide feedback from C2 system users to component producers or capability
integrators to improve market efficiency and effectiveness.

Adaptive and Agile Ecosystem Afttributes:

e Encourage and sustain a software ecosystem that is agile (supports assembly and
integration C2SC) from components in market, and adaptive (supports substitution
of functionally similar component versions or functionally equivalent component
variants), in line with user feedback.

e Component markets are federated so as to accommodate sharing, reuse, or trading of
components across system integrators or user organizations.

e Shared agreements serve as a basis for enabling multi-party collaboration in system
development, integration, and evolution/sustainability.

e Production, integration, or post-deployment support for components or C2SCs must be
viable for small businesses or large, as well as promoting market diversity and
effectiveness.

e Consumer/user organizations seek to manage portfolios of components or C2SCs that
collectively improve mission effectiveness, agility and adaptiveness, while reducing
costs.

Subsequently, to help understand what we mean by a software ecosystem, we use Figure 1 to
represent where different parties are located across a generic software ecosystem, and the
supply networks or multi-party relationships that emerge to enable the software producers to
develop and release products that are assembled and integrated by system integrators for
delivery to end-user organizations.

Producer Producer e
Component Component

or or -
Application Application

Integrators

C i I (tewes D
\ /

In-House

Independent
Software

System

Government

Integration System

ARCHITECTURE Vendors Contractors Consultants Integrators
Component Component
or or =) Ke
Application Application sisct il

Unit of
Ihghts and nghts ﬂnd Producer of Soffware
nhllgﬂtmns uhllg ﬂtlﬂl'ls Software
(s ticense)

.,-o-""'ﬂ""\a-..
A e Intermediary Cﬂniufmer
onsumer nsumer ;
i Matwik: Software

seslulssss

. o Al i e

Google
Calendar

Gnome

Firefox Opera AbiWord Goagle Evolution ‘

o Fedora Windows

O5x

4

Figure 1. A generic software ecosystem supply network (upper part), along with a sample
elaboration of producers, software component applications, and licenses for an OA system
components they employ (lower part). Details in Chapter 6..

As noted, OA system components can include software applications (apps) and widgets.
Widgets are lightweight, single-purpose web-enabled applications that users can configure to
their specific needs [Giz11, GMH13, ScA13b]. Widgets can provide summary information or a

10

limited view into a larger application that can be used alongside related widgets provides an
integrated view, as required by users.

The lower part of Figure 1 also identifies where elements of shared agreements like IP licenses
or cybersecurity requirements enter into the ecosystem, and how the assembly of components
into a configured system or subsystem architecture by system integrators effectively (and
perhaps unintentionally) determines which IP license or cybersecurity obligations and rights get
propagated to consumer or end-user organizations. Agreement terms and conditions acceptable
to consumer/end-user organizations flow back to the integrators. This helps reveal where and
how shared agreements will mix, match, mashup, or encounter semantic mis-matches at the
system architecture level, which is one reason why we use (and advocate) explicit OA system
models.

A substantial number of development organizations are adopting a strategy in which a software-
intensive system is developed with an OA whose components may be OSS or proprietary with
open application programming interfaces (APIls). Such systems evolve not only through the
evolution of their individual components, but also through replacement of one component by
another, possibly from a different producer or under a different license. With this approach, the
organization becomes an integrator of components largely produced elsewhere that are
interconnected through open APIs as necessary to achieve the desired result. An OA
development process results in an ecosystem in which the integrator is influenced from one
direction by the goals, interfaces, license choices, and release cycles of the component
producers, and in another direction by the needs of its consumers. As a result the software
components are reused more widely, and the resulting OA systems can achieve reuse benefits
such as reduced costs, increased reliability, and potentially increased agility in evolving to meet
changing needs. An emerging challenge is to realize the benefits of this approach when the
individual components are heterogeneously licensed, each potentially with a different license,
rather than a single OSS license as in uniformly-licensed OSS projects, or a single proprietary
license when acquired from a vendor employing a proprietary development scheme.

Similarly, a move towards MPE and AAE substantiates a path towards decentralized OA system
development, integration, and deployment [DoD12, Giz11, SBN12]. This decentralization will in
turn engender acquisition and development of heterogeneously-licensed systems (HLS),
whereby different software components (apps, widgets) will be subject to different IP licenses
[AAS12, ASA10], as well as to different cybersecurity requirements [DAG14, ScA12b, ScA13a,
ScA13b, ScA13c]. This in turn implies that such components, their IP licenses, and
cybersecurity requirements will be subject to ongoing evolution across a diversity of methods,
shown in Figure 2 [ScA12a, ScA13b].

Component replaced by
newer version

Current
system

Component replaced by
different component

Same component accessed
through different interface

Connector replaced by
different kind of connector
Topological configuration
changed
Component license replaced

by newer version

Evolved
system

Component license replaced
by different one

Figure 2. Different kinds of common evolutionary changes that arise during OA software
component development, deployment and sustained usage (see Chapter 6)].

Heterogeneity, decentralization, cybersecurity and evolutionary dynamics will come to interact
during OA system acquisition, development, and deployment. These in turn will create a new
generation of challenges for the acquisition workforce, in terms of training, new work and
contract management practices, and need for automated assistance to track and manage
oversight of policy compliance (e.g., for alignment with BPP and cybersecurity assessment).
Without automated assistance, it appears that the acquisition workforce will be overwhelmed
with technical details that interact with acquisition, development, and/or system integration
contracts and software component IP licenses and cybersecurity requirements. Otherwise,
these conditions suggest that acquisition management practices can complicate acquisition
[GBC14], and thus potentially mitigate the benefits of BBP that can arise from MPE and AAE for
C2 systems.

B. Moving towards shared development of Apps and Widgets as OA system
components — Future OA systems for agile C2 may configured by system integrators, end-user
organizations, or warfighters in the field. This would be accomplished through access to online
repositories of software apps or user-interface widgets. The Ozone Widget Framework (OWF), a
government open source software (GOSS) effort that is central to such agile OA system

development. The OZONE family of products, includes the OWF and the OZONE Marketplace,
the marketplace being an online repository whose operation is similar in kind to the online app
stores by Apple and Google [ScA13b]. These products are built to fit the needs of human
centered fusion activities in network centric warfare environments. The OZONE family of
products is designed as a presentation layer toolkit that can be rapidly deployed in a variety of
mission contexts ranging from strategic planning to enabling the creation of a real-time common
operational picture and situation awareness applications. Figure 3 displays examples of
OWF-based widgets operating in a Web browser, while Figure 4 shows OWF widgets deployed
for use on a mobile device.

C. Growing diversity of challenges in cybersecurity — New types of software
components like apps and widgets must be developed, deployed, and sustained in ways
compatible with existing cybersecurity requirements. They must also be later adapted to
accommodate emerging cybersecurity requirements that are not yet apparent. For example,
there is growing interest in accommodating not just mobility, but also “Bring Your Own Device”
(BYOD) capabilities. BYOD suggests that end-users and warfighters are bringing their own
mobile devices with themselves into the field to support their mission. However, BYOD clearly
exacerbates the technical challenges of cybersecurity assurance, often in ways that cannot be
readily anticipated, as when independently developed component co-evolve in conflict to one
another [Wei14]. Nonetheless, acquisition policy necessitates cybersecurity vulnerability and
exposures be addressed [DAG14]. But at present, it is unclear what new kinds of requirements
these new OA system components bring to the acquisition workforce. For example, a move to
adopt mobile apps and/or mobile widgets means these OA system components must pass
though an application security process for “vetting” these components.

Vetting entails establishing what cybersecurity requirements are to be verified, how they are to
be validated, as well as where, when and by whom these activities should be performed. One
approach is to assume such vetting can be performed by a centralized authority, such as by the
operator of the Ozone Marketplace. But it is not clear there will ever only be one such authority.
Instead, if we foresee multiple marketplaces, which are already appearing both in GOSS and
industrial online settings, then the acquisition workforce will be challenged in how best to
determine which cybersecurity requirements must be addressed, validated, and compliance
certified, as well as by whom and how often.

A move to widgets also presents new kinds of cybersecurity challenges when two or more
widgets are configured together with one or more apps to create a mashup that provides an
agile system capability. This situation refers to the technical challenges of inter-widget
communication. Such component-component communication can be technically realized in
different ways, such as via ad hoc, “open standards,” or publish-subscribe messaging
interfaces, as well as whether point-to-point or as configured through a dynamic processing
mashup [CFG13, End13]. While OA system guidance from the BBP 2.0 may stipulate reliance
on “open standards” style widget interfaces and communications patterns be used, widget
communication/interface standards/interfaces are still very new technologies and techniques.

Thus, it is unclear which will survive and be widely adopted [End13a]. Similarly, knowledge
about their proper usage is unclear, and thus is not yet ready for compliance assessment within
current acquisition practices. The technical challenge is further complicated when apps/widgets
are acquired from different online marketplaces. Different marketplaces may rely on different
schemes for specification and interchange of shared data semantics between autonomously
developed components. This in turn hinges on the expertise of OA system integrators,
end-users, or warfighters to recognize how, where, and when the semantics of technical data
interchange arise and to what consequences via component-component API alignments (to
avoid mis-matches), data type representations, data formats (e.g., “CSV” vs. .xIs vs. XML), data
naming conventions (for resource discovery vs data modeling ontology), data range value limits,
exceptional values, data-flow control signals, etc. These are still new technical problems that
are yet to be readily resolved or to have development/usage guides.

D. New business models for OA software component development and use — New
business models imply differentiated IP licenses and contracting practices. Given our discussion
up to this point, along with reference to our recent acquisition research studies [AAS12, ScA11,
ScA12b, ScA13Db], this means different obligations and rights will be transferred from component
producers to system integrators and end-user organizations. Some licenses are “buy and pay
now,” while others are “free now, pay later, based on usage,” others are “many organizations
(e.g., PEOs) will share purchase costs,” and so forth.

Acquisitions of new kinds of OA system components allow for new business models. These
include new models for software component producers, system integrators, and end-user
organizations. For example, new software and OA system development business models for
software app/widget development and deployment include (in no particular order): franchising;
enterprise licensing; metered usage; advertising supported; subscription; free component, paid
service/support fees; federation reciprocity for shared development; collaborative buying;
donation; sponsorship; free/open source software (e.g., Government OSS — GOSS); and others
[Hanf13]. Further, this list is not exhaustive; instead, it is only representative.

In contrast, for end-user organizations that involved in agile development of OA system
components, or an integrated system capability, there is a need to developed and codify their
own business models regarding OA software component development or system integration.
These business models are constituted through “shared agreements” that allow for sharing the
cost of component or integrated capability development and cybersecurity assurance vetting
across multiple parties (e.g., multiple Program Offices). However, these shared agreements are
also a core part of emerging MPE/AAE development practices. These agreements must convey
how OA component development or system integration costs and security assurance will be
shared, as well as how they will be sustained in the presence of interacting software component
development, deployment, and evolution processes and practices [ScA13a]. Shared
agreements denote the obligations the participating organizations are willing to accept, in order
to realize the provided rights they need. So shared agreements can be expressed and assessed

in the same manner, and with the same analysis tools and techniques, as IP licenses and
cybersecurity requirements [ScA13b, ScA13c].

Software acquisition costs easily become difficult to predict/manage given diversity of business
models, IP licenses, and implied software component cybersecurity assessment.
Development/usage cost sharing agreements can further complicate determination of
development cost, costs shares across organizations, and system costs over time as business
models, component licenses, and cybersecurity assessment requirements evolve [ScA12a,
ScA13al.

What kind of expertise do we expect the acquisition workforce to need in order to make
adoption of “component-based system capabilities” (including for mobile devices) agile,
adaptive, and practical across different commercial/governmental software marketplaces or
ecosystems? What kinds of acquisition guidance is needed for articulating and streamlining
Shared Agreements between multiple organizations participating in shared OA component
development and cybersecurity assurance? What kinds of acquisition management practices
and analysis tools are needed for the acquisition workforce to insure cost savings and BBP in
such settings? Addressing these questions is beyond the scope of this paper, but these
questions require follow-on acquisition research to resolve and answer.

Better Buying Power Goals

Better Buying Power (http://bbp.dau.mil/) is part of DoD's mandate to do more without more by
implementing best practices in acquisition. BBP identifies seven areas of focus that group a
larger set of 36 initiatives that offer the potential to restore affordability in defense procurement
and improve defense industry productivity. One of the seven areas focuses on promoting or
increasing competition, and this area includes an initiative to “enforce open system architectures
and effectively manage technical data rights” [DAU12]. Technical data rights pertain to two
categories of Intellectual Property (IP): they refer to the Government's rights to (a) technical data
(TD — e.g., product design data, computer databases, computer software documentation); and
(b) computer software (CS — e.g., source code, executable code, design details, processes, and
related materials). These rights are realized through IP licenses provided by system product or
service providers (e.g., software producers) to the Government customer, so long as the
customer fulfills the obligations stipulated in the license agreement (e.g., to indicate how many
software users are authorized to use the licensed product or service according to a fee paid).

As already noted, our acquisition research has focused on issues addressing OA systems and
IP licenses since 2008 [ScA08], as well as forward to the acquisition of secure OA systems for
command and control (C2) and enterprise information systems [ScA11, ScA12b, ScA13b],
where security requirements can be expressed in a manner similar to IP obligations and rights.
Therefore, here we turn to identify how a sample of different goals of BBP 2.0 initiatives interact
or relate to the trends and challenges examined so far in this paper. The BBP goals are
highlighted, then followed by a brief examination.

http://bbp.dau.mil/

Increase competition — One central purpose for acquiring OA systems is to increase
the likelihood of competition among system producers who can provide software
components that can be replaced by similar offerings by other component producers.
We demonstrate how this can work when system architectures are explicitly modeled,
and their software components and interconnections are similarly specified in an
open manner [AAS12, ScA12a].

Adopt OA systems that utilize standardized interfaces — Open system architectures that
can accommodate common components from alternative producers requires that the
components utilize standardized interfaces, whether in the form of open Application
Program Interfaces (APIs), standard data exchange protocols, and standard data
representations, formats, and meta-data [ScA08]. But also noted earlier, app and widget
components at present have a plethora of standardized interfaces, and it is unclear
which will survive, be sustained, be widely adopted (inside/outside of DoD), and be
evolved [End13a].

Utilize open source software components where appropriate to reduce costs — another
aspect of openness that OA systems embrace and DoD policy accepts is to utilize
system components developed as open source software (OSS) [DIS12]. Utilization of
OSS components, along with composing OA systems that incorporate OSS and closed,
proprietary components, does require careful attention to the management and analysis
of multiple IP licenses that apply to different OA system components, as well as
determining what overall IP and/or cybersecurity rights and obligations cover the overall
system [AAS12, ScA12a], especially for C2 systems [AAS12, ScA13b, ScA13c].
Increase small business roles and opportunities — one way to increase competition in the
realm of OA systems is to identify where smaller scale software applications (apps) or
widgets can be utilized, which might be produced by small businesses or startup
ventures which dominate much of the online markets for Web-based or mobile device
apps/widgets. Small businesses may further be advantaged by their utilization of OSS
infrastructure components, platforms, or remote services, since large commercial
contractors may not see sufficient profit margins to develop proprietary alternatives. So
OA systems that accommodate OSS components that can integrate custom
apps/widgets into innovative system capabilities (C2SC), may then realize new
opportunities for DoD customers. Other small business opportunities may similarly arise
for such ventures that focus on emerging cybersecurity assessment or tool development
services.

Use technical development phase for true risk reduction and rapid prototyping — In
looking forward, there is potential interest in seeing the BPP initiative evolve to also
address risk as an implicit cost driver. This might allow or innovative ways and means
to reduce emerging risks through accelerated or “look ahead” system acquisition and
development approaches that emphasize increased reliance on rapid prototyping. This
kind of rapid prototyping might even be performed by appropriately trained end-users or
warfighters. A move towards OA systems for Web-based and mobile devices that rely on
apps/widgets retrieved from online marketplaces, that can be composed through
interpretive software program “scripting” and mashup techniques, is a clear example of

this [End13, GMH13 GuW12, ScA13a]. Thus, it is not surprising to find such emerging
techniques being investigated and assessed for possible production of new C2
capabilities [GBC14, GMH13, ScA13b].

e Do more without more — an overall summary of the BBP effort is focusing attention of
how to make acquisition more agile, to do more without more, and to develop a new
generation acquisition workforce that can enact acquisition processes that are thin and
flexible when needed, yet robust and cost-effective, while also being amenable to
continuous improvement. This is indeed a real challenge to fulfill, and beyond the scope
of what current acquisition practices are likely to achieve without targeted investment in
acquisition improvement research. To be clear, one just needs to consider emerging
opportunities (and potential asymmetric cybersecurity threats) that arise through the
desire to develop next-generation C2SC that are to be composed from apps/widgets that
can operate on Web-based/mobile devices. What are the best processes or practices for
acquiring, developing, and sustaining deployed systems that are to be built using these
new software technologies (e.g., apps/widgets for mobile devices)? How should these
processes and practices be adapted to accommodate personal devices (e.g, Apple
iPhones, Android tablet, Microsoft Mobile Phone, Blackberry 10 phone) that individual
warfighters, joint force troops, or contracted service providers bring with them into the
battlespace? How must acquisition processes be best adapted to accommodate and rely
on software supply chains that arise around consumer-oriented app marketplaces as
possible ways/means for doing more (e.g., rapidly prototyping warfighter composable C2
app/widget mashups [GMH13]) without more (e.g., warfighters who bring their own
mobile computing devices for use in C2 contexts) [GBC14]? Once again, these are
critical questions to address and resolve through new acquisition research and
supporting technology development.

Conclusions

This chapter focused on introducing our ongoing investigation and refinement of techniques for
identifying and reducing the costs, streamlining the process, and improving the readiness of
future workforce for the acquisition of complex software systems. Emphasis was directed at
introducing our approach to identifying, tracking, and analyzing software component costs and
cost reduction opportunities within acquisition life cycle of open architecture (OA) systems,
where such systems combine best-of-breed software components and software products lines
(SPLs) that are subject to different intellectual property (IP) license requirements. The
Department of Defense, other government agencies, and most large-scale business enterprises
continually seek new ways to improve the functional capabilities of their software-intensive
systems. The acquisition of OA systems that can adapt and evolve through replacement of
functionally similar software components is an innovation that can lead to lower cost systems
with more powerful functional capabilities. Our research described through the following
chapters identify and analyze how software component costs and IP license requirements
interact to drive down (or drive up) total system costs across the system acquisition life cycle.
The availability of such new scientific knowledge and technological practices can give rise to

more effective expenditures of public funds and improve the effectiveness of future
software-intensive systems used in government and industry.

References
[AIAO7] Alspaugh, T.A and Antén, A.l., (2007). Scenario Support for Effective Requirements,
Information and Software Technology, 50(3), 198-220.

[AAS12] Alspaugh, T.A, Asuncion, H. and Scacchi, W. (2012). The Challenge of
Heterogeneously Licensed Systems in Open Architecture Software Ecosystems, S. Jansen, S.
Brinkkemper, and M. Cusumano (Eds.), Software Ecosystems: Analyzing and Managing
Business Networks in the Software Industry, Edward Elgar Publishing, 103-120, Northampton,
MA.

[ASA10] Alspaugh, T.A, Scacchi, W., and Asuncion, H. (2010). Software Licenses in Context:
The Challenge of Heterogeneously Licensed Systems, Journal of the Association for
Information Systems, 11(11), 730-755, November 2010.

[BCKO3] Bass, L., Clements, P., and Kazman, R., (2003). Software Architecture in Practice, 2nd
Edition, Addison-Wesley Professional, New York.

[Bol03] Bollinger, T., (2003). Use of Free and Open-Source Software (FOSS) in the U.S.
Department of Defense, The MITRE Corporation, 2 January. Available at
http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html

[CFG13] Chudnovsky, O., Fischer, C. Gaedke, M. and Pietschmann (2013). Inter-Widget
Communication by Demonstration in User Interface Mashups. Web Engineering,
Springer-Verlag, Lecture Notes in Computer Science, Vol. 7977, 502-505.

[DAG14] Defense Acquisition Guidebook (2014). CVE--Common Vulnerabilities and Exposures.
Chapter 13.7.3.1.4, https://acc.dau.mil/CommunityBrowser.aspx?id=492079#13.7.3.1.4
accessed April 2014.

[DAU12], Defense Acquisition University (2012). Open Systems Architecture and Technical
Data Rights...Management Approaches,
http://bbp.dau.mil/docs/Open%20Systems%20Architecture%20and%20Technical%20Data%20
Rights%20.%20.%20.%20Management%20Approaches.pdf accessed 30 October 2012.

[DIS12], Defense Information Systems Agency (2012). DOD Open Source and Community
Source Software Development in Forge.mil, SoftwareForge Document ID — doc26066doc26066
http://www.disa.mil/News/Conferences-and-Events/DISA-
Mission-Partner-Conference-2012/~/media/Files/DISA/News/Conference/2012/
DoD_Open_Source_Community Forge.pdf accessed 30 October 2012.

18

http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html
https://acc.dau.mil/CommunityBrowser.aspx?id=492079#13.7.3.1.4
https://acc.dau.mil/CommunityBrowser.aspx?id=492079#13.7.3.1.4
http://bbp.dau.mil/docs/Open%20Systems%20Architecture%20and%20Technical%20Data%20Rights%20.%20.%20.%20Management%20Approaches.pdf
http://bbp.dau.mil/docs/Open%20Systems%20Architecture%20and%20Technical%20Data%20Rights%20.%20.%20.%20Management%20Approaches.pdf
http://bbp.dau.mil/docs/Open%20Systems%20Architecture%20and%20Technical%20Data%20Rights%20.%20.%20.%20Management%20Approaches.pdf
http://www.disa.mil/News/Conferences-and-Events/DISA-%20Mission-Partner-Conference-2012/~/media/Files/DISA/News/Conference/2012/%20DoD_Open_Source_Community_Forge.pdf%20
http://www.disa.mil/News/Conferences-and-Events/DISA-%20Mission-Partner-Conference-2012/~/media/Files/DISA/News/Conference/2012/%20DoD_Open_Source_Community_Forge.pdf%20
http://www.disa.mil/News/Conferences-and-Events/DISA-%20Mission-Partner-Conference-2012/~/media/Files/DISA/News/Conference/2012/%20DoD_Open_Source_Community_Forge.pdf%20
http://www.disa.mil/News/Conferences-and-Events/DISA-%20Mission-Partner-Conference-2012/~/media/Files/DISA/News/Conference/2012/%20DoD_Open_Source_Community_Forge.pdf%20

[DoD12] Department of Defense (2012). Joint Operational Access Concept, Version 1.0, 17
January 2012, http://www.defense.gov/pubs/pdfs/JOAC_Jan%202012_Signed.pdf

[DoDOSA11], Department of Defense Open Systems Architecture (2011). Contract Guidebook
for Program Managers, Vol. 0.1, December, https://acc.dau.mil/OSAGuidebook

[End13] Endres-Niggemeyer, B. (2013). The Mashup Ecosystem, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 1-50.

[End13a] Endres-Niggemeyer, B. (2013). Mashups Live on Standards, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 51-89.

[GBC14] George, A., Bowers, A., Galdorisi, G., Hszieh, S., Morris, M., and Raney, C. (2014).
DoD Application Store: Enabling C2 Agility, Proc. 19™ Intern. Command and Control Research
and Technology Symposium, Paper-104, Alexandria, VA, June 2014.

[GMH13] George, A., Morris, M., Galdorisi, G., Raney, C., Bowers, A., and Yetman, C. (2013)

Mission Composable C3 in DIL Information Environments using Widgets and App Stores. Proc.

18™ Intern. Command and Control Research and Technology Symposium, Paper-036,
Alexandria, VA, June 2013.

[GuW12] Guertin, N. and Womble, B. (2012). Competition and the DoD Marketplace, Proc. 9th
Acquisition Research Symposium. Vol. 1, 76-82, Naval Postgraduate School, Monterey, CA.

[Giz11] Gizzi, N. (2011). Command and Control Rapid Prototyping Continuum (C2RPC)
Transition: Bridging the Valley of Death, Proceedings 8th Annual Acquisition Research
Symposium, Vol. 1, Naval Postgraduate School, Monterey.

[Han13] Hanf, D. (2013). MPE/AAE Business Model Framework Overview. Mitre Corporation,
personal communication, July 2013.

[HeS07] Herz, J.C. And Scaott, J., (2007). COTR Warriors: Open Technologies and the Business

of War, The DoD Software Tech News, 10(2), 3-6, June.

[RBC12] Reed, H., Benito, P., Collens, J., and Stein, F. (2012). Supporting Agile C2 with an
Agile and Adaptive IT Ecosystem, Proc. 17" Intern. Command and Control Research and
Technology Symposium (ICCRTS), Paper-044, Fairfax, VA, June 2012.

[Sca07] Scacchi, W., (2007). Free/Open Source Software Development: Recent Research
Results and Methods, in M. Zelkowitz (Ed.), Advances in Computers, 69, 243-295.

http://www.defense.gov/pubs/pdfs/JOAC_Jan%202012_Signed.pdf
http://www.defense.gov/pubs/pdfs/JOAC_Jan%202012_Signed.pdf
http://www.defense.gov/pubs/pdfs/JOAC_Jan%202012_Signed.pdf
https://acc.dau.mil/OSAGuidebook
https://acc.dau.mil/OSAGuidebook
https://acc.dau.mil/OSAGuidebook

[ScA08] Scacchi, W. and Alspaugh, T., (2008). Emerging Issues in the Acquisition of Open
Source Software within the U.S. Department of Defense, Proc. 5" Acquisition Research
Symposium, NPS-AM-08-036, Naval Postgraduate School, Monterey, CA, May.

[ScA11] Scacchi, W. and Alspaugh, T., (2011). Advances in the Acquisition of Secure Systems
Based on Open Architectures, Proc. 8" Acquisition Research Symposium, Vol. 1, Naval
Postgraduate School, Monterey, CA.

[ScA12a] Scacchi, W. and Alspaugh, T., (2012a) Understanding the Role of Licenses and
Evolution in Open Architecture Software Ecosystems, Journal of Systems and Software, 85(7),
1479-1494, July 2012.

[ScA12b] Scacchi, W. and Alspaugh, T., (2012b). Addressing Challenges in the Acquisition of
Secure Software Systems with Open Architectures, Proc. 9" Acquisition Research Symposium,
Vol. 1, 165-184, Naval Postgraduate School, Monterey, CA.

[ScA13a] Scacchi, W. and Alspaugh, T. (2013a). Processes in Securing Open Architecture
Software Systems, Proc. 2013 Intern. Conf. Software and System Processes, San Francisco,
CA, May 2013.

[ScA13b] Scacchi, W. and Alspaugh, T.A. (2013b). Streamlining the Process of Acquiring
Secure Open Architecture Software Systems, Proc. 10" Annual Acquisition Research
Symposium, Monterey, CA, 608-623, May 2013.

[ScA13c] Scacchi, W. and Alspaugh, T.A. (2013c). Challenges in the Development and
Evolution of Secure Open Architecture Command and Control Systems, Proc. 18™ Intern.
Command and Control Research and Technology Symposium, Paper-098, Alexandria, VA,
June 2013.

[SBN12] Scacchi, W., Brown, C. and Nies, K. (2012). Exploring the Potential of Virtual Worlds
for Decentralized Command and Control, 17th. Intern. Command and Control Research and

Technology Symposium (ICCRTS), Paper-096, Fairfax, VA, June 2012

[Wea07] Weathersby, J.M., (2007). Open Source Software and the Long Road to Sustainability
within the U.S. DoD IT System, The DoD Software Tech News, 10(2), 20-23, June.

[Wei14] Weir, M. (2014). BYOD Topic: How Complicated Can Calendars Be? J. Cybersecurity
and Information Systems, 2(1). 18-19.

[Whe07] Wheeler, D.A., (2007). Open Source Software (OSS) in U.S. Government Acquisitions,
The DoD Software Tech News, 10(2), 7-13, June.

20

Chapter 2.

Open Architectures for Software Systems

21

Chapter 2.

Open Architectures for Software Systems

Abstract

This chapter explores and describes open archtiecture techniques for specifying and modeling
OA software systems. These systems are composed and configures using different types of
software elements, including components (modules) with explicit interfaces, and connectors that
configure systems, sub-systems, or system of systems, through component-interface
interconnections. The chapter also describes how OA software systems can be formed into
software product lines utilizing different selections of specified component types. Such an
approach thus serves to provide a strong foundation for aligning OA concepts that are central to
Better Buying Power acquisition initiatives, with other advantages that enable software
component and OA reuse, across diverse platforms and application domains.

Introduction: Understanding open software architecture concepts

Open architecture (OA) software development is a customization technique that we observed
introduced by Oreizy [Ore00] to enable third parties to modify a software system through its
exposed architecture, evolving the system by replacing its components. Increasingly more
software-intensive systems are developed using an OA strategy, not only with OSS components
but also proprietary components with open APIs (e.g. [ScA08]). Using this approach can lower
development costs and increase reliability and function. Composing a system with
heterogeneously-licensed components, however, increases the likelihood of conflicts, liabilities,
and no-rights stemming from incompatible licenses. Thus, in our work we define an OA system
as a software system consisting of components that are either open source or proprietary with
open API, whose overall system rights at a minimum allow its use and redistribution, in full or in
part.

A system intended to embody an open architecture using open source software (OSS)
technologies and APIls does not clearly indicate what possible mix of software elements may be
configured into such a system. To help explain this, we first identify what kinds of software
elements are included in common software architectures whether they are open or closed [cf.
BCKO03].

Software source code components — these include the computer programs that direct the
intended computation, calculation, control flow, and data manipulation. These are programs for
which the source code is open for access, review, modification, and possible redistribution by
their developers. However, there are at least four different forms of computer programs these
days.

22

standalone programs — these are the computer programs that we have long understood,
often as isolated systems or monolithic applications that accept data inputs, manipulate
and transform this data, and produce outputs (calculated results, information displays,
emit control signals to devices, etc.) under user or system administered control.
libraries, frameworks, or middleware — these are collections of software functions no one
of which is typically a standalone program. Such software is often expected to be
routinely reused in many different systems or applications. This software may also be
used to provide a layer of abstraction that hides source code implementation details so
as to improve subsequent software portability, or to hide alternative software
implementations.

inter-application script code — this software is used to combine independent programs
together by associating their respective inputs, outputs, and control variables. This
software is sometimes called, “glue code” to suggest its primary use is to connect
programs together through the use of “pipes” and/or “filters” which control or modulate
the directed flow of information between the associated programs. Such scripts may be
as short a a single line of code, but on the other hand, they can be as large as
thousands (even hundreds of thousands) source lines of code.

intra-application script code — this software is similar in spirit to inter-application script
code, except the focus is on organizing, controlling, and manipulating input and output
data/presentations from remote Web services/repositories for view and end-user
interaction at the human-computer interface. Popular Web application systems like the
Firefox Web browser may be scripted to provide animated user interfaces coded in
languages like Javascript, ActionScript, or PhP to create Rich Internet Applications
[Fel07] or “mashups” [NeC06, CFG13, End13, End13a], all of which may be available in
online app stores [ScA13, GGM14]. Such scripts may be as short as a single line of
code, but on the other hand, they can be as large as thousands (even tens of
thousands) source lines of code. However, custom intra-application software languages
may also be designed to create domain-specific languages (e.g., XUL for Firefox Web
browser [Fel07]) for rapid construction of persistent or disposable software functions (or
macros), which enable increased software development productivity or end-user
programming.

Executable components -- These are programs for which the software is in binary form, 5 and its
source code may not be open for access, review, modification, and possible redistribution.
Executable binaries are rarely treated as open since they may also be viewed as “derived
works” [Ros05] that result from the compilation or interpretation of software source code which
may not be available, or may be proprietary. Executable components are widespread and
common in every computing system, even in OSS systems. However, executable components
may also only become part of a system during its execution through dynamic (or run-time)
linking. Finally, though their binary form makes them available for execution through external
linkage to some other program, such form also makes figuring out what they do very difficult, if
they have little/no documentation available.

23

Application program interfaces/APIs — These software interfaces are generally not
programs that can be executed, but they enable software system developers to access
their functionality without direct access to their source code. The availability of externally
visible and accessible APIs to which independently developed components can be
connected to is the minimum required to form an “open system” [Meyers and Obendorf
2001]. Oftentimes the APIs are treated as if they enable direct access to the otherwise
hidden software, but a closed software system may employ a layer of abstract APIs as
“shims” that better align multiple program interfaces or security barriers that seek to
protect disclosure of private or proprietary information. Such information may include the
details of actual software function interfaces (which may be designated as “trade
secrets”), or hidden software functions that may only be known to software developers
with secure, restricted code access.

Software connectors — These may be software either from libraries, frameworks, or
application script code whose intended purpose is to provide a standard or reusable way
of associating programs, data repositories, or remote services through common
interfaces. These may include software technologies that constitute a “software bus” for
plugging in independent software modules (programs or functions), network protocols
that enable and control the flow of data between remote programs across a LAN or
Internet, or even a database management system (DBMS) that is used to enable data
sharing and storage among programs connected to the DBMS. The High Level
Architecture (HLA) is an example of a software connector scheme [KWDOQ0], as are
CORBA, Microsoft's .NET, and Enterprise Java Beans.

Configured system or sub-system — These are software systems built to conform to an
explicit architectural specification. They include software source code/binary
components, APls, and connectors that are organized in a way that may conform to a
known “architectural style” such as the Representational State Transfer [FiT02] for
Web-based client-server applications, or may represent an original or ad hoc
architectural pattern [BCKO03]. All of the software elements, and how they are arranged
and interlinked, can all be specified, analyzed, and documented using an Architecture
Description Language [BCKO03] and ADL-based support tools. Beyond this, any or all of
the software elements in a configured system or sub-system may be OSS or not. In
contrast to a derived work, a configured system or sub-system is considered as a
“collective work” and as such is subject to its own copyright and license protection as
intellectual property, whether open or closed [Ros05, StL04]. However, such intellectual
property declaration cannot employ a license regime on the overall system that
supercedes or controverts the license protections/obligations of the individual software
elements that 6 constitute the configured system or sub-system.

Figure 1 (originally from [ScA08]) provides an overall view of an archetypal software architecture
for a configured system that includes and identifies each of the software elements above, as
well as including open source (e.g., Gnome Evolution) and closed source software
(WordPerfect) components.

24

Network Pratocad
(TCPAP IIOP HTTP,..)

Figure 1. Software components, connectors, interfaces arranged in an overall software system

configuration. Components, connectors, and overall system configuration may be subject to

different software licenses.

[] component () Connector

D Interface —m= Link

25

In simple terms, the configured system In Figure 1 consists of software components (grey boxes
in the Figure) that include a Mozilla Web browser, Gnome Evolution email client, and
WordPerfect word processor that run on a Linux operating system that can access file, print,
and other remote networked servers (e.g., Apache Web server).

The components in Figure 1 are interrelated through a set of software connectors (ellipses in
the Figure) that connect the interfaces of software components (small white boxes attached to a
component) that are linked together. Modern day enterprise systems or command and control
systems will generally have more complex architectures and a more diverse mix of software
components than shown in the figure here. As we examine next, this simple architecture raises
a number of OSS licensing issues that mitigate the extent of openness that is realized in a
configured OA.

GAME CULTURE & TECHNOLOGY LAR

YD e

v .
LN F RN B

'l

Gnome Evolution

Firefox ;
email, calendar

Red Hat /
Fedora Linux

Figure 2. A rendering of an OA software system run-time implementation

Figure 3 shows a high-level view of a reference architecture that includes all the kinds of
software elements listed above. This reference architecture has been instantiated in a number
of configured systems that combine OSS and closed source components. The configured
systems consist of software components such as a Mozilla Firefox Web browser, Gnome
Evolution email client, and AbiWord word processor (similar to MS Word), all running on a
RedHat Fedora Linux operating system accessing file, print, and other remote networked

26

servers such as an Apache Web server. Figure 4 shows a build-time architecture instantiated
with those choices. Figure 5 is a screenshot of the instantiated architecture in our extension of
ArchStudio [ISR06], where it is one view of the architecture data structure whose automated
analysis is discussed and shown in later sections. Components are interconnected through a
set of software connectors that bridge the interfaces of components and combine the provided
functionality into the system’s services.

Web Browser ! Word Processor : Email & Calendar
i User Interface i User Interface ! User Interface

Firefox User AbiWord User
Interface Interface

!(RH/Fedora Linux)|

Components/connectors not visible in Figure 2 are shown in gray

Figure 4: A build-time architecture describing the version running in Figure 2.

27

Gnome Evolution

0 S %]
HTTP IMAPJPOP/SMTP

-

-

=
Unix System Calls Unix System Calls Unix Syskem Calls
E\MM
Apache HTTP RHY Fe?g"s"; L %Mail

Figure 5. An example OA system modeled using the UCI ArchStudio software architecture
development environment [ISR06], corresponding to Figures 2 and 4.

The topology of the build-time architecture also determines the OA software ecosystem of the
system, with its dependecies on suppliers and (implicitly) the evolution paths that ecosystem
can take, in the context of design and instantiation choices that involve different suppliers of
components of the same sort, or more extensive changes that involve suppliers of components
of a different sort. Figure 6 shows the reference architecture of Figure 3, annotated with the
supplier organizations implied by the instantiations of the build-time architecture of Figure 4. The
choices are a result of desired functional abilities and nonfunctional qualities, and may also be
influenced by desired supply-chain characteristics, licensing regimes, and future software
ecosystem evolution paths. All these choices, however, are limited by software license.

OA System Product Lines: Alternatives, Versions, Variants of OA Elements

In producing a secure OA system in a software product line, there are several levels of variation
available for producing artificial diversity among equivalent instances and for selecting and
evolving in the face of threats during to cybersecurity attacks, or weaknesses in OA system
development and acquisition processes.

At the highest level of granularity, a system developer or integrator can choose among
alternative producers of similar components, services, and platforms [SWZ12]: For example, we
can find functionally similar alternatives from software (component) producers of web browsers
like Mozilla (Firefox, Camino, Sea Monkey) vs. Google (Chrome) vs. Microsoft (Internet
Explorer), vs. others. Similarly, for word processors, we find alternatives including Microsoft
(Word) vs. abisoft.com (AbiWord) vs. Google (Google Docs, which is a remote Web service

28

rather than a component), vs. others. Likewise, for email and calendar applications, we find
alternatives like Microsoft Outlook, Ghome Evolution, Google Mail, and Google Calendar,
among others. For operating systems, we find Red Hat Enterprise Linux, Microsoft Windows,
Apple OSX, and Google Android among others. Finally, note that some producers produce
more than one alternative of the same kind of component or service, such as Mozilla’s web
browsers (Firefox, Camino, SeaMonkey), so that a choice among those particular components
does not result in a change of producers.

Functionally similar components and services may not be exactly interchangeable, unless their
interfaces are similar or identical. As such, it may be necessary to modify, for example, OA
system topology, replace connector types, and other architectural measures may be necessary
to change from one producer to another, depending on the functionality needed to satisfy
functional requirements. However in general the overall functionality provided by the system
remains substantially the same, but now the diversity among alternative system instances is the
greatest: not only is the component, service, or platform distinct between two instances, but its
architectural connections in the system will be distinct as will be the software development
process and organization that produced it, so the chances of a common vulnerability are greatly
minimized. Subsequently, when functionally similar components, connectors, or configurations
exist, such that equivalent alternatives, versions, or variants may be substituted for one another,
then we have a strong relationship among these OA system elements that is called a product
family [NaS87, Bos06] or a product line [CNO1].

As described above, a shift from one alternative to another ordinarily requires a change in
architecture, software connectors, and other measures. Changes between some alternatives
will also produce a change of producers, while others will not. However, when components or
connectors provide alternative implementations of the functionality they provide, then these are
designated as versions. For example, most Linux operating systems support multiple file
systems for data storage, though developers or integrators select their preferred file system for
inclusion at either design-time or build-time. Similarly, for connectors to remote Web servers,
developers or integrators may specify unencrypted (e.g., HTTP) or encrypted (e.g., HTTPS)
data communication protocols for use in a Web-based enterprise system. Next, at the OA
system configuration level, selection of alternative components or connectors, or of different
versions of components or connectors result in different overall system versions that conform to
a system product line. Further, recent advances in source code compilation now allow for
creation of functionally identical variants of software components, though each variant has a
different run-time image in the computer, through code randomization techniques [Fra10,
SJW11]. Last, software product lines can be bound to a network of software producers, system
integrators, and system users/consumers through a software ecosystem [Bos09], such that
secure systems can be realized through composition or configuration at the software ecosystem
level [ScA12]. Consequently, we now have a complete and robust basis for specifying OA
systems that can include components, connectors, or application systems from alternative
producers, or with different versions or variants included. This is now our basis for moving
forward to address to address the challenges of creating secure OA systems through secured

29

software product lines. Secure OA system concepts are presented in a later chapter in this
book.

How OA software systems evolve

Next, OA systems evolve through more pathways than traditional systems:

e individual components evolve through update revisions (e.g., security patches) made by
the component’s developers;

e individual components are updated with new, functionally enhanced versions from
outside providers;
individual components are replaced by different components from other sources;
component interfaces evolve, either due to the system developers or outside sources;
system architecture and configuration evolve as the developers adapt it to address new
functional requirements; and

e system functional and security requirements evolve, either due to the system
developers, recognized gaps, or outside stakeholders.

e system security policies, mechanisms, security components, and system configuration
parameter settings also change over time.

These additional evolution paths are tied to the benefits of using OA systems with OSS
components but they also present new challenges for security. OA systems are continually
evolving, and in our view this fact is fundamentally unaddressed by prior work in security.

The success of DoD’s OA and OSS programs in achieving the positive qualities associated with
OSS depend on the socio-technical context in which a system is developed and used. The
stakeholders and users of an OSS system typically include the developers of that system; they
know its goals and requirements implicitly, and can adapt and evolve the system to follow their
understanding of the context in which it is used. If DoD is to achieve quick response, rapid
adaptation, and context-appropriate use of OSS, it may be necessary to have a representative
group of the personnel that are to use and adapt it to the needs they see around them, be OSS
developers for that system.

Following from our analysis above, it appears there are a new set of requirements that are
emerging that will need to be addressed in any acquisition of a software-intensive system that is
stipulated to employ an OA that accommodates OSS components or connectors. ldentifying
specific requirements for a given program acquisition or system development contract can
benefit from consideration of the the following guidelines for how best to realize an OA:

e Determining how much openness is required or desired in an OA software system.

e |dentifying guidelines and incentives for software development contractors that
encourage them to develop, provide, and distribute/deploy OA systems with OSS
components, connectors, and configuration that minimize conflicting OSS license
obligations.

30

e Determining the restrictions, if any, that the OSS licenses used by different software
system components, connectors, or configurations within a OA system.

e Identifying alternative OSS component, connector, or configuration candidates that may
satisfy a specified overall system architecture.

e Determining scenarios that help reveal whether there are OSS licensing conflicts for a
given set of OSS components, connectors, or configuration.

e Identifying and analyzing any OSS licensing obligations that must be satisfied for the
resulting system to be available for redistribution.

e Identifying and validating OSS license conformance criteria for configured systems
intended for redistribution.

Further elaboration on these guidelines is subject to additional research, application, and
refinement. However, they do provide a useful starting point for discussion, debate, and action
in program acquisition.

Conclusions

This chapter explored and described open archtiecture techniques for specifying and modeling
OA software systems. OA systems are composed and configures using different types of
software elements, including components (modules) with explicit interfaces, and connectors that
configure systems, sub-systems, or system of systems, through component-interface
interconnections. The chapter also described how OA software systems can form software
product lines utilizing different selections of specified component types, which is a central
technique for realizing software reuse, improving quality (through use of known, stable, and
robust software elements), and thus for helping to reduce the cost of OA software system
acquisition. Such an approach thus serves to provide a strong foundation for aligning OA
concepts that are central to Better Buying Power acquisition initiatives, with other advantages
that enable software component and OA reuse across diverse platforms and application
domains.

References

[BCKO3] Bass, L., Clements, P., and Kazman, R., (2003). Software Architecture in Practice, 2nd
Edition, Addison-Wesley Professional, New York.

[Bo06] Bosch. J. (2006). The challenges of broadening the scope of software product families.
Commun. ACM 49, 12 (December 2006), 41-44.

[Bo09] Bosch, J., (2009). From software product lines to software ecosystems. In: Proc.
13th Intern. Software Product Line Conference (SPLC'09), 111-119.

[CINO1] Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
Addison-Wesley, New York.

31

[CFG13] Chudnovsky, O., Fischer, C. Gaedke, M. and Pietschmann (2013). Inter-Widget
Communication by Demonstration in User Interface Mashups. Web Engineering,
Springer-Verlag, Lecture Notes in Computer Science, Vol. 7977, 502-505.

[End13] Endres-Niggemeyer, B. (2013). The Mashup Ecosystem, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 1-50.

[End13a] Endres-Niggemeyer, B. (2013). Mashups Live on Standards, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 51-89.

[GGM14] George, A., Galdorisi, G., Morris, M. and O'Neil (2014). DoD Application Store:
Enabling C2 Agility. Proc. 19th Intern. Command and Control Research and Technology
Symposium (ICCRTS), Paper-104, Fairfax, VA, June 2014.

[FiTO2] Fielding, R. and Taylor, R.N., (2002). Principled Design of the Modern Web Architecture,
ACM Transactions Internet Technology, 2(2), 115-150.

[Fel07] Feldt, K., (2007). Programming Firefox: Building Rich Internet Applications with XUL,
O'Reilly Press, Sebastopol, CA.

[Fra10] Franz, M. (2010). E unibus pluram: Massive-Scale Software Diversity as a Defense
Mechanism, New Security Paradigms Workshop (NSPW’10), Sept. 21-23, Concord,
Massachusetts, USA.

[ISRO6] Institute for Software Research (2006). ArchStudio 4. Technical report, University of
California, Irvine. http://www.isr.uci.edu/projects/archstudio/

[KWDO0O0] Kuhl, F., Weatherly, R., and Dahmann, J. (2000). Creating Computer Simulation
Systems: An Introduction to the High Level Architecture, Prentice-Hall PTR, Upper Saddle
River, New Jersey.

[NaS87] Narayanaswamy, K. and Scacchi, W. (1987) Maintaining Configurations of Evolving
Software Systems, IEEE Trans. Software Engineering, 13(4), 323-334.

[NeCO06] Nelson L. and Churchill, E.F., (2006). Repurposing: Techniques for Reuse and
Integration of Interactive Services, Proc. 2006 IEEE Intern. Conf. Information Reuse and
Integration, 490-495, September.

[Ore00] Oreizy, P. (2000). Open Architecture Software: A Flexible Approach to Decentralized
Software Evolution. PhD thesis, University of California, Irvine.
http://www.ics.uci.edu/~peymano/papers/thesis.pdf .

32

http://www.isr.uci.edu/projects/archstudio/
http://www.ics.uci.edu/%E2%88%BCpeymano/papers/thesis.pdf

[Ros05] Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property
Law, Prentice-Hall PTR, Upper Saddle River, New Jersey.
http://www.rosenlaw.com/oslbook.htm

[SIW11] Salamat, B., Jackson, T., Wagner, G., Wimmer, C., Franz, M. (2011). Run-Time
Defense against Code Injection Attacks using Replicated Execution, IEEE Transactions on
Dependable and Secure Computing, Volume 8, No. 4, July 2011.

[ScA08] Scacchi, W. and Alspaugh, T.A. (2008). Emerging Issues in the Acquisitio of Open
Source Software within the Department of Defense, Proc. 5th. Annual Acquisition Research
Symposium, Vol. 1, 230-244, NPS-AM-08-036, Naval Postgraduate School, Monterey, CA.

[ScA12] Scacchi, W. and Alspaugh, T.A. (2012). Understanding the Role of Licenses and
Evolution in Open Architecture Software Ecosystems, Journal of Systems and Software, 85(7),
1479-1494, July 2012.

[ScA13b] Scacchi, W. and Alspaugh, T.A. (2013b). Streamlining the Process of Acquiring
Secure Open Architecture Software Systems, Proc. 10th Annual Acquisition Research
Symposium, Monterey, CA, 608-623, May 2013.

[StLO4] St. Laurent, A.M., (2004). Understanding Open Source and Free Software Licensing,
O'Reilly Press, Sebastopol, CA.

[SWZ12] Sun, K., Wang,J., Zhang, F. and Stavrou, A. (2012). SecureSwitch: BIOS-Assisted
Isolation and Switch between Trusted and Untrusted Commodity OSes. Proc. 19th. Annual
Network and Distributed System Security Symposium.

[UnT08] Unity Technologies, Dec. 2008. End User License Agreement.
http://unity3d.com/unity/unityend-user-license-2.x.html.

33

http://www.rosenlaw.com/oslbook.htm
http://unity3d.com/unity/unityend-user-license-2.x.html

Chapter 3.

License Challenges for Open Architectures

34

Chapter 3.

License Challenges for Open Architectures

Abstract

An open architecture (OA) is typically instantiated using components of different intellectual
property (IP) licenses. Interactions between the licenses pose challenges that do not occur in older
types of systems, in which all parts of the system are governed by a single license. This chapter
identifies and examines a number of these challenges.

Introduction

It is quite possible to design an OA software system whose component licenses interact in
undesirable ways, so that in the extreme case the system cannot legally be used (for example, a
system that is a work based on both GPLv2-licensed components and proprietary components).
Less extreme consequences are also possible, such as:

) A system without desired rights, such as one that can be used, but not distributed (see A
Multimedia Content Management Portal, below);
) A system that has less that optimal capabilities, because inferior components were used in

order to simplify the license challenges (for example, an OA system developed without any
GPL-licensed components);

° A system that can involve its users and developers in undesired license obligations (see
Bank of America and Merrill Lynch, below);
° Or a system whose license rights and obligations cannot be determined by its potential

adopters (see Unity, below and in Chapter 6 on ecosystems);

Until recently, the norm for licensed software has been that software is used and distributed under
the terms of a single license, with all its components homogeneously licensed under a single
proprietary or open-source software (OSS) license. It is increasingly common to see
heterogeneously-licensed (HtL) systems, whose components are not under the same license
[GeHO09, ScA08, UEULAOS]. For web systems this has become so common that commercial tools
for creating such “mashups” have been available for several years [NeC06, End13]. Carefully
constrained design, possibly aided by license exceptions from the copyright owners, may enable
the resulting system to have a single specific license [GeHO09]. Otherwise the system as a whole
has no single license, but rather one or more rights that are the intersection of all the component
license’s rights, and the union of their obligations. An example of a HtL system is the Unity game
development tool, whose license agreement lists eleven distinct licenses for its components, in
addition to its overall license terms granting the right to use the system [UEULAOQS].

The hallmark of Free/Open Source Software (FOSS) is that the source code is available for remote

access, open to study and modification, and available for redistribution to others with few
constraints, except the rights and obligations that insure these freedoms. FOSS sometimes adds

35

or removes similar freedoms or copyright privileges depending on which FOSS copyright and
end-user license agreement is associated with a particular FOSS code base [FKM08, Ros05].
Some licenses for “free software” such as the group of GNU General Public License (GPL) and
Lesser General Public License (LGPL) versions [FSF91, FSF99, FSFAGPL07, FSFGPLO7,
FSFLGPLO7] are well known and widely used, while others are obscure and sometimes specific to
a particular software vendor. The Open Source Initiative [OS115], whose Web portal gives
information on many facets of FOSS, especially FOSS licenses, currently certifies more than 50
FOSS licenses, thus indicating a diverse ecology of freedoms, copying rights, and other license
obligations and constraints.

The intellectual property (IP) in a system—copyrights, patents, trademarks, trade dress, and trade
secrets—is protected and made available through the licenses of the system and its components.
IP requirements are expressed in terms of these licenses and the rights and obligations they entail,
and include

° the right to use, distribute, sublicense, etc.;

° the component selection strategy (whether limited to specific licenses, or open to
“best-of-breed”);

° interoperation of systems with specific IP regimes;

° the extent to which the system will be an open architecture (OA); and

° how it is distributed to, constituted by, and (for OA systems) evolved by users.

Some FOSS licenses overlap or subsume one another's rights, while others present potential
conflicts when comparing one license to another. Consequently, FOSS developers generally
choose a single license to apply to their FOSS project, as part of their governance regime [deL07].
The choice of FOSS license to apply has been a defining characteristic of most FOSS projects,
where the license chosen may connote not only an intellectual property sharing regime, but also a
statement about beliefs, values, and norms expected to be shared by FOSS project developers, as
well as affiliation within a larger social movement [EIS03, EIS08, RHS06]. However, a single
license may not be sufficient to provide “copyleft” access to non-software specific data objects,
representations, processing rules, or visual renderings. Similarly, with ever more FOSS
components becoming available with different FOSS licenses, and some now even offered under
multiple licenses or recognizing that different versions of a given software component may have
different licenses or license constraints, then software and information system developers face a
growing challenge: to determine how multiple software licenses interact, whether during system
design (i.e. at “design time”), while compiling and linking source code to produce an executable
program/binary (at “build time”), or when installing and running a newly acquired/downloaded
version of software from a FOSS project or other provider that may need to interoperate with other
software programs (at “run time”).

It has been common for OSS projects to require that developers contribute their work under
conditions that ensure the project can license its products under a specific OSS license. However,
we more and more commonly see a different license configuration, in which the components of a
system do not have the same license. The resulting system may not have any recognized OSS
license at all—in fact, our research indicates this is the most likely outcome—but instead, if all goes
well in its design, there will be enough rights available in the system so that it can be used and

36

distributed, and perhaps modified by others and sublicensed, if the corresponding obligations are
met. These obligations are likely to differ for components with different licenses; a BSD (Berkeley
Software Distribution) licensed component must preserve its copyright notices when made part of
the system, for example, while the source code for a modified component covered by MPL (the
Mozilla Public License) must be made public, and a component with a reciprocal license such as
the Free Software Foundation’s GPL (General Public License) might carry the obligation to
distribute the source code of that component but also of other components that constitute “a whole
which is a work based on” the GPL’d component. The obligations may conflict, as when a GPL’d
component’s reciprocal obligation to publish source code of other components is combined with a
proprietary license’s prohibition of publishing source code, in which case there may be no rights
available for the system as a whole, not even the right of use, because the obligations of the
licenses that would permit use of its components cannot simultaneously be met.

The IP requirements interact with the system’s design-time, distribution-time, and run-time
architectures in distinct ways, with the possibility of rights that conflict with other licenses’
obligations, obligations that conflict across licenses, and unobtainable rights. The result can be a
system that can’t legally be sublicensed, distributed, or used, or that involves its developers,
distributors, or users in legal liabilities. Of course, some will ignore these legal issues (and
anecdotal evidence indicates that many do), but companies and governments cannot afford to.
Source code scanning services provided by third-party vendors address only one after-the-fact
aspect of this problem. While heuristics exist for managing IP requirements and are used in HtL
system development practice, they impose costs, unnecessarily limit the design space, and can
result in a suboptimal, unsatisfactory system.

The fundamental problem we must address is to understand and analyze what happens when
software systems are developed from FOSS or proprietary components that are not all under the
same license. What license applies to the resulting system? What rights or obligations apply?
How can one determine which license constraints match, subsume, or conflict with one another?
We refer to this problem as the challenge of heterogeneously-licensed systems (HLSs), and we
find that a growing number of firms and government agencies must increasingly address this
challenge.

A further problem is to identify principles of software architecture and software licenses that
facilitate or inhibit success of the OA strategy when OSS and other software components with open
APls are employed. This is the knowledge we seek to develop and deliver. Without such
knowledge, it is unlikely that an OA that is clean, robust, transparent, and extensible can be readily
produced

Examples
Bank of America and Merrill Lynch
When the Bank of America took over operation of the Merrill Lynch (ML) trading firm in 2008, ML

was known as a leading developer of in-house financial and trading systems incorporating FOSS
components. However, the Bank now had to rapidly determine whether this corporate takeover

37

constituted a “software distribution” by ML, in which case the source code for the ML software
would have to be made publicly available, as well as what consequences might arise from
integrating the ML systems with its own [Asa08], as this would likely create an HLS.

Unity

Unity3D is an interactive environment for modeling and animating 3D graphic objects and object
compositions within computer games or virtual worlds. Unity3D is an HLS, as seen in its software
copyright license agreement that lists 18 externally produced components or groups of
components, apparently distributed under eleven distinct licenses [UEULAO8]. So what “license”
rights and obligations apply to this software? Is it the concatenation, union, or intersection of the
license constraints found in each of the identified license copyrights? Do any of these license
constraints conflict with one another (e.g. stipulating no redistribution of software, versus ensuring
the right to software redistribution)? How does the architectural configuration of the software
components associated with a given license affect which component licenses interact, and which
do not? Understanding the rights and obligations incorporated into the Unity3D system license
requires understanding and analyzing the corresponding terms and conditions of each of these
licenses, and potentially understanding the architecture in which Unity3D incorporates them. This
is the burden facing software consumers, and it appears to be one that is growing. Itis also a
burden facing software integrators, as they must ensure they can give appropriate rights (and
impose acceptable obligations) for their consumers.

The current state of the art of research in the fields of law and FOSS does not address these
concerns, as we will show in more detail in the Related Research section below. Legal
researchers have examined interactions between pairs of FOSS licenses in the abstract, but not in
the context of real systems and the architectural components and configurations found there.
FOSS research in this area has concentrated on recovering or confirming the license of an
individual homogeneously-licensed software component, with only one group (other than
ourselves) examining the application of FOSS licenses in the context of actual HLSs, and that only
of pairs of licenses applied in a small fixed number of architectural contexts. None of these
approaches provide answers to the questions posed above.

A Multimedia Content Management Portal

Shortly before beginning the research described here, we prototyped a new multimedia content
management portal that included support for videoconferencing and video recording and
publishing. Our prototype was based on an existing Adobe Flash Media Server (FMS), for which
we developed both broadcast and multi-cast clients for video and audio that shared their data
streams through the FMS. FMS is a closed source media server for which the number of
concurrent client connections is limited, with the limit determined by the license fee paid. We could
invite remote users to try out our clients and media services (up to the connection limit), but since
the FMS license did not allow redistribution, we found we could not offer interested users a copy of
the run-time environment that included the FMS. We could distribute everything but the FMS,
though our compiled components were built to use our copy of the FMS. Consequently, recipients
would be unable to run the system even if they purchased their own FMS license. The only useful

38

way to distribute our portal system was in the form of the source code of our locally-developed
clients and services. A potential user would need to license, download, and install his own copy of
the FMS, configure our source code to use it, and rebuild our system. In our view, this created a
barrier to sharing the emerging results of our prototyping effort.

We subsequently undertook to replace the FMS with Red5, an open source Flash media server, so
we could distribute a complete run-time version of our content management portal to remote
developers. Now these developers could install and use our run-time system as-is, or if they
preferred they could download the source code, revise, build, and configure it to suit their own
needs, and share their own run-time version.

Our experience illustrates how heterogeneous licensing can interact with system architecture
decisions to hamper common software research and development activities in surprising ways,
even for experienced FOSS designers and developers, and if not planned for successfully can
cause substantial unexpected costs and delays. Our license theory, embodied in the tool
described later in the paper, would have highlighted the lack of distribution rights and modeled the
non-substitutability of the FMS server at system design time rather than much later at system
distribution and run time.

Related Research

It has been typical until recently that each software or information system is designed, built, and
distributed under the terms of a single proprietary or FOSS license, with all its components
homogeneously covered by that same license. The system is distributed, with sources or
executables bearing copyright and license notices, and the license gives specific rights while
imposing corresponding obligations that system consumers (whether external developers or users)
must honor, subject to the provisions of contract and commercial law. Consequently, there has
been some very interesting study of the choice of FOSS license for use in a FOSS development
project, and its consequences in determining the likely success of such a project.

Brown and Booch discuss issues that arise in the reuse of FOSS components, such as that
interdependence (via component interconnection at design time, or linkage at build time or run
time) causes functional changes to propagate, and versions of the components evolve
asynchronously, giving rise to co-evolution of interrelated code in the FOSS-based systems
[BrB0Z2]. If the components evolve, the OA system itself is evolving. The evolution can also
include changes to the licenses, and the licenses can change from component version to version.

Stewart et al. conducted an empirical study to examine whether license choice is related to FOSS
project success, finding a positive association following from the selection of business-friendly
licenses [SAMO06]. Sen, Subramaniam, and Nelson in a series of studies [Sen07, SSN08, SSN09]
similarly find positive relationships between the choice of a FOSS license and the likelihood of both
successful FOSS development and adoption of corresponding FOSS systems within enterprises.
These studies direct attention to FOSS projects that adopt and identify their development efforts
through use of a single FOSS license. However, there has been little explicit guidance on how best

39

to develop, deploy, and sustain complex software systems when heterogeneously-licensed
components are involved, and thus multiple FOSS and proprietary licenses may be involved.

Legal scholars have examined FOSS licenses and how they interact in the legal domain, but not in
the context of HLSs. St. Laurent examines twelve FOSS licenses, including several no longer in
wide use, and compares them to a hypothetical proprietary license he created; license interactions
and conflicts are only very briefly discussed, and only in general terms [StL04]. Rosen surveys
eight FOSS licenses and creates two new ones written to professional legal standards [Ros05]. He
examines interactions primarily in terms of the general categories of reciprocal and non-reciprocal
licenses, rather than in terms of specific licenses. Rosen was general counsel for the Open Source
Initiative [OSI115]. Fontana et al. primarily focus on guidance for FOSS projects on a number of
legal issues, but provides a good and authoritative survey of FOSS licenses, especially the GPL
group of licenses [FKMO08]. Fontana et al. are lawyers (with one exception) associated with the
Software Freedom Law Center; Fontana and Moglen were two of the authors of the GPL, LGPL,
and AGPL version 3 licenses. Finally, Kemp reviews significant court cases that have been
pursued, and how they do or do not address issues concerning the propagation of rights and
obligations across programs depending on how they are derived, contained, compiled, or linked at
build time, especially when the GPLv2 license is involved [Kem09]. Common to this legal
scholarship is an approach that analyzes licenses and the interactions among them abstractly
rather than in the context of an HLS, and on at most a pairwise basis. The characteristics of the
software in which the licenses interact are not taken into account, or at most in very general terms,
even though almost every FOSS license is framed in terms of the software and architectural
constructs in existence when the license was written.

There is little explicit guidance or reliance on systematic empirical studies for how best to develop,
deploy, and sustain complex software systems when different OA and OSS objectives are at hand.
Instead, we find narratives that provide ample motivation and belief in the promise and potential of
OA and OSS without consideration of what challenges may lie ahead in realizing OA and OSS
strategies. Ven and Mannaert are a recent exception.

Ven and Mannaert discuss the challenges faced by independent software vendors developing an
HLS. They focus on the evolution and maintenance of modified FOSS components [VeMO08].
Tuunanen et al. exemplify most work to date on HLSs, in that they focus on reverse engineering
and recovery of individual component licenses on existing systems, rather than on guiding HLS
design to achieve and verify desired license outcomes [TKKO09]. Their approach does not support
the calculation of HLS virtual licenses. Many more researchers have worked from this
after-the-fact point of view [Gob08, DGG10].

Discussion

Software systems with open architectures are subject to more and different software licenses than
may be common with traditional proprietary, closed source systems from a single vendor. Software
architects/developers must increasingly attend to how they design, develop, and deploy software
systems that may be subject to multiple, possibly conflicting software licenses. We see architects,
developers, software acquisition managers, and others concerned with OAs as falling into three

40

groups. The first group pays little or no heed to license conflicts and obligations; they simply focus
on the other goals of the system. Those in the second group have assets and resources, and to
protect these they may have an army of lawyers to advise them on license issues and other
potential vulnerabilities; or they may constrain the design of their systems so that only a small
number of software licenses (possibly just one) are involved, excluding components with other
licenses independent of whether such components represent a more effective or more efficient
solution. The third group falls between these two extremes; members of this group want to design,
develop, and distribute the best systems possible, while respecting the constraints associated with
different software component licenses. Their goal is a configured OA system that meets all its
goals, and for which all the license obligations for the needed copyright rights are satisfied. It is
this third group that needs the guidance the present work seeks to provide.

There has been an explosion in the number, type, and variants of software licenses, especially with
open source software (cf. [OSI15]). Software components are now available subject to licenses
such as the General Public License (GPL), Mozilla Public License (MPL), Apache Public License,
(APL), Academic licenses (e.g., BSD, MIT), Creative Commons, Artistic, and others as well as
Public Domain (either via explicit declaration or by expiration of prior copyright license).
Furthermore, licenses such as these can evolve, resulting in new license versions over time. But no
matter their diversity, software licenses represent a legally enforceable contract that is recognized
by government agencies, corporate enterprises, individuals, and judicial courts, and thus they
cannot be taken trivially. As a consequence, software licenses constrain open architectures, and
thus architectural design decisions.

OA seems to simply mean software system architectures incorporating OSS components and open
application program interfaces (APIs). But not all software system architectures incorporating OSS
components and open APIs will produce an OA, since the openness of an OA depends on: (a) how
(and why) OSS and open APIs are located within the system architecture, (b) how OSS and open
APIs are implemented, embedded, or interconnected in the architecture, (c) whether the copyright
(Intellectual Property) licenses assigned to different OSS components encumber all or part of a
software system's architecture into which they are integrated, and (d) the fact that many alternative
architectural configurations and APIs exist that may or may not produce an OA (cf. [AIAQ7,
ScAO08]). Subsequently, we believe this can lead to situations in which new software development
or acquisition requirements stipulate a software system with an OA and OSS, but the resulting
software system may or may not embody an OA. This can occur when the architectural design of a
system constrains system requirements—raising the question of what requirements can be
satisfied by a given system architecture, when requirements stipulate specific types or instances of
OSS (e.g., Web browsers, content management servers) to be employed [Sca02], or what
architecture style [BCKO3] is implied by a given set of system requirements.

Thus, given the goal of realizing an OA and OSS strategy together with the use of OSS
components and open APIs, it is unclear how to best align acquisition, system requirements,
software architectures, and OSS elements across different software license regimes to achieve this

goal [ASA10, ScA08].

Conclusions

41

The interactions between open architecture, open source software, and software licenses are
poorly understood. Architectures that show no obvious warning signs of possible trouble ahead
nevertheless can result in serious problems down the road, as the examples discussed in this
chapter illustrate. Given the goal of realizing an OA strategy using OSS components and open
APIs, it has been unclear how best to align software architecture decisions, OSS component
choices, and software license regimes to achieve this goal. Subsequent chapters examine
particular issues and viewpoints, and offer approaches for addressing these challenges.

References
[AIAO7] Alspaugh, T.A and Antén, A.l., (2007). Scenario Support for Effective Requirements,
Information and Software Technology, 50(3), 198-220.

[ASA10] Alspaugh, T.A., Scacchi, W. and Asuncion, H.A. (2010). Software Licenses n Context: The
Challenges of Heterogeneously-Licensed Systems,

[Asa08] Asay, M. (2008). In Acquiring Merrill Lynch, must Bank of America Open Source Its
Software? CNET News, http://news.cnet.com/8301-13505_3-10043029-16.html, 16 September
2008.

[BCKO3] Bass, L., Clements, P., and Kazman, R., (2003). Software Architecture in Practice, 2nd
Edition, Addison-Wesley Professional, New York.

[BrB02] Brown, A.W. and Booch, G. (2002). Reusing open-source software and practices: The
impact of open-source on commercial vendors. In Proc. 7th. Intern. Conf. Software Reuse:
Methods, Techniques, and Tools (ICSR-7), 123-136, April.

[deL07] de Laat, P.B. (2007). Governance of Open Source Software: State of the Art, J.
Management and Governance, 11(2), 165-177.

[DGG10] Di Penta, M., German, D. M., Gueheneuc, Y.-G., and Antoniol, G. (2010). An Exploratory
Study of the Evolution of Software Licensing. 29th International Conference on Software
Engineering, (ICSE ‘10), 145-154.

[EISO3] Elliott, M. S., and Scacchi, W. (2003). Free Software Developers as an Occupational
Community: Resolving Conflicts and Fostering Collaboration. ACM International Conference on

Supporting Group Work (GROUP’03), 21-30.

[EISQ8] Elliott, M. S., and Scacchi, W. (2008). Mobilization of Software Developers: The Free
Software Movement. Information Technology & People, 21(1):4-33.

[End13] Endres-Niggemeyer, B. (2013). The Mashup Ecosystem, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 1-50.

42

http://news.cnet.com/8301-13505_3-10043029-16.html

[FKMO8] Fontana, R., Kuhn, B.M., Moglen, E. M. et al. (2008). A Legal Issues Primer for Open
Source and Free Software Projects. Software Freedom Law Center.

[FSF91] Free Software Foundation (1991). GNU General Public License Version 2.
http://opensource.org/licenses/gpl-2.0.php

[FSF99] Free Software Foundation (1999). GNU Lesser General Public License Version 2.1.
http://opensource.org/licenses/Igpl-2.1.php

[FSFAGPLOQ7] Free Software Foundation (2007a). GNU Affero General Public License Version 3.
http://opensource.org/licenses/agpl-v3.html

[FSFGPLO7] Free Software Foundation (2007b). GNU General Public License Version 3.
http://opensource.org/licenses/gpl-3.0.html

[FSFLGPLO7] Free Software Foundation (2007c). GNU Lesser General Public License Version 3.
http://opensource.org/licenses/Igpl-3.0.html

[GeH09] German, D.M. and Hassan, A.E. (2009). License integration patterns: Dealing with
licenses mis- matches in component-based development. In Proc. 28th International Conference
on Software Engineering (ICSE’09), May 2009.

[Gob08] Gobeille, R. (2008). The FOSSology project. In International Working Conference on
Mining Software Repositories (MSR’08):47-50.

[NeCO06] Nelson L. and Churchill, E.F., (2006). Repurposing: Techniques for Reuse and Integration
of

Interactive Services, Proc. 2006 IEEE Intern. Conf. Information Reuse and Integration, 490-495,
September.

[Kem09] Kemp, R. (2009). Current Developments in Open Source Software. Computer Law and
Security Review, 25(6):569-582.

[OSI115] OSI (2015). Open Source Initiative. http://www.opensource.org/
[RHSO06] Roberts, J. A., Hann, I.-H., and Slaughter, S. A. (2006). Understanding the Motivations,
Participation, and Performance of Open Source Software Developers: A Longitudinal Study of the

Apache Projects. Management Science, 52(7):984-999.

[Ros05] Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall.

[Sca02] Scacchi, W. (2002). Understanding the Requirements for Developing Open Source
Softrware Systems, IEE Proceedings--Software, 149(1), 24-39, February 2002.

43

http://opensource.org/licenses/gpl-2.0.php
http://opensource.org/licenses/lgpl-2.1.php
http://opensource.org/licenses/agpl-v3.html
http://opensource.org/licenses/gpl-3.0.html
http://opensource.org/licenses/lgpl-3.0.html
http://www.opensource.org/

[ScA08] Scacchi, W. and Alspaugh, T.A. (2008). Emerging issues in the acquisition of open source
software within the U.S. Department of Defense. In Proc. 5th Annual Acquisition Research
Symposium, Monterey, CA.

[Sen07] Sen, R. (2007). A strategic analysis of competition between open source and proprietary
software. Journal of Management Information Systems, 24(1), 233257, 2007.

[SSNO09] Sen, R., Subramaniam, C. and Nelson, M.L.. (2009) Determinants of the choice of open
source software license. Journal of Management Information Systems, 25(3), 207-240.

[SAMO06] Stewart, K.J., Ammeter, A.P., and Maruping, L.M. (2006). Impacts of license choice and
organiza- tional sponsorship on user interest and development activity in open source software
projects. Information Systems Research, 17(2), 126—144, 2006.

[SSN09] Subramaniam, C., Sen, R. and Nelson, M.L. (2009). Determinants of open source
software project success: A longitudinal study. Decision Support Systems, 46(2), 576-585.

[StLO4] St. Laurent, A.M. (2004). Understanding Open Source and Free Software Licensing.
O’Reilly Media, Inc., Sebastopol, CA.

[TKKO9] Tuunanen, T., Koskinen, J., and Karkkainen, T. (2009). Automated software license
analysis. Automated Software Engineering, 16(3-4), 455-490.

[UEULAOQS8] Unity Technologies. End User License Agreement, Dec. 2008.
http://unity3d.com/unity/unity- end-userlicense-2.x.html

[VeMO08] Ven, K. and Mannaert, H. (2008). Challenges and strategies in the use of open source

software by independent software vendors. Information and Software Technology, 50(9-10),
991-1002.

44

Chapter 4.

Software License Legal Foundations

45

46

Chapter 4.

Software License Legal Foundations

Abstract

Software is commonly treated as a kind of intellectual property (IP) that may be protected from
infringing uses through software licenses. Such licenses depend primarily on copyright law as
the basis for controlling what can be done with the licensed software, with patent and trademark
law also used in some licenses. Licenses grant rights desired by licensees in exchange for
obligations that address the goals of the licensors. For proprietary licenses, these goals are
usually financial gain, protection of the licensor’s exclusive rights in the software, and limitations
on the licensor’s liability. In contrast, for open source software (OSS) a primary goal is the
broad and free distribution of the software and its development artifacts, and in many cases the
permanent protection of that distribution. The rights can be traced back to the exclusive rights
defined by copyright, patent, and trademark law, and for OSS licenses important obligations can
be as well. We use the actions that rights and obligations refer to as the key concept, and
identify subsumption relationships among rights and obligations through the subsumption
among the actions they involve. This relationship among exclusive rights established by law,
license rights, and license obligations makes it possible to create lasting ecosystems of open
software and to combine software modules governed by various licenses in open architectures.

License Structure

Under U.S. law and the law of most countries, a license can be either a bare license or a
contract license. A bare license simply grants one or more copyright or patent rights from the
copyright and/or patent holder to another person, typically under specified conditions. A
contract license is constructed in the form of a contract, involving an exchange of promises
between the parties. In a contract license, the licensor grants one or more rights in exchange
for some consideration from the licensee receiving them. The consideration given by the
licensee may be very small, as little as “a peppercorn” in the traditional explanation, but it
cannot be nothing. However, in addition to a payment or other obvious consideration, it can
take the form of “(a) an act other than a promise, or (b) a forbearance, or (c) the creation,
modification, or destruction of a legal relation”, which are an expression of conditions in the
common law of torts and contracts [ALI81]. In FOSS licensing the fundamental consideration is
typically interpreted as the licensee's “detrimental reliance” on the licensed rights, or in other
words the reliance on the software that would be to the licensee's detriment if the software were
withdrawn. A license, whether bare or contract, can also impose specific non-consideration
obligations as a condition of the license grant. Most FOSS licenses are drawn as contract

47

licenses in order to benefit from the well established case law on interpretation of contract
provisions, with the exception of the GPL family of licenses which are drawn as bare licenses
[Ros05, Gor89, Det06, Gua09, HiO09, KemQ09].

Intellectual Property

An individual can own a tangible thing, and have property rights in it such as the rights to use it,
improve it, sell it or give it away, or prevent others from doing so, subject to some statutory
restrictions. Similarly, an individual can own intellectual property (IP) of various types, and have
specific property rights in the intangible intellectual property, such as the rights to copy, use,
change, distribute, or prevent others from doing so, again subject to some statutory restrictions.
In the United States and most other countries, intellectual property is defined by

copyright for a specific original expression of an idea,

patent for an invention,

trademark for a symbol, image, or phrase identifying the origin of products,
trade dress for distinctive product packaging, and

trade secret for an idea kept confidential.

Software licenses are primarily concerned with copyrights and patents, and mention trademarks
only to restrict a licensee’s use of them; licenses rarely discuss trade dress or trade secrets
[Ros05]. In this chapter we focus on copyright aspects of licenses.

Copyright is defined by Title 17 of the U.S. Code and by similar law in many other countries. It
grants exclusive rights to the author of an original work in any tangible means of expression,
namely the rights to

e reproduce the copyrighted work;
e distribute copies;

e prepare derivative works;

e distribute copies of derivative works; and

e (for certain kinds of work) perform or display it.

Because the rights are exclusive, the author can prevent others from exercising them, except as
allowed by “fair use”. The author can also grant others any or all of the rights or any part of
them; one of the functions of a software license is to grant such rights, and define the conditions
under which they are granted [USC11].

Copyright subsists in the expression of the original work, that is, the rights begin from the

moment the work is expressed. In the U.S. a copyright lasts for the author’s lifetime plus 70
years, or 95 years for works for hire [USC11].

48

Software Licenses

Traditional proprietary licenses allow a company to retain control of software it produces, and
restrict the access and rights that outsiders can have. OSS licenses, on the other hand,
encourage sharing and reuse of software, and grant access and as many rights as possible.

Permissive OSS licenses such as the Berkeley Software Distribution (BSD) license, the Apache
Software License, and perl’s Artistic License [Als15] grant nearly all rights and impose few
obligations. Typical permissive license obligations are simply to not remove the copyright and
license notices.

Reciprocal (also known as “copyleft’) OSS licenses impose an obligation that distributed
modifications of reciprocally-licensed software be freely licensed under the same license.
Examples are the Lesser General Public License (LGPL), Mozilla Public License (MPL), and
Common Public License [Als15].

Some reciprocal licenses additionally require that software combined with the licensed software
(for various definitions of “combined”) also be freely licensed under the same license. We term
such reciprocal licenses propagating; they are also known as “strong copyleft” licenses.
Examples are the General Public License versions 2 and 3 (GPLv2, GPLv3) [Als15].

OSS licenses typically disclaim liability, assert that no warranty is implied, and obligate
licensees to not use the licensor's name or trademark.

Newer licenses often cover patent issues as well and the rights to make, use, sell or offer for
sale, and import that are governed by patent law. These licenses either grant a restricted patent
license or explicitly exclude the granting of patent rights. However, some important licenses are
constructed so that some or all rights under the license terminate if the licensee institutes patent
infringement suits related to the licensed software (specifics vary by license), for example
Apache 2.0 and MPL 1.1. Proprietary licenses often place limits on the use of the licensed
software as part of the contractual obligations imposed by the license, whether the software is
patented or not.

Several newer licenses add interesting degrees of flexibility. Most licenses grant the right to
sublicense under the same license, or in some cases under any version of the same license.
IBM’s CPL grants the right to sublicense under any license that meets certain conditions; CPL
itself meets them, of course, but several other licenses do as well.

The Open Source Initiative (OSI) maintains standards for OSS licenses, reviews OSS licenses

under those standards, and gives its approval to those that meet them [OSI15]. OSI publishes a
standard repository of approximately 70 approved OSS licenses.

49

It has been common for OSS projects to require that developers contribute their work under
conditions that ensure the project can license its products under a specific OSS license. For
example, the Apache Contributor License Agreement grants enough of each author’s rights to
the Apache Software Foundation for the foundation to license the resulting systems under the
Apache Software License. This sort of license configuration, in which the rights to a system’s
components are homogeneously granted and the system has a well-defined OSS license, was
the norm and continues to this day.

What Licenses Contain

In this section we focus on the Lesser General Public License (LGPL), version 2.1 [FSF99,
Als15]. LGPLv2.1 is the seventh most widely used open-source software (OSS) license,
accounting for about 6.5% of open source projects [BDS12]. At 4341 words, it is substantial
(almost double the mean length of licenses we have analyzed) yet small enough to be
discussed manageably. It addresses the most challenging license interaction issue, propagation
of obligations to components under other licenses, in a relatively straightforward way compared
to other licenses that do so. It has provisions in many of the categories that are challenging for
analysis, including:

accumulation of copyright notices,

alternative obligations,

clauses with null effect,

definitional clauses,

the distinction between collective and derivative work,
distribution under alternative licenses,

distinct rights and obligations for build scripts, interfaces, header files, source, object,
and executable forms,

license acceptance and termination,

license exceptions,

license notices of several types,

output from licensed software, and

relicensing under other licenses.

50

These requirements apply to the modified work as a whole. [por]

If identifiable sections of that work are not derived from the Library, and
can be reasonably considered independent and separate works in themselves,
then this License, and its terms, ® do not apply to those sections when you
distribute them as separate works, [d But when you distribute the same
sections as part of a whole which is a work based on the Library, [5] the
distribution of the whole @ must be on the terms of this License, [ppzn] whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

%] Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on the
Library.

In addition, mere aggregation of another work not based on the
Library with the Library (or with a work based on the Library) on a volume of a
storage or distribution medium does not bring the other work under the
scope of this License.

Figure 1. A portion of LGPLv2.1, divided into chunks and annotated with categories of interest.
The categories appearing here are, briefly: CW: collective work; d: distribution; DW: derivative
work; fire: license firewall; O: apparent obligation; por: for a portion of the licensed entity; ppgn:
propagation of obligations to other entities; s: sublicensing, whether explicit or in effect; and 2:
null effect.

Figure 1 shows an excerpt of the open-coded LGPLv2.1 text annotated with some of the 93
categories that were identified here or in other licenses [CoS07]. The entire license text was
chunked and open-coded, reiterating until the boundaries of chunks of text and the conceptual
code characterizing each chunk of text stabilized. The list of codes (or categories) was initialized
with the codes obtained from our previous analyses of many licenses, and extended to include
the kinds of features uncovered by a focused analysis of the LGPLv2.1 text. Portions of the
chunking and open-coding were verified by one of the other authors at several points in the
process. Axial coding was then used to identify themes and relationships in the license text,
resulting for example in the categories of definitions, rights, obligations, modifiers, and null effect
discussed in section “Textual Analysis of a Specific License”, and the characterization of a
parameterized action as the basic unit of software licenses discussed in in the section “Actions,
The Central Construct”.

LGPLv2.1, like most licenses, is only partially organized into numbered sections, hampering
reference to specific parts of the text. Citations of specific license sections, paragraphs, and
sentences refer to an online copy of LGPLv2.1 consistently numbered throughout by a program
[Als15].

51

Textual Analysis of a Specific License

We find that everything in the text of LGPLv2.1 may be classified as either

the definition of a term,

a right,

an obligation,

a modifier to a definition, right, or obligation, or
text without legal effect.

ok owbd-~

These five categories cover the entire text and partition everything in it. Examples of each from
LGPLv2.1 are given below.

Definitions of Terms

The first example is an explicit definition of a named term, “work that uses the Library”.

A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a “work that uses the
Library”. (§11.0]2)

The second example is an implicit definition of an anonymous category of executables that
might be termed “work using the Library and linked with it”. Executables in this category have
rights and obligations different from those for other executables. LGPLv2.1 gives this category
no name.

... you may also combine or link a work that uses the Library with the Library to produce
a work containing portions of the Library ... (§11.6[1s1)

Rights

The first example, as is common for statements of rights in OSS licenses, grants several rights
at once (the right to copy and the right to distribute). The actions in this right might be
summarized as “reproduce complete original” and “distribute complete original’. We use such
summaries here as tokens representing the full definitions.

You may copy and distribute verbatim copies of the Library’s complete source code as
you receive it, in any medium ... (§11.191s1)

The second example grants an interesting right to license a specific copy of a work received
under LGPLv2.1 under another license. In both these examples, the word “may” signals that a

52

right is probably being defined. The action might be summarized as “license a given copy under
GPL".

You may opt to apply the terms of the ordinary GNU General Public License instead of
this License to a given copy of the Library. (§11.3[1s1)

Obligations

The first example is signaled by the word “provided”, unlike most LGPLv2.1 obligations which
are signaled by “must”. This obligation is notable because it would seem to require no action
unless the original source code, in violation of LGPLv2.1, failed to include such a notice and
disclaimer of warranty. The actions might be summarized as “ensure appropriate copyright
notice” and “ensure disclaimer of warranty”.

... provided that you conspicuously and appropriately publish on each copy [of the
complete original source code] an appropriate copyright notice and disclaimer of
warranty ... (§l1.191s1)

The second example contains no such identifying words, but is the first of a list of alternatives
preceded by “... you must do one of these things”. Its action might be summarized as
“accompany with corresponding source”. Many OSS licenses contain similar obligations.

Accompany the work with the complete corresponding machine-readable source code
for the Library including whatever changes were used in the work ... (§11.6]2.as1)

Modifiers

This first example contains the signal word “provided” that often indicates an obligation, but it
does not function as such. Instead its effect is to restrict what “terms of your choice” refers to.

... you may also combine or link a work that uses the Library with the Library to produce
a work containing portions of the Library, and distribute that work under terms of your
choice, provided that the terms permit modification of the work for the customer’s own
use and reverse engineering for debugging such modifications. (§11.6[1s1)
The second example limits the scope of the anonymous category of “works that use the Library”
that are also “works based on the Library” because they incorporate material from header files.

If such an object file uses only numerical parameters, data structure layouts and

accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted ... (§11.59[4s1)

53

Text Without Legal Effect

The first example below is an explanation and statement of the intent of the license’s authors;
however in law, we are told, if the explanation differs from what it purports to explain, their
stated intent would be trumped by what the license actually says.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you ... (§11.294)

The second example is more problematic. It is phrased as an obligation, but the action involved
(“make a good faith effort”) is in our view not testable; compare for example the undoubtedly
testable action “conspicuously and appropriately publish on each copy an appropriate copyright
notice” (§11.19[1s1). Of course, a specific legal interpretation of LGPLv2.1 might give this text a
testable interpretation, for example by operationalizing “good faith effort” in some way.

If a facility in the modified Library refers to a function or a table of data to be supplied by
an application program that uses the facility, other than as an argument passed when
the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and
performs whatever part of its purpose remains meaningful. (§11.291.d)

Other Features

In addition to the five categories of definitions, rights, obligations, modifiers, and null effect that
jointly partition and cover the entire LGPLv2.1 text, we identified or confirmed several other
significant license features.

1) Right/Obligation Structure: All rights and obligations shared the conceptual structure of an
actor, a Hohfeld jural relation [Hoh13], and an action. The actor was the licensee for each of
LGPLv2.1’s 18 rights and 20 obligations. The jural relation was that of a Hohfeld right (“may”) or
privilege (“need-not”) for each right, and of a duty (“must”) or no-right (“cannot”) for each
obligation. Actions will be discussed below.

54

Exclusive
Actions from
Copyright Law

[remroine

Distribute

Actions from Rights and Obligations in LGPL2.1

Reproduce original
source LGPLv2.1§11.191

Distribute original

Reproduce original
binary LGPLv2.1§11.471

source LGPLv2.1§11.191
y| Distribute original
binary LGPLv2.1§||.471

Reproduce portion

of original binary
LGPLv2.1§11.411

Distribute portion of
original binary
LGPLv2.1§11.411

Reproduce WBOL
source LGPLv2.1§11.291

"| source LePLv2.1811.291

Distribute WBOL

Accompany with
corresponding
source
LGPLv2.1811.491

\ Reproduce WBOL

. /| binary LGPLv2.1§11.491

Distribute WBOL
binary LGPLv2.15§11.491

Accompany
combined library
with WBOL under

LGPLv2.1
LGPL2.151.791.a

Reproduce library

. N cw containing wBOL

LGPL2.1811.791

Distribute library CW

containing WBOL
LGPL2.1§11.791

Accompany with
copy of license
LGPLv2.1§11.191

original or DW

' \ Reproduce linked

WUL + library

LGPLv2.1811.691

Create WBOL source
LGPLv2.18I1.291

Create WBOL binary
implied LGPLv2.18l1.491

Create DW

Grant license

action

Create library CW
containing WBOL
LGPL2.1§11.791

Link WUL + library J
LGPLv2.18I11.691

(Of license)
Original licensor
may limit license

geographically
LGPL2.1§11.1291

Relicense a copy
under GPLv2 or later
LGPLv2.1511.391

or exclusive
f K

Any LGPL version if
unspecified
LGPLv2.1§11.1312

Distribute linked
WUL + library under
qualifying license
LGPLv2.1811.611

R

License WBOL freely
under LGPLv2.1
LGPLv2.1811.691

Insert notices of
changes
LGPLv2.1§I1.291.b

Alter notices to GPL
LGPLv2.1§I1.311

Good-faith

LGPLv2.1811.191.d

independence effort

source
LGPLv2.1§11.492

Accompany with
WUL binary/source
LGPLv2.1§11.672.a

Offer same access to

copy corresponding

Prominent notice

LGPLv2.1§11.692

Link using suitable

shared library
mechanism
LGPLv2.1611.692.b

that Library is used

Prominent notice

LGPLv2.1
LGPLv2.18I1.692

Written offer of
source and WUL
LGPL2.18I1.612.c

that Library is under

Offer same access to
copy WUL
LGPLv2.1811.692.d

Display copyright

reference
LGPLv2.1§11.692

notice and LGPLv2.1

Notice of WBOL
and where to

find Library
LGPLv2.15I1.791.b

Ensure copyright

notice LGPLv2.1811.191

Retain LGPL notices
LGPLv2.1§11.191

Ensure disclaimer
notice LGPLv2.15I1.1Y1

Retain disclaimers
LGPLv2.1§11.191

In copyright law:

An .exclusive Al‘! action defined Ar! action defined DW = "Derivative Work"
action from ina !._GPLV2.1 ina L_GPL_vZ.l CW = "Collective Work"
copyright law right obligation
In LGPL2.1:
Whole —— = Part WUL = "work that uses the library"
P E— Action requiring the WBOL = "work based on the library"

first as prerequisite (other than the library itself)

Figure 2. Subsumption among the LGPLv2.1 actions for rights and obligations and the
exclusive copyright actions. 18 rights actions are explicit in the text, and three others are
implied. The actions of the implied rights are italicized in the figure. Four obligations actions
have no effect under the conditions in which they are obligated (because the original source
must itself satisfy LGPLv2.1); they are shown with a gray background.

55

Some OSS is multiply-licensed, or distributed under two or more licenses. The MySQL database
software is distributed either under GPLv2 for OSS projects or a proprietary license for
commercial projects. The Mozilla Disjunctive Tri-License licenses the core Mozilla components
under any of three licenses (MPL, GPL, or LGPL).

2) Time and State: Time and state are barely present in LGPLv2.1, figuring only in license
acceptance (§11.9) and termination (§11.8). For example, there is no provision for reinstatement
after termination.

3) Obligation Propagation: Propagation of obligations to other entities is mediated structurally by
the architecture in which LGPLv2.1-licensed entities are combined:

1. to other elements incorporated into the same library (§11.29]1.c);

2. to programs designed to use an LGPLv2.1-licensed library, when linked to the library
(§11.59]2), except when certain conditions are met (§11.691); and

3. to the object code for modules that include more than a stated amount from an
LGPLv2.1-licensed header file (§11.59]3).

4) Enactability and Testability: The constructs that appear intended as LGPLv2.1 rights or
obligations all involve actions that are clearly testable, with the single exception of the “good
faith effort” obligation discussed above. Every action (even the questionable one) is,
unsurprisingly, enactable.

Actions, The Central Construct

Our research has found that license provisions are most effectively represented using a flexibly
extensible approach in which the fundamental unit is an action. Rights and obligations then
express relationships among desired, required, and forbidden actions. Actions are
parameterized as needed, recognizing that the subsumption relationship that can be inferred
among actions is determined by the form in which the actions are parameterized. During our
analysis we identified subsumption relationships among actions, linking each action involved in
a license right back to the exclusive right subsuming it defined in copyright and other intellectual
property law, specifically the U.S. Copyright Act and the Berne convention [USC11], [BCP79].
Where possible, we also identified subsumptions of the actions of license obligations by the
actions of rights. Figure 2 shows the subsumption relationships identified for a single license’s
actions.

Focusing on actions as the key element of licenses brings several advantages.
e Actions are more manageable than rights and obligations. Each action is a concept
representing an unbounded set of instances of the action; e.g. “distribute the Library ...

in object code ... form” (§11.49]1) is instantiated by “distribute glibc to John Doe on 2012
June 18” along with any number of similar instances. Therefore set operations may be

56

used on actions. The operations on rights and obligations, in contrast, are quite limited.
For example, the common idiom of first stating an obligation to do action X, then
reducing it by granting the right to not do W where W overlaps with or is part of X, is
easily expressed as set subtraction on the actions (X - W) but has no simple expression
in terms of the obligation and right themselves.

e A single action, or two actions related by subsumption, often appear in both a right and
an obligation. In LGPLv2.1 examples are numerous, for example the obligation “You
must cause the files modified to carry prominent notices stating that you changed the
files and the date of any change” (§11.29]1.b) whose action is subsumed by that of the
right “You may modify your copy or copies of the Library” (§11.29]1). This phenomenon is
essential to the propagation of obligations from one license to entities under another
license, which doesn’t work unless the other license permits the actions required by the
propagated obligations.

e Distinguishing an actual right or obligation from a modifier in the form of a right or
obligation can be problematic, as observed in Section IV, but in our analysis we found
identifying actions to be uniformly straightforward.

e If rights and obligations are the primary constructs, then their similarities (both comprise
an actor, a Hohfeld jural relation, and an action) and unwieldy difference (though each
contains a Hohfeld relation, it can’t be the same one) are prominent and difficult to
justify. But if actions are the primary construct, then rights and obligations become
emergent phenomena arising from the relationships among a license’s desired, required,
and forbidden actions, and the description of the license metamodel becomes simpler
and more uniform.

Action Parameterization

Here is an example drawn from LGPLv2.1. In the action “distribute that work under terms of
your choice” (§11.69]1), the work in question is a “work that uses the Library” combined or linked
with the Library, and the terms in question must meet two conditions (licensee may modify the
work, and may reverse-engineer the work). This action thus involves two entities:

1. “that work”, upon which the action is taken, and
2. the “terms of your choice” through which the distribution is licensed.

Each of these should be a separate parameter of the action, since they vary from instance to
instance of the action and may vary independently of each other. If the action is parameterized
in this way, then it becomes a special case of the general action “distribute an entity under a
license” and its parameters place it properly in the subsumption hierarchy, as discussed in the
section “Parameterized Subsumption”.

57

©
sENeS:

D(S)

Figure 3. Subsumption of simple entities and parameterized entities

Parameterized Subsumption

In addressing subsumption among parameterized actions, we follow the approach of Abadi and
Cardelli in the area of object-oriented type systems [AbC96]. Figure 3 illustrates subsumption
between pairs of simple actions and pairs of parameterized actions.

In the figure, every instance of action B is also an instance of action A; we say A subsumes B.

On the right is a more complex situation. Actions C(P) and D(P) are parameterized with
arguments R and S respectively. As is normally the case for parameterized actions in licenses,
the parameter is covariant: the sense of the subsumption of the arguments matches their effect
on the subsumption of the actions they parameterize. Every instance of D(S) is an instance of
C(R) if every instance of S is an instance of R; argument S is subsumed by argument R so
therefore D(S) is subsumed by C (R).

An example from LGPLv2.1 is the right “You may modify your copy or copies of the Library”
(§11.29]1) and the obligation “You must cause the files modified to carry prominent notices stating
that you changed the files and the date of any change” (§11.29[1.b) In other licenses we have
seen actions to modify licensed entities other than libraries, and to insert various kinds of
notices appropriate for the license in question, so we propose generalizing these actions to
covariantly parameterized actions informally defined as

M(F,L) = “modify source file F licensed under L”

N(F,L) = “add change notices appropriate for license L to source file F licensed under L”

58

Let us assert that M subsumes N covariantly
N(g,m)EM(fl) if g&fand m&l
and also assert that
“modify your copy or copies of the Library” (§11.29]1)
is equivalent to the union of M(F,LGPLv2.1) for each Library file F you modify, and that

“cause the files modified to carry prominent notices stating that you changed the files
and the date of any change” (§11.291.b)

is equivalent to the union of N(F,LGPLv2.1) for each Library file F you modified. Then we have
taken several steps towards being able to automatically determine that modifying libfile.c under
LGPLv2.1 subsumes adding LGPLv2.1 changes notices to libfile.c. Our assertions have
expressed part of the interpretation of the two actions, and constituted a step in the
formalization of an interpretation of LGPLv2.1 as a whole.

Conclusions

We present initial results from an analysis of LGPLv2.1 in its entirety, based on earlier work that
analyzed high-value areas of a collection eventually numbering 46 licenses. The analysis covers
the license textually in several senses:
1. as a grounded-theory analysis chunking and open-coding the entire text;
2. as a higher-level synthesis by which the license text was partitioned a second time (into
definitions, rights, obligations, modifiers, and no-effect); and
3. as all LGPLv2.1 actions and the relations among them from which arises the structure of
rights and obligations for the license.

The analysis also identified actions as the central concept around which license structure is
organized. When actions are taken as the fundamental construct, the characteristics of rights
and obligations become emergent phenomena arising from the relationships among a license’s
desired, required, and forbidden actions. The focus on actions also led us to a more flexible and
generalized approach for parameterizing actions and deriving a subsumption relation among
them. We extended the subsumption relation to include the actions for the relevant exclusive
copyright rights (Figure 2), and to relate the actions for rights and obligations. Grounding the
relation in the actions of the exclusive rights proved helpful in distinguishing actual rights and
obligations from provisions in the textual guise of rights or obligations but serving the function of
modifiers of definitions, rights, and obligations. While no analysis or interpretation of a license
can be considered final, the three kinds of coverage achieved and cross-correlated (of the text
at both an open-coding and an axial coding level, and of the license’s actions supported by a
grounding in the copyright exclusive actions) give confidence in the results.

59

References
[AbC96] Abadi, M., and Cardelli, L. (1996). A Theory of Objects. Springer-Verlag, New York.
[ALI81] American Law Institute (1981). The Restatement (Second) of Contracts.

[Als15] Alspaugh, T.A. (2015). OSS (and Other) Licenses,
http://www.thomasalspaugh.org/pub/os|-sps/index.html

[BCP79] Berne Convention (1979). Berne Convention for the Protection of Literary and Artistic
Works, (1979). http://www.wipo.int/treaties/en/ip/berne/

[BDS12] Black Duck Software (2009). Top 20 Most Commonly Used Licenses in Open Source
Projects. http://www.blackducksoftware.com/oss/licenses

[CoS07] Corbin, J. M. and Strauss, A. C. (2007). Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. SAGE Publications.

[Det06] L. Determann. Dangerous liasons—software combinations as derivative works?
Berkeley Technology Law Journal, 21(4), 2006.

[FSF99] Free Software Foundation (1999). GNU Lesser General Public License Version 2.1.
http://opensource.org/licenses/Igpl-2.1.php

[Gor89] Gordon, W. J. (1989). An Inquiry into the Merits of Copyright: The Challenges of
Consistency, Consent, and Encouragement Theory. Stanford Law Review, 41(6):1343—1469.

[Gua09] Guadamuz, A. (2009). The License/Contract Dichotomy in Open Licenses: A
Comparative Analysis. University of La Verne Law Review, 30(2):101-116.

[HIO09] Hillman, R. A. and O’Rourke, M. A. (2009). Rethinking Consideration in the Electronic
Age. Hastings Law Journal, 61:311-336.

[Hoh13] W. N. Hohfeld. Some fundamental legal conceptions as applied in judicial reasoning.
Yale Law Journal, 23(1):16-59, 1913.

[Kem09] Kemp, R. (2009). Current Developments in Open Source Software. Computer Law and
Security Review, 25(6):569-582.

[OSI15] OSI (2015). Open Source Initiative. http://www.opensource.org/

[Ros05] L. Rosen. Open Source Licensing: Software Freedom and Intellectual Property Law.
Prentice Hall, 2005.

60

http://www.thomasalspaugh.org/pub/osl-sps/index.html
http://www.wipo.int/treaties/en/ip/berne/
http://opensource.org/licenses/lgpl-2.1.php
http://www.opensource.org/

[USC11]-U.S. Copyright Act, 17 U.S.C. http://www.copyright.gov/title17/

61

http://www.copyright.gov/title17/

Chapter 5.

Automating License Analysis

62

Chapter 5.

Automating License Analysis

Abstract

We find that to effectively address the license challenges for open architectures (Chapter 3) it is
necessary to do license analysis through automation:

) Identifying the license conflicts, available rights, and corresponding obligations for a
proposed system is in general too tedious and too difficult to be done manually with an appropriate
level of confidence and accuracy.

° The process of working through an open architecture and potential instantiations of it
requires doing a license analysis of every alternative that is seriously considered, quickly enough
that the design process can move along at an appropriate speed.

° It is not obvious what characteristics of an architecture, ecosystem, or instantiation of an
arbitrary system must be considered in an appropriately thorough license analysis without
automating the analysis process.

In this chapter we examine how the process of license analysis can be automated, discuss the
more important factors that affect automated license analysis, examine the fundamental structure
of licenses and specific parts of some licenses of interest, and discuss an automated analysis
procedure and how it can be used to guide system design and instantiation.

Introduction

An increasing number of development organizations are adopting a strategy in which
software-intensive systems are composed of heterogeneously licensed (HtL) components, with
different components governed by different software licenses. The components are either open
source software (OSS) or proprietary software with open application programming interfaces
(APIs), and are combined in an open architecture (OA) in which components with comparable
interfaces can be substituted for each other [Ore00]. Under this strategy the development
organization becomes an integrator of components largely produced elsewhere, interconnected to
achieve the desired result.

The resulting OA systems can achieve reuse benefits such as reduced costs, increased reliability,
and potentially increased agility in evolving to meet changing needs. But rather than a single
proprietary license as when acquired from a proprietary vendor, or a single OSS license as in
uniformly-licensed OSS projects, the resulting system typically has no recognized single software
license. Instead it has, strictly speaking, a virtual license [AAS09] composed of each component’s
rights and obligations for that component under its governing license. The rights available for the
system as a whole are the intersection of the rights sets for each component. In some cases the
licenses may produce conflicting obligations and this intersection is empty, leaving a system that
cannot legally be used, distributed, or modified. An emerging challenge is to realize the reuse

63

benefits of HtL systems while managing virtual licenses to ensure that the desired system rights
are available for an acceptable set of obligations.

We believe that a primary challenge to be addressed is how to determine whether a system,
composed of subsystems and components each with specific OSS or proprietary licenses, and
integrated in the system’s planned configuration, is or is not open, and what license constraints
apply to the configured system as a whole. This challenge comprises not only evaluating an
existing system at run-time, but also at design-time and build-time for a proposed system to ensure
that the result is “open” under the desired definition, and that only the acceptable licenses apply;
and also understanding which licenses are acceptable in this context. Because there are a range of
types and variants of licenses [OSI15], each of which may affect a system in different ways, and
because there are a number of different kinds of OSS-related components and ways of combining
them that affect the licensing issue, a first necessary step is to understand the kinds of software
elements that constitute a software architecture, and what kinds of licenses may encumber these
elements or their overall configuration.

Software systems with open architectures are subject to different software licenses than may be
common with traditional proprietary, closed source systems from a single vendor. Software
architects/developers must increasingly attend to how they design, develop, and deploy software
systems that may be subject to multiple, possibly conflicting software licenses. We see architects,
developers, software acquisition managers, and others concerned with OAs as falling into three
groups. The first group pays little or no heed to license conflicts and obligations; they simply focus
on the other goals of the system. Those in the second group have assets and resources, and to
protect these they may have an army of lawyers to advise them on license issues and other
potential vulnerabilities; or they may constrain the design of their systems so that only a small
number of software licenses (possibly just one) are involved, excluding components with other
licenses independent of whether such components represent a more effective or more efficient
solution. The third group falls between these two extremes; members of this group want to design,
develop, and distribute the best systems possible, while respecting the constraints associated with
different software component licenses. Their goal is a configured OA system that meets all its
goals, and for which all the license obligations for the needed copyright rights are satisfied. It is
this third group that needs the guidance the present work seeks to provide.

The basic relationship between software license rights and obligations can be summarized as
follows: if you meet the specified obligations, then you get the specified rights. So, informally, for
the academic licenses, if you retain the copyright notice, list of license conditions, and disclaimer,
then you can use, modify, merge, sub-license, etc. For MPL, if you publish modified source code
and sub-licensed derived works under MPL, then you get all the MPL rights. And so forth for other
licenses. However, one thing we have learned from our efforts to carefully analyze and lay out the
obligations and rights pertaining to each license is that license details are difficult to comprehend
and track—it is easy to get confused or make mistakes. Some of the OSS licenses were written by
developers, and often these turn out to be incomplete and legally ambiguous; others, usually more
recent, were written by lawyers, and are more exact and complete but can be difficult for
non-lawyers to grasp. The challenge is multiplied when dealing with configured system
architectures that compose multiple components with heterogeneous licenses, so that the need for

64

legal interpretations begins to seem inevitable [FKMO08, Ros05]. Therefore, one of our goals is to
make it possible to architect software systems of heterogeneously-licensed components without
necessarily consulting legal counsel. Similarly, such a goal is best realized with automated support
that can help architects understand design choices across components with different licenses, and
that can provide support for testing build-time releases and run-time distributions to make sure they
achieve the specified rights by satisfying the corresponding obligations.

In our previous work we described and implemented a novel approach for calculating conflicting
obligations, unavailable rights, and virtual licenses in an architectural design context. Calculation is
necessary because the number of entailments in a typical HtL system is large, the system’s
architecture is constantly evolving, its design-, distribution-, and run-time architectures are often
distinct, component licenses evolve and components are relicensed, and the consequences of
infringement can be substantial. Therefore identifying conflicts and virtual licenses through
calculation is a substantial boon. But we soon realized that explaining them was of even greater
value.

We present an approach in which arguments are used to explain the results of right and obligation
calculations. The calculations proceed by elaborating a directed acyclic graph (dag) of inferences
among rights to obligations for entities in the system architecture. In this work we reimplemented
the software that performs the calculations so that the dag is retained in its entirety as the primary
calculation product, containing within it the obligation conflicts, unavailable rights, and virtual
license for the system under analysis. Then an explanation for a specific result corresponds to the
traversal of a path through the dag, starting at the result in question and continuing until the
question has been answered.

° Conflicting obligations: the traversal branches for each obligation to show the desired rights,
license provisions, and architectural entities from which that obligation is produced, and at the root
of the traversal shows in what ways the obligations conflict.

) Unavailable rights: for each such right, a traversal identifies the exclusive copyright right
that subsumes the right in question, the architectural entity to which the right pertains, and why no
right in the entity’s license grants the right in question.

° Virtual license: traversals show the chains of inference by which each right and obligation is
entailed by the system architecture, the stated license for each component, and the desired rights
for the system as a whole.

The dag calculation algorithm follows the steps of legal reasoning (formalized to support
automation) by which an informed analyst would reason out the results. Thus the traversals follow
inference paths that follow (in more detail) the paths by which an analyst reasons out the same

conclusions.

Structuring legal arguments

65

Grounds T Claim

Backing ¥ Warrant

Figure 1. A claim, supported by grounds, their pertinence to the claim justified by a warrant, whose
validity is supported by backing (diagram after [TRJ84])

The most influential approach for structuring legal arguments is that of Toulmin, who classified the
parts of arguments into claims, grounds, warrants, backing, qualifiers, and rebuttals, in a recursive
structure with a diagrammatic notation outlined in Figure 1 [TRJ84]. His approach has spread
beyond the area of legal arguments and is used in general rhetoric and computer science. Toulmin
divides arguments into

1) claims asserted to be true;
2) for each claim whose truth is disputed, one or more grounds supporting it;
3) if it is disputed whether a claim’s grounds suffice for it, then a warrant stating why the

grounds entail the claim;
4) if the warrant is disputed, then backing supporting it.

If a ground or backing is disputed, then it is made the claim of a lower-level argument constructed
in its support. The recursion of arguments continues as long as grounds or backings are in dispute,
or until the original claim is abandoned. (Qualifiers and rebuttals address the degree of strength of
arguments, and are not used in the present work.)

Licenses and Software Architectures

Open architecture (OA) software is a customization technique introduced by Oreizy [16] that
enables third parties to modify a software system through its exposed architecture, evolving the
system by replacing its components. Almost a decade later, we see more and more
software-intensive systems developed using an OA strategy not only with open source software
(OSS) components but also proprietary components with open APls (e.g. [UEULAOQ8]). Developing
systems using the OA technique can lower development costs [SCA08]. Composing a system with
HtL components, however, increases the likelihood of liabilities stemming from incompatible
licenses. Thus, in this paper, we define an OA system as a software system consisting of
components that are either open source or proprietary with open API, whose overall system rights
at a minimum allow its use and redistribution.

OA may simply seem to mean software system architectures incorporating OSS components and
open application program interfaces (APIs). But not all such architectures will produce an OA, since
the available license rights of an OA depend on: (a) how and why OSS and open APIs are located
within the system architecture, (b) how OSS and open APIs are implemented, embedded, or
interconnected, and (c) the degree to which the licenses of different OSS components encumber all
or part of a software system’s architecture into which they are integrated [AIA08, ScA08].

66

Certain classes of architectural features affect the application and propagation of license
provisions. These are identified by examining the software licenses of interest to see how their
rights and obligations vary depending on the architectural context in which they are applied. A
software architecture is composed of components, each of which is a “locus of computation and
state” in a system, and connectors which link them and mediate interactions between them. In our
research we have examined nearly 50 OSS and proprietary licenses and terms of service. We find
that license analysis can be affected by:

) The type of connector used between two components, for example a static link, dynamic
link, or client-server connection.
° The type of component, for example a source code component for which the sources are

available so that the component can be rebuilt, corrected and evolved; a binary component for
which source files are not available; a configured subsystem that interacts with the overall system
as a single unit, but which may have its own architecture, components, and connectors; or a
software service operating through an interface that hides what kind of component is providing the
service.

° Whether a component is part of a separate library or is developed as an integral part of the
system.
) The development history of evolved source code components; changes in which licenses

they are released under, and evolutions in later versions of those licenses; and the specific
copyright and license notices that are or were present at key points.
° Further distinctions made by other licenses not considered yet.

And so forth. The distinctions are limited only by the specifics of the licenses of interest, so in
principle it is not possible to make an exhaustive list. However we have examined not only the most
frequently used OSS licenses but also the most important classes of licenses, so we are confident
in the general outlines and future validity of the automated analyses that we have developed.

More and more software systems are designed, built, released, and distributed as OAs composed
of components from different sources, some proprietary and others not. Systems include
components that are statically bound or interconnected at build-time, while other components may
only be dynamically linked for execution at run-time, and thus might not be included as part of a
software release or distribution. Software components in such systems evolve not only by ongoing
maintenance, but also by architectural refactoring, alternative component interconnections, and
component replacement (via maintenance patches, installation of new versions, or migration to
new technologies). Software components in such systems may be subject to different software
licenses, and later versions of a component may be subject to different licenses (e.g., from CDDL
(Sun’s Common Development and Distribution License) to GPL, or from GPLv2 to GPLv3).

Heuristics for Designing HtL Systems

HtL system designers have developed heuristics to guide architectural design while avoiding some
license conflicts.

67

First, it is possible to use a reciprocally-licensed component through a license firewall that limits the
scope of reciprocal obligations for specific licenses (depending on how the license provisions are
interpreted). Rather than connecting conflicting components directly through static build-time links,
the connection is made through a dynamic link, client-server protocol, license shim, or run-time

plug-in.

A second approach used by a number of large organizations is to avoid using any components with
reciprocal licenses.

Even using design heuristics such as these, keeping track of license rights and obligations across
components that are interconnected in complex OAs quickly becomes cumbersome. Organizations
wishing to follow a “best-of-breed” component selection policy, without regard to component
licenses, face even steeper challenges. Automated support is needed to manage this
multi-component, multi-license complexity.

License Rights and Obligations

A particularly knotty challenge is the problem of heterogeneous licenses in software systems. In
order to illuminate the specifics of this challenge and provide a basis for addressing it, we analyzed
a representative group of common OSS licenses and (for contrast) a proprietary license, using an
approach based on Breaux’s semantic parameterization [BADO08].

The stages of the analysis were:

0. This License applies to any program or other work which
contains a notice placed by the copyright holder saying it may be
distributed under the terms of this General Public_License.

The "Program", below, refers to any such program or work,
and a "work based on_the Program" means either the Program or
any derivative_work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language.

(Hereinafter, translation is included without limitation in the
term "modification".) Each licensee is addressed as "you".

Figure 2. GPL 2 concordance, sect. 2.0 par. 1

1. First we disambiguated forward and backward references, identified synonyms, and
distinguished polysemes that expressed different meanings with identical wording. We identified
terms of art from copyright law, such as “Derived Work”, and specialized terms defined for a
particular license, such as “work based on the Program” for GPL and “Electronic Distribution
Mechanism” for MPL. From this we constructed (automatically) a concordance to aid us in the
remainder of the analysis. The concordance indexed the instances of each distinguished word
term, excluding minor words such as articles, conjunctions, and prepositions whose use in a
particular license carried no specialized meaning, and tagged each sentence with its section,

68

paragraph, and sentence sequence numbers. Figure 2 shows a portion of the concordance for
GPL.

2. Next we identified the parts of each license that had no legal force, such as GPL 2’s
“Preamble” section, or that dealt with any rights or obligations other than those for copyright, such
as patents, trademarks, implied warranty, or liability, iterating with the concordance to confirm the
identifications. The remainder of our analysis focused on copyright.

3. Using the concordances across the licenses, and guided by legal work on OSS licenses
[Det06, FKM08, Ros05, StL04, Sto05], we identified words and phrases with the same intensional
meaning, and textual structures parallel among the licenses. From these we iterated to identify
natural language patterns each of which could be used as a restricted natural language statement
(RNLS) to express the licenses.

License 1 Right i Obligation

Y X
Tuple
?
Actor Modality Action Object License
Licensor May || Must Not ZL Copyright Action

Licensee Must Need Not

Figure 3. Metamodel for software licenses
Our metamodel, derived from the patterns we identified, is shown in Figure 3. A license consists of
one or more rights, each of which entails zero or more obligations. Rights and obligations have the
same structure, a tuple comprising an actor (the licensor or licensee), a modality, an action, and

zero or more objects referred to by the action.

We found a wide variety of license actions, some of which are defined in copyright law or derived
from it and are distinguished as copyright actions..

The RNLS textual form of an example abstract right, (one not bound to a specific object) extracted
from the BSD license is

Licensee - may - distribute <Any Source> under <This License>
where “distribute under” is a copyright action and the abstract object <Any Source> quantifies the
right over all sources licensed under the license containing the right (here, BSD); an example

concrete obligation is

Licensee - must - retain the [BSD] copyright notice in [file.c]

69

where “retain the <License> copyright notice” is an action that is not a copyright action, BSD is the
concrete license the action references, and file.c is the concrete source file the action references.
The RNLS actions are defined with tokens identifying where the tuple’s objects are inserted, for
example in the GPL action “sublicense OBJECT under LICENSE”. Figure 4 is an informal
illustration of how actions may contain concrete objects and licenses, references to objects or
licenses bound elsewhere, or quantifiers using the information in the license architecture
abstraction described below to produce sets of rights or obligations.

—
(/ RIGHT H Actor |Mod. |Action m
—

License — RIGHT H Actor |Mod. |Action

LICENSE
ARCHITECTURE

\ RIGHT H Actor |Mod. |Action |Obj. | Lic. |

H OBLIGATION H Actor |Mod. | Action
Constant | | OBLIGATION H Actor |Mod. | Action
Variable or
Quantifier H OBLIGATION H Actor |Mod. [Action

Figure 4. Object/license references, informally

This model of licenses gives a basis for reasoning about licenses, applying them to actual systems,
and calculating the results. The additional information we need about the system is defined by the
list of quantifiers that can appear as objects in the rights and obligations. The information needed is
the license architecture (LA), an abstraction of the system architecture:

the set of components of the system;

the relation mapping each component to its license;

the relation mapping each component to its set of sources; and

. the relation from each component to the set of components in the same license scope, for
each license for which “scope” is defined (e.g. GPL), and from each source to the set of sources of
components in the scope of its component (Figure 5).

i

Scopes
(sets of components
and sources, each with
a defining license)

Figure 5. The license architecture metamodel

70

With this information and definitions of the licenses involved, we calculate rights and obligations for
individual components or for the entire system, and guide HtL system design.

RIGHT "may" | is the opposite of | NO-RIGHT "must not"

is the correlative of is the correlative of

DUTY "must" | is the opposite of | PRIVILEGE "need not"

Figure 6. Hohfeld’s four basic relations

We developed an approach for expressing software licenses that is more formal and less
ambiguous than natural language, and that allows us to calculate rights and obligations for an HtL
system and identify conflicts arising from the rights and obligations of two or more component’s
licenses. Our approach is based on Hohfeld’s eight fundamental jural relations [Hoh13], of which
we use right (“may”), duty (“must”), no-right (“must not”), and privilege (“need not”) (Figure 6). Each
relation has a correlative relation, which in our context relates an obligation to its necessary right:

° if actor A must perform action X, then A requires the correlative right to perform it,
expressed as “A may X”;

° if actor A must not perform action X, then A requires the correlative right to not perform it, “A
need not X”.

We express rights and obligations as tuples (Figure 3):

<actor, modality, action, object>

Licensee : may : run PROGRAM

Licensee : may : distribute unmodified source for PROGRAM

Licensee : must : retain the GPL 2.0 copyright notice in the source

Licensee : must : retain the GPL 2.0 list of conditions in the source

Licensee : must : accompany the source with a copy of the GPL 2.0 license

Figure 7. Some tuples for the GPLv2 license [UPDATE]

The actor is either the “Licensee” or in a few cases “Licensor” for all the enactable, testable
provisions of the licenses we have examined [ASA10]. The modality is “may” or “need not” for a
right and “must” or “must not” for an obligation. The action is a verb phrase acting on zero or more
objects, describing what may, need not, must, or must not be done. The objects are modules of the
system or related artifacts such as a source file, the original version, documentation, and so forth.
Typically a license right applies to any of a class of objects distributed under the license, such as
any binary file or any modified source file; and the right’s obligations will apply to the same object

71

or a related object, such as the right’s object’s sources or the right’s object’s originals. For this
reason we term rights and obligations as expressed in a license abstract, in contrast to a concrete
right or obligation for one specific entity. Some actions are parameterized by a license as well.

Because copyright rights are exclusive to the copyright holder and licensees, the actions in
copyright rights are distinguished from other actions; rights with those actions are only available
through the object’s license. Rights formed from all other actions are freely and immediately
available, unless the object’s license obligations restrict them.

A license is expressed as a set of rights, each right associated with zero or more obligations that
must be fulfilled be granted it, and possibly a set of overall obligations that must be fulfilled for the
license as a whole. Figure 7 sketches two rights from GPL version 2.0 (GPLv2), the first with no
obligations and the second with three corresponding obligations.

The details of the license specification approach are described in our earlier work [AAS09, ASA10].
Applying Licenses to Software
Calculating the Inference DAG

In order to obtain a particular desired right r for a specific module or other entity €, in other words a
desired concrete right, one of two cases must hold:

1. r is not subsumed by any of the five copyright rights, and does not conflict with any general
obligation of r’s license L. In this case r is freely available.

2. r is subsumed by an abstract right R of the license, with e likewise subsumed by R’s object.
In this case all R’s obligations O1, 02, ..., On must be fulfilled, with their objects replaced by
whatever function of e they signify, in order for r to be granted. These could be e itself, all sources
of e, the original version of e, and so forth. n may be zero, in which case L immediately grants r.

Figure 8 illustrates one step of the application of a license to obtain a desired concrete rightr. In
the license of r's object e, we search for an abstract right R subsuming r. The figure shows two
obligations O1 and O2 of R, which we apply to r's object e in order to obtain r's concrete obligations
01 and 02. Depending on what kind of object O1 has, 01 could apply to e itself, in which case e =
e’1, or to an entity related to e, or (if L is a propagating license) to another module linked or
otherwise connected to e. Finally, in order to fulfill 01 we must have o1’s correlative right r'1. The
same considerations apply for O2, of course. The heavy arrow shows the flow of inference from
desired concrete right through to required concrete obligations and correlative rights.

72

License of
concrete entity e

0
0,

Subsuming)—:)" Abstract
abstract right obligation

T [/ z
o1 p———F" r{
Desired

Concrete : Correlative
concrete right obligation \ concrete right

Y

Concrete Concrete

May be

entity same entity entity
(depends on license)
—Key
Applies Siksiiee Has Correlates Inference
5 % T in parallel obligation with flow

<--->

Figure 8. A step in a rights/obligations inference

If Y1 (r'2) is immediately available, its branch of the inference is complete. If not, the process
recurses from r'1 (r'2).

The license rights and obligations for an entire system are calculated by repeating this process for
every module of the system. If all modules are under the same license, analogous rights and
obligations obtain for every module. If the system is heterogeneously-licensed, however, the
calculation is much more varied, and if some of the modules are propagationally licensed then a
right for one of those modules can produce obligations for other modules of the system. Such an
architecture can easily result in license conflicts, as for example when a license propagates the
obligation to be sublicensed under the same license to a proprietary component whose license
forbids sublicensing. In such a case, the calculation will fail to produce a simultaneously satisfiable
collection of obligations, and no rights will be available for the system as a whole.

73

Ground: (A) Licensee : must :

—| sublicense WordProcessor
under GPLv2 Claim: There are

P conflicting obligations
for WordProcessor

Ground: (A) Licensee : must not
P : sublicense VWordProcessor
under GPLv2

| Warrant: "must" and "must not" conflict ‘

| Warrant: Same licensee, modality, action, license, (A)
object instantiates (B) object — (A) instantiates (B)

—{ Ground: GnomeEvolution is licensed under GPLv2 |

Ground: <RightsPatientStaticScope> for GnomeEvolution contains
— WordProcessor

(The scope in question highlighted in the architecture to illustrate this ground)

Ground: (B) Licensee : must : sublicense <RightsPatientStaticScope>
under {ThisLicense} (GPLv2 §2.291.bsl)

—{ Ground: {ThisLicense} for GhomeEvolution is GPLv2 |

Warrant: Same licensee, modality, action, (A) object subsumes

(B) object, (A) license subsumes (B) license — (B) instantiates (A)

Ground: VWYordProcessor is licensed under CTL

Ground: (B) Licensee : must not : sublicense
<AnyUnderThisLicense> under {AnyLicense} (CTL §4YIslwl5)

Ground: <AnyUnderThisLicense> for WordProcessor includes WordProcessor

Ground: {AnyLicense} includes GPLv2

Figure 9. Toulmin-structured arguments supporting (and explaining) a typical conflict between
obligations for a GPLv2 and a proprietary component

74

/ Abstract Abstractj
right obligation

A

Concrete
obligation)

7

The explanation divides,
flowing from each
conflicting obligation
back to that obligation's
original desired right
|\l and entity

Abstract Abstras
right obligatign
g -

~
......... _j! :

Desired
right

Desired
right

Concrete
entity

Concrete
obligation

Concrete
entity

Concrete
entity

Figure SEKE11-7. Divided explanation flow for a conflict between two obligations

Figure 9 shows in Toulmin form a portion of an example inference that produces a conflict,
involving a component e1 obtained under GPLv2 and modified, linked to a component e2 obtained
under the proprietary Corel Transactional License (CTL) [Als15]. The architectural connection
between e1 and e2 is one that is interpreted for this inference as propagating GPLv2 obligations,
such as a static link. The right to distribute copies of the containing system is desired. In our
prototype implementation (Figure 10) these arguments are presented in outline form, with the claim
as the root of the outline and its grounds and warrant as its subheads, to be expanded as desired if
further explanation is needed. A typical use would be:

1. Why does the WordProcessor component need to be sublicensed under GPLv2?

2. Itis in the static-linked scope of the GnomeEvolution component; that component is

annotated with the GPLv2 license; and GPLv2 obligates sublicensing under GPLv2 (GPLv2
§2.29[1.bs1).

3. Why can’t the Word rocessor component be sublicensed under GPLv2?

4. The WordProcessor component in the architecture has been annotated with the CTL

license, and CTL forbids sublicensing under any license (CTL §491s1w15).

75

GnomeEvolution Inference Tree

»

-~ License Confiicts
(=1 Unavailable Rights
{ [-Llicensee : may : distribute copies of WordProcessor
[=]- Sought as instantiation of desired right
.. Licensee : may : distribute copies of <AnyBinary>
[=- Unavailable because CTL does not grant it and subsumed by
‘- Licensee : may : distribute copies of <Any>
[+-Licensee : may : prepare derivative works of WordProcessor
i [#@-Llicensee : may : reproduce WordProcessor
hds = [=- Confiicting Obligations
Unix System [=)- Licensee : must : sublicense WordProcessor under GPL2.0
Calls [=)- Licensee : must ; sublicense <RightsPatientsStaticScope > under {ThisLicense}
L [=]-Licensee : may : distribute copies of <AnyModifiedBinary >

/ i i Licensee : may : distribute copies of XMail
- Licensee : must : sublicense <RightsPatientsStaticScope = under {ThisLicense}

[=-Licensee : may : distribute copies of <AnyModifiedBinary >
. Licensee : may : distribute copies of GnomeEvolution

XMail [Licensee : must not : sublicense WordProcessor under GPL2.0

‘.- Licensee : must not : sublicense <Any > under {AnyLicense}

IMAP/POP /SMTP

Figure 10. Prototype explanation results for a CTL-GPL2.0 conflict: (at top) unavailable rights
(partially collapsed), (middle) two conflicting obligations.

Explanation by Argumentation

Figure SEKE11-7 shows the two explanation flows for a conflict between obligations. Each flow
begins at the conflict and explains how one half of the conflicting pair came to be. The connection
between the pair is straightforward, as they are identical except for their modalities which are
always “must” for one and “must not” for the other.

The flow and the required explanations are analogous for a right-obligation conflict, with the right
and obligation again identical except for their modalities, which are always opposites, either “may”
and “must not” or “must” and “need not”.

After examining the kinds of information that are available in the vicinity of a problem (a conflict or
unavailable right), we realized the inferences leading up to it provide the clearest insight into what
the problem signifies and why it is present.

° The chains of inference leading up to the problem constitute precisely the portion of the
calculation relevant to the problem. No other parts of the calculation—or of the applications of
license provisions, determined by the architecture and its annotations, that the calculation
identifies—affect whether the problem is present or not.

° The inferences place the problem in the context of licenses, components and their
annotations, and architectural configuration — the context in which a designer using the tool is
already working.

) Each chain of inference, followed in reverse, provides an unfolding explanation for the
problem’s presence, which an analyst can explore as far as is helpful in providing understanding
and insight.

76

Each step of a chain of inference is a point at which it can be broken—by replacing a component
with one differently licensed, replacing one or more connectors to firewall off a propagating
obligation, replacing a build-time component with one provided by users at run time, or other
design decisions.

Automation

The license metamodel, calculation, and an assortment of license interpretations are implemented
in a Java package. The calculation builds the entire dag, which is then available for presentation in
whatever ways are desired. Each abstract right and obligation in a license interpretation has its
provenance in the license or interpretation for use in explanations. The package supports the
addition and use of new interpretations.

The package is connected into the system design context by its integration into an ArchStudio 4
plugin [DAHO7]. The plugin maps features of software architectures onto the license architecture
abstraction needed for the virtual license calculation and displays results in the context of the
architecture.

This approach provides:

) The ability to model software systems and specify the corresponding licenses at different
levels of granularity. We provide the option of specifying licenses at a fine-grained level, for
example licenses assigned to components at the level of a single Web service, such as the Google
Desktop Query API, or at a coarse-grained level, for example one license assigned to a set of
services provided by Google Desktop APIs http: /code.google.com/apis/desktop/ .

° The ability to model software systems at different architecture levels and to analyze license
interactions across the different architecture levels. For instance, if a sub-subsystem X contains
heterogeneous licenses and is itself part of a bigger system Y with heterogeneous licenses, our
approach is able to analyze license interactions between sub-subsystem X and System Y. We
expect to analyze license interactions across multiple architecture levels.

° The modeling approach maps well to the way real software systems are configured.

° Automated license analysis is informed by the additional knowledge of the system
configuration. This is one of our contributions beyond current techniques and approaches. Simply
modifying the system configuration can result in different sets of available rights or required
obligations. Thus, the same set of components may be analyzed with or without specific license
firewalls inserted among them.

Scalability is always an issue for any approach. We conclude that our initial algorithm is quadratic
in the number of components with licenses, which for architectures of up to several hundred
components is manageable. The approach requires modeling the system architecture, in common
with many other research approaches, and annotating it to produce the license architecture, which
we feel is a worthwhile tradeoff for developers following a best-of-breed strategy or who need to
manage reciprocal and proprietary components or design-, distribution-, and run-time architectures
that differ in significant ways.

77

The integration of the analysis with architecture design and evaluation supports easy management
of licenses across the software development lifecycle and across product variations. For instance,
as the software evolves, analysts may consider replacing a proprietary word processing component
with an OSS component. By simply modifying the architecture model and running the automated
license analysis, the analyst learns the new set of rights and obligations. Similarly, an analyst can
create product variations to suit a particular deployment platform or customer IP requirements.
These product variations can be stored with ArchStudio and retrieved or analyzed at any later time.

The argument grounds drawn from the texts of licenses are implemented through URLs
hyperlinking into our collection of software licenses tagged for reference with §-{-sentence-word
numbers [Als15]. Each URL cites the sentence or phrase from which a right or obligation arises.
Word-level ids allow references to, for example, #S2.2p1.bs1w11 for the phrase beginning at word
11 of that sentence.

Discussion

There are at least two kinds of software license/IP schemes that impose requirements on how
software systems will be developed: (a) a single license for the complete software system, and (b)
a heterogeneous license scheme of rights and obligations for the complete system incorporating
components with different licenses. We consider each in turn.

A single license scheme

There is often a desire to specify a single license at architecture design time in order to insure a
composed software system with single license compatible scheme at distribution time, and also at
run time. Software licenses like GPL encourage this as part of their overall IP strategy for ensuring
software freedom. Similarly, there is desire to determine whether a single known license can cover
a designed or released system [GeH09]. However, a single license regime cannot in general be
guaranteed to occur by chance; instead it is most effectively determined by design. In either case, it
must be specified as a nonfunctional requirement for software development. But satisfying such a
requirement limits the choice of software components that can be included in the system design
and the system composition at distribution and run-time to those compatible (or subsumed) with the
required overall system license. Consequently, our goal in this case is to insure a simple,
homogeneous scheme relying on known licenses to determine the propagation and enforcement of
their constraints.

A heterogeneous license scheme

In contrast to a single license scheme, a heterogeneous license scheme allows a software system
to incorporate components with different IP licenses. Such a scheme gives more degrees of
freedom than a single license scheme. For example, it allows for best-of-breed component
selection, considering components with a range of licenses rather than only those with a specific
license. It also allows for specification and design of software systems conforming to a reference
architecture [BCKO03]. This enables a higher degree of software reuse through inclusion of reusable
software components that have a substantial prior investment in their development and use.
Similarly, when relying on a reference architecture, design-time component choices need not be
encumbered by license constraints, since the resulting system license rights and obligations need

78

only be determined at distribution-time and runtime. Furthermore, the distribution and run-time
system compositions are not limited to a single license; instead they are constrained only by the
license rights and obligations that ensue for the entire system.

In a heterogeneous license scheme, the overall system rights and obligations can form a virtual
license—a license whose rights and obligations can be determined, tested, and satisfied at any
time, without being a previously approved license type, e.g. via the OSlI license approval scheme
[OSI15].

This enables prototyping both software system compositions and new software license types, and
determining their effect when later mixed with existing software components or licenses. However,
determining the scope of rights and obligations in an overall composed system will be challenging
without an automated tool such as the one we demonstrated.

The key observation is that there is a choice of ways to proceed in terms of guidance both for those
who seek a single license regime for all components and system compositions, as in GPL-based
software, and for those who seek to work with multiple software component licenses in order to
develop the best possible system designs they can realize.

Conclusions

HtL system design and development provide important benefits but impose new demands difficult
to meet using only manual methods and human insight. Our approach for supporting HtL
development and acquisition automates the calculation of HtL system virtual licenses. We have
integrated it into a software architecture tool so it can be applied at the point in the development
process when the necessary information is available and the relevant design decisions are made.
A key benefit it provides is the automated calculation of license conflicts, desired but unavailable
rights, and virtual licenses. But explaining them is of even greater value.

We present a novel approach that presents each conflict in the form of structured arguments
showing why each conflict exists and (by implication) points of attack for eliminating it. These
arguments provide an informative presentation that brings together all the available information in a
compact, evocative form that is easier to interpret, act on, and verify.

References

[Als15] Alspaugh, T.A OSS (and other) licenses, §/%/sentence/word-numbered.
http://www.thomasalspaugh.org/pub/osl-sps/ .

[AIAO7] Alspaugh, T.A and Antén, A.l., (2007). Scenario Support for Effective Requirements,
Information and Software Technology, 50(3), 198-220.

[AASQ9] Alspaugh, T.A, Asuncion, H.U., and Scacchi, W. (2009). Intellectual property rights

requirements for heterogeneously-licensed systems. In 17th Int. Requirements Engineering
Conference (RE’'09), 24-33.

79

http://www.thomasalspaugh.org/pub/osl-sps/

[ASA10] Alspaugh, T.A, Scacchi, W., and Asuncion, H. (2010). Software Licenses in Context: The
Challenge of Heterogeneously Licensed Systems, Journal of the Association for Information
Systems, 11(11), 730-755, November.

[BCKO3] Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice, 2nd Edition,
Addison-Wesley Professional, New York. 2003.

[BADO8] T. D. Breaux, T.D., Anton, A.l., and Doyle, J. (2008). Semantic parameterization: A
process for modeling domain descriptions. ACM Trans. on Softw. Eng. and Meth., 18(2), 1-44.

[DAHQ7] Eric Dashofy, E., Asuncion, H., Hendrickson, S., et al. (2007) Archstudio4: An
architecture-based meta-modeling environment. In 28th Int. Conference on Software Engineering,
Companion Volume, 67—68.

[Det06] Determann, L. (2006). Dangerous liaisons—software combinations as derivative works?
Distribution, installation, and execution of linked programs under copyright law, commercial
licenses, and the GPL. Berkeley Technology Law Journal, 21(4).

[End13] Endres-Niggemeyer, B. (2013). The Mashup Ecosystem, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 1-50.

[Fel07] Feldt, K. (2007). Programming Firefox: Building Rich Internet Applications with Xul. O’Reilly
Media, Inc., 2007.

[FKMOQ8] Fontana, R., Kuhn, B.M., Moglen, E., Norwood, M., Ravicher, D.B., Sandler, K., Vasile, J.,
and WIlliamson, (2008). A. A Legal Issues Primer for Open Source and Free Software Projects,
Software Freedom Law Center, Version 1.5.1.
http://www.softwarefreedom.org/resources/2008/foss-primer.pdf

[GeHO09] German, D. and Hassan, A.E. (2009). License integration patterns: Dealing with licenses
mismatches in componentbased development. In 28th International Conference on Software
Engineering (ICSE ’09), May 2009.

[Hoh13] Hohfeld, W.N. (1913). Some fundamental legal conceptions as applied in judicial
reasoning. Yale Law J., 23(1):16-59.

[NeCO06] Nelson, L. and Churchill, E.F. (2006). Repurposing: Techniques for reuse and integration
of interactive systems. In International Conference on Information Reuse and Integration (IRI-08),
490-495.

[Ore00] Oreizy, P. (2000). Open Architecture Software: A Flexible Approach to Decentralized

Software Evolution. PhD thesis, Information and Computer Science Dept., University of California,
Irvine.

80

http://www.softwarefreedom.org/resources/2008/foss-primer.pdf

[OSI15] OSI (2015). Open Source Initiative. _http://www.opensource.org/.

[17] [Ros05] Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall, Englewood Cliffs, NJ.

[ScA08] Scacchi, W. and Alspaugh, T.A. (2008). Emerging issues in the acquisition of open source
software within the U.S. Department of Defense. In 5th Annual Acquisition Research Symposium,
May 2008.

[StLO4] St. Laurent, A. M. (2004). Understanding Open Source and Free Software Licensing.
O’Reilly Media, Inc.

[Sto05] Stoltz, M.L. (2005). The penguin paradox: How the scope of derivative works in copyright
affects the effectiveness of the GNU GPL. Boston University Law Review, 85(5):1439—-1477.

[TRJ84] Toulmin, S., Rieke, R. and Janik, A. (1984). An Introduction to Reasoning. Macmillan. New
York.

[UEUOQS8] Unity End User License Agreement, Dec. 2008.
http:// unity3d.com/unity/unity-end-user-license-2. x.html

[USCO08] U.S. Copyright Act, 17 U.S.C., 2008. http://www.copyright.gov/title17/

81

http://www.opensource.org/
http://www.copyright.gov/title17/

Chapter 6.

Understanding the Role of Licenses and Evolution in
Open Architecture Software Ecosystems

82

Chapter 6.

Understanding the Role of Licenses and Evolution in
Open Architecture Software Ecosystems:

Abstract

The role of software ecosystems in the development and evolution of open architecture systems
whose components are subject to different licenses has received insufficient consideration. Such
systems are composed of components potentially under two or more licenses, open source or
proprietary or both, in an architecture in which evolution can occur by evolving existing
components, replacing them, or refactoring. The software licenses of the components both
facilitate and constrain the system’s ecosystem and its evolution, and the licenses’ rights and
obligations are crucial in producing an acceptable system. Consequently, software component
licenses and the architectural composition of a system help to better define the software
ecosystem niche in which a given system lies. Understanding and describing software ecosystem
niches for open architecture systems is a key contribution of this work. An example open
architecture software system that articulates different niches is employed to this end. We examine
how the architecture and software component licenses of a composed system at design time,
build time, and run time help determine the system’s software ecosystem niche and provide
insight and guidance for identifying and selecting potential evolutionary paths of system,
architecture, and niches.

Introduction

A substantial number of development organizations are adopting a strategy in which a
software-intensive system (one in which software plays a crucial role) is developed with an open
architecture (OA) [Ore00], whose components may be open source software (OSS) or proprietary
with open application programming interfaces (APIs). Such systems evolve not only through the
evolution of their individual components, but also through replacement of one component by
another, possibly from a different producer or under a different license (Figure 1). With this
approach, another organization often comes between software component producers and system
consumers in order to compose and configure the produced components into a configured
system. These organizations take on the role of system architect or integrator, either as
independent software vendors, government contractors, system integration consultants, or
in-house system integrators. In turn, such an integrator designs a system architecture that can be
composed of components largely produced elsewhere, interconnected through interfaces
accommodating use of dynamic links, intra- or inter-application scripts, communication protocols,
software buses, databases/repositories, plug-ins, libraries or software shims as necessary to
achieve the desired result.

An OA development process realizes or instantiates an ecosystem in which the integrator is
influenced from one direction by the goals, interfaces, license choices, and release cycles of the

! An earlier version of this chapter appears in Journal of Systems and Software, 85 (2012). 1479-1494.

83

software component producers, and from another direction by the needs of the system’s
consumers. As a result the software components are reused more widely, and the composed OA
systems can achieve reuse benefits such as reduced costs, increased reliability, and potentially
increased agility in evolving to meet changing needs. However, an emerging challenge is to
realize the benefits of this approach when the individual components are heterogeneously
licensed [ASA10, GeH09, ScA08], each potentially with a different license, rather than a single
OSS license as in uniformly licensed OSS projects or a single proprietary license as in proprietary
development.

Component replaced by
newer version

Current
system

Component replaced by
different component

.| Same component accessed
through different interface

Connector replaced by
different kind of connector

Topological configuration
changed

Component license replaced
by newer version

Component license replaced
by different one

Figure 1. Paths of evolution for an OA system (described later).

This challenge is inevitably entwined with the software ecosystems that arise for OA systems
(Figure 2). We find that an OA software ecosystem involves organizations and individuals
producing, composing, and consuming components that articulate software supply networks from
producers to consumers, but also:

. the composition and configuration of the OA of the system(s) in question,

. the open interfaces met by the components,

. the degree of coupling in the evolution of related components, and

. the rights and obligations resulting from the software licenses under which various

components are released, that propagate from producers to consumers.

These four items play a key role in defining the software ecosystem niche for a specific configured
system—the specific software supply network that interconnects particular software producers of

84

specific components, integrators, the software system architecture and its configured instantiation,
and its consumers—as the remainder of this paper will make clear.

Producer Producer
Component Component
or or
Application Application

C aw D[teas)

ARCHITECTURE

Pl

Independent
Software
Vendors

Component Component
or or
Application Application
R!ghts and nghts and
ﬂhllgﬂtlﬂl‘ls nhllg ati uns

Figure 2. Schema for OA software supply networks (notation follows Boucharas, et al.,

Integrators

System

Government
Contractors

Integration
Consultants

In-House

System
Integrators

Key

Producer of
Software

Intermediary
in Network

Unit of
Software

| Its license)

Consumer
arf
Saftware

[BJB09)).

In our previous work [AAS09a, AAS09b, ASA10, ScA08], we examined how software licenses
interact in significant ways through the software architecture of the system. Our approach,
implemented in an Eclipse-based software architecture environment, automatically evaluates
license conflicts in a software architecture and calculates the virtual license of rights and
obligations for a composed system that result when its constituent components are licensed
heterogeneously. With it architects directly examine the design decisions’ licensing consequences:
in the decision context, with enough information to identify definite license conflicts rather than
only potential license conflicts, and early enough in the development process to make the right
decision rather than correct a wrong one. This work contrasts with much practice and other
research in which a configured system is examined after the fact, and often with substantial
manual work by experts, to determine what licensing conflicts might exist in it. Here we build on
our previous work by extending its context from software architecture to software ecosystems. The
ecosystem context allows architects and integrators to examine potential evolution paths and the
consequences of each one, with the ability to steer that evolution by specific changes to the
system architecture and build- and run-time configuration.

The remainder of this paper is organized as follows. First, the next section motivates the work
through a sequence of examples. This is followed by comparison and review of related research.

85

The next section discusses open architecture, followd by a discussion of the ecosystems that arise
around open architecture systems. This gives rise to an examination of the evolution of software
ecosystems, and then discussions of some implications that follow from this study. A summary of
results then concludes the paper. Background on kinds of software licenses is presented in
Chapter 4.

Motivating examples
Firefox: monolithically licensed

A few years ago, it was typical for a software system to be subject to a single intellectual property
(IP) or copyright license covering the entire system, especially for proprietary software systems,
but even for OSS. An example is the globally popular Firefox web browser, whose OSS is subject
to the Mozilla Public License (MPL) version 1.1 [OSI11]. More recently, the Mozilla organization
has updated its licensing strategy so that new OSS it produces is “tri-licensed.” This allows a
licensee the choice to access, modify, and redistribute these systems under terms and conditions
specified in either MPL, the GNU Project’s General Public License (GPL), or the Lesser General
Public License (LGPL) [OSI11], while Firefox as a software product is under MPL. Users of
Firefox and developers utilizing Firefox as a single component of larger systems need not concern
themselves with whether the Mozilla organization has sufficient legal rights to all the Firefox code;
Mozilla has assumed that responsibility.

Unity: heterogeneously licensed, closed architecture

These days, a growing segment of software systems are subject to multiple licenses, some of
which may indicate potentially conflicting terms and conditions in different licenses, rather than to
a single monolithic license. For example, the Unity game development tool, produced by Unity
Technologies, is subject to multiple licenses [UnT08]. Its license agreement, from which we quote
below, comprises a proprietary license for the core Unity software and presumably for the entire
Unity system, plus at least 15 distinct licenses for at least 26 externally produced components,
groups of components, and libraries, at least one of which has been further extended by Unity:

The Mono Class Library, Novell, Inc., MIT license,

The Mono Runtime Libraries, Novell, Inc., LGPLv2 (updated),

Boo, Rodrigo B. Oliveira, BSD license variant,

UnityScript, Rodrigo B. Oliveira, BSD license variant,

PhysX physics library, Novell Inc., proprietary,

libvorbis, Xiph.org Foundation, BSD license variant,

libtheora, Xiph.org Foundation, BSD license,

. zlib general purpose compression library, Jean-loup Gailly and Mark Adler, inferred
zlib/libpng license,

9. libpng PNG reference library, three individuals and Group 42 Inc., inferred zlib/libpng
license,

10. jpeglib JPEG library, Thomas G. Lane, custom OSS license,

11. Twilight Prophecy SDK, Twilight 3D Finland Oy Ltd., inferred zlib/libpng license,

© N O ®WN=

86

12. dynamic bitset, Chuck Allison and Jeremy Siek, custom OSS license,

13. The Mono C# Compiler and Tools, Novell, Inc., GPLv2 updated,

14. libcurl, Daniel Stenberg, MIT license derivative,

15. PostgreSQL Database Management System, University of California and PostgreSQL
Development Group, BSD license derivative,

16. FreeType, The FreeType Project, FreeType License,

17. NVIDIA Cg compiler, NVIDIA Corp., GPLv2,

18. Scintilla and SclITE [source code editing), Neil Hodgson, Scintilla License,

19. 7-Zip Command [source code editing), Igor Pavlov, LGPLv2 [updated),

20. AES code [encryption/authentication), Brian Gladman, BSD license derivative,
21. Freelmage library, Freelmage project, Freelmage Public License,

22. Little CMS color management engine, Marti Maria Saguer, MIT license,

23. paintlib, Ulrich von Zadow and others, paintlib license,

24. Ericsson Texture Compression, Ericsson, proprietary license,

25. Particle Trimmer, Emil Persson, custom OSS license,
26. MonoDevelop IDE, MonoDevelop project and Unity, MIT license.

The overall software product license grants the right to install and use Unity but no rights to view
or modify its source code [except for those components that are open source) or its design
artifacts. Ordinarily the use of a properly licensed copy is unrestricted unless the software is
patented; it is not clear whether any of Unity is patented or not, but as is often the case for
proprietary licenses the Unity license states that unlicensed use is prohibited. Parts of the license
explicitly give the user responsibility for obtaining any licenses required for (presumably future)
patents that the software may infringe; trademarks are not mentioned except when reserving
rights to them. Furthermore, an external developer or integrator has no access to Unity’s
architecture, and so cannot tell whether/how the separate license obligations for the externally
produced components propagate to the obligations for Unity as a whole. However, the presence of
a component with a reciprocal license that can propagate obligations to other components (17:
NVIDIA Cg compiler, GPLv2) raises the necessity for Unity Technologies to have addressed these
obligations architecturally in order for an end user not to propagate them further if using Unity as a
component of a larger system.

The software ecosystem for Unity as a standalone software package is delimited by the diverse
set of software components listed above (Figure 3). However the architecture that integrates and
configures these components is closed: the architecture has not been made public, and much of
the system is proprietary so that even what could be inferred from the source code cannot be
determined. Thus consumers cannot determine the manner in which the different licenses
associated with these components impose obligations or provide rights to consumers, or on the
other components to which they are interconnected. Since there are several interpretations of
some important OSS license provisions, this may be significant; did Unity Technologies firewall
GPLv2’s propagating obligations with dynamic links (following one well-supported interpretation of
GPLv2) or more strongly with client-server connections (following another well-supported but more
cautious interpretation)? A development organization with their own legal interpretation of GPLv2
and considering using Unity as a critical element of a composed system may need to know.

87

Roderigo B. Xiph.Org
Oliviera Foundation g

Mono
MT_?:',:I&SS Runtime PhysX library Boo UnityScript libvorbis libtheora
ry Libraries

(MIT > C LGPLv2) (Proprietarv) CBSD variant) CBSD varianD (BSD variant) (BSD) -

ARCHITECTURE
(closed)

Unity 3D

Rights and
obligations

Figure 3. Ecosystem for Unity game development tool (partial).

As a consequence, there are several important questions that can’t be answered about this
ecosystem, but that an open architecture ecosystem annotated with software licenses and
connector types can and should answer.

. What is Unity’s virtual license, the set of rights available for the entire system and
obligations demanded in exchange for those rights [AAS09b]?
. What portions of Unity do the various listed licenses pertain to, especially licenses such as

the GNU General Public License that can propagate obligations along architectural connections to
other components?

. What components of Unity can be evolved to later versions or replaced by similar
components, in order to evolve the system toward more desirable functionality, desired software
qualities, or more advantageous ecosystem and system evolution possibilities?

. For each component, how much of that component is being used by Unity? In other words,
what interface is Unity using the component through? What other components support that
interface, and what shims are available or could be developed to bridge the gap between that
interface and the interfaces of other desirable components and versions?

. How and to what extent is Unity vulnerable to:
. potential litigation for license violations for copyright or copyleft infringements, or
. coercion due to dependence on specific development libraries and development or

configuration tools?

88

There are also questions that cannot be answered even for an OA ecosystem, due to the
differences between copyright law, under which an author gains specific exclusive rights for a
specific term of years by the act of creation, and patent law, under which other inventors may
unpredictably be granted new exclusive rights in the future over previously unencumbered parts of
others’ software systems, and also with trademark law, whose provisions are temporally dynamic
and less uniform internationally.

. How and to what extent is Unity vulnerable to threats of patent infringement suits, whether
for actual infringement, to force a settlement to avoid a lengthy, expensive, and risky court battle,
or to persuade a system/platform vendor to engage in a crosslicensing agreement along with
payment of license fees?

. How and to what extent is Unity vulnerable to co-opting of needed trademarks in some
jurisdiction?

Google Chrome: heterogeneously licensed, open interfaces

The Google Chrome web browser represents yet another software ecosystem whose boundaries
are defined in part through its use of externally licensed OSS components, that can be compared
to Firefox and Unity. The license for Google’s Chromium project [Chr11], from whose code base
the Google Chrome browser is primarily built, comprises the BSD license for the Chromium core
developed specifically for Google Chrome, plus 27 external components and libraries [some used
only for specific platforms) under 14 distinct licenses:

1. bsdiff, BSD Protection License,

2. bspatch, BSD Protection License,

3. bzip2, BSD License,

4, dtoa, BSD License

5. ffmpeg, LGPL

6. HarfBuzz, MIT License,

7. hunspell, MPL 1.1 or GPL 2.0 or LGPL,
8. ICU, ICU License

9. JSCRE, BSD License,

10. libevent, BSD License,

11. libjpeg, libjpeg License,

12. libpng, libpng License,

13. libxml, MIT License,

14. libxslt, MIT License,

15. LZMA SDK, Special Exception License,
16. modp b64, BSD License,

17. Mozilla interface to Java Plugin APIs, MPL 1.1 or GPL 2.0 or LGPL,
18. npapi, MPL 1.1 or GPL 2.0 or LGPL,
19. nspr, MPL 1.1 or GPL 2.0 or LGPL,

20. nss, MPL 1.1 or GPL 2.0 or LGPL,

21. Pthreads for win32, LGPL 2.1,

22. Skia, Apache License 2.0,

89

23. sqlite, Public domain dedication,

24. V8 assembler, BSD License,

25. WebKit, BSD or LGPL 2 or LGPL 2.1,
26. WTL, Microsoft Public License [Ms-PL),
27. zlib, zlib License.

Two of the libraries (libpng and zlib) are also used by Unity though possibly under different
licenses, and one component (LZMA) is part of a Unity component (7-Zip).

An examination of the component licenses shows that no Chromium component is subject to a
proprietary license (MS-PL, despite its name, is a permissive open source license) and every one
of the external Chromium components is available under a license that does not propagate license
obligations to other components. Every component that is licensed under GPL, which can
propagate obligations to other components depending on the connectors and architectural
configuration around them, is also available under a non-propagating license such as MPL. It is
evident that Google has chosen a policy of avoiding components licensed only under GPL and
similar reciprocal licenses, forgoing the much broader selection of GPL-licensed components
(approximately half of all open-source software is licensed under GPLv2) in exchange for not
needing to consider architectural interactions among components, or whether any subsequent
development or integration of Chromium can virally propagate GPLv2 obligations into other
systems or applications.

It appears that all the external components have open interfaces (i.e. public and standardized), so
that Chromium can evolve by replacing components with others implementing the same
interfaces, or shimmed to them, as long as the replacements are also under non-propagating OSS
licenses. However, Chromium’s overall architectural composition, its architectural design, is (to our
knowledge) not open and perhaps not even explicit.

IP License Considerations

Firefox, Unity, and Google Chrome have illustrated three related approaches to software licenses,
software architecture, and software ecosystems.

Firefox is a monolithically licensed OSS system: all its code is given to the project under
contributor license agreements [JeS11] that support releasing the entire project under a single
license. External components are kept at arm’s length, architecturally speaking, as plug-ins
subject to their own licenses, with no license interaction with Firefox itself.

Unity is a closed system with externally produced components, some with open interfaces and
OSS licenses and others with proprietary licenses. The external components retain their own
licenses which are incorporated into the overall license for Unity either by reference or by quoting
the license text. Unity Technologies has likely followed an internal, manual process for resolving
potential license conflicts among components, so that it can offer Unity to its consumers without
causing the suppliers of those components to object. Because Unity Technologies does not
release Unity overall as an OSS project, most of the sub-licensing provisions of the components’

90

licenses do not come into play, simplifying Unity Technologies’ manual analysis for license
conflicts at the expense of preventing licensees from modifying Unity to meet their own needs
more exactly. Some of the components are OSS, and for one of them (26: MonoDevelop IDE)
Unity Technologies’ modifications are open as well, but Unity users cannot modify components
themselves and rebuild a more capable version of Unity from them.

Google Chrome is an OSS system incorporating externally produced components. However, it is
not an OA system since it does not appear to have a formally specified open architecture that
explicitly composes components interlinked through connectors to derive or realize a buildable
system configuration. Instead, as in most OSS projects, its parent project Chromium relies on an
implicit architecture that cannot be completely identified and may only be assessed by reading the
source code and reviewing online artifacts and developer interaction records (e.g. postings to a
bulletin board, reviewing bug reports, checking comments in source compilation build scripts, or
developer chat channels).

Because its architecture is implicit, the overall system license for Chromium cannot be calculated
automatically [AAS09b, AAS11] but is instead compiled manually. The several years-old date of

2008 for the Chromium license, and the project’s discussion of the change from JSCRE to the V8
regular expression engine [Chr09], for which the license was not updated, support this inference.

In order to simplify the process for resolving potential license conflicts, the Chromium project
appears to have limited its external components to those available under non-propagating,
non-reciprocal OSS licenses. The Chromium source is publicly available for perusal and
modification, but not under a single monolithic license; each component is licensed under its own.
Users can modify and rebuild Chromium to suit their own needs, as long as they meet the
(separate) license obligations of all the components, and do not contravene Google trademark or
branding restrictions.

In summary, none of these widely used systems provide enough information to completely
evaluate potential evolution paths, or to automatically calculate overall IP rights and obligations.
But this information and IP stipulations are needed to fully articulate the software supply networks
that reveal which software ecosystem instances (or niches) each system exists within. In order to
explore the issues raised by open architecture software ecosystems, it is necessary to consider a
system about which the necessary information is available. We do not claim that only open
architecture systems are important or useful, but rather that only such systems can take full
advantage of the evolutionary and analytical opportunities OAs support. Because it is not possible,
in general, to infer a system’s software architecture after the fact, or to satisfactorily impose an OA
on a system developed without one, the system must be designed from the beginning with an
explicit architecture as a first-class development architecture. Consequently, we present an
example system that utilizes a simple, archectypal open architecture below, in a later section. This
system illustrates the issues that arise with more complex systems like Unity and Google Chrome,
as well as additional possibilities not available without an OA, and does so with greater brevity and
clarity.

91

Subsequently, we see that software ecosystems can be understood in part by examining
relationships between architectural composition of software components that are subject to
different licenses, and this necessitates access to the system’s architecture composition. By
examining the open architecture of a specific composed software system, it becomes possible to
explicitly identify the software ecosystem niche in which the system is embedded.

Related research

Software ecosystems

The study of software ecosystems is emerging as an exciting new area of systematic investigation
and conceptual development within software engineering. Understanding the many possible roles
that software ecosystems can play in shaping software engineering practice is gaining more
attention since the concept first appeared [MeS03]. Bosch [2009] builds a conceptual lineage from
software product line (SPL) concepts and practices [Bos00, CINO1] to software ecosystems. SPLs
focus on the centralized development of families of related systems from reusable components
hosted on a common platform with an intra-organizational base, with the resulting systems either
intended for in-house use or commercial deployments. Software ecosystems then are seen to
extend this practice to systems hosted on an inter-organizational base, which may resemble
development approaches conceived for virtual enterprises for software development [NoS99].
Producers of commercial software applications or packages thus need to adapt their development
strategy and business model to one focused on coordinating and guiding decentralized software
development of its products and enhancements (e.g. plug-in components, apps, mashups).

Relations among and within software ecosystems

Jansen et al. [JFN09a, JFN09bb] observe that software ecosystems (a) embed software supply
networks that span multiple organizations, and (b) are embedded within a network of intersecting
or overlapping software ecosystems that span the world of software engineering practice. Scacchi
[Sca07] for example, identifies that the world of OSS development is a loosely coupled collection
of software ecosystems different from those of commercial software producers, and its supply
networks are articulated within a network of FOSS development projects. Networks of OSS
ecosystems have also begun to appear around very large OSS projects for Web browsers, Web
servers, word processors, and others, as well as related application development environments
like NetBeans and Eclipse, and these networks have become part of global information
infrastructures [JeS05].

Boucharas et al. [BJB09] then draw attention to the need to more systematically and formally
model the contours of software supply networks, ecosystems, and networks of ecosystems. Such
a formal modeling base may then help in systematically reasoning about what kinds of
relationships or strategies may arise within a software ecosystem. For example, Kuehnel [Kue08]
examines how Microsoft’s software ecosystem developed around its operating systems (MS
Windows) and key applications ([e.g. MS Office) may be transforming from “predator” to “prey” in
its effort to control the expansion of its markets to accommodate OSS [as the extant prey) that
eschew closed source software with proprietary software licenses.

92

OSS ecosystems also exhibit strong relationships between the ongoing evolution of OSS systems
and their developer and user communities, such that the success of one co-depends on the
success of the other [Sca07]. Ven and Mannaert discuss the challenges independent software
vendors face in combining OSS and proprietary components, with emphasis on how OSS
components evolve and are maintained in this context [VeMO08].

Next, other previous work examined how best to align acquisition, system requirements,
architectures, and OSS components across different software license regimes to achieve the goal
of combining OSS with proprietary software that provide open APIs when developing a composite
“system of systems”. This is particularly an issue for the U.S. Federal Government in its
acquisition of complex software systems subject to Federal Acquisition Regulations (FARs) and
military servicespecific regulations. HLSs give rise to new functional and non-functional
requirements that further constrain what kinds of systems can be built and deployed, as well as
recognizing that acquisition policies can effectively exclude certain OA configurations, while
accommodating others, based on how different licensed components may be interconnected.

Last, the MITRE Corporation and others in the Defense community seek to embrace the
development of agile C2 systems [RBC12]. Such systems are envisioned to arise from the
assembly and integration of system elements (application components, widgets, content servers,
networking elements, etc.) within a software ecosystem of multiple producers, integrators, and
consumers who may supply or share the results of their efforts. The assembly and integration of
system elements produces “assembled capabilities” (AC) for C2 systems. AC may be produced,
acquired, integrated, shared, or reused by different trusted parties. AC may address a set of ISR
data/signal processing components, office productivity components supporting mission planning,
or the like. Our purpose is to identify how our approach to the design of secure OA systems can
be aligned with their vision for agile C2 systems. Along the way we focus on design of OA system
capability involving office productivity components that must be configured as a secure AC.

The design and development of agile C2 systems follows from two sets of principals: one set
addressing guidelines/tenets for multi-party engineering (MPE) of C2 system components; the
other set addressing attributes of agile and adaptive ecosystems (AAE) for producing AC or C2
system elements. For brevity, we simply identify these principals for MPE and AAE, as they are
more fully explained elsewhere [RBC12], but we do so in ways that foreshadow and more clearly
align with our approach that follows in a later section.

MPE Tenets:

1. Provide small system components that can be rapidly developed, and accommodate
different functionally equivalent variants, or functionally similar versions.

2. Certify components are consistent with “shared agreements” regarding security
requirements, system architecture, data semantics, production and integration processes or
process constraints, and other aspects of mission-specific or mission-common domain models.

3. Supply diverse C2 system components via a market of component producers or
integrators.
4. Assemble and integrate AC from components available in the market that are consistent

with relevant shared agreements.

93

5. Provide feedback from C2 system users to component producers or capability integrators
to improve market efficiency and effectiveness.

AAE Attributes:

1. Encourage and sustain a software ecosystem that is agile (supports assembly and
integration C2SC) from components in market, and adaptive (supports substitution of functionally
similar 4 component versions or functionally equivalent component variants), in line with user
feedback.

2. Component markets are federated so as to accommodate sharing, reuse, or trading of
components across different system integrators or consumer organizations.

3. Shared agreements serve as a basis for enabling multi-party collaboration in system
development, integration, and evolution/sustainability.

4, Production, integration, or post-deployment support for components or AC must be viable
for small businesses or large, as well as promoting market diversity and effectiveness.

5. Consumer/user organizations seek to manage portfolios of components or AC that

collectively improve mission effectiveness, agility and adaptiveness, while reducing costs.

Finally, to help understand what we mean by a software ecosystem, we refer to Figure 2 to
represent where different parties are located across a generic software ecosystem, and the supply
networks or multi-party relationships that emerge to enable the software producers to develop and
release products that are assembled and integrated by system integrators for delivery to
consumer/enduser organizations.

Software ecosystems and software product lines

Along with other colleagues [BBS10; BrB02, vPB10], Bosch also identifies alternative ways to
connect reusable software components through integration and tight coupling found in SPLs, or
via loose coupling using glue code, scripting or other late binding composition schemes in
ecosystems or other decentralized enterprises [NolS99, NoS01], as a key facet that can enable
software producers to build systems from diverse sources.

In producing a secure OA system in a software product line, there are several levels of variation
available for producing artificial diversity among equivalent instances and for selecting and
evolving in the face of threats.

At the highest level of granularity, a system developer or integrator can choose among alternative
producers of similar components, services, and platforms [SWZ12]: For example, we can find
functionally similar alternatives from software (component) producers of web browsers like Mozilla
(Firefox, Camino, Sea Monkey) vs. Google (Chrome) vs. Microsoft (Internet Explorer), vs. others.
Similarly, for word processors, we find alternatives including Microsoft (Word) vs. abisoft.com
(AbiWord) vs. Google (Google Docs, which is a remote Web service rather than a component), vs.
others. Likewise, for email and calendar applications, we find alternatives like Microsoft Outlook,
Gnome Evolution, Google Mail, and Google Calendar, among others. For operating systems, we
find Red Hat Enterprise Linux, Microsoft Windows, Apple OSX, and Google Android among
others. Finally, note that some producers produce more than one alternative of the same kind of

94

component or service, such as Mozilla’s web browsers (Firefox, Camino, SeaMonkey), so that a
choice among those particular components does not result in a change of producers.

Functionally similar components and services may not be exactly interchangeable, unless their
interfaces are similar or identical. As such, it may be necessary to modify, for example, OA system
topology, replace connector types, and other architectural measures may be necessary to change
from one producer to another, depending on the functionality needed to satisfy functional
requirements. However in general the overall functionality provided by the system remains
substantially the same, but now the diversity among alternative system instances is the greatest:
not only is the component, service, or platform distinct between two instances, but its architectural
connections in the system will be distinct as will be the software development process and
organization that produced it, so the chances of a common vulnerability are greatly minimized.
Subsequently, when functionally similar components, connectors, or configurations exist, such that
equivalent alternatives, versions, or variants may be substituted for one another, then we have a
strong relationship among these OA system elements that is called a product family [NaS87,
Bos06] or a product line [CNO1].

As described above, a shift from one alternative to another ordinarily requires a change in
architecture, software connectors, and other measures. Changes between some alternatives will
also produce a change of producers, while others will not. However, when components or
connectors provide alternative implementations of the functionality they provide, then these are
designated as versions. For example, most Linux operating systems support multiple file systems
for data storage, though developers or integrators select their preferred file system for inclusion at
either design-time or build-time. Similarly, for connectors to remote Web servers, developers or
integrators may specify unencrypted (e.g., HTTP) or encrypted (e.g., HTTPS) data communication
protocols for use in a Web-based enterprise system. Next, at the OA system configuration level,
selection of alternative components or connectors, or of different versions of components or
connectors result in different overall system versions that conform to a system product line.
Further, recent advances in source code compilation now allow for creation of functionally identical
variants of software components, though each variant has a different run-time image in the
computer, through code randomization techniques [Fra10, SJW11]. Last, software product lines
can be bound to a network of software producers, system integrators, and system
users/consumers through a software ecosystem [Bos09], such that secure systems can be
realized through composition or configuration at the software ecosystem level, as described in this
chapter. Consequently, we now have a complete and robust basis for specifying OA systems that
can include components, connectors, or application systems from alternative producers, or with
different versions or variants included. This is now our basis for moving forward to address to
address the challenges of creating secure OA systems through secured software product lines.

Building on related work

Our work in this area builds on these efforts in the following ways. First, we share the view of a
need for examining software ecosystems, but we start from software system architectures that can
be formally modeled and analyzed with automated tool support [Bos00, TMDOQ9]. Explicit modeling
of software architectures enables the ability to view and analyze them at design time, build time, or
deployment/run time. Software architectures also serve as a mechanism for coordinating

95

decentralized software development across multi-site projects [ORMO03]. Similarly, explicit models
allow for the specification of system architectures using either proprietary software components
with open APls, OSS components, or combinations thereof, thereby realizing OA systems
[ScA08]. We then find value in attributing open architecture components with their IP licenses
[AASOQ9Db], since software licenses are an expression of contractual/social obligations that software
consumers must fulfill in order to realize the rights to use the software in specified allowable
manners, as determined by the software’s producers.

Open architecture

OA is a software design customization technique introduced by Oreizy [Ore00] that enables third
parties to modify a software system through its exposed architecture, evolving the system by
replacing its components. The technique was introduced and desribed in Chapter 2.

Increasingly more software-intensive systems are developed using an OA strategy, not only with
OSS components but also proprietary components with open APlIs (e.g.[UnT08]). Using this
approach can lower development costs and increase reliability and function [ScA08]. Composing a
system with heterogeneously licensed components, however, increases the likelihood of conflicts,
liabilities, and no-rights stemming from incompatible licenses. Thus, in our work we define an OA
system as a software system consisting of explicitly interconnected components that are either
open source or proprietary with open APIs, whose overall system rights at a minimum allow its use
and redistribution, in full or in part.

It may appear that using a system architecture that incorporate OSS components and uses open
APIs will result in an OA system. But not all such architectures will produce an OA, since the
(possibly empty) set of available license rights for an OA system depends on: (a) how and why
OSS and open APlIs are located within the system architecture, (b) how OSS and open APlIs are
implemented, embedded, or interconnected, and (c) the degree to which the licenses of different
OSS components encumber all or part of a software system’s architecture into which they are
integrated [ALAO8, ScA08]. Thus, as noted earlier, neither Firefox, Unity, nor Google Chrome are
OA systems, even though all three are built with OSS components. But how can we specify and
design a system so that it does have an OA?

Each component selection implies acceptance of the license obligations and rights that the
producer seeks to transmits to the components consumers. However in an OA design
development, component interconnections may be used to intentionally (or unintentionally)
propagate these obligations onto other components whose licenses may conflict with them or fail
to match [AAS09b, GeHO09]; the system integrator can decide to insert software shims using
scripts, dynamic links to remote services, data communication protocols, or libraries to mitigate or
firewall the extent to which a component’s license obligations propagate. This style of build-time
composition can be used to accommodate a system’s consumers’ choice to select components
that either ensure or avoid certain licenses (for example Firefox’s policy of only accepting source
code that can be tri-licensed, or Google Chromium’s apparent policy of excluding components
governed by proprietary or strong-copyleft licenses, both of which were shown earlier), or that
isolate the license obligations of certain desirable components. It also allows system integrators

96

and consumers to follow a “best of breed” policy in the selection of system components. Finally, if
no license conflicts exist in the system, or if the integrator and system consumer are satisfied with
the component and license choices made, then the compositional bindings may simply be set in
the most efficient way available. This realizes a policy for accepting only components and licenses
whose obligations and rights are acceptable to the system consumers.

Understanding open architecture software ecosystems

A software ecosystem constitutes a software supply network that connects software producers to
integrators to consumers, through licensed components and composed systems. Figure 4
illustrates a software ecosystem for an OA example system discussed below. By analogy to
Hutchinson’s definition of a niche in a biological ecosystems as “an n-dimensional hypervolume ...
every point in which corresponds to a state of the environment which would permit the species ...
to exist indefinitely” [Hut57], we define software ecosystem niches below.

~

. Google Google Gnome
Firefox Opera AbiWord D Calondar Evolution Fedora

CMPLIGPLILGPL) C Opera EULA) C GPL) (Google TOS) (Google TGS) (GPL)(GPL) (MS Eula) L?c%?]lge
\ = -

Design-time
architecture:
Browser,
WP,
calendar

Windows osx

Instance Instance Instance Instance
architecture: architecture: architecture: architecture:
Firefox, Firefox, Firefox, Opera,
AbiWord, OR Google Cal., OR Google Cal., OR Google Docs, OR ...
Evolution, Google Docs, Google Docs, Evolution,
Fedora Fedora Windows 05X

GPL GPL,

: MPL, Google
Google ToS

Opera EULA,
ToS, MS EULA

Google ToS,
Apple License

Figure 4. Ecosystem for four possible instantiations of a single design architecture.

Software ecosystem niches
A software ecosystem niche articulates a specific software supply network that interconnects
particular software producers of specific components, integrators, and consumers. The niche

defined by a software system may lie within an existing single ecosystem, or it may span a
network of several software producer ecosystems.

Firstly, a composed software system architecture largely determines the system’s software
ecosystem niche, since the architecture identifies the components, their licenses and producers,

97

and thus the network of software ecosystems in which it participates. Such a niche also transmits
license-borne obligations and access and usage rights passed from the participating software
component producers, through integrators, on to system consumers. Thus, system architects or
component integrators help determine in which software ecosystem niche a given instance
architecture for the system participates.

Secondly, system integrators can update or modify system architectural choices not only at design
time, but also at build time, when components are joined together into an executable, or at
run-time, when bindings to remote executable services are instantiated, thus shifting the
instantiated system to a related but distinct niche.

As a software system evolves over time, as its components are updated or changed or their
architectural interconnections are refactored, it is desirable to determine whether and how the
system’s ecosystem niche may have changed and how it can be advantageously steered for the
future. Such a change implies at minimum that the software supply network may have been
reconfigured, and thus obligations and rights passed from producers and integrators to system
consumers may have also changed in some way. A system may evolve because its consumers
want to migrate to alternatives from different component producers, or choose components whose
licenses are now more desirable. Software system consumers may want to direct their system
integrators to compose the system’s architecture so as to move into or away from certain niches.
Thus, understanding how software ecosystem niches emerge is a useful concept that links
software engineering concerns for software architecture, system integration/composition, and
software evolution to organizational and supply network relationships between software
component producers, integrators and system consumers. It also helps articulate how the
obligations and rights provided by producers are propagated/constrained by integrators onto
system consumers as the system is developed and evolves.

An example system

To help explain how OA systems articulate software ecosystem niches, we provide a software
architecture example system for use in this paper. This OA system utilizes a simple architectural
design that composes a web browser, word processor, calendaring, and email applications, onto a
host platform operating system, possibly with remote services for some components, designed
and integrated by some organization and distributed to its consumers, some of whom may in turn
integrate it into a larger system The same issues arise as if it utilized a graphics library, encryption
module, typesetting engine, and thread management component instead, or with 400 components
rather than 4, but this architecture illustrates the issues more simply and has the advantage of
applying to many existing systems, including systems built by the authors.With these architectural
elements, we can create an design-time or reference architecture for a system that conforms to
the software supply network shown in Figure 4. This design-time architecture appears in Figure 5;
note that it only specifies components by type rather than by producer, meaning the choice of
producer component remains unbound at this point.

98

Web Browser e Word Processor) Email & Calendar |'
" User Interface] User Interface ! User Interface '

Figure 5. A design-time architecture.

Then in Figure 6, we create a build-time rendering of this architectural design by selecting specific
components from designated software producers. The gray boxes correspond to components and
connectors not visible in the run-time instantiation of the system in Figure 7.

[Firefox User][AbiWord User][Gnome Evolution]
Interface Interface

Figure 6. A build-time architecture.

Figures 7-9 display alternative run-time instantiations of the design-time architecture of Figure 5.
The architectural run-time instance in Figure 7 corresponds to the software ecosystem niche
shown in Figure 10; Figure 8 corresponds to the niche in Figure 11; and Figure 9 designates yet
another niche different from the previous two. The run-time instantiations are then distributed to
the consumers of the system.

99

[v wacer s i

W L St U Bon Apr 26, 350 P i

LJ '
Db [t Www bapiory Qeckmarks Jeois de Tgmei ok Tabl Colsborete Decumsnia
£ - - R e e s m—— T P i [B s -
S — w |~ Aaad H=sm EE i v T
] z '] 4 3 [3
A Composed Open Architecture Sofrware System at Rlln-T'Lrnf{
- -
- A RO X 3
i e
1
2
[
Fe b Yew Echom Jesch jseip
& .) L 3 N
v [y P - ey [G B - -
L LT — 2 samth | @
0w This Computar B
™ Comaits
BT b At - - - P cetmar -l
1 Fm | ko
Pragoasl reamw mestng
20’“
Jpm | EOp
Work 32 G pap drat fpauea ard
dl’""\
g pm
m
(™ &
ala inar
B coviars | |[5] coluncurn il
I Lswmunar
I LT e nsion -tiagl | (B Calendarr -Fsckinien T s 1]

Figure 7. An instantiation at run time (Firefox, AbiWord, Gnome Evolution, Fedora) of the
build-time architecture of Figure 6 that determines the ecosystem niche of Figure 10.

£ sovications Places System @ [

Ta
e Eat View Hgtory Booimaks ook Help
- v - @ 18] rttp orudetfer netproygametatportationtent php? | L

W Live System User wan Apr 26, 342PM &

B Edt Wew Hgtory Dockmarks Tools Help

i

& hitp:fidoce googe o T=cirBacs_2IcmsgEngy

Fie Foil View meen Fooma Table Took Hep

H.6 0 % Mgt ~lvaga slaop - B E U A e ek saEEa ¥
A Composed Open Areitecturs Selware Systom at Ris-Time
Google Calendar - Mozills Firefox
[l Eat yiew Hgtory footmaks Teos eip
- - @ | rttp iwww.googie.comicalendanrender w | [l v | cabendar J
Gmal Caleadar Documents ¥ oy wacacchiggmall.com EYE i | Sign oue
Google Swarch my calendars
Craate Event Manday, Apr 26, 2010
2]
Done
-]
Ble Edt Wiew Teminal Tebs e
[11veuser@localnost suinls pus
/sbin
[liveuserg@localbost shinls cd . fselinax
[tiveszerlocalhost selinusd
access cnecareqprot compat_net geny_unenown s user
. 2 t disable load
slesns coseit_pesding bools_ creste entorce nenter
[tivesser@localhost selousds

@ GCTL-Masion - Mozl || @ A Composed Open dr... [l Gangia Calendias bz

L

Figure 8. A second instantiation at run time (Firefox, Google Docs and Calendar, Fedora)
determining the ecosystem niche of Figure 11.

100

€9 Awplications Places System @ [0

(1]

Fle Edil Wiew Bookmarks Widgels Tools Halp

[GCTL-Mission

i¢| & > 219 # 8 htpinidefiernotprojgamsiab portalcontant php?ciD-=1

GAME CULTURE & TECHNOLOGY LAB

Fle Edit View Actions Search Help
. 7] =) B »
New Send / Receive Print Previous Today Next

[E] Calendars Honday 26 4r 2010 show: | Any Category
~ On This Computer
) L Monday 26 April

“ Contacts

Birthdays & Annivers

> El Il
GoTo Day Work Week
Search: |) summary Contans

Tasks

Gl

" EE)

/25 B8 Lve syatarn User Vo Ape 26, 4124 P¥

A Composed Open Architecture Softwar Google Docs - Opera

Edil View Bookmarks Widgels Joois Help

& AGomposed Open Ar.. x

€| € > 2 D # & nips:idocs google comDoe7docid-DAQT-HZ ICITZGZYODRKAZIOON @ |4/ 4] Googi

Gmall Calendar Documents Feader Web more v wscacchi@gmail.com | Settings ¥ | Sign out

Google docs A composed Open Architecture Software.

Fle Edi View Insert Format Table Tools Help

B~ Nomal -

oo~

~ipt -[B] 7 U A- & Uk

A Composed Open Archilecture Software Syslem al Run-Time

@ [@ 100% 7]

Summary

[Click to add a task ’

7| [IEirropesaivevien

Jem| | Li00pm
Review proposal
2pm
< ‘april 2010 > L
von Tue Wed Thu Fi_sat sun| I LAl IS
TS Work on 55 paper draft
s 67 8 50 ul gpm
1213 14 15 16 17 18
19920 21 22 23 24 25
BE 2 28 2 3 5em
6B
Simai
7 it
& contacts] catendars.

53 (O GCTL - Mission - Opera

Memos
[Summary

[cick to add a memo

access checkregprot compst net deny unknon initisl contexts als policyvers user
class context aisavie N rejact unknoun
pooleans conmit_pending bols create enforce menber policy_capabilities relabel
[Uiveuser@locathost sbinls

=

[E] Calendars - Evolution

10 Ac

P
P
F
¥
F
P
;
;
F
L
pppo;

s i
[Liveuser@localhost

sbinls 15 ../selinux

OCOes

Figure 9. A third instantiation at run-time (Opera, Google Docs, Gnome Evolution, Fedora)
determining yet another niche conforming to the software supply network of Figure 4.

MPL|GPL|LGPL

Opera EULA

Design-time

architecture:
Browser,
WP,

calendar

Instance
architecture:
Firefox,
AbiWord,
Evolution,
Fedora

OR

GPL

OR

Gnome
Evolution

(GPL)(GPL) M5

Fedora

OR OR ...

Figure 10. The ecosystem niche for one instance architecture.

101

S : Google Google S nor
Firefox pe Af D Calondar i Fedora

MPL|GPL|LGPL (Google TOS) (Google TGS) Pl GPL
Design-time
architecture:
Browser, /
WP,
calendar i /
\\%
Instance Instance
architecture:
Firefox,
Google Cal.,
Google Docs,
Fedora
GPL,

Google ToS

Figure 11. The ecosystem niche for a second instance architecture.

This system’s ecosystem is complex in important ways:

. Alternatives exist for each component that bring into play diverse possibilities for licenses,
evolution paths, system capabilities, requirements, and ecosystems, such as MS Word
(proprietary), AbiWord (OSS), or Google Docs (remote service) for the word processor.

. Some component choices co-evolve with coordination among suppliers [such as Mozilla
and Gnome components) while others do not.
. The system in its current open architecture is independent of any one supplier. Such

ecosystems are more revealing and offer more evolution paths for study (and use) than a system
in an ecosystem dominated by a single vendor such as Microsoft, Oracle, or SAP.
Single-vendor-dominated ecosystems may be larger, but are less diverse and thus less interesting
and offer fewer choices with significant ecosystem impact.

. The system is independent of any one platform; for example, it could be evolved by
component replacement to run on a mobile device, moving it into a much different niche.

The system can be instantiated with components all governed by the same license (as in Figure
10), resulting in a monolithically licensed system like Firefox; and it can be instantiated with
diversely licensed components (as in Figure 11), resulting in a heterogeneously licensed system
like Unity and Google Chrome. Unlike those three, however, it also is an OA system and so its
virtual license can be calculated and its software ecosystem niche can be directly studied and
evolved toward a more desirable one. Because it is OA, it offers more choices of components and
configurations, and thus more possible niches, along with more ways to move among and take

102

advantage of them; all that Firefox, Unity, and Google Chrome offer as expository examples, plus
more.

The insights provided by the example system allow one, we believe, to anticipate or even predict
the kinds of issues that will arise when new platforms emerge.

The four primary components collectively represent more than a million lines of code. Each
component, and its subcomponents recursively down to the smallest, is a composition of other
more primitive components that may be independently developed or developed as part of this
system, and may be added to the ecosystem relationships in order to consider its effect on supply
chains and evolution. An individual component such as Firefox constitutes a micro-platform itself
on which Ajax, Rich Internet Applications, or other scripted functionality (e.g. invoking an
embedded link to a YouTube Video player) can run internally, constituting an embedded
ecosystem. Equivalent components from different OSS or proprietary software producers can be
identified, where each alternative is subject to a different type of software license. For example, for
Web browsers, we consider the Firefox browser from the Mozilla Foundation, which comes with a
choice of OSS license (MPL, GPL, or LGPL), and the Opera browser from Opera Software, which
comes with a proprietary software end-user license agreement (EULA). Similarly, for word
processor, we consider the OSS AbiWord application (GPL) and Web-based Google Docs service
(proprietary Terms of Service).

The OA we describe covers a number of systems we have identified, built, and deployed in a
university research laboratory, and as far as can be externally determined also many distinct
systems integrated by organizations and distributed internally or to a customer base. We have
also developed OA systems with more complex architectures that incorporate components for
content management systems (Drupal), wikis (MediaWiki), blogs (B2evolution), teleconferencing
and media servers (Flash media server, Red5 media server), chat (BlaB! Lite), Web spiders and
search engines (Nutch, Lucene, Sphider), relational database management systems (MySQL),
and others. Furthermore, the OSS application stacks and infrastructure (platform) stacks found at
BitNami.org/stacks (accessed 29 April 2010) could also be incorporated in OA systems, as could
their proprietary counterparts. Even these more complex OAs still reflect the core architectural
concepts and constructs, software ecosystem relationships, challenges, and solutions that we
present more accessibly in our example system.

The software ecosystem niches for the example system, or indeed any system, depend on which
component implementations are used and the architecture in which they are combined and
instantiated, as does the overall rights and obligations for the instantiated system. In addition, we
build on previous work on heterogeneously licensed systems [ASA10, GeH09, ScA08] by
examining how OA development affects and is affected by software ecosystems, and the role of
component licenses in shaping OA software ecosystem niches.

Consequently, we focus our attention to understand the ecosystem niche of an open architecture
software system:

103

. It must rest on a license structure of rights and obligations, focusing on obligations that are
enactable and testable [AAS09b, ASA10].2

. It must take account of the distinctions between the design-time, build-time, and
distribution-time architectures and the rights and obligations that come into play for each of them.
. It must distinguish the architectural constructs significant for software licenses, and
embody their effects on rights and obligations.

. It must define the system’s license architecture, the abstraction of its software architecture
annotated with licenses, connector types, etc. that determines the system’s virtual license (overall
rights and obligations) and from which the virtual license can be calculated [AAS09b, AAS11].

. It must account for alternative ways in which software systems, components, and licenses
can evolve.
. It must provide an automated environment for creating and managing license

architectures. We have developed a prototype that manages the license architecture as a view of
the system architecture [AAS09b, AAS11].

Architecture, license, and ecosystem evolution

An OA system can evolve by a number of distinct mechanisms, some of which are common to all
systems but others of which are a result of heterogeneous component licenses in a single system.
For the application of these mechanisms to systems rather than ecosystems, see our previous
work [AAS09a, AAS09b, AAS011, ASA10, ScA08]. By component evolution— One or more
components can evolve, altering the overall system’s characteristics (for example, upgrading and
replacing the Firefox Web browser from version 35 to 36). Such minor versions changes generally
have no effect on system architecture.

By component replacement— One or more components may be replaced by others with
modestly different functionality but similar interface, or with a different interface and the addition of
shim code to make it match (for example, replacing the AbiWord word processor with either Open
Office Writer or MS Word). However, changes in the format or structure of component APIs may
necessitate build-time and run-time updates to component connectors. Figure 12 shows some
possible alternative system compositions that result from replacing components by others of the
same type but with a different license.

2 For example, many OSS licenses include an obligation to make a component’s modified code public, and whether a
specific version of the code is public at a specified Web address is both enactable (it can be put into practice) and
testable. In contrast, the General Public License (GPL) v.3 provision “No covered work shall be deemed part of an
effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright
treaty” is not enactable in any obvious way, nor is it testable—how can one verify what others deem?

104

Instance
architecture:

Opera,
AbiWord,
Evolution,
Fedora
/ Opera EULA,
Instance GPL, GPL, GPL Instance
architecture: architecture:
Firefox, > 4 Opera,
AbiWord, / \ Google Docs,
Evolution, ———>| Google Cal.,
Fedora \ Instance |e— Instance / Fedora
GPL, GPL, arch_itecture: arch_itecture: Opera EULA,
GPL, GPL Firefox, -—> Firefox, Google ToS,
Google Cal., Google Cal., Google ToS,
Google Docs, Google Docs, GPL
Fedora Windows

LGPL, MPL,
Google ToS, Google ToS,

Google ToS, Google ToS,
GPL MS EULA

Figure 12. Possible evolutionary paths among a few instance architectures; some paths are
impractical due to the changes in license obligations

By architecture evolution— The OA can evolve by changing connectors between components
rearranging connectors in a different configuration, or changing the interface through which a
connector accesses a component, altering the system characteristics. Revising or refactoring the
configuration in which a component is connected can change how its license affects the rights and
obligations for the overall system. An example is the replacement of word processing, calendaring,
email components, and connectors to them with Web-browser-based services such as Google
Docs, Google Calendar, and Google Mail. The replacement would eliminate the legacy
components and relocate the desired application functionality to operate remotely from within
theWeb browser component, resulting in what might be considered a simpler and
easier-to-maintain system architecture, but one that is less open and now subject to a proprietary
Terms of Service license. System consumer preferences for kinds of licenses and the
consequences of subsequent participation in a different ecosystem niche may thus mediate
whether such an alternative system architecture is desirable or not.

By component license evolution— The license under which a component is available may
change, as for example when the license for the Mozilla core components was changed from the
Mozilla Public License (MPL) to the current Mozilla Disjunctive Tri-License; or the component may
be made available under a new version of the same license, as for example when the GNU
General Public License (GPL) version 3 was released. The three architectures in Figure 12 that
incorporate the Firefox Web browser show how its tri-license creates new evolutionary paths by
offering different licensing options. These options and paths were not available previously with
earlier versions of this component offered under only one or two license alternatives.

105

In response to different desired rights or acceptable obligations— The OA system’s
integrator or consumers may desire additional license rights (for example the right to sublicense in
addition to the right to distribute), or no longer desire specific rights; or the set of license
obligations they find acceptable may change. In either case the OA system evolves, whether by
changing components, evolving the architecture, or other means, to provide the desired rights
within the scope of the acceptable obligations. For example, they may no longer be willing or able
to provide the source code for components within the reciprocality scope of a GPL-licensed
module. Figure 13 shows an array of choices among types of licenses for different types of
components that appear in the OA example system. Each choice determines the obligations that
component producers can demand of their consumers in exchange for the access/usage rights
they offer.

Browser wiore Calend_ar, Platform
processor email
T Opera WordPerfect Windows
P y (Opera EULA) ||| (Corel License) (MS EULA)
Strongly) AbiWord Gnome Evolution Fedora
Reciprocal Firefox (GPL) (GPL) (GPL)
(MPL or
LGPL or
W_eakly GPL OpenOffice FreeBSD
Reciprocal) '
onilcadenle (LGPL) (BSD variant)
Samiice Google Docs Google Calendar
i i (Google ToS) # (Google ToS) |

Figure 13. Some architecture choices and their license categories.

The interdependence of producers, integrators, and consumers results in a co-evolution of
software systems and social networks within an OA ecosystem [Sca07]. Closely coupled
components from different producers must evolve in parallel in order for each to provide its
services, as evolution in one will typically require a matching evolution in the other. Producers may
manage their evolution with a loose coordination among releases, as for example is done between
the Gnome and Mozilla organizations. Each release of a producer component creates a tension
through the ecosystem relationships with consumers and their releases of OA systems using
those components, as integrators accommodate the choices of available, supported components
with their own goals and needs. As discussed in our previous work [AAS09b], license rights and
obligations are manifested at each component interface then mediated through the OA of the
system to entail the rights and corresponding obligations for the system as a whole. As a result,
integrators must frequently re-evaluate the OA system rights and obligations. In contrast to
homogeneously licensed systems, license change across versions is a characteristic of OA
ecosystems, and architects of OA systems require tool support for managing the ongoing licensing
changes

106

Discussion

At least two topics merit discussion following from our approach to understanding of software
ecosystems and ecosystem niches for OA systems: first, how might our results shed light on
software systems whose architectures articulate a software product line; and second, what
insights might we gain based on the results presented here on possible software license
architectures for mobile computing ecosystems. Each is addressed in turn.

Software product lines (SPLs), as introduced in Chapter 2, rely on the development and use of
explicit software architectures [Bos00, CINO1]. However, the architecture of an SPL or software
ecosystem does not necessarily require an OA—there is no need for it to be open. Thus, we are
interested in discussing what happens when SPLs may conform to an OA, and to an OA that may
be subject to heterogeneously licensed SPL components. Three considerations come to mind:

. If the SPL is subject to a single homogeneous software license, which may often be the
case when a single vendor or government contractor has developed the SPL, then the license
may act to reinforce a vendor lock-in situation with its customers. One of the motivating factors for
OA is the desire to avoid such lock-in, whether or not the SPL components have open or
standards-compliant APIs. However, a single license simplifies determination of the software
ecosystem in which these system is located.

. If an OA system employs a reference architecture, then such a reference or design-time
architecture effectively defines an SPL consisting of possible different system instantiations
composed from similar components from different producers (e.g. different but equivalent Web
browsers, word processors, calendaring and email applications). This can be seen in the
design-time architecture depicted in Figure 5, the build-time architecture in Figure 6, and the
instantiated run-time architectures in Figures 7-9.

. If the SPL is based on an OA that integrates software components from multiple producers
or OSS components that are subject to different heterogeneous licenses, then we have the
situation analogous to what we have presented in this paper, but now in the form of virtual SPLs
from a virtual software production enterprise [NoS99] that spans multiple independent OSS
projects and software production enterprises; virtual in the sense that both the enterprise and the
SPL are emergent phenomena rather than intended and embodied by existing organizations and
business plans. SPL concepts are thus compatible with OA systems that are composed from
heterogeneously licensed components, and do not impact the formation or evolution of the
software ecosystem niches where such systems may reside.

Our approach for using open software system architectures and component licenses as a lens that
focuses attention to certain kinds of relationships within and across software supply networks,
software ecosystems, and networks of software ecosystems has yet to be applied to systems on
mobile computing platforms. Bosch [Bos09] notes this is a neglected area of study, but one that
may offer interesting opportunities for research and software product development. Thus, what
happens when we consider Apple iPhone/iPad OS, Google Android OS phones, Nokia Symbian
OS phones, Microsoft Windows 7 OS phones, Intel MeeGo/Tizen OS netbooks, or Nintendo DS
portable game consoles as possible platforms for OA system design and deployment?

107

First, all of these devices are just personal computers with operating systems, albeit in small,
mobile, and wireless form factors. They represent a mix of mostly proprietary operating system
platforms, though some employ Linux-based or other OSS alternative operating systems.

Second, Mobile OS platforms owners (Apple, Nokia, Google, Microsoft) are all acting to control the
software ecosystems for consumers of their devices through establishment of logically centralized
(but possibly physically decentralized) application distribution repositories or online stores, where
the mobile device must invoke a networked link to the repository to acquire (for fee or for free) and
install apps. Apple has had the greatest success in this strategy and dominates the global mobile
application market and mobile computing software ecosystems. But overall, OA systems are not
necessarily excluded from these markets or consumers.

Third, given our design-time architecture of the example system shown in Figure 5, is it possible to
identify a build-time version that could produce a run-time version that could be deployed on most
or all of these mobile devices? One such build-time architecture would compose an Opera Web
browser, with Web services for word processing, calendaring and email, that could be hosted on
either proprietary or OSS mobile operating systems. This alternative arises since Opera Software
has produced run-time versions of its proprietary Web browser for these mobile operating
systems, for accessing the Web via a wireless/cellular phone network connection. Similarly, in
Figure 12 the instance architecture on the right could evolve to operate on a mobile platform like
an Androidbased mobile device or Symbian-based cell phone. So it appears that mobile
computing devices do not pose any unusual challenges for our approach in terms of
understanding their software ecosystems or the ecosystem niches for OA systems that could be
hosted on such devices.

Conclusion

The role of software ecosystems in the development and evolution of heterogeneously licensed
open architecture systems has received insufficient consideration. Such systems are composed of
components potentially under two or more licenses, open source software or proprietary or both,
in an architecture in which evolution can occur by evolving existing components, replacing them,
or refactoring. The software licenses of the components both facilitate and constrain in which
ecosystems a composed system may lie. In addition, the obligations and rights carried by the
licenses are transmitted from the software component producers to system consumers through
the architectural choices made by system integrators. Thus software component licenses help
determine the contours of the software supply network and software ecosystem niche that emerge
for a given implementation of a composed system architecture. Accordingly, we described
examples for systems whose host software platform span the range of personal computer
operating systems, Web services, and mobile computing devices.

Consequently, software component licenses and the architectural composition of a system
determine the software ecosystem niche in which a system resides. Understanding and describing
software ecosystem niches is a key contribution of this work. An example system of an open
architecture software system that articulates different software supply networks as ecosystem

108

niches was employed to this end. We examined how the architecture and software component
licenses of a composed system at design time, build time, and run time helps determine the
system’s software ecosystem niche, and provides insight for identifying potential evolutionary
paths of software system, architecture, and niches. Similarly, we detailed the ways in which a
composed system can evolve over time, and how a software system’s evolution can change or
shift the software ecosystem niche in which the system resides and thus producer—consumers
relationships. Then we described how virtual software product lines can exist through the
association between open architectures, software component licenses, and software ecosystems.

Finally, in previous work [AAS09b, AAS09c, ASA10] we identified structures for modeling software
licenses and the license architecture of a system, and automated support for calculating its rights
and obligations. Such capabilities are needed in order to manage and track an OA system’s
evolution in the context of its ecosystem niche. We have outlined an approach for achieving these
structures and support and sketched how they further the goal of reusing and exchanging
alternative software components and software architectural compositions. More work remains to
be done, but we believe this approach transforms a vexing problem of stating in detail how study
of software ecosystems can be tied to core issues in software engineering like software
architecture, product lines, component-based reuse, license management, and evolution, into a
manageable one for which workable solutions can be obtained.

References

[AASQ9a] Alspaugh, T.A., Asuncion, H.U., Scacchi, W., (2009a. Analyzing software licenses in
open architecture software systems. In: 2nd International Workshop on Emerging Trends in
FLOSS Research and Development (FLOSS), pp. 1-4.

[AASQ9b] Alspaugh, T.A., Asuncion, H.U., Scacchi, W., (2009b. Intellectual property rights
requirements for heterogeneously-licensed systems. In: 17th IEEE International Requirements
Engineering Conference (RE’'09), pp. 24-33.

[AASQ9c] Alspaugh, T.A., Asuncion, H.U., Scacchi, W., (2009c. The role of software licenses in
open architecture ecosystems. In: First International Workshop on Software Ecosystems
(IWSECO-2009), pp. 4-18.

[AAS11] Alspaugh, T.A., Asuncion, H.U., Scacchi, W., (2011. Presenting software license con-
flicts through argumentation. In: 23rd International Conference on Software Engineering and
Knowledge Engineering (SEKE 2011), pp. 509-514.

[ASA10] Alspaugh, T.A., Scacchi, W., Asuncion, H.U., (2010. Software licenses in context: the
challenge of heterogeneously-licensed systems. Journal of the Association for Information

Systems 11 (11), 730-755.

[BCKO3] Bass, L., Clements, P., Kazman, R., (2003. Software Architecture in Practice.
AddisonWesley Longman.

109

[Bos00] Bosch, J., (2000. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley.

[Bos09] Bosch, J., (2009. From software product lines to software ecosystems. In: 13th
International Software Product Line Conference (SPLC’09), pp. 111-119.

[BBS10] Bosch, J., Bosch-Sijtsema, P., (2010. From integration to composition: on the impact of
software product lines, global development and ecosystems. Journal of Systems and Software 83
(1), 67-76.

[BJBO9] Boucharas, V., Jansen, S., Brinkkemper, S., (2009. Formalizing software ecosystem
modeling. In: First International Workshop on Open Component Ecosystems (IWOCE’09), pp.
41-50.

[BrB02] Brown, A.W., Booch, G., (2002. Reusing open-source software and practices: the impact
of open-source on commercial vendors. In: 7th. Intern Conf. Software Reuse: Methods,
Techniques, and Tools (ICSR-7), pp. 381-428.

[Chr09] Chromium issues, (2009. Issue 10638: remove JSCRE from about:credits.
https://code.google.com/p/chromium/issues/detail?id=10638 .

[Chr11] Chromium, (2011. Chromium terms and conditions. http://code.google.com/
chromium/terms.html

[CINO1] Clements, P., Northrop, L., (2001. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional.

[Fel07] Feldt, K., (2007. Programming Firefox: Building Rich Internet Applications with XUL.
O’Reilly Media, Inc.

[Fra10] Franz, M. (2010). E unibus pluram: Massive-Scale Software Diversity as a Defense
Mechanism, New Security Paradigms Workshop (NSPW’10), Sept. 21-23, Concord,
Massachusetts, USA.

[GeH09] German, D.M., Hassan, A.E., (2009. License integration patterns: dealing with licenses
mismatches in component-based development. In: 28th International Conference on Software
Engineering (ICSE '09), pp. 188—198.

[Hut57] Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harbor Symposia on
Quantitative Biology 22 (2), 415-427.

[JBF09a] Jansen, S., Brinkkemper, S., Finkelstein, A., (2009a. Business network management as

a survival strategy: a tale of two software ecosystems. In: First Workshop on Software
Ecosystems, pp. 34—48.

110

https://code.google.com/p/chromium/issues/detail?id=10638

[JFNO9b] Jansen, S., Finkelstein, A., Brinkkemper, S., (2009b. A sense of community: a research
agenda for software ecosystems. In: 28th International Conference on Software Engineering
(ICSE ’09), Companion Volume, pp. 187—190.

[JeS05] Jensen, C., Scacchi, W., (2005. Process modeling across the web information
infrastructure. Software Process: Improvement and Practice 10 (3), 255-272.

[JeS11] Jensen, C., Scacchi, W., (2011. License update and migration processes in open source
software projects. In: Hissam, S., Russo, B., de Mendonc, a Neto, M., Kon, F. (Eds.), Open
Source Systems: Grounding Research. IFIP Advances in Information and Communication
Technology, pp. 177-195.

[Kue08] Kuehnel, A.-K., (2008. Microsoft, open source and the software ecosystem: of predators
and prey — the leopard can change its spots. Information & Communucation Technology Law 17
(2), 107-124.

[KWD99] Kuhl, F., Weatherly, R., Dahmann, J., 1999. Creating Computer Simulation Systems: An
Introduction to the High Level Architecture. Prentice Hall.

[MeSO03] Messerschmitt, D.G., Szyperski, C., (2003. Software Ecosystem: Understanding an
Indispensable Technology and Industry. MIT Press.

[MeOO01] Meyers, B.C., Oberndorf, P., (2001. Managing Software Acquisition: Open Systems and
COTS Products. Addison-Wesley Professional.

[NaS87] Narayanaswamy, K. and Scacchi, W. (1987) Maintaining Configurations of Evolving
Software Systems, IEEE Trans. Software Engineering, 13(4), 323-334.

[NeCO06] Nelson, L., Churchill, E.F., (2006. Repurposing: techniques for reuse and integration of
interactive systems. In: International Conference on Information Reuse and Integration (IRI-08),
490-495.

[NoS99] Noll, J., Scacchi, W., 1999. Supporting software development in virtual enterprises.
Journal of Digital Information 1 (4).

[NoS01] Noll, J., Scacchi, W., (2001. Specifying process-oriented hypertext for organizational
computing. Journal of Network and Computing Applications 24 (1), 39-61.

[OSI11] Open Source Initiative, (2011. Open Source Definition.
http://www.opensource.org/docs/osd .

[Ore00] Oreizy, P., (2000. Open Architecture Software: A Flexible Approach to Decentralized
Software Evolution. PhD Thesis, University of California, Irvine.

[ORMO03] Ovaska, P., Rossi, M., Marttiin, P., (2003. Architecture as a coordination tool in multisite

111

http://www.opensource.org/docs/osd

software development. Software Process: Improvement and Practice 8 (4), 233-247.

[RBC12] Reed, H., Benito, P., Collens, J., and Stein, F. (2012). Supporting Agile C2 with an Agile
and Adaptive IT Ecosystem, Proc. 17th Intern. Command and Control Research and Technology
Symposium (ICCRTS), Paper-044, Fairfax, VA, June 2012.

[Ros05] Rosen, L., (2005. Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall.

[Sca07] Scacchi, W., (2007. Free/open source software development: recent research results and
emerging opportunities. In: 6th Joint European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2007), pp.
459-468.

[ScA08] Scacchi, W., Alspaugh, T.A., (2008. Emerging issues in the acquisition of open source
software within the U.S. Department of Defense. In: 5th Annual Acquisition Research Symposium,
pp. 230-214.

[SJW11] Salamat, B., Jackson, T., Wagner, G., Wimmer, C., Franz, M. (2011). Run-Time Defense
against Code Injection Attacks using Replicated Execution, IEEE Transactions on Dependable
and Secure Computing, Volume 8, No. 4, July 2011.

[SWZ12] Sun, K., Wang,J., Zhang, F. and Stavrou, A. (2012). SecureSwitch: BIOS-Assisted
Isolation and Switch between Trusted and Untrusted Commodity OSes. Proc. 19th. Annual
Network and Distributed System Security Symposium.

[TMDO09] Taylor, R.N., Medvidovic, N., Dashofy, E.M., (2009. Software Architecture: Foundations,
Theory, and Practice. Wiley.

[UnTO08] Unity Technologies, December (2008. End User License Agreement.
http://unity3d.com/unity/unity-end-user-license-2.x.html .

[vPB10] van Gurp, J., Prehofer, C., Bosch, J., (2010. Comparing practices for reuse in integration
oriented software product lines and large open source software projects. Software — Practice &
Experience 40 (4), 285-312.

[VeMO08] Ven, K., Mannaert, H., (2008. Challenges and strategies in the use of open source

software by independent software vendors. Information and Software Technology 50 (9-10),
991-1002.

112

http://unity3d.com/unity/unity-end-user-license-2.x.html

Chapter 7.

Processes in Securing Open Architecture Software
Systems

113

Chapter 7.

Processes in Securing Open Architecture Software
Systems:

ABSTRACT

Our goal is to identify and understand issues that arise in the development and evolution processes
for securing open architecture (OA) software systems. OA software systems are those developed with
a mix of closed source and open source software components that are configured via an explicit
system architectural specification. Such a specification may serve as a reference model or product line
model for a family of concurrently sustained OA system versions/variants. We employ a case study
focusing on an OA software system whose security must be continually sustained throughout its
ongoing development and evolution. We limit our focus to software processes surrounding the
architectural design, continuous integration, release deployment, and evolution found in the OA
system case study. We also focus on the role automated tools, software development support
mechanisms, and development practices play in facilitating or constraining these processes through
the case study. Our purpose is to identify issues that impinge on modeling (specification) and
integration of these processes, and how automated tools mediate these processes, as emerging
research problems areas for the software process research community. Finally, our study is informed
by related research found in the prescriptive versus descriptive practice of these processes and tool
usage in studies of conventional and open source software development projects.

OVERVIEW

Our goal is to identify and understand issues that arise in the development and evolution processes
for securing open architecture (OA) software systems. OA software systems are those developed with
a mix of closed source software (CSS) components with open APIs, and open source software (OSS)
components, that are configured via an explicit system architectural specification. Such a specification
may serve as a reference model or product line model for a family of concurrently sustained OA
system versions/variants. We seek to research, develop, and refine new software process concepts,
techniques, and tools for continuously assuring the security of large-scale OA software systems
composed from software components that include proprietary CSS and non-proprietary/free OSS. In
the U.S., Federal government acquisition policy, as well as many leading enterprise IT centers, now
encourage the use of CSS and OSS in the development, deployment, and evolution of complex,
software-intensive OA systems.

In this paper, we employ a case study focusing on an OA software system whose security must be
sustained throughout its ongoing development and evolution. We limit our focus to software processes
surrounding the architectural design, continuous integration, release deployment, and evolution found
in the OA system case study. To be clear, these processes focus on activities that construct and
update configurations of software components, and are not the processes for developing the

'An earlier version of this chapter appears in the International Conf. On Software and Systems Processes (ICSSP'13), San
Francisco, CA, May 2013.

114

components themselves. The components involved in such OA systems have their own development
life cycle, often within development projects that are independent or at arm’s length from the effort to
develop and evolve an OA system composed from such components.

In our case study, we examine a simple OA enterprise computing system that configures a Web
browser (Firefox, Opera, etc.), word processor (AbiWord, Google Docs, etc.), email and calendar
component (Gnome Evolution, Gmail, etc.), and operating system (RedHat Linux, RedHat Fedora with
SELinux, Microsoft Windows, Apple OSX, SEAndroid, etc.) in conjunction with file, mail, and Web
servers (which may be on distributed network servers), in a loosely coupled manner. However, even
this simple OA system that we study draws on an ecosystem of diverse software component
providers, whose software products can be configured into alternative, functionally similar system
configurations that conform to an OA software product family, as indicated in Figure 1. Such a OA
system is also a core of more complex, mission-critical command and control systems [Giz11,
SBN12]. Additionally, such a system can also be built and deployed for use on a mobile computing
platform like a tablet or smartphone. Finally, our OA system can be encapsulated within security
capability and enforcement mechanisms (e.g., SELinux capabilities, virtual machine hypervisors) in
order to secure the OA system [DIS12, Sma12, USC11, Xen13].

~ ~

Googla Google || Gnome
Docs ||Calendar||Evolution

MPL|GPL| Opera GPL Google Google GPL GPL MS Eula Apple
(LGPL) ELLA Tos To5 ()(}(')

License

Firefox Opera || AbilWord Fedora || Windows asx

Design-time
architecture:
Browser,
WP,
calendar
Instance Instance Instance Instance
architecture: architecture: architecture: architecture:
Firefox, Firefox, Firefox, Opera,
AbiWord, - Google Cal., o Google Cal., e Google Docs, P
Evolution, Google Docs, Google Docs, Evolution,
Fedora Fedora Windows 0SX

GPL,
Google Ta5

MPL, Google
Tos, M5
ELILA

GPL

Opera EULA.,
Google ToS,
Apple Lic.

Figure 1: A software ecosystem of software components that can be configured into a product line
indicating four functionally similar OA systems.

115

We also use the case study to focus on the role automated tools, software development support
mechanisms, and development practices play in facilitating or constraining OA software processes.
Our purpose is to identify issues impinging on modeling (specifying) and integrating these processes,
and explore how automated tools mediate these processes, as emerging research problems areas for
the software process research community. We also discuss how such issues affect practical
simulation and analysis of these processes.

In the remaining sections of this paper, we first examine related research found in the prescriptive
versus descriptive practice of software processes for architectural design, continuous integration,
release deployment, and evolution. Next is our case study, describing an OA enterprise computing
system that must remain continually secure as it evolves; we use this to help identify issues arising in
the specification and integration of the four software processes when the goal of the overall process
effort is to continually secure an OA system. We present examples throughout this case study. We
then investigate the software process modeling and process integration issues that were observed in
this study, as well as how they further constrain efforts to simulate or computationally analyze such
processes, and conclude the paper.

RELATED RESEARCH AND DEVELOPMENT EFFORTS

We choose to focus on the processes from architectural design, continuous integration, and release
deployment to software evolution for OA systems. Such systems incorporate both CSS and OSS
components. In particular, our interest is to examine how these processes enable or constrain how to
produce a secure OA system. In particular, we recognized that processes for software architecture
design and software evolution [MFP06] have received prior attention in the software process
community, but continuous integration and release deployment have received much less attention.
Similarly, relatively little is known about how design processes enable and constrain continuous
integration and delivery, nor how they in turn facilitate or constrain software evolution. Such an
undertaking needs to go beyond prior efforts to specify and identify issues that may arise in processes
for the development of component-based software systems [CCL06, QuHO8]. Earlier process studies
like these do not address, for example, how new development technologies such as continuous
integration systems mediate development processes for component-based systems. They also do not
identify continuous integration, or software release delivery and installation, as salient development
processes for component-based software systems. This may be so as continuous integration and
release management are relatively new software development processes, and such processes seem
to be visibly practiced in large OSS development projects. Finally, these earlier studies offer little
insight as to how functional or non-functional requirements for securing an OA system mediate its
software development and evolution processes. But we do know some things about these processes
from related efforts, especially for continuous integration.

Continuous integration (Cl) systems support automated processes for building, testing, and packaging
a software system for release [DMGO07, Fow00, Wik12]. Without a Cl system, developers must build,
test, and integrate their software (component) products using hand-crafted scripts, and it is common
for such scripts to have to rely on idiosyncratic dependencies on tool chains and libraries versions for
each deployment platform targeted (e.g., [Hyp13]). In contrast, Cl systems incorporate the capabilities
of software build systems [Smi11] that may invoke sequential, distributed, or parallel builds across

116

multiple build servers (cf. [TCI12]) to produce singular builds (e.g., “nightly builds”), continuously
updated agile development builds [Fow00], or diverse, functionally equivalent executable variants
[JSH11]. The build systems access and update software code (version control) repositories via
process automation scripts. Cl sub-processes take as input directories/folders of source code files and
produce software component executables. The executables may also be organized as a structured
collection (an information architecture) of binary files, static data value and parameter setting files
packaged in interlinked directories, constituting releases for deployment. Continuous delivery (CD)
further extends CI to support automated release management and the creation of automated
deployment tools such as “installation wizards” to be used by system administrators or end-users
[HuF10]. For the remainder of our paper, we use the abbreviations Cl and CD to refer to these sets of
automatable software development processes.

As Fowler [Fow00] observed about the need for continuous integration as an enabling mechanism for
agile development, “the key is to automate absolutely everything and run the process so often that
integration errors are found quickly. As a result everyone is more prepared to change things when
they need to, because they know that if they do cause an integration error, it's easy to find and fix”
(emphasis added). Cl processes can therefore be viewed with the assumption that errors resulting
from process automation are normal, expected, and not necessarily easily anticipated. But why do
these errors occur at all, and why do we need to run the process often in order to identify and resolve
integration problems? We need to make closer, systematic observations to determine why or how
these errors occur, so that we can advance our process engineering knowledge, as well as to enable
practical process improvement. A case study can serve as a starting point for this, and this is our
strategy.

Automated CI systems comprise composed environments of software tools, or sets of loosely coupled
tools together by automated process invocation scripts that guide and constrain their use. Often these
tools are independently developed and evolved. For example, a Cl system like Hudson [Hud11]
includes source code build tools like Ant or Maven, an issue tracking (or bug reporting) tool like
Bugzilla [JeS05] or Jira, and a software revision control browser and search engine like FishEye or
ViewVC for viewing the contents of software revision control code repositories like CVS or Subversion.
All of these tools happen to be OSS associated with active OSS development projects, so these tools
are subject to ongoing development and evolution that improve their capabilities and add/remove
functionality. Other Cl systems may use different tools or locally developed capabilities in place of
external OSS tools such as these. Consequently, this implies the process steps enacted by a Cl
system will vary (and evolve) depending on the choice of Cl system, and on the external tools or
locally embedded software functionality that particular Cl system uses. Whether such CI process steps
are equivalent, similar, or incongruent across Cl systems thus remains an open issue. But it is an
issue that must be resolved when transitioning from one Cl system, or Cl system version, to another.
However, current Cl systems do not appear to address this, nor do they identify it as a concern in their
recommended best practices (cf. [Hud11, TCI12]). Similarly, when we add the need to address the Cl
and CD of secure OA systems, we quickly finds gaps in the best practices that point to shortfalls either
on the CI/CD process support side, the security capability side [USC11], or their interdependencies.

Automated CI systems are continuously being improved or supplanted [Jen13, Kri11] and different CI
systems offer different features, functional capabilities, and depend on different software tools [TCI12].

117

The same can be said for CD/release deployment systems, especially with regard to ongoing
advances and refinement of software packagers, file distribution and mirror (copy server)
synchronization, installers, and uninstallers [HuF10]. So from a software process specification or
modeling viewpoint, there are many distinct Cl process instance types, and no single abstract CI or
release deployment process prescription to follow and tailor to local development organization needs.
Cl and CD process enactment must therefore rely on manual best practices in addition to tool-based
automation, and these practices are specific to each Cl system and the tools therein [Hud11]. Cl and
release management system-based process automation thus is both ad hoc and idiosyncratic, rather
than easily standardized or generalized, yet is a widespread software engineering process and
practice used to produce thousands of software components (e.g., smartphone or tablet apps).

Software delivery and deployment suffer similar kinds of process automation pathologies (e.g.,
[IBMO7]), to the extent that a key advantage of automation is now thought to be finding or process
enactment errors, mistakes, or other articulation problems [MiS91] by running the enactment more
quickly. Software deployment errors, such as releasing and installing a premature system release
candidate into production operations can have devastating technical or economic consequences, as
was demonstrated by the experience of Knight Capital in Summer 2012 [Dig12]. How to provide
automated tools and practical techniques that provide (more) robust acceptance/compliance checking
prior to a new system version being installed prior to going live in operation, seems to be an
underspecified process enactment problem. Adding robust diversity mechanisms and capabilities for
dramatically improving OA system security [GST2, JSH11, ScA13] remains an open question for
further study. Once again, a case study can serve as a starting point for examining such issues and
concerns, and this is our strategy. We see that part of the process challenge is how to understand and
specify software processes that must interface with emerging Cl and CD systems. These Cl systems
entail different kinds with different build, package, and release deployment process automation
capabilities, or that produce integrated systems that operate on different platforms [TCI12]. To us, this
raises concerns for process specification— determining what aspects of a software process are
pertinent for modeling and simulation, as well as contributory to improving process effectiveness
[RKA11], and process integration— integrating modeled process specifications with diverse
automated process enactment mechanisms [MiS92]. It also raises issues for integration across
multiple process representations that are supported by independently developed, heterogeneous
process enactment mechanisms [GPS94].

CASE STUDY: A SECURE OA ENTERPRISE SYSTEM

We utilize a case study to explore and identify software process issues that arise while producing a
secure enterprise computing software system. Such a system is produced using existing software
applications as components, composing and configuring them to realize the overall system. The
processes we examine are not those that develop such software applications, but rather those that
use them as components of the system. However, this choice still highlights how the ongoing,
independent development and evolution of the components motivates new versions/variants of the
overall OA system. In this regard, software component evolution is a driving force that impinges on the
development and evolution of OA systems incorporating such components.

118

Another aspect of our study is to recognize some software processes, like architectural design and
software evolution, as having limited automated enactment, while others such as continuous
integration and release management are potentially fully automated. This is not to say that no tools
are involved in design or evolution, far from it. Rather, what is of interest is that software production
and system integration organizations employ a flow of software processes that employ both fully and
partially automated enactment. Assuming a world where all software processes are fully automated
may be another challenge, but it is not one that is of practical use or consequence at this time. Our
study thus addresses software process challenges that are both reflective of understanding of
emerging software process research issues, and also may have practical application today and
beyond. As such, we turn to our case study to elaborate the software processes of interest, and to the
issues they raise for software process research.

Architectural Design Process

The process for designing the configuration of an OA system at the component level is our focus here.
We start by noting that we assume no pre-existing process model or standard for such a process, nor
do we propose to provide such a prescriptive process. As a review of the architectures of dozens of
OSS systems [BrW12] makes clear, there is no common prescriptive process, preferred set of tools,
nor is there notational scheme for the architectural design of open software systems. Instead, we
describe aspects of a design process we developed, practiced, and adapted that is supported in part
with automated design tools. One of our goals with this process was to help identify situations, and
practical nonfunctional requirements, that arise with an OA design process that constrains, and is
constrained by, the other three downstream software processes in our study.

We have used an OA tailored version of the UCI ArchStudio4 architecture design system (0AS4) as a
locally developed plug-in to the Eclipse IDE to realize a partially automated system for architectural
design activities [AAS12, AAS13]. 0AS4 allows us to visually model the architectural configuration of
software components, component interfaces, and component connectors as OA system elements.
0AS4 also produces output in an architectural description language (ADL) as a persistent artifact for
external analysis, or for potential integration with Cl systems with further processing (e.g., binding
component classes to their build-time instances). We further focus our architectural design activities to
produce an abstract system architecture that serves to denote a product line model of a family of
alternative system configurations composed from functionally similar components or component
versions [ScA12]. 0AS4 can thus support our experimental studies in OA system design and design
evolution across families of alternative system configurations (cf. an earlier approach to such problems
at [NaS97]).

We annotate our OA system designs within 0AS4 using formal constraint expressions on components
interfaces, such as intellectual property (IP) license obligations and rights [AAS12, AAS13]. Security
policy constraints for components, configured sub-systems, or an overall system are expressed and
analyzed in a similar manner [ScA13]. The ability to model and automatically analyze such obligations
and rights is needed at build-time and release deployment-time. Automated analysis mechanisms then
allow us to determine whether the specified component interconnections entail matches or conflicts in
component-component license alignments [AAS12, AAS13]. However, we have also observed that
design-time actions must accommodate build-time and deployment-time element bindings, as well as
accommodate the evolution of licenses, policies, and system element versions [ScA12]. For example,

119

when con- flicts are found between the licenses of interconnected build-time component selections,
we can then reconfigure our OA system design to eliminate the conflicts, to constrain the selection of
components at build-time (within CI) to those whose licenses will match or not conflict, or to wrap/shim
a component with an abstraction layer that does not transfer IP license obligations.

Design of OA systems also raises issues for how to how best to secure the designed system
architecture [USC11]. Among the recommended practices for designing secure system architectures
are to provide capability-based user/developer access control that effectively limits access to input and
output data, internal program code representations (e.g., memory address and system name spaces),
persistent data storage, and to exposed I/O transaction processing interfaces. One increasingly
common approach is to provide encapsulation mechanisms like virtual machines for software
components or (sub-)system configurations, along with encrypted inter-component data/control flow
connectors (e.g., HTTPS/SSL data communication protocols). Of these, passively secure connectors
for networked components are widely available, while dynamically secured connectors are a recent
advance [GST12]. In our case, we choose to incorporate virtual machines to encapsulate our OA
system, and we ignore alternative security protection schemes for simplicity. However, we recognized
that even a seemingly simple decision like this still requires analyzing trade-offs about whether to
encapsulate the entire system as a single virtual machine (relatively easy to address during
deployment, though requiring deployment and installation of virtual machine software (e.g., [Xen13])
on the target deployment computers) or to encapsulate each different component within its own virtual
machine that would then be interconnected using secure connectors (more challenging to address for
deployment, but offering a more resilient OA system security [ScA13]. We decided to design
something in-between these two extremes, by taking into account where different components might
be hosted within a networked, multi-server platform environment. What our OA system design process
produced is an abstract architectural configuration of component types (each attributed with IP license
constraints—not shown but described elsewhere [AAS12, AAS13, ScA13]), a minimal component
interconnection scheme, and what we call a hybrid virtual machine confinement scheme, as shown in
Figure 2.

120

[rr'- = = =

["Web Browser User] [Word Processor User] [Email & Calendar]

’ ________|ﬂt‘?¥5_‘_‘§?__________ ___________In_tgg}facg__________ ___User Ir}tegf_e_n_:_g_____j
{ Connector 1} {_Connector 2 | _Connector 3

" Web Browser ' || { Word Processor k\' Email & Calendar |

e e SR | A— S]

i Intra- Appl cation Scnpnng

(e =

Inter- Appu’rcatmn Scnptngg "t

Nemrr:l.rk Pmmco.f

. Operating System !

Figure 2: Design configuration of a secure OA enterprise system, shown with a security encapsulation
layout. Other encapsulation schemes are possible.

Given that we have so far only examined the architectural design process, we note that we are already
beginning to see that we need to anticipate non-functional requirements for the other downstream
software processes that follow, particularly in the form of process enactment directives or constraints.
We also begin to anticipate whether such information can be automatically propagated into the
process automation tools used in these downstream processes.

Continuous Integration Process

In our study, one of the first activities in moving from architectural design to continuous integration is to
identify specific software component versions that can be instantiated within the current architectural
configuration (Figure 2). While at first it might seem that this is a simple task, we have found that
component and version selection are subject to the obligations and rights stipulated with a
component’s associated IP license [AAS12]. For example, common architectural design languages do
not specify annotations for IP licenses, so as noted above, we extended our ADL within the 0AS4 with
IP obligation and right constraints [AAS12, AAS13]. This meant we could now analyze whether or how
IP obligations and rights for each component-component interconnection match, conflict, or propagate.
For example, reciprocal licenses like GPL can propagate their IP regime by design, though some
enterprises seek to avoid this. By conceptually filling in selected component licenses, we can tell, prior
to integration, whether the resulting release candidate may suffer from licensing problems or not.
When conflicts or mis-matches are discovered, again prior to further build-time process actions,
alternative components with the similar functional capabilities and interfaces but different licenses may
be substituted. Alternatively, the architectural configuration can be modified, for example, wrapping a
component in a way that mitigates license conflicts (e.g., replacing a direct API-API interconnection
which propagates license restrictions with an networked data communications link, as few licenses
propagate IP across network connections).

121

What we end up with from our build sub-process is a concrete OA system configuration with a specific
selection of software components specified using 0AS4, whose output is intended for a manual build
system or for entry into an automated Cl system. A concrete configuration is seen in Figure 3. So our
build sub-process can now instantiate components into a reusable OA software product line design, as
we can determine families of component version instances that can be substituted within the OA
system. For example, the Firefox Web browser may be replaced by Google Chrome in this
configuration, because both are under permissive OSS licenses. However, a license match/conflict
assessment would be required before replacing Firefox with Microsoft Internet Explorer (IE) or Opera,
each of which is under a proprietary license. But in the abstract and concrete architectural con-
figuration we have, we could substitute a Linux-based Opera browser without issue, but not IE, unless
we add a library wrapper such as Wine [Win13], in order to run IE on Fedora Linux.

:[“Firefox User] AbiWord User] [Gnome Evolution]
=~________[!_1_ter!ace_____________________Irjljergta_a_c_t_a _____J || ___UserIinterface)
- XWindows] - XWindows] '___%f_i'l_f_?{?fiﬂ_@é_ J
i:'.}'e'f;,x""""‘i ' AbiWord | ='E;'riume Evolution |
e e e T B | RS - e 0 Vi mommenme pErees wnel

w___ JavaScript scnpts i E— L
----------------------- ::F'/, e __i'__________________Jr____?'\.
___._.Cshellscripts ______r%
[" " P
Umx Qgsrerr] an’fs Unix E‘fysa‘ea_?] _E_?_all'.fs '*l—/

Apache HTTPD J (Fedora/SE Linux | [

Figure 3: An integration and test build-time configuration of a secure OA enterprise computing
system, following the design in Figure 2.

So far, so good. But now we must consider how to transfer this component selection specification into
the build system arises. An ideal solution might involve an automated hand-off. However, the specifics
of such a hand-off will vary depending on the build system and the Cl system we select. A more
general solution would likely require (or benefit from) another abstraction layer for integration between
the architectural design and build/CI process enactment mechanisms, which is an already recognized
problem with a demonstrable solution (cf. [GPS94]). We see that software process research may
demonstrate solutions to messy process integration issues, but integration of process flows across
toolspecific process enactment representations and automated mechanisms remains a lingering,
practical problem that is not yet addressed by current Cl or CD systems.

A similar problem arises when we consider how to secure the concrete OA system configuration. For
example, we can choose to include secure data communication connectors (e.g. secure protocols like

122

HTTPS and TLS/SSL) in our configuration, but such capabilities are not instantiated at build-time.
Instead, they depend on mechanisms and data (e.g., certificates) that are accessed at run-time once
an integrated system release candidate is available. An OA system, or OA system components, can
also be secured using virtual machine hypervisors [Xen13] that confine and isolate deployed
system/component within a virtual machine run-time environment. In addition, it should be possible to
specify operating system access control and type enforcement capabilities (e.g., using SELinux
libraries on Fedora), but again, these are not available for use until there is a deployable integrated
system release candidate. Thus, these forms of security are most likely invisible to current Cl systems,
and must be addressed through other means.

Release Deployment Process

The software system you release and deploy depends on what (and how) you build and package for
release and installation. For example, in our enterprise system, we want our software integration
process to produce a run-time version of our designed software configuration for our target platform
(e.g., local personal computer). Figure 4 displays a run-time instantiation in operation, based on the
build-time configuration in Figure 3, hosted on a Fedora Linux operating system that utilizes the
SELinux library to set access control and run-time capabilities for files and programs.

£ Appiications Places System @ (¢ [Live System User Mon Apr 26, 3-50 BM i}
" .
@ z #|SS-Figured-draft.abw

Fle Edit View History Bookmarks Iools Help Hle Edt View Insert Format Jools Table Collaborate Documents Help

« -2 # | nttosmideffer net/projfgamelabiportalicontent php?e | ~ | [Glv & B8 as B | & 1s0%

GAME CULTURE & TECHNOLOGY LAB

LaP
B

Hle Edit View Actions Search Help

€. @ & « F » A .
New Send / Receive Print Previous Today Next GoTo
[£] Calendars Monaay26Aar2010 show: | Any Category 5 Search: | @& summary
b On THIE Comp utar . Monday 26 Agril Tasks
[& Personal ™ 7 summary
~ Contacts Cicktoaddatask || . =
Birthdays & Annivers ~ | O |eview ras Page: 1/1 INS |default en-US
1 m | &100pm 3
Praposal review meeting
Fle Edit View Terminal Tabs Help
2°pm | s e
< April 2010 > dmra atic 0 =
. Memos
Mon Tue Wed Thu Fri_Sat Sun —
1 3 4| 3pm F00pm summary
Work on Js5 paper draft [Cick to add a memo
5 6 7 8 9 1011
12 13 14 15 16 17 18 4prm : nit
19 20 21 22 23 24 25 a2 inttetl
BT 27 % 29 30 5Pm tnttlog
‘ [1iveuser@locathost sbinl§ pwd
/st
6Pm [liveuser@localhost sbins cd ../selinux
[mail [liveuser@localhost selinux]s Ls
acce checkregprot compat net deny unknown initial contexts mls policyver:
7=
disable load w1 reject_unknown
nforce member pilities

context
ng_bools_ create
qm settnuxls [|

= liveuser@localhost-jse . | @ GCTL - Mission - Mogzill [calendars - Evolution £x %55 Figured.draft.abw =gEI" .

Doontacts | | [5] calendars

enforce

Figure 4: A screenshot view of a deployed release configuration of our OA enterprise computing
system.

However, what we build and what we release may not be the same, though they need to be
functionally equivalent. For example, when we select one or more CSS components (an already
compiled and integrated executable binary image) with a common restrictive IP license (i.e, one that
prohibits copying or redistribution) for inclusion in our build-time architectural configuration, during the

123

build process, we must link it as an executable binary for inclusion in a release candidate for
deployment (or deployment testing) (cf. [JeS05]) on a local computer. Such inclusion is a prerequisite
for overall integrated system testing processes required by Cl. Nonetheless, we cannot distribute such
a release candidate to others, as it is common for CSS to not allow duplication or distribution of
licensed copies of software binaries. Instead, we need to specify and configure a deployment-platform
specific automated software installation mechanism (e.g., installation wizard) that needs to search for
and find a local licensed copy of the CSS executable binary, and link it to the result of the build
sub-process that provides a run-time linkage mechanism in expectation. A similar effort is needed to
enable user acceptance testing or certification testing on their local platform. These release
deployment process steps can be accomplished with some effort, but this effort could also be
anticipated at design-time or build-time, when developers make their selection for which component
instances to include in the system build.

Automated software installation is an increasingly common expectation. Software installers run
automated process enactment scripts crafted by developers. Once again, the process being enacted
is not explicitly specified, nor is it separate from the internally coded software utility’s action invocation
scripts. This means that it is not surprising to discover errors that arise during installation but are not
easily anticipated without extensive prior experience in working with the installer on known target
platforms. For example, an informal aid from IBM for guiding system administrators who enact
software installation processes [IBM07] notes installation problems like: (a) insufficient free space on
disk storage prior to or during software executable installation; (b) software installations across a
network that are “hung” or stuck due to lack of robust installation protocols that can time-out (abort)
and/or re-initiate then re-validate process script commands already invoked; (c) installations that fail
due to underspecified all/nothing installation transactions (cf. [Gra81]) that do not completely update
the information architecture of a multi-part software configuration (e.g., program registry update and
reversible roll-back to prior registry; and/or setup of user configuration files); (d) failure to include a
software uninstaller (or uninstallation process scripts) that allows conditional roll-back to previously
installed software versions to be retrieved and activated; or (e) file/directory name collisions that arise
at build-time versus deployment-time.

Our observation is that if there is a sufficiently detailed, informing process specification or model for
how best to install a software release, it is well hidden. We all rely on the correct operation and
outcome on software installation processes on our networked personal computers and wireless mobile
devices, but such processes often are problematic or fail. This situation is not inevitable, but it is
widespread. There is a missed opportunity to improve the quality of release deployment process
outcomes by some means other than the costly software installation trial and error learning
experiences that afflict software release deployment personnel and system administrators. We should
be able to do much better than this. The provision of explicit software installation process models that
can guide the targeting of different deployment platforms in specific organizations or for remote users
begs for research and development attention.

Evolution Process

An OA system can evolve by a number of distinct mechanisms or process enactment pathways, some
of which are common to all systems, but others of which arise only in OA systems or where

124

components in a single system are heterogeneously licensed [AAS13]. Figure 5 provides a summary
of some of the various paths, further explained below.

: Component replaced by
newer version

Current
system

Component replaced by
different component

.| Same component accessed
through different interface

Connector replaced by
different kind of connector

Topological configuration
changed

Component license replaced

by newer version
ol Evolved
(Gompcnent license replaced)/ system

by different one

Figure 5: A variety of paths and activities accounting for the evolution of OA systems [ScA12].

Component version evolution— One or more components can evolve, altering the overall system’s
characteristics. An example is upgrading the Firefox Web browser from version 17.0 to 17.1. Such
minor versions changes generally have no effect on system architecture. However, many large
enterprises choose to sustain their software systems by relying on “long-term support” (LTS) versions
of software components, rather than automatically updating to each release from software component
producers. Instead, LTS components are replaced with new versions only over long time frames,
where the new LTS version for installation may skip many intervening release versions. Such
enterprises rely on local patches and workarounds between the LTS versions, under the belief that
such an approach provides increased system stability and allows more comprehensive regression
testing prior to deployment. But in these days of relentless attacks on system security, using LTS
components entails locally sustaining system component or configuration versions with known
vulnerabilities, often without code repositories that match those employed for Cl. The vulnerabilities
must then be defended using separate, orthogonal system security mechanisms, such as virtual
machines or hypervisors from VMWare or Xen, or operating system containers like OpenVZ [Xen13].
Once again, we can do better than this through the use of explicit process specifications that model
and provide process integration support across Cl and CD systems, along with code repositories.

125

Component replacement— One or more components may be replaced, each by one or more others
with similar functionality and similar interfaces. An example is replacing the AbiWord word processor
with either OpenOffice Writer or MS Word, each of which provides roughly the same behavior as a
word processor. Other alternative may entail a component with a different user interface plus shim
code to make it match its predecessor component, but in different ways. For example, if we replace
the AbiWord word processor component, with the Google Docs service, the new word processor’s
component is now external to the OA system, and in fact could be viewed as now existing within the
Web browser component. What these examples reveal is that changes in the format or structure of a
component’s interconnections, or its APIs, necessitate updates to the build-time and release
deployment-time configuration of the component connectors.

Architectural configuration evolution— The OA can evolve by changing the kinds of connectors
between components, rearranging connectors in a different configuration, or changing the interface
through which a connector accesses a component, altering the system characteristics. Revising or
refactoring the configuration in which a component is connected can change how its license affects
the rights and obligations for the overall system. An example is the replacement of components for
word processing, calendaring, and email with Web-browser-based services such as Google Docs,
Google Calendar, and Google Mail. The replacement would eliminate the legacy components and
relocate the desired application functionality; it would operate remotely, but interact from within the
local Web browser component. The resulting system architecture might be considered simpler and
easier to maintain, but is also less open and now subject to a proprietary Terms of Service license.
Ongoing evolution and support of this subsystem is now beyond the control and responsibility of the
local system developers. System consumer preferences for one kind of license over another, and the
consequences of subsequent participation in a different OA system evolution regime, may thus
determine whether such an alternative system architecture is desirable or not. Figures 6 and 7 show
examples of such evolutions in architectural configuration at release deployment time. These figures
can be compared to the system deployment in Figure 4, but now where the build-time architecture
now reconfigures the word processor, email and calendaring into the single Web browser component,
thus refactoring the build-time and release deployment-time system configurations, while remaining
within the design-time product family indicated in Figures 2 and 6.

126

Firefox Opera AbiWord Google Google Gnome

Docs Calendar Evolution Fedora Windows 05X

MPL|GPL|LGPL Opera EULA GPL Google ToS ’ Google ToS GPL MS Eula Apple
License
Design-time
architecture:
Browser,
WP, \\ / //
calendar /
\\\%
Instance Instance Instance Instance
architecture: architecture: architecture: architecture:
Firefox, Firefox, Firefox, Opera,
AbiWord, OR Google Cal., OR Google Cal., OR Google Docs, OR...
Evolution, Google Docs, Google Docs, Evolution,
Fedora Fedora Windows 0SX

GPL GPL,

Google ToS

MPL, Google Opera EULA,
foS, MS EULA Google ToS,

Apple License

Figure 6: An alternative OA system configuration resulting from replacement of selected components
shown in Figure 4 during system evolution [ScA12].

Component license evolution—The license under which a component is available may change, as for
example when the Mozilla core components changed from dual licensing to the tri-license (MPL, GPL,
LGPL). Similarly, when Oracle Corporation took ownership of the Hudson CI system [Kri11], the
changes in intellectual property ownership and branding precipitated a major code fork, and instigated
parallel independent projects for sustaining development of this OSS CI system [Hud11, Jen13]. Such
evolutionary changes, which are common to OSS components, may require reconfiguring an OA

system to migrate to a new (re-licensed) component version, or to an alternative system configuration
[ScA12].

In response to different desired rights or acceptable obligations— The OA system’s integrator or
consumers may desire additional license rights (for example the right to sublicense in addition to the
right to distribute), or no longer desire specific rights; or the set of license obligations they find
acceptable may change. In either case the OA system evolves in response, whether by changing
components, evolving the architecture, or other means, to provide the desired rights within the scope
of the acceptable obligations.

Rapid dynamic system reconfiguration— More advanced evolution scenarios entail support for

building and releasing of multi-variant system deployment configurations that substitute functionally
equivalent software component compilations that produce multiple, diverse executable binary images,

127

each of which may execute in its own processor core, in a multi-threaded, multi-core processor

[JSH11]. Pursuing this new path requires a new compilation and build system regime, that in turn
anticipates a new generation of Cl and CD systems as future research subjects. As should be clear,

our purpose is not to provide a prescriptive model of the OA system evolution process, but instead to
illuminate how different OA system evolution paths and activities point to issues in process
specification, process integration, and the integration of different process enactment representations
and mechanisms that must span/link manual-to-automated process hand-offs.

£ Appiications Places system @ ()

] @

fle Edit View History Hookmarks Iools Help

G v o 4 |8 nttp/mideffernet/projgamelab/portal/content php? v | |Glv

GAME CULTURE & TECHNOLOGY LAB

(==
o0gle Calendar - Mozilla Firefox
Ble Edt View History Bookmarks Ipols Help
« - #h [rtip fiwew gocgle comicatendarfrandar ~) [C catandar
Gmaii Calendar Documents Web Reader more v wscacchi@gmail.com | Offine | Sync | & | Setings | Help | Sign out
Gox ngc calendar Search my calendars | Show search eptiers.
K3 Monday, Apr 26, 2010 Refresh
EPrnt Day Week Month 4Days Agenda
| i Done
« Apritzoln -

S MTWTFS ~

231 1 2 3
1o (RN
45678 310
= . Progosal review mesting
15 20 21 2om 0
¥My calendars

s 5:30p 01
L 61 JSS paper draft
-
.

Setings Creat

Setiings add v

=3 liveuser@localhost-jse . | @ GCTL - Mission - Mozill @ Acomposed Open ar. | @ Google Calendar - Moz..

booleans
Add 7om [liveuser@localhos

~
[~

1
| & Google Docs - Allitems
Gmal Calendar Documents Reader Web more v

o A Fl- styles

| & nttp sidocs google comDocTid=dfra4dv6_83cmSgBng3

| ver

Hle Edt View History Bookmarks Tools Help

dana

A Composed Open Archilecture Software Syst

Flle Edit View Insert Format Table Tools Help

- 10pt v

3¢ | & A Composed Open Architec . %
Google docs acomposed Open Architectrre Software...

B I U A-Yy Lk ==

checkregprot conpat_net deny_unknown initial contexts mls

cass context atsable Loaa o

comitt_pending bools create entorce nenber poLicy _c
¢ selinuxls [

er@localho:

initctl

tnitlol
st sbin]s pwd

Fle Edt View Jerminal Tabs Help
static feonfig

[liveuser@localhost sbinl§ cd ../selinux
¥Other calendars [liveuser@localhost selinux]s ls
Bpm access

apabilities

B Live system User on Apr 26, 3:42 M

| [Gv

)

wscacchi@gmail.com | Setings v | Sign out

policyvers us
reject unknown
relabel

er

Sharo

T

Figure 7: A screenshot view of a deployed release configuration of the alternative OA system
configuration resulting from system evolution [ScA12].

OVERALL OA DEVELOPMENT AND EVOLUTION PROCESS ISSUES

Following from the software processes we examined in our case study and our review of related
efforts, we see a number of issues for new software process research emerging. At least six such

issues can be identified as follows.

First, we find that a central goal of process automation with widely available software integration and
release deployment tools is to find enactment errors and articulation problems more quickly, rather
than to provide prescriptive process guidance. Such process enactment details cannot be easily

anticipated in general, so process specification and enactment must rely on trial and error, as well as

process discovery [JeS06] to surface where additional/new process knowledge is to be found.

Consequently, it is not surprising to observe the rise of a new class of software developer role, as

128

“buildmeisters”—developers who specialize in addressing the intricacies, quirks, and problems that
arise during software integration processes, since such processes remain ad hoc, undefined, and
difficult to model or improve.

Second, current continuous software development systems embody process specifications that are
opaque, lack generality, and rely on the processing capabilities of specific incorporated tools to
structure process enactment actions, decisions, and outcomes. Different Cl systems embody different
versions or variants of software build, test, and package processes. This implies that merely having a
“defined” process model for processes like continuous integration and release deployment means that
such a model will either be insufficiently detailed to provide anything beyond introductory level
guidance, or more completely detailed but idiosyncratic because it is bound to specific process
automation tools. This in turn makes the process specification problematic to adapt and evolve. There
is a basic need for richer process models that represent both the idiosyncratic details of process
automation tools for continuous integration and release management, and the generalized
abstractions of such processes that can be reused for process (design) guidance and tailoring in
specific software development organization settings (cf. [RKA11]).

Third, a recurring challenge from a process research standpoint is how to specify, model, analyze, or
simulate software processes that span from mostly manual to mostly automated process enactment
activities.

Fourth, automated process enactment systems are themselves subject to continuous improvement
and evolution. This means the processes being supported are potentially evolving. However, if their
process specification or model is tacit, or is encoded in implementation details, then the process may
be opaque to all except the tool’s developers. Thus, trying to specify, model, or simulate software
processes that employ automated enactment systems, requires the ability to address processes that
are co-evolving: i.e., how tool evolution drives development process evolution, and how development
process evolution precipitates tool evolution (cf. [Sca06]). So choosing to only attend to one, misses
observation or specification of activities that enable or constrain the other. Such a dilemma points to
another challenge for new software process research.

Fifth, process guidance specification and enactment automation are easily conflated in continuous
integration and release deployment systems. As a result, developers of OA systems rely on informal
best practices to get continuously integrated software products out the door. Separating the
specification of such processes from their implementation within the automated system would be an
important contribution to the advancement of such systems. Similarly, providing guidance for how to
specify processes more abstractly than as low-level process execution script commands (cf. [Hyp13]),
would also contribute to the advancement of automated continuous software development systems.

Sixth, the development and evolution of component-based OA systems is both an interesting and a
challenging problem for the software process research community. Such systems are likely to follow
continuous software processes— processes that are repeatedly enacted hundreds to thousands of
times during the sustained life of the system. Such processes are thus appropriate for careful
empirical study, simulation, and analysis. The need to address how to continuously secure OA
systems further complicates the challenges for software process research. Process streamlining

129

optimizations, opportunities, and guidelines are likely subjects for further research and practical
application. Similarly, when the software processes for securing an OA system involve automated
process enactment, it appears that compliance testing—checking whether an automated enactment
produced a system configuration that is compliant with the system’s security policy—will increase in
importance. Such compliance is likely to be ad hoc, unless the security policy is formalized into a
computational model [ScA13] that can be cross-checked with the enactment results.

Last, empirical study of the software processes of interest, especially as they are observed in different
OSS development projects, provides many insights and best practices that can help in the
specification (modeling) and integration of processes for developing and evolving secure OA software
systems.

CONCLUSION

Process models provide a valuable means for specifying complex software production processes.
Such models may have their greatest impact for project and process management, and for
coordinating disparate software production processes together with automated enactment tools
spread across an ecosystem of software producers. Explicit, open, and sharable process
specifications are key to realizing these potential benefits, while the absence of such specifications
means lost opportunities to reduce overall software production costs, improve software quality and
security, and to streamline and continuously improve such explicit processes.

Managing and coordinating the development and evolution processes for producing secure open
architecture software systems is challenging as we have shown in our case study. But as we have
observed in our case study, widely available automated technologies for continuous integration and
release deployment obscure or hide what these processes are. Further, we find that frequent errors
and articulation problems in automated process enactment are expected, since process enactment
details are ad hoc and idiosyncratic, while enactment processes are underspecified, not explicit, and
encoded in an enactment system’s implementation. However, automated process enactment systems
may offer the potential to be extended to support (partially) automated process discovery and
computational reenactment (cf. [JeS05, JeS06]), rather than just traditional process modeling and
simulation. Thus, software producers of contemporary component-based OA systems are working
against their self interests, assuming their interests are to improve their productivity and software
quality, while reducing avoidable rework and other software production cost drivers.

Our study in this paper sought to identify a range of emerging issues in software process research,
especially for process specification/modeling, as well as for process design, automation and
integration. Similarly, our case study highlights a number of ways how the need to continually secure
an evolving OA system further complicates challenges for software process research. Finally, assuring
that software development and evolution processes comply with extant system (or enterprise) security
policies—which are presently informal requirements specification documents—means that process
compliance checking arises as a practical need unmet by available software process tools.

Overall, our goal in this paper was to employ a case study and related research to help identify and
articulate an emerging set of challenges for further software process research and development,

130

Through both a review of related efforts and our case study, we identified a number of challenges for
software process research whose investigation and resolution can lead to more streamlined and
easier to continuously improve software development and evolution practices that are con- figured for
specific organizations, different development tool chains, alternative target system platforms, and
secure OA software product families, as well as for their evolutionary reconfiguration.

REFERENCES

[AAS12] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. Software licenses, open source
components, and open architectures. In I. Mistrik, A. Tang, et al., editors, Aligning Enterprise, System,
and Software Architectures, pages 58—-79. IGI Global, 2012.

[AAS13] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. The challenge of heterogeneously licensed
systems in open architecture software ecosystems. In S. Jansen et al., editors, Software Ecosystems:
Analyzing and Managing Business Networks in the Software Industry. Edward Elgar Publishing, 2013.

[Brw12] A. Brown and G. Wilson, editors. The Architecture of Open Source Applications. Lulu.com,
2012.

[CCLO06] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based development process and
component lifecycle. In Int. Conf. on Software Eng. Advances (ICSEA '06), pages 44-54, 2006.

[DIS12] Defense Information Systems Agency. Network/ Perimeter/Wireless—Wireless
(Smartphone/Tablet), Oct. 2012. http://iase.disa.mil/stigs/net_ perimeter/wireless/smartphone.html.

[Dig12] L. Dignan. Knight Capital future in jeopardy over botched software upgrade. ZDNet, 2012.
http://www. zdnet.com/knight-capital-future-in-jeopardyover-botched-software-upgrade-7000002116/.

[DMGO7] P. Duvall, S. Matyas, and A. Glover. Continuous integration: Improving software quality and
reducing risk. Addison-Wesley Professional, 2007.

[Fow00] M. Fowler. Continuous integration (original version), Sept. 2000.
http://martinfowler.com/articles/ originalContinuousintegration.html .

[GPS94] P. K. Garg, P. Mi, T. Pham, W. Scacchi, and G. Thunquest. The SMART approach for
software process engineering. In 16th Int. Conf. on Software Engineering (ICSE ’'94), pages 341-350,
1994.

[Giz11] N. Gizzi. Command and Control Rapid Prototyping Continuum (C2RPC) transition: Bridging
the valley of death. In 8th Annual Acquisition Research Symposium, pages 135-154, May 2011.

[GST12] M. M. Gorlick, K. Strasser, and R. N. Taylor. Coast: An architectural style for decentralized

on-demand tailored services. In Joint Working IEEE/IFIP Conf. on Softw. Architecture and European
Conf. on Softw. Architecture (WICSA-ECSA ’12), pages 71-80, 2012.

131

[Gra81] J. Gray. The transaction concept: virtues and limitations. In 7th International Conference on
Very Large Data Bases (VLDB '81), pages 144—154, 1981.

[Hud11] Hudson-ci. Hudson best practices. Eclipsepedia, Aug. 2011.
http://wiki.eclipse.org/Hudson-ci/Hudson_ Best Practices. Accessed 2 Jan 2013.

[HuF10] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Addison-Wesley, 2010.

[Hyp13] Hypertable. How to build Hypertable on various platforms, 2013. Accessed 1 Dec 2013. https:
//lcode.google.com/p/hypertable/wiki/HowToBuild .

[IBMO7] IBM Software Group. SW5706 installation wizard hangs, 2007. Accessed 3 Jan 2013.
http://publib.boulder.ibm.com/infocenter/ieduasst/v1rimO/topic/com.ibm.iea.was_v6/waspdguide/6.0/
GettingStarted/Case2_Install_Wizard_Hangs.pdf .

[JSH11] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal, S. Brunthaler, C.
Wimmer, and M. Franz. Compiler-generated software diversity. In S. Jajodia, A. K. Ghosh, et al.,
editors, Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, pages 77—-98.
Springer, 2011. http://dx.doi.org/10.1007/978-1-4614-0977-9_4 .

[Jen13] Jenkins. Upgrading from Hudson to Jenkins, Jan. 2013. https://wiki.jenkins-ci.org/display/
JENKINS/Upgrading+from+Hudson+to+Jenkins .

[JeS05] C. Jensen and W. Scacchi. Process modeling across the Web information infrastructure.
Software Process: Improvement and Practice, 10(3):255-272, 2005.

[JeS06] C. Jensen and W. Scacchi. Experiences in discovering, modeling, and reenacting open
source software development processes. In Unifying the Software Process Spectrum, pages 449-462.
Springer, 2006.

[Kri11] P. Krill. Oracle hands Hudson to Eclipse, but Jenkins fork seems permanent. InfoWorld, May
2011. https: //www.infoworld.com/d/application-development/
oracle-hands-hudson-eclipse-jenkins-forkseems-permanent-021 . Accessed 2 Jan 2013.

[MFPO6] N. H. Madhaviji, J. Fernandez-Ramil, and D. E. Perry, editors. Software Evolution and
Feedback: Theory and Practice. Wiley, 2006.

[MiS91] P. Mi and W. Scacchi. Modeling articulation work in software engineering processes. In First
Int. Conf. on the Software Process, pages 188-201, 1991.

[MiS92] P. Mi and W. Scacchi. Process integration in CASE environments. IEEE Software,
9(2):45-53, Mar. 1992.

132

http://dx.doi.org/10.1007/978-1-4614-0977-9_4

[NaS87] K. Narayanaswamy and W. Scacchi. Maintaining configurations of evolving software systems.
IEEE Trans. on Software Engineering, 13(3):324-334, 1987.

[RKA11] W. R. Nichols, P. Kirwan, and U. Andelfinger. A manifesto for effective process models. In
2011 International Conference on Software and Systems Process (ICSSP ’11), pages 242-244, 2011.

[QuHO8] M. R. J. Qureshi and S. A. Hussain. A reusable software component-based development
process model. Advances in Engineering Software, 39(2):88-94, 2008.

[Sca06] W. Scacchi. Understanding open source software evolution. In N. H. Madhaviji, J.
Fernandez-Ramil, and D. E. Perry, editors, Software Evolution and Feedback: Theory and Practice,
pages 181-206. Wiley, 2006.

[ScA12] W. Scacchi and T. A. Alspaugh. Understanding the role of licenses and evolution in open
architecture software ecosystems. Journal of Systems and Software, 85(7):1479-1494, July 2012.

[ScA13] W. Scacchi and T. A. Alspaugh. Advances in the acquisition of secure systems based on
open architectures. Cyber Security and Information Systems Journal, 1(2), 2-16, February 2013.

[SBN12] W. Scacchi, C. Brown, and K. Nies. Exploring the potential of virtual worlds for decentralized
command and control. In 17th Int. Command and Control Research and Technology Symposium
(ICCRTS), 2012.

[Sma12] S. Smalley. The case for Security Enhanced (SE) Android. 2012 Android Builder’s Summit,
Feb. 2012. https://events.linuxfoundation.org/images/ stories/pdf/lf_abs12_smalley.pdf .

[Smi11] P. Smith. Software Build Systems: Principles and Experience. Addison-Wesley Professional,
2011.

[TCI12] Thoughtworks ClI feature matrix, 2012. Accessed 2 Jan 2013.
http://confluence.public.thoughtworks. org/display/CC/Cl+Feature+Matrix .

[USC11] US-CERT. Architecture and Design Considerations for Secure Software Development.
Software Assurance Pocket Guide Series. U.S. Dept. of Homeland Security, 2011.
https://buildsecurityin.us-cert.gov/ swa/downloads/Architecture_and_Design_Pocket_ Guide_v1.3.pdf .

[Wik12] Wikipedia. Continuous integration, Dec. 2012. http:
/len.wikipedia.org/wiki/Continuous_integration .

[Win13] WineHQ. http://winehq.org . Accessed 10 Jan 2013.

[Xen13] Xen hypervisor project. http://xen.org/products/xenhyp.html and OpenVZ. http://openvz.org
Accessed 10 Jan 2013.

133

http://winehq.org/
http://xen.org/products/xenhyp.html
http://openvz.org/
http://openvz.org/

Chapter 8.

Addressing Challenges in the Acquisition of Secure
Software Systems with Open Architectures

134

Chapter 8.

Addressing Challenges in the Acquisition of Secure
Software Systems with Open Architectures

Abstract

We seek to articulate and address a number of emerging challenges in continuously assuring
the security of open architecture (OA) software systems throughout the system acquisition
life-cycle. It is now clear that future system must resist coordinated international attacks on
vulnerable software-intensive systems that are of high value and control complex systems. But
current approaches to system security are most often piece-meal with little/no support for
guiding the what system security requirements must address across different system processing
elements and data levels, and how those can be manifest during the design, building, and
deployment of OA software systems. We present a framework that organizes OA system
security elements and mechanisms in forms that can be aligned with different stages of
acquisition spanning system design, building, and run-time deployment, as well as system
evolution. We provide a case study to show our scheme and how it can be applied to common
enterprise systems.

Introduction

We seek to research, develop, and refine new concepts, techniques, and tools for continuously
assuring the security of large-scale, open architecture (OA) software systems composed from
software components that include proprietary/closed source software (CSS) and open source
software (OSS). Federal government acquisition policy, as well as many leading enterprise IT
centers, now encourage the use of CSS and OSS, and thus OA, in the development,
deployment and evolution of complex, software-intensive systems.

We seek to prototype and demonstrate a new innovative approach and supporting technology
that can develop new principles for correctness and security properties for OA systems. This
includes developing basic principles to determine the security and performance properties of
software systems, the conditions under which these properties hold, and the methods used to
prove these properties of interest for systems. Of particular interest are networked OA software
systems, that are adapted or evolve to dynamic conditions and threats during their
development, deployment, and usage, including those that may rely on new technologies like
OA mobile devices [Sm12, STIG11] or other IT systems relying on open source technologies
[DoD10, Ga10, Gi11, Navy10]. In particular, such study may be of value to securing new cyber
warfare technologies [DoD11, SBN11]. Our efforts may also lead to fundamental advancements
for secure information sharing between information producers and consumers, in order to
realize more secure information management, sharing and interaction.

135

Challenges of Securing Systems with Open Architectures

Coordinated international attacks on vulnerable software-intensive systems that are of high
value and control complex systems are becoming ever more apparent. As the StuxNet case
demonstrates, security threats to software systems are multi-valent, multi-modal, and distributed
across independently developed software system components [Stux11]. Similarly, it is now clear
that physically isolated/confined systems are vulnerable to external security attacks, via portable
storage devices like USB drives, modified end-user devices (e.g., keyboards, mice [H11]), and
social engineering techniques [Saw11]. This requires new security measures and policies
necessary to defend such systems through new threat prevention and detection methods, as
well as appropriate response mechanisms. Thus, what makes a system or system architecture
secure changes over time, as new threats emerge and as systems evolve to meet new
functional requirements. Consequently, there is need for an approach to continuously assure
the security of complex, evolving OA systems in ways that are practical and scalable, yet robust,
tractable, and adaptable.

However, the best practices for developing OA systems whose components may be subject to
differing security requirements (i.e., security rights and obligations) are unclear. Such practices
are yet to be identified. This puts IT centers, system integrators, and service providers at a
disadvantage when seeking to develop new software-intensive systems whose costs may be
lower due to the integration of mature OSS components that are interfaced to pre-existing or
new CSS components. OA systems thus present new challenges for assuring software system
security.

Software systems security mechanisms for enabling security requirements or policies are often
employed on an ad hoc basis, since there are not convenient or interactive tools, nor formal
techniques for specifying the security requirements of an OA system, or its components.
Instead, what is available are disjoint mechanisms for implementing individual system security
features [LSM98, SSL99], such as:
mandatory access control lists;
firewalls;
multi-level security;
authentication (including certificate authority and passwords);
cryptographic support (including public key certificates);
encapsulation (including virtualization, hidden vs. public APIs), hardware confinement
(memory, storage, and external device (port) isolation) [SWZ12], and type enforcement
capabilities;
e secure programming practices (including secure coding standards, data type and value
range checking) [Se08];
data content or control signal flow logging/auditing;
honey-pots and traps;

136

e security technical information guides for configuring the security parameters for
applications [STIG11] and operating systems [Sm12];
e functionally equivalent but diverse multi-variant software executables [Fr10, SUW11].

But there is a gap between these mechanisms and any concept of a comprehensive security
policy, whether for a system or any of its components, and no obvious way to integrate and
evaluate them as a group. Similarly, it is unclear what relationships arise or are in place among
these different security mechanisms. Further, what guidance is needed regarding which security
mechanism to use where, when, why and how, and how to update their usage or configuration
as extant system security policy evolves. The mechanisms are also mostly software
implementation choices rather than system architectural choices; no system-specific framework
(like an architecture) exists in which they can be pulled together in patterns that can be
designed to meet specific security policies and goals. But in an OA system, it may be unclear or
unlikely that system integrators will find mature OSS or CSS components that supply all of the
system security features that the integrator or the customer requires on a timely, cost-effective
basis.

Next, OA systems evolve through more pathways than traditional systems:

e individual components evolve through update revisions (e.g., security patches) made by
the component’s developers;

e individual components are updated with new, functionally enhanced versions from
outside providers;
individual components are replaced by different components from other sources;
component interfaces evolve, either due to the system developers or outside sources;
system architecture and configuration evolve as the developers adapt it to address new
functional requirements; and

e system functional and security requirements evolve, either due to the system
developers, recognized gaps, or outside stakeholders.

e system security policies, mechanisms, security components, and system configuration
parameter settings also change over time.

These additional evolution paths are tied to the benefits of using OA systems with OSS
components but they also present new challenges for security. OA systems are continually
evolving, and in our view this fact is fundamentally unaddressed by prior work in security.

Beyond these issues, we must consider how should customers specify what security system
features they want their delivered systems to support? How can the history of security failures
(vulnerabilities), faults (exploits), possible cyber-warfare attacks (threats), and possible
responses (updating system configuration with new elements that resist new threats, close new
vulnerability, and prevent newly discovered exploits), to guide the evolution of approaches for
developing secure OA systems? How can answers to questions like these help formulate a
technological innovation element of the DoD strategy for operating in cyberspace [DoD11]?
Questions like this remain unresolved at present.

137

Verification of the usage of security mechanisms in software systems is unclear, and often
focused either at the whole system (macro) level, or program function or coding (micro) level,
but generally not at the architectural component and interconnection (meso) level, and not for
combinations and alternative configurations of CSS and OSS components with different security
histories. We believe there is an new or under-explored opportunity to address security
requirements at the architectural level.

As such, we see the following basic challenges in assuring OA system security:

e How to verify the security of OA system designs throughout system development,
deployment, and post-deployment support.

e How to validate the effectiveness of OA system security measures, and feed back
evolving knowledge of vulnerabilities and exploits into the ongoing development
(continuous evolution) stream for existing and planned systems in an operational,
testable form that system designers can use, and program managers can assess.

Similarly, we see the following basic challenges in assuring security of OA software systems:

e How best to develop complex OA systems whose OSS or CSS system components may
originally come from trusted sources, but in which these components, the architectural
configuration, and security requirements are subject to multiple sources of adaptation
and evolution.

e How to go beyond “many eyes” (large number of skilled reviewers) to establish a
scalable basis for automated or semi-automated verification of software system security
properties as the system continually evolves.

e How to best achieve continuous software system security assurance as a system is
adapted and evolved to address new security requirements and technology progress.

e How best to protect OA systems through biologically inspired natural defenses that
provide adaptive and resilient mechanisms including agile response, isolation, and
fail-soft recovery to immediate attacks, as well as adaptation via dynamic
reconfiguration, multi-version mechanisms, (artificial) ecological diversity responses to
sustained vulnerabilities or threats [Sh11].

e How to create reference models and security policy requirements that articulate security
scenarios appropriate for oversight during system acquisition, as well as during system
design, implementation, deployment, and beyond?

Securing Software Systems

The key ideas in our approach to develop and demonstrate a new solution to the challenges is
to specify verifiable security requirements of OA systems using formalized “security licenses”
[SA11], and to use an explicit, evolvable software architecture to mediate and carry the paths of
interactions among them. Security licenses must specify the security requirements and
access/update rights and obligations within an OA system, its CSS and OSS components, and
their interconnections (e.g., APls, databases, shared files, communication protocols) that defend

138

against threats and enable appropriate responses to attacks or suspicious/anomalous system
behaviors. Subsequently, the goal of our approach is to articulate and refine the ways and
means for expressing and verifying that the security requirements of OA system components
match up appropriately and together support the security requirements of the entire OA system,
at architectural design time, while enabling the automated verification of system
builds/compositions and deployable, as well as of executable run-time versions of the system.

Software licenses represent a collection of rights and obligations for what can or cannot be done
with a licensed software component. Licenses can thus denote both functional and
non-functional requirements that apply to a software systems or system components during
their development and deployment. But rights and obligations are not limited to concerns or
constraints applicable only to software as IP. Instead, they can be written in ways that stipulate
functional or non-functional requirements of different kinds. Consider, for example, that desired
or necessary software system security properties can also be expressed as rights and
obligations addressing system confidentiality, integrity, accountability, system availability, and
assurance. This kind of approach provides new principles of correctness for software IP
requirements [cf. BAO5, BA0S].

Traditionally, developing robust specifications for non-functional software system security
properties in natural language often produces specifications that are ambiguous, misleading,
inconsistent across system components, and lacking sufficient details [YCO06]. Using a semantic
model and logic to formally specify the rights and obligations required for a software system or
component to be secure [BA05, BA08, YCO06] means that it may be possible to develop both a
“security architecture” notation and model specification that associates given security rights and
obligations across a software system, or system of systems. Similarly, it suggests the possibility
of developing computational tools or interactive architecture development environments that can
be used to specify, model, and analyze a software system’s security architecture at different
times in its development — design-time, build-time, and run-time. We have already
demonstrated how such an approach can work, when limiting attention to IP rights and
obligations.

The approach we have been developing for the past few years for modeling and analyzing
software system IP license architectures for OA systems [AAS09, ASA10, SA08], may therefore
be extendable to also address OA systems with heterogeneous software security license rights
and obligations [SA11, AIS12]. Furthermore, the idea of common or reusable software security
licenses may be analogous to the reusable security requirements templates proposed by
Firesmith [FO4] at the Software Engineering Institute. Such security requirement templates may
simplify and guide the efforts of customers (or contracting officers) to more readily specify
workable requirements that can be readily verified through system development, deployment,
and post deployment support.

Security licenses [AIS12] can be specified, modeled, and analyzed continuously from initial
system architectural design through post deployment support and system evolution, with key

139

points for security license analysis occurring at design-time, build/linking time, and
deployment/run-time. Such security licenses can be stated both (a) informally, using restricted
natural language for human readability, authorship, description of non-functional security
requirements, as well as (b) formally, specifying functional security requirements in a computer
processable form using a logic-based scheme and modeling notation, with automated
production of (a) from (b) and automated architecture-mediated inferences using (b). Analysis of
a system/s security requirements can therefore be integrated into the software architecture tool
used to express and evolve the architecture, so that the analysis evolves automatically in
parallel with the architecture. A license presents the rights that are offered, and for each right
enumerates the obligations that are required in order for that right to be granted. Many of the
actions required for the obligations are related to the actions allowed by the rights. This is
particularly so for open source software (OSS) licenses, for which fulfilling some of the
obligations requires parts of the rights that are granted. Also particularly for OSS licenses, the
obligations and rights are framed to take effect in an architectural context, with most obligations
taking effect with respect to either the component for which rights are granted or component(s)
determined by the connectors and architectural topology around that component. Because
software licenses are expressed in natural language, the rights and obligations are often
presented in an intermingled organization, and much of a license may be devoted to defining
terms, classes of entities referred to, and conditions under which the various provisions take
effect. But the conceptual structure remains that of a list of rights offered, each in exchange for
specific obligations.

In general terms, a security license is analogous to a software copyright license such as GPL
(GNU General Public License) [GPLO7]. Software licenses consist of intellectual property (IP)
rights granted by the license, and corresponding license obligations needed to obtain the rights.

Our innovation is to similarly specify the security obligations and rights of OA system
components using elements found in known security capabilities, which we can then model,
analyze, and support throughout the system’s development and evolution, and use to guide
system design and instantiation. Our initial investigation of security licenses [SA11] has
identified rights and obligations such as:

e The obligation for a user to verify his/her authority to see compartment T, by password or
other specified authentication process

e The obligation for a specific component to have been vetted for the capability to read
and update data in compartment T

e The obligation for all components connected to specified component C to grant it the
capability to read and update data in compartment T

e The obligation to reconfigure a system in response to detected threats, when given the
right to select and include different component versions, or executable component
variants.
The right to read and update data in compartment T using the licensed component
The right to replace specified component C with some other component

140

e The right to add or update specified component D in a specified configuration
e The right to add, update, or remove a security mechanism
e The right to update security license L.

Further, formally specified OA security licenses are verifiable, as well as grounded in functional
and testable system security capabilities.

The security reasoning chains among the security licenses are mediated by the system
architecture, and evolve automatically with it, much like they can for IP licenses [AASQ9,
AAS11, ASA10]. Each kind of security license details how its obligations are propagated
architecturally to other system components. The results of this propagation, coupled with
automated identification of gaps, conflicts, and subsumptions, are communicated to analysts as
architecturally-organized arguments supporting the existence of the identified issues. The
arguments provide context-appropriate guidance, in terms of the system architecture and the
security licenses of the components involved, for resolution of security problems through the
evolution of the system design.

Our approach neither assumes nor proves that individual elements of an OA system are secure,
but instead seeks to determine what security rights and obligations are in effect at any time for
the overall system architecture as a function of the security rights and obligations of its
components. This means that it is possible to configure a secure OA system whose components
may be insecure, or not equally secure. Our approach also supports determination of where or
how OA system security rights or obligations may be in conflict, mismatch, or subsume one
another as individual system components or connectors are adapted to evolve over time. As an
organization's security policies (i.e., their security requirements) evolve and adapt, the OA
system’s security rights and obligations are evolved to match and satisfy them, as long as all
security requirements can be expressed through description logic relationships among them.

Security rights and obligations are characterized in terms of enterprise security policies and
goals; within that closed world our approach enables specification of the security properties that
an open system architecture must match or satisfy. These security requirements also direct
acquisition program managers and architecture analysts attention to problem areas with
greatest impact on system security. Where our approach identifies a conflict or mismatch, it
indicates an actual, open-world weakness in the security of the OA system under analysis. The
chain of reasoning is architecture-mediated, with its units defined piecewise in each
component's security license and evolving continuously as the system architecture,
configuration, and security requirements evolve. As new kinds or types of vulnerability, threats,
or exploits emerge, as well as new categories of effective responses and emerging alternative
security mechanisms, we seek to elaborate and demonstrate this approach can continuously
accommodate the specification and analysis of changing security requirements.

Product Lines: Alternatives, Versions, Variants of OA Elements

141

In producing a secure OA system in a software product line, there are several levels of variation
available for producing artificial diversity among equivalent instances and for selecting and
evolving in the face of threats.

At the highest level of granularity, a system developer or integrator can choose among
alternative producers of similar components, services, and platforms [SWZ12]: For example, we
can find functionally similar alternatives from software (component) producers of web browsers
like Mozilla (Firefox, Camino, Sea Monkey) vs. Google (Chrome) vs. Microsoft (Internet
Explorer), vs. others. Similarly, for word processors, we find alternatives including Microsoft
(Word) vs. abisoft.com (AbiWord) vs. Google (Google Docs, which is a remote Web service
rather than a component), vs. others. Likewise, for email and calendar applications, we find
alternatives like Microsoft Outlook, Ghome Evolution, Google Mail, and Google Calendar,
among others. For operating systems, we find Red Hat Enterprise Linux, Microsoft Windows,
Apple OSX, and Google Android among others. Finally, note that some producers produce
more than one alternative of the same kind of component or service, such as Mozilla’'s web
browsers (Firefox, Camino, SeaMonkey), so that a choice among those particular components
does not result in a change of producers.

Functionally similar components and services may not be exactly interchangeable, unless their
interfaces are similar or identical. As such, it may be necessary to modify, for example, OA
system topology, replace connector types, and other architectural measures may be necessary
to change from one producer to another, depending on the functionality needed to satisfy
functional requirements. However in general the overall functionality provided by the system
remains substantially the same, but now the diversity among alternative system instances is the
greatest: not only is the component, service, or platform distinct between two instances, but its
architectural connections in the system will be distinct as will be the software development
process and organization that produced it, so the chances of a common vulnerability are greatly
minimized. Subsequently, when functionally similar components, connectors, or configurations
exist, such that equivalent alternatives, versions, or variants may be substituted for one another,
then we have a strong relationship among these OA system elements that is called a product
family [NS86, Bo06] or a product line [CNO1].

As described above, a shift from one alternative to another ordinarily requires a change in
architecture, software connectors, and other measures. Changes between some alternatives
will also produce a change of producers, while others will not. However, when components or
connectors provide alternative implementations of the functionality they provide, then these are
designated as versions. For example, most Linux operating systems support multiple file
systems for data storage, though developers or integrators select their preferred file system for
inclusion at either design-time or build-time. Similarly, for connectors to remote Web servers,
developers or integrators may specify unencrypted (e.g., HTTP) or encrypted (e.g., HTTPS)
data communication protocols for use in a Web-based enterprise system. Next, at the OA
system configuration level, selection of alternative components or connectors, or of different
versions of components or connectors result in different overall system versions that conform to

142

a system product line. Further, recent advances in source code compilation now allow for
creation of functionally identical variants of software components, though each variant has a
different run-time image in the computer, through code randomization techniques [Fr10,
SJWWF11]. Last, software product lines can be bound to a network of software producers,
system integrators, and system users/consumers through a software ecosystem [Bo09], such
that secure systems can be realized through composition or configuration at the software
ecosystem level [SA12]. Consequently, we now have a complete and robust basis for specifying
OA systems that can include components, connectors, or application systems from alternative
producers, or with different versions or variants included. This is now our basis for moving
forward to address to address the challenges of creating secure OA systems through secured
software product lines.

Secure Software Product Lines within an OA Software Ecosystem

Given the basis for software product lines for OA systems, we now address how to frame and
align software system architectures with software security mechanisms. We use the following
scheme to address this, as shown in Table 1.

System security policies provide the overall context for what kinds of security mechanisms or
capabilities (e.g., mandatory role-based data access control) are required by a particular
system. The requirements must be realized through multiple levels of system composition that
span a processing space from people to processing platforms, and through data/content space
that is processed during system usage/operation.

Security policies

Developers, system integrators and users

Persistent data
System configurations
Components Ephemeral data
Connectors
User I/O data
Platforms

Table 1. Different system security elements whose rights and obligations depend on capabilities
supported by lower level elements.

Aligning system security elements with security mechanisms gives rise to the following
associations:

Platform: base technological elements that constitute the computer environment that hosts the
target system.

143

hardware: specifies hardware confinement constraints needed to securely operate the
software system configuration, potentially to address memory, storage, and external
device port isolation (see SecureSwitch [SWZ12]). Hardware may be configured as an
embedded processor, mobile computer (e.g., smartphone or tablet), personal computer,
multi-processor computation server, or multi-server data center.

virtual machine: a software layer that can isolate and confine the operating system,
component applications, or application services from direct control of system hardware,
network operations, or operating system processes. Operating System (OS), software
systems, components, or connectors can each run within their own virtual machine, in in
alternative configurations, as long as they are completely confined at a higher level of
system security and do not overlap virtual machine boundaries [SSL99, Sm12].
network: message filtering and access control firewalls for data/control flows that move
across external hardware system security boundaries.

operating systems: mandatory access control [LSM98, SSL99], capability type
enforcement [Sm12], OS configuration parameters [STIG11], run-time audit logs, all
currently coded and managed by system integrators/administrators.

Connectors: software mechanisms that implement secure communication mechanisms within
and across system boundaries. Connectors enable security mechanisms providing:

data cryptography (encryption/decryption) before/after data transfer
component-connector-specific firewalls that can be implemented via (pre-conditions)
constraints on in-bound data flow and plug-in/helper application invocation, or on
out-bound data flow and external program invocations (post-conditions)
multi-version connector configurations between components that allow for artificial
diversity and dynamic reconfiguration potential through functionally similar versions.

Components: software mechanisms that implement application functionality required for the
targeted system to operate as intended. Components enable security mechanisms providing:

access/usage authentication control obligations (e.g., login with authorized identification
and password) for which people in what roles (e.g., developer, system integrator, system
administrator, system user) have the specified set of rights to view/update data, data
control flow invocations, or external program invocations.

encapsulate components as services within virtual machines to confine potential
exploits, while mitigating their propagation.

alternative versions that increase artificial diversity and enable dynamic replacement with
functionally similar alternatives.

multiple versions that allow for changes in vulnerability space, including concurrent
versions with replicated input data, but different out data connector (routing)
configurations.

multiple variants that reduce vulnerability to component version attacks.

144

System configuration: the composition and interrelationship of components and connectors
that together realize the system architecture, at design-time, build-time, or run-time. System
configuration (or composition [Bo06]) enables security by providing:

ability to host multiple (one or more) alternative, version, or variant system configurations
on one or more processors (either single-core [SWZ12], multi-core, multi-blade, or
multi-site) that can be dynamically selected in response to security policy directives or in
response to detected threats.

ability to host concurrently running multiple (one or more) alternative, version, or variant
system configurations on one or more processors (either multi-core, multi-blade, or
multi-site) that can be dynamically selected in response to security policy directives or in
response to detected threats.

ability to (formally) specify system configuration as an open architecture at design-time,
build-time, and deployment run-time, along with automated tools that can verify the
consistency, completeness, and traceability.

Developers, system integrators and users: denote the people authorized and trusted to work
on or with the configured systems or its elements over time, depending on their externally
assigned role(s).

Developers should employ software development environments, tools, or processes that
reinforce security-safe software coding practices of components or connectors they
implement as products [Se08].

Developers should produce multiple, unique executable variants of the components or
connectors they produce and distribute.

System integrators design OA system architecture.

System integrators build OA system configurations that select from one or more
component or connector alternatives, versions, and variants

System integrators deploy one or more run-time system configuration variants that can
be readily installed and appropriate parameters entered by system administrators or
end-users.

System integrators or system administrators, or automated mechanisms under their
control, must be able to monitor and access system execution audit logs, to determine if
threats or anomalous system behaviors are detected, and to dynamically reconfigure
system configuration or security parameters in order to move the executable system into
a more trusted operational state.

Users must be provided with online identifiers or identification methods that enable them
to access security controlled systems via one or more alternative authentication
mechanisms in place.

In parallel with these processing security spaces are data security spaces:

User I/0 data: data that may exist only as it passes across communication channels. Examples
are keystrokes and mouse movements communicated from a keyboard or mouse to a

145

processor, voice data from microphones and to speakers, wifi packets, and so forth. This data
may be discarded or incorporated into ephemeral data.

Ephemeral data: data that exists in memory for a brief time before being either discarded or
incorporated into persistent data. Examples are web forms that have been filled out but not
submitted, user command mouse clicks, and data in various sorts of hardware buffers.

Persistent data: data that exists for a substantial time on local disks or solid-state storage
devices, USB memory sticks, DVD-ROM, or server storage.

Security policies: provide overall guidance and requirements for what security mechanisms
and regimes are to be designed, implemented, and satisfied during the deployment, operation,
and evolution of a specified system. Security policies:

e should provide non-functional requirements regarding the membership, structure, and
behavioral specifications of each of the proceeding categories of security elements at
minimum, or further specification of security sub-elements within each category, as per
the security exposure of the system being addressed.

o Non-functional requirements may only specify rights provided when
corresponding obligations are fulfilled that cannot be automated or verified in
lower level security elements.

o Non-functional requirements should be expressible in human-readable and
computer-processable forms within the system security policy license.

e must provide functional requirements regarding the membership, structure, and
behavioral specifications of each of the proceeding categories of security elements at
minimum, or further specification of security sub-elements within each category, as per
the security exposure of the system being addressed.

o Functional requirements are those that can be formalized, automated, and
verified by corresponding automated mechanisms available at lower level
security elements.

o Functional requirements may only specify rights provided when corresponding
obligations are fulfilled that must be automated or verified in lower level security
elements.

o Functional requirements should be expressible in human-readable and
computer-processable forms within the system security policy license.

The case study that follows describes where these different system security elements appear in
forms that can be available for review by authorized Program Acquisition personnel.

Case Study of a Secure Product Line for an Enterprise System

Let us consider what needs to be specified during the acquisition of an enterprise system that
incorporates common office productivity applications that run on a personal computer networked
to remote servers. Such a system can include a web browser, word processor, email and

146

calendaring applications that are configured to operate on a personal computer, where the PC’s
operating system, Web browser and other applications need to be configured to access remote
data/Web content servers. Figure 1 shows part of the system ecosystem of software producers
and the components they can provide for our enterprise system.

Component 4 .
Producer bﬂy @ @ @g @ Linux Microsoft Apple

[Firefox 35 | rirerox Opera aviword || Tl || Calendar || volution
Component
Firefox 3.6

MPLlGPLlLGPL) (Opera EULA) (GPL) (Google Tos) (Google ToS) (GPL)(GPL) (MS Eula) (Apple)
License

Figure 1. A partial view of a software ecosystem of producers and the software components for
an enterprise system they produce

Fedora Windows

Figure 2 shows the design-time architecture of such an enterprise system. What might a secure
product line for a system like this involve, and how might it provide benefits and security
qualities to be specified for design time, build time, and run time? How can its OA and
product-line characteristics contribute to security throughout the acquisition system life-cycle?

") Web Browser Word Processor Email & Calendar

1 User Interface i User Interface i

___ User Interface
D T v
. Connector 1) ' Connector 2

. Web Browser |

{ Intra-Application Scripting ,l<—¢ :

=
=
[k
@e,
=
o
%)
0]
w
w
@]
=

Figure 2. A design-time reference model of an OA system that accommodates multiple
alternative system configurations.

We envision an approach in which non-functional requirements, such as security, reliability, and
evolvability requirements at acquisition time, are elaborated at design and build times by
specific functional requirements that explain how and to what degree the non-functional
requirements are going to be satisfied at run time. Analogous to our previous work with
intellectual property (IP) licensing, we envision that these requirements are structured in the
same logical forms as IP licenses (with specific rights that are obtained only by fulfilling specific

147

obligations), and managed through the architecture by the same approach of calculating which

obligations are satisfiable, in what way, and as a result what rights are available [AAS09,
ASA10, SA11].

Figure 3 illustrates a possible OA software ecosystem for this product line. Here a number of
possible producers and alternative components have been placed into play, and four specific
instance architectures (produced in four specific ecosystems) have been sketched. With
appropriate architectural topologies, and appropriate shim components and connectors inserted
between the major components, each of these four instance architectures can support the same
functionality. It is also possible to achieve different nonfunctional qualities including security
qualities through the four choices; for example, by requiring that OS be an appropriate

Security-Enhanced version of Linux, or by requiring that the network protocol connector be
HTTPS.

. Google Google Gnome 5
Firefox Opera Abiword R Evolution Fedora Windows 0SXx

(MPLI) C Opera ELA) C GPL) (MS Eula) L?o%?]lsee

Design-time
architecture:
Browser,
WP,
calendar

Instance Instance Instance Instance
architecture: architecture: architecture: architecture:
Firefox, Firefox, Firefox, Opera,
AbiWord, OR Google Cal., OR Google Cal., OR Google Docs, OR ..
Evolution, Google Daocs, Google Docs, Evolution,
Fedora Fedora Windows (8154

GPL MPL, Google

ToS, MS EULA

Opera EULA,
Google ToSs,
Apple License

GPL,
Google ToS

Figure 3. A view of an OA software ecosystem that provides alternative, functionally similar
components compatible with the reference design-time architecture.

Within the overall ecosystem of Figure 3, Figure 4 shows one possible instance ecosystem
involving specific producers (Mozilla, abisource.org, gnome.org, Red Hat) and specific
alternatives (Firefox, AbiWord, Evolution, Fedora).

Acquisition-time requirements such as the use of SE Linux and the use of HTTPS could be
satisfied by this choice; with an appropriate architecture, the IP licensing obligations could also
be satisfied. At design time the functional requirements would need to be satisfied by

148

appropriately-specified shims inserted among the principal components, and if such shims could
be designed then this would be the proof that the acquisition-time nonfunctional requirements
could also be satisfied. Figure 5 shows a run-time view of this instance architecture, resulting
from the specific OA ecosystem and instantiating the overall ecosystem of Figure 3 and the
software product line the software system is an instance of.

This instance architecture has both a manageable IP license regime that insures its openness,
and a manageable security regime. For IP, in this architectural instance, all component versions
can be selected to use permissive licenses (Web browser, Web server) or reciprocal GPL
licenses (word processor, email, calendar, and operating system) they are cleanly separated by
dynamic run-time links, which are type of connector that does not transmit IP obligations or
rights, though allows for control flow integration, and data flow interoperation.

e . Google soogle Gnome
Firefox Opera Abiword TR slendar Evolution Fedurg

() (cmoems) (ovems) (. (=)

MPL|GPL|LGPL

Design-time

architecture:
Browser,
WP,

calendar

Instance
architecture:
Firefox,
AbiWord,
Evolution,
Fedora

GPL

Figure 4. A selection among alternative components that can be included at build-time to
produce an integrated system compatible with the design-time reference.

149

0 ropicatiors Piaces Syster @ (53 S ive System User on apr 75, 3:30 M o

“y55-Figurea-draft. abw

B Edt \ew Hutory Bockmarks Taols Help Fie Edit View nset Famat Tools bl Collsborate Doruments Help
o @O A [F e mmGa et |~ | [1 =& a8 B s
Marmal « | Times Hew Roman e [~ agdg =E=EEH e B S

GAME CULTURE & TECHNOLOGY LAB i
£
o

Py s=

a i - ey = o oy
e EST Viow Amens Sarth Help e i S "‘"'-"‘v:_;__'“ ‘ ‘. o
; 2) - sl S 3 "y - = “sn smm

wew | SordjRacowe Frint Praviouss Today Most G 2 G i ol Lok - ‘ a

[Calendars w:

Search. | >

Henday 26 April Tasks
—

rage: 11 N [defeuk | ens

Ble Edt Wew Jorminal Tsbs Halp

Birtheays e Arriiers.

1Pm 8 Loam
Prapcsal resien mesting

3em || 200pm
Werk en [S5 pagar draft

1 13 14 15 18 4pm

1w o1 oo
mom o2 ;N 5pm

.....

T comearrs | | [catanazes

am

E2 B iweuser@incalhost /e | @ GCTL-Mission -Mozil. | [G] Calenclars - Evoiion || #JE Figlred drait abw. =g []

Figure 5. An end-user run-time version of the selected alternative components that fulfills the
design, where the SE Linux operating system (lower right corner) can utilize security modules
library for coding and enforcing mandatory access control on programs/data, and other security

capabilities.

Figure 6 outlines an alternative system configuration and the instance ecosystem that produces
it. This instance architecture substitutes services for components in the case of Google Docs
for the word processing functionality and Google Calendar for the calendar functionality. With
appropriate shims and changes to the architectural topology this combination of major
components could also support the system’s functional requirements, and because the services
are accessed through client-server connections, which block the propagation of most license
obligations, there are many ways to satisfy the IP constraints imposed by component and
service licenses.

This alternative configuration also highlights possible acquisition-time concerns and the
nonfunctional requirements and security license issues that follow from them. For example, a
remote service such as Google Docs provides benefits and imposes costs with respect to a
compiled component such as AbiWord. On the one hand, the remote service makes some
qualities easier to achieve (data sharing, backup, etc.) but on the other may make some
qualities harder to achieve (data security over a network connection and in the “cloud”, up-time
of the service, little or no control over when new versions of the service are used compared to
complete control over when new versions of a component are integrated).

150

= Google Google o
Firefox Oper Abi [D Calendar Evolutian Fedora

o @07“05) (mjeTos)
WA
b \%

Instance
architecture:
Firefox,
Google Cal.,

Google Docs,
Fedora

MPL|GPL|LGPL

Design-time
architecture:
Browser,
WP,
calendar

GPL,
Google ToS

Figure 6. An second system configuration, using alternative but functionally similar
components.

e Who in the ecosystem of human actors for this system has the right to make the
decisions to use a service in place of a component, or one component version in place
of another? What obligations are they required to satisfy first? These questions are of
concern at acquisition time and, we claim, are addressable by acquisition licenses that
restrict rights and impose obligations important to system acquisition officers just as IP
licenses do for IP rights and obligations important to software producers.

e When can these decisions be made? In traditional development processes these would
occur at design time, but in the larger view we propound here such decisions, or rather
the policies or acquisition licenses that control them, are perhaps more properly
considered at acquisition time. As we will see below, it is also possible that in order to
achieve specific security qualities they might be made at build or run time, in response to
specific threats.

Both these instance architectures specify specific alternatives for the major components, for
example Firefox for the web browser component. But which version of Firefox? For example, it
is quite possible that both the instance architectures discussed above could be implemented
using either Firefox 10 or Firefox 11, satisfying all the functional requirements with no change to
the instance architecture and no revision of software shims. Who has the power to decide to
use version 10 rather than version 11? How late in the software process can this decision be
made -- for example, could it be made as late as system startup time by a system user, in
response to a particular security attack on the previous configuration?

151

Figure 7 shows a run-time view of this alternative configuration. To the end user this system
appears quite similar to the one in Figure 5, and the differences might scarcely be noticed,
which raises the next set of possibilities.

ﬂ Applcations Places Systern i@ () B Live System User Man Ape 28, 3:42 P o

L &

Bl Edt Mew Hatory fockmarks Taols Help B Edt Mew Hstory Bockmarcs Tals Hep

- | & |5 ritpoiicefter netprojganmelabmon avtontent prph | v | [Glv 1 - i | B rip-ioecs google cormyDog Tri=irBdave_B3am Sging3 > | I

Oy Dses Abame 3| @ A Corrposed Cpen Archtec 3 | v
GAME CULTURE & TECHNOLOGY LAE Gmal Calendy Documants Eeader Web more » wacacchi@gmal.com | Setirge + | San o

CGoogle docs A composed Open Aretieciuie Sotware... 1o sarr stare -

File Edt View Whset Fomad Table Teok Haly

o N T T a— s Sl < BN A-S. i EEaEEEE Y

A Compasod Open Architocturs Softwars Systom at R -Time

Bl Edt Yew Hgtory Bcokmark:

- v 4 [T Fttp www google. comicalencirrender v | B centar

mons Wab Rsader mom v wscaeehi@gmalleam | O

14 Somngs | et | Sign cut

" Search my calenda

Google

Greate Eveat ENER Mosday, Apr 26,2610 Heiesn

uck s Frnn Day Week Mook & Days Agencs
Tasks

© AsriizoNe -
I MTWT E

at_set desy_wnknown 1nitia
cantaxt iisanle oad
nf oros

policyvers user
relect L
senber pelicy_capab es relabel

snon

EE |l liveumer@locathostrse . | @ GOTL - Mission - Mozil. | @ a compesed openar. || @ Geagle Calurar - Moz, =] =

Figure 7. An end-user view of the alternative run-time system configuration

At the conceptually lowest level, the advent of code randomization and multi-variant software
executables leads to the possibility of substituting essentially equivalent variants of the same
component, most obviously at build time. The decision to substitute one variant for another, or
the decision to allow the substitution, can be made through the entire range of development
times from acquisition time to run time. The substitution can be put into effect by a human actor
or by a software monitor following a security policy, either randomly or in response to specific
events in the environment.

Finally, an orthogonal consideration is the use of containment vessels to encapsulate
components or subsystems within a virtual machine, to monitor and control interactions among
components and subsystems in order to block attacks and protect vulnerable parts of a system.
Figure 8 shows a screenshot in ArchStudio of a design-time architecture utilizing eight
containment vessels, seven for individual components and connectors and the eighth for the
group of components and connectors associated with the OS.

152

Gnome Evolution

Cshell scripts \ IMAP/POPJSMTP
¥ i
Unix System Calls Unix System Calls Unix System Calls
- v —
& %E%/ I E—
Apache HTTP RHY Fe?gf; s wMail

Figure 8. A security configuration alternative for the run-time configuration instance that
encapsulates OA system components and connectors within different security containers (e.g.,
using virtual machines [Xen12] or virtual operating system instances via OpenVZ).

For security, the GPL’d Fedora can employ the SELinux capabilities to restrict all shell/operating
systems commands through mandatory access control and type enforcement (see Figure 8),
while other components can all be contained within within one (for minimal security
confinement) or more (for increased security confinement on a per component basis) Xen or
OpenVZ-based virtual machines (again, See Figure 8). The interoperability of SELinux and Xen
is now a common feature of many large Linux system installations (e.g., Amazon.com now has
more than 500K Linux systems running Xen) [Prg12, Xen12].

Discussion and Conclusions

Our goal in this study is to develop and demonstrate a new approach to address challenges in
the acquisition of secure OA software systems. Program managers, acquisition officers and
contract managers will increasingly be called on to provide review and approval of security
measures that are employed during the design, implementation, and deployment of OA
systems. We seek to make this a simpler and more transparent endeavor. This requires security
policies that are appropriate for review and approval during acquisition by people who may not
be expert in the specifics of how best to insure that secure systems will result. Our view is to
address this need by investigating how best to specify or model system security in ways that
can accommodate security as a continuous process that must be supported throughout the
system acquisition life cycle for OA systems [SA08, SA11].

153

Our efforts reported here reveal that it is possible to employ a scheme through which complex
OA systems can be designed, built, and deployed with alternative components and connectors
into functionally similar system versions, in ways that allow for overall system security through
the use of multiple security mechanisms. We described a scheme for how to realize and specify
such OA system configurations in ways that are inherently compatible with existing security
mechanisms, and this scheme does not assume that individual system elements must be
secure before inclusion into the secured system’s configuration. Central to our scheme is the
incorporation of software product line concepts that are integrated with security mechanisms in
a coherent way that is amenable to automated support and acquisition management. We also
provided a case study that reveals where and how we specify a secure OA enterprise system
product line in ways that can accommodate the diverse needs of software producers and
developers, system integrators, users and acquisition managers. What remains as an important
next step for this line of research effort is to more fully articulate how to simply and transparently
specify OA system security using streamlined security policies using the kind of system security
licenses we anticipate [SA11], as well as designing and developing a prototype automated
system that can support the modeling and analysis of OA system security policies, alternative
version OA system configurations, and different OA security licenses.

References

[AASQ09] Alspaugh, T.A., Asuncion, H. and Scacchi, W. (2009). Intellectual Property Rights
Requirements for Heterogeneously Licensed Systems. In Proc. 17th IEEE International
Requirements Engineering Conference (RE’09), 24—-33, Aug. 31-Sept. 4 2009.

[AAS11] Alspaugh, T.A., Asuncion, H. and Scacchi, W. (2011). Presenting Software License
Conflicts through Argumentation, Proc. 23rd. Intern. Conf. Software Engineering and Knowledge
Engineering, July 2011.

[AIS12] Alspaugh, T.A., and Scacchi, W. (2012). Licensing Security, Proc. Fifth Intern.
Workshop on Requirements Engineering and Law, 25-28, September 2012.

[ASA10] Alspaugh, T.A., Scacchi, W., and Asuncion, H. (2010). Software Licenses in Context:
The Challenge of Heterogeneously Licensed Systems, J. Association for Information Systems,

11(11), 730-755, November 2010.

[Bo06] Bosch. J. (2006). The challenges of broadening the scope of software product families.
Commun. ACM 49, 12 (December 2006), 41-44.

[Bo09] Bosch, J., (2009). From software product lines to software ecosystems. In: Proc.
13th Intern. Software Product Line Conference (SPLC'09), 111-119.

154

[BAO5] Breaux, T.D. and Anton, A.l. (2005). Analyzing goal semantics for rights, permissions,
and obligations. In Proc. 13th IEEE International Conference on Requirements Engineering
(RE'05), 177-188.

[BAO8] Breaux, T.D. and Anton, A.l. (2008). Analyzing regulatory rules for privacy and security
requirements. IEEE Trans. Software Engineering, 34(1), 5-20.

[CNO1] Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
Addison-Wesley, New York.

[DoD10] DoD Open Source Software (OSS) FAQ (2010). Frequently Asked Question regarding
Open Source Software (OSS) and the Department of Defense (DoD).
http://cio-nii.defense.gov/sites/oss/Open_Source_Software_%280SS%29 FAQ.htm

[DoD11] Department of Defense Strategy for Operating in Cyberspace, July 2011.
http://www.defense.gov/news/d20110714cyber.pdf

[FO4] Firesmith, D. Specifying reusable security requirements. Journal of Object Technology,
3(1), 61-75, Jan-Feb. 2004.

[Fr10] Franz, M. (2010). E unibus pluram: Massive-Scale Software Diversity as a Defense
Mechanism, New Security Paradigms Workshop (NSPW’10), Sept. 21-23, Concord,
Massachusetts, USA.

[Ga10] Garcia, P. (2010). Maritime C2 Strategy: An Innovative Approach to System
Transformation, Proceedings 15th. International Command & Control Research & Technology
Symposium, Paper 147, Santa Monica, CA.

[Gi11] Gizzi, N. (2011). Command and Control Rapid Prototyping Continuum (C2RPC)
Transition: Bridging the Valley of Death, Proceedings 8th. Annual Acquisition Research
Symposium, Vol. 1, Naval Postgraduate School, Monterey, CA.

[GPLO7] GNU General Public License. http://www.gnu.org/licenses/gpl.html

[H11] Attack of the Computer Mouse, The H Online Security, 29 June 2011.
http://h-online.com/-1270018

[LSM98] Loscocco, P., Smalley, S., Muckelbauer, P., Taylor, R., Turner, S. and Farrell, J.

(1998). The Inevitability of Failure: The Flawed Assumption of Security in Modern Computing
Environment. Proc. 21st National Information Systems Security Conference, 303-314.

155

http://cio-nii.defense.gov/sites/oss/Open_Source_Software_%28OSS%29_FAQ.htm
http://cio-nii.defense.gov/sites/oss/Open_Source_Software_%28OSS%29_FAQ.htm
http://www.defense.gov/news/d20110714cyber.pdf
http://www.defense.gov/news/d20110714cyber.pdf
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://h-online.com/-1270018
http://h-online.com/-1270018

[Navy10] Navy.mil (2010). PEO IWS Releases Open Architecture Contract Guidebook Update,
http://www.navy.mil/search/display.asp?story_id=53661. Also see Navy Open Architecture
Guidelines and related documents at https://acc.dau.mil/oa.

[NS87] Narayanaswamy, K. and Scacchi, W. (1987) Maintaining Configurations of Evolving
Software Systems, IEEE Trans. Software Engineering, 13(4), 323-334.

[Prg12] SELinux on Xen (2012). http://wiki.prgmr.com/mediawiki/index.php/SELinux_on_Xen

[SJW11] Salamat, B., Jackson, T., Wagner, G., Wimmer, C., Franz, M. (2011). Run-Time
Defense against Code Injection Attacks using Replicated Execution, IEEE Transactions on
Dependable and Secure Computing, Volume 8, No. 4, July 2011.

[Saw11] Sawers, P. (2011). US Govt. plant USB sticks in security study, 60% of subjects take
the bait. TNW: The Next Web, 28 June 2011,
http://thenextweb.com/industry/2011/06/28/us-govt-plant-usb-sticks-in-security-study-60-of-subj
ects-take-the-bait.

[SA08] Scacchi, W. and Alspaugh, T. (2008). Emerging Issues in the Acquisition of Open
Source Software within the U.S. Department of Defense, Proc. 5th Annual Acquisition Research
Symposium, Vol. 1, 230-244, NPS-AM-08-036, Naval Postgraduate School, Monterey, CA.

[SA11] Scacchi, W. and Alspaugh, T. (2011). Advances in the Acquisition of Secure Systems
Based on Open Architectures, in Proc. 8th. Annual Acquisition Research Symposium, Monterey,
CA, May 2011.

[SBN11] Scacchi, W., Brown, C., and Nies, K. (2011). Investigating the Use of Computer Games
and Virtual Worlds for Decentralized Command and Control, Final Report,

Grant #N00244-10-1-006, Institute for Software Research University of California, Irvine, July.
http://www.ics.uci.edu/~wscacchi/ProjectReports/NPS-Reports/DECENT.pdf

[Se08] Seacord, R. (2008). The CERT C Secure Coding Standard, Addison-Wesley, New York.
[Sh11] Shrobe, H. (2011). Secure Computing Systems, Presentation at the Darpa Colloquium
on Future Directions in CyberSecurity, November, Arlington, VA.

www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484460

[Sm12] Smalley, S. (2012). The Case for Security Enhanced (SE) Android,
https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf

[SSL99] Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen, D., and Lepreau, J.

(1999). The Flask Security Architecture: System Support for Diverse Security Policies, Proc.
Eighth USENIX Security Symposium, 123-139.

156

http://www.navy.mil/search/display.asp?story_id=53661
https://acc.dau.mil/oa.
https://acc.dau.mil/oa.
http://wiki.prgmr.com/mediawiki/index.php/SELinux_on_Xen
http://wiki.prgmr.com/mediawiki/index.php/SELinux_on_Xen
http://thenextweb.com/industry/2011/06/28/us-govt-plant-usb-sticks-in-security-study-60-of-subjects-take-the-bait
http://thenextweb.com/industry/2011/06/28/us-govt-plant-usb-sticks-in-security-study-60-of-subjects-take-the-bait
http://www.ics.uci.edu/~wscacchi/ProjectReports/NPS-Reports/DECENT.pdf
http://www.ics.uci.edu/~wscacchi/ProjectReports/NPS-Reports/DECENT.pdf
http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484460
http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484460
https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf
https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf

[STIG11] Security Technical Information Guide, Android 2.2 (Dell).
http://iase.disa.mil/stigs/net_perimeter/wireless/smartphone.html

[Stux11] Stuxnet (2011). Overview at http://en.wikipedia.org/wiki/Stuxnet. Also see M. Falliere,
et al., (February 2011), W32.Stuxnet Dossier, Version 1.4,
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_
stuxnet_dossier.pdf

[SWZ12] Sun, K., Wang,J., Zhang, F. and Stavrou, A. (2012). SecureSwitch: BIOS-Assisted
Isolation and Switch between Trusted and Untrusted Commaodity OSes. Proc. 19th. Annual
Network and Distributed System Security Symposium.

[Xen12] Xen Hypervisor Project, http://www.xen.org/products/xenhyp.html . Also see and
compare with OpenVZ, https://en.wikipedia.org/wiki/OpenVZ

[YCO06] S. S. Yau and Z. Chen. A framework for specifying and managing security requirements

in collaborative systems. In Proc. Third International Conference on Autonomic and Trusted
Computing (ATC 2006), 500-510, 2006.

157

http://iase.disa.mil/stigs/net_perimeter/wireless/smartphone.html
http://iase.disa.mil/stigs/net_perimeter/wireless/smartphone.html
http://en.wikipedia.org/wiki/Stuxnet
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.xen.org/products/xenhyp.html
https://en.wikipedia.org/wiki/OpenVZ
https://en.wikipedia.org/wiki/OpenVZ

Chapter 9.

Ongoing Software Development without Classical
Requirements

158

Chapter 9.

Ongoing Software Development without Classical
Requirements’

ABSTRACT

Many prominent open source software (OSS) development projects produce systems without overt
requirements artifacts or processes, contrary to expectations resulting from classical software
development experience and research, and a growing number of critical software systems are
evolved and sustained in this way yet provide quality and rich functional capabilities to users and
integrators that accept them without question. We examine data from several OSS projects to
investigate this conundrum, and discuss the results of research into OSS outcomes that sheds light
on the consequences of this approach to software requirements in terms of risk of development
failure and quality of the resulting system.

INTRODUCTION

In 2002 one of us (Scacchi) published a study of requirements practices and artifacts in four open
source software (OSS) development communities [Sca02]).This was the first systematic study to
show that OSS system and development processes do not rely on what may be termed classical
requirements artifacts and processes, namely those involving problem-space requirements in a
document or repository evaluated for completeness and internal and external consistency. Others
have since reported similar results [Ger03, Nol08, NoL10]. Yet there are successful, ongoing OSS
projects with users numbered in the millions, and hundreds of OSS systems relied on as critical
infrastructure, such as GNU/Linux, the Apache HTTP server, the Mozilla Firefox Web browser, the
PostgreSQL database system, and the Eclipse development platform to name a few [DRW04,
MFHO02, Pos13, Sta07].

From the point of view of a classically trained software developer and requirements practitioner and
researcher such as the other of us (Alspaugh), this is unexpected. The broad consensus among
software experts and researchers over recent decades has been that devoting appropriate
attention to requirements processes and artifacts is essential to project success [BRo75, GaW89,
Jac95, Lam09, Som04, vaV00], and that failure to do so risks undesirable outcomes such as:

° a product that fails to meet stakeholder needs,

) a product that does not exhibit necessary levels of reliability, evolvability, or other software
qualities,

° schedule slips and budget overruns, or

° in extreme cases failure to produce any product at all.

' This chapter is based on earlier version appearing in Proc. 21st. IEEE Intern. Conf. Requirements Engineering, Rio de
Janeiro, Brazil, 165-174, 15-19 July 2013.

159

How can it be that OSS development produces good software?

In the remainder of the paper we explore this conundrum. We first present a motivating example,
Brooks’s thoughts on the success of Linux, and then elaborate what we mean by “classical
requirements artifacts and processes”, hereafter abbreviated as Classical Requirements, before
describing our study in the next section. We then turn to examining the OSS artifacts and
processes that appear to serve in the place of Classical Requirements, using data from our
previous work and work reported by others. We find that the overwhelming majority of
requirements-like artifacts identified by ourselves and others may be characterized as what we
term provisionments, which state features or qualities in terms of the attributes provided by an
existing software version, a competing product, or a prototype produced by a developer advocating
the change it embodies. The processes involving these artifacts resemble or in some cases are
indistinguishable from the bug reporting, tracking, and response processes found in closed source
software (CSS) development. We discuss several contexts in which provisionments appear
common and are arguably appropriate: OSS of course, software game mods, and open
architecture software ecosystems.

Finally, we place our work in the context of related work, discuss several questions of interest, and
then conclude this chapter.

A MOTIVATING EXAMPLE: BROOKS ON LINUX

In reflecting on Raymond’s description Raymond (2001) of the open source process producing
Linux, Brooks observes of this “marvelously functional and robust operating system” that “for Linux
a functional specification already existed: Unix” (Brooks, 2010, page 56). This is a curious
statement, since the development of Unix itself displayed characteristics of OSS development
including:

° software developed for the developers’ own use rather than for an external client and users,
° a strong emphasis on extensibility, and
° no overt requirements artifacts or process preceding development.

Saying that Unix (specifically the Unix kernel) provided the requirements for Linux does not explain
the problem; it merely moves it from Linux to Unix. The Unix kernel is marvelously functional and
robust, too; was it developed using a functional specification or other Classical Requirements?

If so, supporting evidence is in short supply. Ken Thompson wrote the initial version of Unix in four
weeks in the summer of 1969, yet the first edition of the Unix manual was dated 3 November 1971
Salus [Sal94] notes “the only way you could learn [the Unix system] was to sit down with one of the
authors and ask questions.” Ritchie [Rit84] recalls that in 1969 “Thompson, R. H. Canaday, and
Ritchie developed, on blackboards and scribbled notes, the basic design of a file system that was
later to become the heart of Unix”; not the requirements, but the design. We have searched the
writings of the creators of Unix and researchers reporting on it for Classical Requirements without
finding evidence of it.

160

It appears that it is indeed possible to produce a marvelously functional and robust operating
system without the aid of a functional specification or other Classical Requirements.

Brooks goes on to note, as we and others have, that OSS development works because the
developers are users, saying “The whole requirements determination is implicit, hence finessed.”
He finds no contradiction in ongoing development without Classical Requirements once initial
development is successfully complete.

CLASSICAL ARTIFACTS AND PROCESSES

Researchers and practitioners have developed many types of requirements artifacts and many
requirements processes. We do not consider any of them in detail here. Instead we focus on three
characteristics shared by nearly every such approach with which we are familiar:

1. a requirements document or central requirements repository, defining the system
requirements and providing a criterion for whether a particular candidate requirement is or is not a
requirement for the system;

2. requirements that are preferentially described in terms of the problem space rather than the
solution space; and
3. requirements processes for examining the requirements document/repository for

completeness, internal consistency, and external consistency with the domain and stakeholder
needs.

These characteristics define what we term in this paper Classical Requirements.

We focus on these characteristics because they figure prominently in many influential requirements
approaches and in the requirements practices of working CSS developers we have known or
interviewed, and because convincing arguments have been made from them to project success
and product quality [Bro76, GawW89, Jac95, Lam09, Som04, vaV00]. Brooks [Bro87] famously says:

The hardest single part of building a software system is deciding precisely what to build. ... No
other part of the work so cripples the resulting system if done wrong. No other part is more difficult
to rectify later.

Boehm [Boe76] asserts, supported by data:

Clearly, it pays to invest effort in finding requirements errors early and correcting them in, say, 1
man-hour rather than waiting to find the error during operations and having to spend 100
man-hours correcting it.

Lamsweerde [Lam09] characterizes requirements errors as “numerous and persistent” and as the
most expensive and dangerous of software errors. Gause and Weinberg [GaW89] note “Obviously,
requirements are important because if you don’t know what you want, or don’t communicate what
you want, you reduce your chances of getting what you want.”

161

The particular form of the requirements is not material to our work. We note that the prominence
and importance of particular requirements artifacts and processes often vary depending on the type
of system. Not all are appropriate for development of every system, but many situations can benefit
from an appropriately chosen selection of them. Some (overlapping) types and corresponding
artifact or process choices might be:

° Embedded systems, in which software is a component of a larger hardware system — a
state-based specification;

° Real-time systems that must meet specific often-inflexible timing constraints — a temporal
logic specification;

° Critical or high-assurance systems, for which what is required and what is acceptable must
be determined with precision and the cost of failure is high — a model-checkable specification and
validation by stakeholders;

° Systems that interact significantly with other automated systems — a formalized
specification checked for consistency and completeness;

° Systems that play a role in specific organizational processes — stakeholder analysis;

° Systems that address novel problems or address problems in a novel way — processes

that encourage exploration of the problem space.

Examine the conundrum of OSSD
producing high-quality software apparently
without using Classical Requirements

! AN

Goal

Questions

RQ1: How extensively
does OSSD use
Classical Requirements?

RQ2: What does OSSD
use instead of Classical
Requirements?

/ ~

/ P

Metrics

Artifacts and processes
judged by Classical
Requirements standards

Frequency of Classical-
Requirements-like
artifacts and processes

Instead of
Classical

We note that the use of Classical Requirements in these situations and others may be connected

Figure 1. Goal Question Metric model

to the typical CSS context in which

the system is produced by a development group for a client outside that group,
most or all of the system’s expected users are also outside that group,

the developers may or may not have expertise in the problem domain, and

the system is developed against a budget and a schedule.

Requirements

The requirements state the expectations and commitments of the client on the one hand and the
development group on the other. The client balances the benefits of the specific proposed system
against the cost of developing it and the wait until it is ready. The development group evaluates
whether the budget, resources, and schedule are appropriate for the work involved. The two sides
explore, negotiate, and (ideally) agree on a set of requirements. Both sides can then make plans
based on specific criteria for acceptance.

METHOD
Research Questions and Metrics

Our goal is to address the apparent conundrum of OSS development (OSSD) that does not use
Classical Requirements yet successfully produces high-quality software. We apply the Goal
Question Metric approach [BCr94] to produce a measurement model operationalizing our goal into
research questions, and associating each question with data that can be evaluated (Figure 1).

° (RQ1) To what extent do OSS projects in fact use Classical Requirements?
° (RQ2) Where OSS projects do not use Classical Requirements, what artifacts and
processes are used instead, if any?

Sources of Data

We address RQ1 and RQ2 using data and results from our previous work [Sca02, Sca09] and from
other published research on requirements in OSSD. For an introductory study we find this
appropriate, in place of collection of a new set of data. A first step is to identify such research; there
is not much. We used work by Noll and Liu [Nol07, Nol08, NoL10] which provides both analysis
and some raw data, and work by German [Ger03] providing analysis only. We also examined the
data we found while investigating Brooks'’s statement that Unix provided Linux’s function
specification, using it primarily to cross-check where possible conclusions we drew from the other
data sets. In some cases we followed up on specific data items and examined them in the original
context. In a few cases we extended the data with newly-collected data, as for example that shown
in Figure 2.

Validity

In this subsection we discuss the internal and external validity of the study, and threats to its
validity.

1. Internal validity: Internal validity is the soundness of the relationships within a study. Our
study examined data and analysis from different researchers, then merged them in order to apply
our metrics. We examined original data where possible in order to apply metrics more uniformly.
We looked first for overt Classical Requirements, then for requirements-like artifacts and
processes, and finally for artifacts and processes that appeared to be used in place of
requirements. In order to systematize our study, we coded and categorized each such instance,
following standard qualitative practice [Cre03].

163

2. External validity: External validity is the degree to which the results from the study can be
generalized. Identification of successful OSS systems without overt Classical Requirements
provides an existence proof that software can be successfully developed without it. Other results
are more difficult to generalize reliably; for example, the study cannot provide strong support for a
hypothesis that Classical Requirements does not contribute to reducing the risk of project failure,
nor to increasing the probability that stakeholders will be satisfied. The study also does not provide
strong support for hypotheses on the incorporation of OSS development approaches into CSS
projects, as our study examines only OSSD data and analyses; these are intriguing and
investigation of them remains as future work.

3. Threats to validity: We examined every study we found that addressed OSSD requirements,
eliminating any possibility of selection bias; however, the number of such studies is quite small
(five), making it more difficult to generalize our results and increasing the possibility that other
OSSD projects do not fit our conclusions.

Other practitioners and researchers might apply different standards, for example with a broader or
stricter definition of which instances qualify as Classical Requirements. We minimized this by
defining Classical Requirements explicitly and in abstract terms. This threat affects only RQ1.

OSS ARTIFACTS AND PROCESSES
Requirements-Like Artifacts and Processes

We present several examples of specific requirements-like artifacts and processes we identified in
our study. Perhaps the most common requirement-like OSS artifacts are isolated feature requests
or bug reports submitted to tracking systems like Bugzilla (Figure 2), and discussed there or on
email lists or electronic bulletin boards. An example is this proposal for OpenEMR [NoL10]:

You could add a link to the existing superbill page which would open a new browser window/tab
with a printable version that meets your criteria. This way, you could leverage existing code and
probably not have to add a table. | am thinking of something similar to printable links elsewhere in
the program, like in reports and patient report.

A second example is shown in Figure 2. Here a Firefox feature request is being discussed, in
conjunction with possible changes to the implementation and architecture. Comment 4 may be
taken as stating a requirement that Firefox provide the Profiler, specifically, and more generally that
Firefox provide a specific kind of results (those that the Profiler currently provided, we infer). This
fairly explicit requirement is stated in solution-space terms (what Profiler provides) rather than the
corresponding problem-space terms; of course, this is probably considerably more compact. The
discussion is focused on architecture and implementation issues involved in the requirement. Other
requirements are considered only indirectly if at all, for example if the goal of replacing JSD1 with
JSD2 + RDP is taken to imply a here-unstated software quality requirement.

A third example is tabbed browsing, a Web browser feature little known not so many years ago, but

now so nearly universal that the name “tabbed browsing” has become a token representing a
complex of properties and user stories now assumed to be obvious and requiring no explanation.

164

Mozilla/Firefox tabbed browsing appears to have first been proposed in a one-sentence scenario of
use (“One thing that | would really want to see is the ability to open a link in the new window in
background . . .”) posted to a Mozilla newsgroup, which was immediately followed by a post
beginning “Have you tried tabbed browsing [in the Opera web browser]?” [Nol07]. Both these are
provisionments; the first cites current system behavior and describes a difference from it, while the
second cites another system that exhibits the behavior referred to.

Each feature request or bug report can be taken to imply a requirement, but in themselves they
rarely constitute a Classical Requirements artifact. In the examples listed above, as for most
requirements-like artifacts we identified, the artifacts are neither integrated into a central
requirements document/repository, described in terms of the problem, nor being examined in the
context of other requirements. Our study indicates that the OSS projects in question do not use
Classical Requirements.

An OSS Requirements Document

Our data sources included one example identified as a requirements document:
“Firefox2/Requirements” [MoF06] , discussed by Noll [Nol08]. The document is interesting to us in
two ways.

First, our examination of the document found the items are expressed in general rather than
specific terms, as in this representative example “[The system] will be optimized and tuned for
general web browsing use cases”, with the specifics no doubt proposed, discussed, and agreed on
through project mailing lists and discussion boards as in the examples in the previous section. We
also note all but one are stated as a difference from the previous Firefox version, using phrases
such as “will update” and “will improve”, in other words as provisionments.

Second, and perhaps more significant, this is the only presumptive requirements document or
repository our research identified in our own searches and in related work on requirements in OSS.
While its existence indicates that OSS development can tend toward Classical Requirements, its
apparent uniqueness highlights our general finding that OSS development does not make use of
Classical Requirements.

165

Jan Honza Odvarke 2012-10-04 08:24:23 PDT Description

One of the dev-tools team goals is to get rid of JSD1 and use only JSD2 + RDP.
However, JSD1 also includes profiling features (COLLECT PROFILE DATA flag) that is
used e.g. in Firebug. These API should be replace by new API so, Firebug and other
tools can continue to provide the same results.

Honza

Jan Honza Odvarke 2012-10-04 08:28:52 PDT Comment 1
Example of Firebug profiler output

1) Install Firebug:
https://addons.mozilla.org/en-us/firefox/addon/firebug/

2) Load this page:
https://getfirebug.com/tests/head /console/api/profile.html

Follow instructions on the page

Honza

Jim Blandy :jimb 2012-10-09 09:28:22 PDT Comment 2

It's worth observing, for the long term, that this data could be trivially provided
by the Debugger API, but Debugger is not suitable here because it imposes the
overhead of debug mode --- even though this application would never need the
features that make debug mcde necessary.

In other words, if debug mode could be turned on and off with debuggee frames on
the stack, we could simply use Debugger here.

Rob Campbell [:rc] (:robcee) 2012-11-01 15:11:34 PDT Comment 3
One other option, how necessary is this for Firebug? If we provided an alternatiwve

Profiler would that be sufficient? It seems costly to keep JSD1 hanging around for
this one feature if alternatives are available.

Jan Honza Odvarke 2012-11-02 00:13:28 PDT Comment 4
{In reply to Rob Campbell [:re] (:robcee) from comment #3)
> One other option, how necessary is this for Firebug?

I think that existing Firebug users would complain if the
Profiler is removed or providing different kind of results.

Figure 2. Discussion of a feature request in the Firefox Bugzilla, “Bug 797876 — Introduce new
API for JS content Profiling”

PROVISIONMENTS

As stated in the Introduction, a provisionment is a statement of features or qualities in terms of the
attributes provided by an existing software version, a competing product, or a prototype produced

166

by a developer advocating the change it embodies. Most provisionments we encountered only
suggest or hint at the behavior or quality in question; the expectation seems to be that the audience
for the provisionment is either already familiar with what is intended, or will play with the cited
system and see the behavior or quality in question firsthand.

In our study, we saw provisionments being used for requirements or requirements-like artifacts in
two ways: either directly as a specification of behavior or quality, or as a starting point in a
specification of behavior or quality differing in stated ways from that expressed by the
provisionment.

The next section provides examples of both types. Firefox Bugzilla comment 4 in Figure 2 “I think
that existing Firebug users would complain if the Profiler is removed or providing [sic] different kind
of results” uses a provisionment directly (though stated in the negative), while the OpenEMR
proposal uses a provisionment (“the existing superbill page”) indirectly as a starting point for a
difference (“You could add ...").

A provisionment is distinct from a feature, a quality, a bug report, and similar entities in that each of
those is something to be expressed, while a provisionment is a way of expressing something. In
our study we found many feature requests and bug reports expressed using provisionments; OSS
project archives appear to teem with feature requests and bug reports, and the majority we
examined were expressed using provisionments. Statements of qualities were much less common
but were also often expressed with provisionments.

SOME EXAMPLE CONTEXTS

We discuss three contexts highlighting the interplay between requirements, provisionments, and
architecture: open source software, here discussed at greater length; software games, some of
which are themselves OSS and many of which support modifications that exhibit OSS
characteristics, whether the underlying game is OSS or not, and are described using provi-
sionments; and OA systems of complex components, for which provisionments mediated by
architectural configurations play prominent roles.

Open Source Software

OSS requirements, to the extent that they can be identified, tend to be distributed across space,
time, people, and the artifacts that interlink them. OSS requirements are thus decentralized—that
is, they are decentralized requirements that co-exist and co- evolve within different artifacts, online
conversations, and repositories, as well as within the continually emerging interactions and
collective actions of OSSD project participants and surrounding project social world. To be clear,
decentralized requirements are not the same as the (centralized) requirements for decentralized
systems or system development efforts. Traditional software engineering and system development
projects assume that their requirements can be elicited, captured, analyzed, and managed as
centrally controlled resources (or documentation artifacts) within a centralized administrative
authority that adheres to contractual requirements and employs a centralized requirements artifact
repository—that is, centralized requirements. In this way as in others, OSSD projects represent an

167

alternative paradigm to that long advocated by software engineering and software requirements
engineering community [Sca09].

By the standards of classical software development and requirements practice, OSS requirements
and processes are not satisfactory. Requirements are expressed indirectly at best; they are
scattered across mailing lists, discussion boards, and bug trackers rather than collected in one
place; they appear to be integrated only in the implementation of the system they refer to; they are
almost universally stated in solution terms, not problem terms; once stated and discussed, they
rarely appear to be referred to.

An RE researcher or practitioner might well look at dispersed statements such as these and simply
conclude that requirements were for practical purposes absent by any reasonable or ordinary
standard; if such decentralized, indirect requirements were used for a classical software
development project, it would be judged to be at high risk of failure.

One would think therefore that many open source projects should fail—and they do, in large
numbers. About 59% fail according to one study [WiC10], roughly double the 31% rate at which
classical projects are reported to fail according to a 1994 survey [TSG94]. Of course failure means
something different for an OSSD project; there is no concept of over budget or behind schedule,
and failed OSSD projects tend to wither away rather than being cancelled. Nevertheless, the
comparison is startling.

Though most OSSD projects fail to produce a sustained sequence of widely-used software system
releases, a substantial number are striking successes. Hundreds of OSSD projects are critical in a
number of areas:

° the operation of the World-Wide Web: (the Firefox and Chrome web browsers and the
Apache web servers and web services infrastructure);

interactive software development (Eclipse and NetBeans development environments);
customer relationship management (SugarCRM);

database management systems (PostgreSQL, MySQL);

operating systems (GNU/Linux, Darwin/OSX);

office communications systems (Asterix), and many more.

Clearly OSSD processes are capable of producing high quality software systems, despite scanty
requirements artifacts and processes. We see the use of provisionments to make statements about
the functionality of current and future system versions as one key factor, particularly convenient for
an ongoing project producing version after version, each of which is described not in absolute
terms but in terms of its differences from the previous one. Others may include developing an
(informal) architecture and reasoning about it, in place of developing requirements and reasoning
about requirements; using extensibility (see below), developer prototypes, and frequent releases of
new system versions to explore the problem space by experimenting with alternative solutions
within it; the fact that OSS developers are also users of the systems they develop; and the
extensive discussions of system issues and proposals, characteristic of OSSD projects, in online
forums that are public and persistently available.

168

We note that many prominent OSS systems are strongly extensible, with mechanisms by which the
core functionality of the system may be extended independently, without affecting the system core.
These mechanisms allow end-users to customize their copy of a system to suit there own needs
and preferences, and in many cases allow developers to expeditiously prototype candidate
provisionments. Examples of extensibility include Unix, supporting the addition of shell scripts,
commands, libraries, and device drivers; Firefox, Eclipse, jEdit, and others, supporting the addition
of plug-ins; and Firefox and jEdit again, and others, supporting the use of scripting languages. In
addition to satisfying the system quality requirement (QR) of extensibility, extension mechanisms
can also contribute to the requirement, for project success and continuation, to bring new
contributors into the project community. Writing extensions for one’s one copy of a system is an
easy and appealing first step towards making more substantial contributions to the project that
produces the system.

Extensibility and several other quality requirements will be seen to play important roles in games
and OA systems too.

Viewing OSSD from a classical RE standpoint, we still note some concerns. Classical RE has
approaches for identifying relevant stakeholders, and we see no corresponding practice in OSSD.
We are concerned that OSSD projects will tend not to identify stakeholder roles in which the
stakeholders are not developers and (for whatever reason) not motivated to come forward and
contribute. We are also concerned about the effectiveness of OSSD in exploring the problem
space, as opposed to the solution space. If such exploration is occurring, it is doing so
inconspicuously.

We also do not claim that developers can easily see into their own goals and needs; they are only
human, after all. We note only that what corresponds to elicitation may be more straightforward
since the communication step vanishes.

Software Game Mods

Many software games are extensible and thus can be modified by their users to produce new
games, ranging from simple modifications obviously similar to the host game to others almost
unrecognizable as related to their hosts.

User modified computer games, hereafter referred to as game mods, are a leading form of user-led
innovation in game design and game play experience. Game mods, modding practices, and
modders are in many ways quite similar to their counterparts in the world of OSS development,
even though they often seem isolated to those unaware of game software development. Modding is
increasingly a part of mainstream technology development culture and practice, and especially so
for games. Modders are players of the games they reconfigure, just as OSS developers are users
of the systems they develop. There is no systematic distinction between developers and users in
these communities, except for the many users/players that contribute little beyond their usage and
their demand for more such systems. Modding and OSSD projects are in many ways comparable
experiments to prototype alternative visions of what innovative systems might be in the near future,

169

and so both are widely embraced and practiced as a means for learning about new technologies,
new system capabilities, new working relationships with potentially unfamiliar teammates from
other cultures, and more [Sca07, Sca11].

Game conversion mods are perhaps the most common form of game mods. Most such
conversions are partial, in that they add or modify in-game characters, game resources such as
weapons, potions, or spells, play levels, zones, landscapes, game rules, or play mechanics. In
these cases the conversion can often best be described in terms of provisionments of the host
game. More ambitious modders go as far as to accomplish either total conversions that create
entirely new games from existing games of a kind that are not easily determined from the
originating game, or even parodies that implicitly or explicitly spoof the content or play experience
of one or more other games via reproduction and transformation.

One of the most widely distributed and played total game conversions is the Counter-Strike (CS)
mod of the Half-Life first-person action game from Valve Software. The CS mod attracted millions
of players preferring to play it over the original Half-Life game. Other modders began to further
convert the CS mod in part or fully, to the point that Valve Software modified its game development
and distribution business model to embrace game modding as part of the game play experience
provided by the Half-Life product family. Valve has since marketed a number of CS variants. As of
2011, Valve Software had sold over 25M copies of CS and its descendants [Mak11].

Other player-modders have produced meta-mods, or mods that can themselves be modded, such
as Garry’s Mod of Half- Life 2. Garry’s Mod has evolved into a modding toolkit used in hundreds of
game conversions and producing inventive game play mechanics. Game conversions can also
exhibit innovations in game design and re-purposing. The game Chex Quest is a conversion of the
first-person shooter game Doom into a “non-violent” game distributed in Chex cereal boxes and
targeted to young people and gamers (Figure 3).

Extensibility to support the creation of mods has become a necessary feature for a successful
game.

Open Architecture Software Ecosystems

As we note in our previous work Alspaugh et al. [AAs09, AAS13, ASA10, ScA12a], a substantial
number of development organizations have adopted a strategy in which a software-intensive
system is developed with an open architecture (OA) [ORe00, ScA08], integrating components that
may be OSS or proprietary with open application programming interfaces (APIs). Such systems
evolve not only through the evolution of their individual components, but also through replacement
of one component by another, possibly from a different producer or under a different license. With
this approach, the development organization becomes an integrator of components largely
produced elsewhere and interconnected through open APIs, with shim code added as necessary to
achieve the desired result. This approach allows development of large systems of complex
components, with relatively little coding needed. Requirements artifacts and processes are not
prominent here. Instead, we see a prototyping process and a system described in terms of
provisionments rather than requirements.

170

H S =
SPREHAD: (L !

T62100%70 =3[

ARCN NERITH pp—p—_—

Figure 3. A screenshot of Chex Quest, a nonviolent mod of the Doom game
(image courtesy of user Vulpis Alba).

One reason that reasoning with provisionments is appealing for OA systems is that the integrator
cannot choose arbitrary functional capabilities. Instead, there are a limited number of alternative
components to select among, and one must simply take what is available. As the components
evolve the same situation recurs, in that the functional capabilities may change from version to
version, and the integrator must work with what is available. The most straightforward approach is
simply to reason based on what the selected components provide. A second reason is that
individual components such as Firefox do not come with Classical Requirements that could be
used to reason about requirements for the overall system.

The possible components that can be incorporated into a system define an ecosystem for it. Figure
4 sketches a potential ecosystem for a system composed of a web browser, word processor, email
and calendar component, and any scripts and shim code the integrator produces to knit them all

together and achieve the desired functionality. If we hypothetically consider the requirements of the

171

composed system, we note that the requirements would necessarily be decentralized, since
whatever requirements process we used for the overall system would be independent of that used
for each individual component. If we were able to get requirements for each component (which in
general is not possible) and integrate them to arrive at requirements for this version of the overall
system, this central requirements artifact would last only until the next component version was
released, sending the situation back to decentralized requirements.

In practice, integrators appear follow the lead of the developers of the OSS components, and work
with provisionments. The acceleration of evolution caused by integrating the independent supply
chains for the components currently selected is driving a need to understand decentralized
requirements and reason in terms of decentralized provisionments.

~

~

~

~~

Firefox Opera ||AbiWord Ggggsle Cfa;?;ngcgg " E\C/"gﬁj;.'sn Fedora ||Windows 0OSX
' k)
Design-time
architecture:
Browser,
WP,
calendar
Instance Instance Instance Instance
architecture: architecture: architecture: architecture:
Firefox, - Firefox, - Firefox, i Opera, —
AbiWord, Google Cal., Google Cal., Google Docs,
Evolution, Google Docs, Google Docs, Evolution,
Fedora Fedora Windows 0SX

Figure 4. Ecosystem from which instantiations of the system architecture can be drawn

RELATED WORK

172

Requirements in open source development

Scacchi was the first to systematically observe and posit the idea that OSS system and
development processes do not rely on producing and review of formal functional requirements
documents Scacchi (2002). Instead, OSS development projects commonly rely on “software
informalisms,” no matter what the application domain, nor who the developers may be. Such
informalisms are rendered within online artifacts like bug reports, messages in a discussion forum,
online chat transcripts, etc. that developers use to communicate their interests about different
aspects of a system, its development, its user experience, or its need to evolve in some way. He
found that OSS requirements often were described after the functionality they prescribe had
already been implemented and found to be viable or practical—requirements after the fact. By
2009 Scacchi [Sca09] had identified a set of twenty-odd different types of informalisms in use
across different open source development (OSSD) projects, such that a given project might
routinely use a signature set (or genre ecology [Spi03]) of 5-10 informalisms, with different projects
utilizing different mixes of software informalisms so that no specific set seems to dominate. The
informalisms identified were (a) project email; (b) discussion forums, electronic bulletin boards, and
group blogs; (¢) news postings; (d) instant messaging; (e) project digests summarizing (a)-(d); (f)
usage scenarios as linked Web pages or screenshots; (g) how-to guides; (h) to-do lists; (i)
Frequently Asked Questions lists; (j) project Wikis; (k) traditional system documentation; (1) external
publications; (m) project licenses; (n) open software architecture diagrams; (0) intra-application
functionality in scripting languages; (p) externally developed software modules (“plug-ins”™); (q)
software modules reused from other OSS projects; (r) project Web sites or portals; (s) project
source code Web directories; (t) project repositories such as CVS; (u) bug reports; and (v) issue
tracking databases such as Bugzilla. Provisionments may be found in many of these
informalisms—especially (a-e), (u), and (v)—but the category of provisionments is orthogonal to
them and, we believe, significant in itself.

German [Ger03] described five sources for requirements for the GNOME project, based on his
experience as a contributor. He terms them vision (a leader proposes a list of requirements),
reference application (an outside system is to be imi- tated), asserted requirement (arising from
discussions among contributors), prototype (an implementation illustrating a proposed feature to be
discussed), and post-hoc requirement (like a prototype, but offered as a ready-to-integrate
implementation of a feature the contributor desires). Provisionments are most closely involved with
German'’s prototypes and post-hoc requirements.

Noll [Nol08] examined the published requirements document for the Web browser version Firefox
2.0, identifying where each of the 14 items was first mentioned, how it was implemented, and why
each was initially proposed. Eight were asserted by developers from their personal experience or
knowledge of user needs, three were requested by users, and one was driven by a feature in
competing browsers. This highlights that although OSS developers are themselves users,
non-developer users also play a role in OSS evolution.

Noll and Liu [Nol10] also examined requirements for the OpenEMR electronic medical records

project, finding comparable pro- portions contributed by developers vs. users. Each feature was
briefly discussed in the project’s online developers forum, which they characterized as

173

requirements validation and agreement. We found the OpenEMR requirements or features to be
more difficult to classify, for example “Support for deleting immunizations”, and hypothesize that
each acts as a token for the corresponding forum discussion.

Requirements and architecture

The close relationship between requirements and architecture suggests that the affordances
provided by requirements in classical development may somehow be provided through
architectural means in OSSD.

Nuseibeh [Nus01] proposed the Twin Peaks model as an expression of the interrelation of
requirements and architecture: problem concerns and solution concerns cannot in general be
addressed in sequence, rather needing to be addressed concurrently. The model conveys a
back-and-forth alternation treating both requirements and architecture in increasing detail.

De Boer and van Vliet [dVb09] argue that the traditional distinction between requirements and
architecture is misguided, and that there is no fundamental difference between them, saying
“architecturally significant requirements [ASRs] are in fact architectural design decisions [ADDs],
and vice versa”. Both are optative statements characterizing what is desired, and by their nature
earlier optative statements constrain what later optative statements can be made.

Alspaugh et al. [DSAQ7] found that of systems with published development artifacts, only toy
systems for textbooks have both complete requirements and a complete architecture. Of the
remainder, roughly half had a complete architecture, another quarter had complete requirements,
and the remainder had neither. We believe this occurs because requirements and architecture are
to a certain degree redundant, so that developers have no need to develop both fully.

All this work suggests that if expected OSS requirements artifacts or processes do not appear to be
present, the purposes of those artifacts and processes may be being achieved through
architectural means.

DISCUSSION
Are OSS Requirements “Good”’?
This is a fascinating question to which we have no definitive answer.

In one sense, the answer is “most definitely not”. The previous career of one of us (Alspaugh)
included work as a developer, team lead, manager, and consultant occasionally called in to help
struggling development projects. In each case the struggles could usefully be ascribed to problems
with the project’s requirements artifacts and processes, in that attacking those problems brought
the projects in each case onto a path that could (and usually did) lead to success, and the OSS
requirements-like artifacts and processes we examined evoke the problematic ones of those
projects.

174

However, the OSS data we examined in this study was not from troubled projects but from
flourishing ones. We conclude that at least some of the work that Classical Requirements
accomplishes is being done in another domain with processes appropriate to that domain; our
hypothesis, potentially supported by some of the data we examined, is that some of it is being done
in the software architecture domain, through processes that are more what we would expect
though here again the artifacts do not appear to be overt.

We note again that CSS bug reports and feature requests and the processes for managing them
look much like those for OSS.

Centralized vs. decentralized requirements

Rather than a single central requirements or provisionments repository or document, updated as
necessary, OSS projects almost universally appear to use email threads, electronic bulletin boards,
and similar sequences of archived interactions as a record of them (and of virtually everything else,
it appears).

This choice prevents overall consideration and analysis of the provisionments as a whole.
However, it may support a deeper goal for OSSD projects: creating and sustaining a community of
contributors. The ongoing conversation, archived online so potential contributors can dip into it to
see if interests them, provides an ongoing sequence of nudges to participate and a continuing
reinforcement of community membership to those who do participate. This may more valuable and
fundamental than any incremental benefits likely to accrue from unifying the information into a
single document.

Is OSSD efficient?

There does not appear to be data on this question yet. It is not clear that successful OSS projects
produce results as expeditiously or more so than CSS projects do; they may well be slower in
calendar time or take more person-months. Certainly the importance of schedules and budgets in
CSS could drive more efficient development. Brooks [Bro10] notes that one would expect
communication to be a more serious bottleneck for OSS than for CSS, though we note this may be
ameliorated by the reduction or elimination of communication between developers and
stakeholders, since OSS developers are themselves users and stakeholders.

Would OSS Benefit from classical requirements engineering?

Perhaps, but the answer is not clear; at this stage, we can only speculate. If the user-developers
are identifying stakeholder needs sufficiently well and those needs are addressed sufficiently well
by the incremental revisions that appear to characterize OSSD, then probably not. However if the
needs would be best addressed by a reconsideration of the problem and a more radical change in
the solution, Classical Requirements has advantages to offer.

We note the truism that a new solution to a problem opens the eyes of its users to new problems
not previously considered. A product that is evolving at a sufficiently rapid pace (and OSS systems

175

are considered to evolve rapidly) may be obtaining many of the benefits of problem-space
requirements processes through solution-space development processes.

Are Provisionments Advantageous?

We see an increasing trend of rapidly-evolving systems described and reasoned about in terms of
whole-system provision- ments, or of component provisionments related through the system’s
architecture [AAS09, AAS13, ASA10, ScA12a]. This may not only be increasingly typical but also in
fact the appropriate approach for reasoning about a stakeholder problem and complex system
solution, that is to be implemented by combining complex components. Such an approach
manages complexity by reasoning in terms of the capabilities of known (though often themselves
complex) components, arranged in architectural configurations in which the capabilities combine to
address a problem. It manages ongoing evolution by describing future behavior in terms of
differences from past behavior.

Are Provisionments Limited to OSS?

No, they are not; we have seen them in our work as professional CSS developers, most
prominently in bug reports and to a lesser extent in feature requests where they serve the same
purposes as in OSS.

Some professional CSS developers with whom we have discussed this research report that the
requirements they work with might frequently be more accurately described as provisionments. And
as we noted earlier in this chapter, OA system development often appears to be guided by
reasoning with provisionments, whether the integrators are an OSS project or a proprietary
development group, and with good cause.

As we and many other researchers have noted, there is now far more data available from OSS
development projects than there is from CSS projects, to which researchers typically have limited
or no access. We recall the challenges we have faced in attempting to get access to proprietary
development requirements in order to do research. Based on our results so far, we expect
provisionments will be found to be in wide use in OSS development, or even in virtually universal
use since they align so naturally with reported OSSD processes. It will be more difficult to assess
the degree to which provisionments are used in CSS development, but based on what we have
learned, we believe their use is widespread there also.

CONCLUSION

In this paper we examined the apparent contradiction between the success of at least some OSS
systems and their lack of what may be termed classical requirements artifacts and processes or
Classical Requirements. We identified two research questions that are central to this chapter. Here

we summarize the answers arising from our study and our examination of related work.

(RQ1) To what extent do OSS projects in fact use Classical Requirements? In the data we
examined, Classical Requirements was almost completely absent. We found requirements-like

176

artifacts and some requirements-like processes, but virtually nothing exhibiting the three
characteristics by which we defined Classical Requirements in an earlier section.

(RQ2) Where OSS projects do not use Classical Requirements, what artifacts and processes are
used instead, if any? The most prominent requirements-like artifacts we identified were
provisionments, statements of features or qualities in terms of the attributes provided by an existing
software version, a competing product, or a prototype produced by a developer advocating the
change it embodies. These were ubiquitous in the data we examined. The processes were more
difficult to characterize; perhaps the most common requirements-like process we saw was the
discussion of provisionments in terms of solution-space issues. We hypothesize that architectural
reasoning and discussion played a role as well, but did not find strong evidence for it; we may have
been looking in the wrong places for that.

In summary, OSS’s lack of Classical Requirements results in some of the undesirable outcomes
predicted by the broad consensus of software experts and researchers, but not all of them. In some
contexts the advantages of OSS appear to outweigh this disadvantage. Further research will be
needed to obtain more definitive answers and to provide guidance to making the most effective use
of OSS development approaches.

References

[AASQ9] Alspaugh, T. A., Asuncion, H. U., and Scacchi, W. (2009). Intellectual property rights
requirements for heterogeneously-licensed systems. In 17th IEEE International Requirements
Engineering Conference (RE’09), pages 24-33.

[AAS13] Alspaugh, T. A., Asuncion, H. U., and Scacchi, W. (2013). The challenge of
heterogeneously licensed systems in open architecture software ecosystems. In Jansen, S.,
Cusumano, M., and Brinkkemper, S., editors, Software Ecosystems: Analyzing and Managing
Business Networks in the Software Industry. Edward Elgar Publishing.

[ASA10] Alspaugh, T. A., Scacchi, W., and Asuncion, H. U. (2010). Software licenses in context:
The challenge of heterogeneously- licensed systems. Journal of the Association for Information

Systems, 11(11):730-755.

[BCR94] Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). The Goal Question Metric
approach. In Encyclopedia of Software Engineering, pages 528-532. John Wiley and Sons.

[Boe76] Boehm, B. (1976). Software Engineering. IEEE Transactions on Computers,
25(12):1126—-1241.

[Bro75] Brooks, Jr., F. P. (1975). The Mythical Man Month: Essays on Software Engineering.
Addison-Wesley, first edition.

[Bro87] Brooks, Jr., F. P. (1987). No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4):10-19. Reprinted from IFIP Congress, Dublin, Ireland, 1986.

177

[Bro10] Brooks, Jr., F. P. (2010). The Design of Design: Essays from a Computer Scientist.
Addison-Wesley.

[Cre03] Creswell, J. W. (2003). Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. SAGE Publications, Thousand Oaks, CA, USA, second edition.

[dBv09] de Boer, R. C. and van Vliet, H. (2009). Controversy corner: On the similarity between
requirements and architecture. Journal of Systems and Software, 82(3):544-550.

[DRWO04] Des Rivie'res, J. and Wiegand, J. (2004). Eclipse: a platform for integrating development
tools. IBM Systems Journal, 43(2):371— 383.

[DSAOQ07] Diallo, M., Sim, S. E., and Alspaugh, T. A. (2007). Case study, interrupted: The paucity of
subject systems that span the requirements-architecture gap. In First Workshop on Empirical
Assessment of Software Engineering Languages and Technologies (WEASELTech’07).

[GaW89] Gause, D. C. and Weinberg, G. M. (1989). Exploring Requirements: Quality Before
Design. Dorset House, New York.

[Ger03] German, D. M. (2003). GNOME, a case of open source global software development. In
International Workshop on Global Software Development (GSD’03).

[Jac95] Jackson, M. (1995). Software Requirements and Specification: a lexicon of practice,
principles and prejudices. Addison-Wesley, Wokingham, England.

[LamO09] Lamsweerde, A. v. (2009). Requirements Engineering: From System Goals to UML
Models to Software Specifications. Wiley.

[Mak02] Makuch, E. (2011). Counter-Strike: Global offensive firing up early 2012.
http://www.gamespot.com/6328645 .

[MFHO02] Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309-346.

[MoF06] Mozilla Foundation (2006). Firefox2/Requirements. Mozilla Foundation.
http://wiki.mozilla.org/Firefox2/Requirements , accessed 27 Jan 2013.

[Nol07] Noll, J. (2007). Innovation in open source software development: A tale of two features. In
Feller, J., Fitzgerald, B., Scacchi, W., and Sillitti, A., editors, Open Source Development, Adoption
and Innovation: IFIP Working Group 2.13 on Open Source Software, pages 109—-120. Springer.

[Nol08] Noll, J. (2008). Requirements acquisition in open source development: Firefox 2.0. In
Russo, B., Damiani, E., Hissam, S., Lundell, B., and Succi, G., editors, Open Source Development,

178

http://www.gamespot.com/6328645
http://wiki.mozilla.org/Firefox2/Requirements

Communities and Quality (IFIP — The International Federation for Information Processing), pages
69-79. Springer-Verlag.

[NoL10] Noll, J. and Liu, W.-M. (2010). Requirements elicitation in open source software
development: a case study. In 3rd International Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development (FLOSS ’10), pages 35—40.

[Nus01] Nuseibeh, B. (2001). Weaving together requirements and architectures. IEEE Computer,
34(3):115-117.

[Or300] Oreizy, P. (2000). Open Architecture Software: A Flexible Approach to Decentralized
Software Evolution. PhD thesis, University of California, Irvine.
http://www.ics.uci.edu/~peymano/papers/thesis.pdf .

[Pos13] PostgreSQL (2013). About. http://www.postgresql.org/about/, accessed 30 March 2013.

[Ray01] Raymond, E. S. (2001). The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’'Reilly, revised edition.

[Rit84] Ritchie, D. (1984). The evolution of the Unix time-sharing system. AT&T Bell Laboratories
Technical Journal, 63(6):1577— 1593.

[Sal94] Salus, P. H. (1994). A Quarter Century of UNIX. Addison-Wesley.

[Sca02] Scacchi, W. (2002). Understanding the requirements for developing open source software
systems. |EE Proceedings—Software, 149(1):24-39.

[Sca07] Scacchi, W. (2007). Free/open source software development: Recent research results and
emerging opportunities. In 6th Joint European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2007), pages
459-468.

[Sca11] Scacchi, W. (2011). Modding as an Open Source Approac Modding as an Open Source
Approach to Extending Computer Game Systems, in Intern. J. Open Source Software and
Processes, 3(3), 36-47, July-September 2011. Reprinted in S. Koch (Ed.), Open Source Software
Dynamics, Processes, and Applications, 177-188, Information Science Reference, |Gl Global,
2013.

[Sca09] Scacchi, W. (2009). Understanding requirements for open source software. In Lyytinen, K.,
Loucopoulos, P., Mylopoulos, J., and Robinson, B., editors, Design Requirements Engineering: A
Ten-Year Perspective, pages 467—494. Springer-Verlag.

[Sca11] Scacchi, W. (2011). Modding as an Open Source Approach to Extending Computer Game
Systems, in Intern. J. Open Source Software and Processes, 3(3), 36-47, July-September 2011.

179

http://www.ics.uci.edu/%E2%88%BCpeymano/papers/thesis.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-OSS2011.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-OSS2011.pdf

Reprinted in S. Koch (Ed.), Open Source Software Dynamics, Processes, and Applications,
177-188, Information Science Reference, |Gl Global, 2013.

[ScA12a] Scacchi, W. and Alspaugh, T. A. (2012a). Designing secure systems based on open
architectures with open source and closed source components. In International Conference on
Open Source Systems (OSS 2012).

[ScA12b] Scacchi, W. and Alspaugh, T. A. (2012b). Understanding the role of licenses and
evolution in open architecture software ecosystems. Journal of Systems and Software,
85(7):1479-1494.

[Som04] Sommerville, I. (2004). Software Engineering. Addison-Wesley, 7th edition.

[Spi03] Spinuzzi, C. (2003). Tracing genres through organizations: A sociocultural approach to
information design. MIT Press, Cambridge, MA.

[Sta07] Stallman, R. (2007). Linux and the GNU system. http://www.gnu.org/gnu/linux-and-gnu,
accessed 30 March 2013.

[TSG94] The Standish Group (1994). The CHAOS report.

[VaV00] van Vliet, H. (2000). Software Engineering: Principles and Practice. John Wiley & Sons,
second edition.

[WiC10] Wiggins, A. and Crowston, K. (2010). Reclassifying success and tragedy in FLOSS
projects. In 6th International Conference on Open Source Systems, pages 294-307.

180

Chapter 10.

Discussion and Recommendations

181

Chapter 10.

Discussion and Recommendations

Abstract

This chapter focuses on summarizing and combining the results and recommedations we have
developed during our studies in Open Architecture (OA) software systems starting in 2007
through the resent time (early 2015). This chapter thus seeks to bring together what we have
learned through our investigations that are presented in the preceding chapters. We recognize
that OA software systems include open source software and closed source software elements
(components, connectors, configured sub-systems) that are subject to diverse Intellectual
Property (IP) obligations and rights, as well as complex cybersecurity requirements. In
particular, we draw attention to our current views on how best to align our efforts to address
different Better Buying Power initiatives that we believe our efforts can inform and offer
guidance. These matters are addressed at the end of this chapter.

What we have learned so far

The relationship between open technology, open architecture, and open source software
requirements, and program acquisition is poorly understood. We can call such a view of OSS
product oriented. Alternatively, we can view OSS as (b) primarily a set of development
processes, work practices, project community activities (code sharing, review, modification, 11
redistribution), and multi-project software ecosystem that produce OSS systems and
components. This view of OSS as an integrated web of people, processes, and organizations
(including project teams operating as virtual organizations [NoS99, CrS02]) is production
oriented (including production processes, production organizations, production people, and
governance over software production [Sca07, SFF06, ScA08, ScJ08]). The requirements for (a)
are not the same as for (b), and thus program acquisition targeting (a) may fail to realize the
benefits, capabilities, or constraints engendered by (b), and vice versa. As such, there is need
to understand how to identify an optimal mix of OSS within OA as both products, and production
processes, practices, community activities, and multi-project (or multi-organization) software
ecosystem.

The success of DoD’s OA and OSS programs in achieving the positive qualities associated with
OSS depend on the socio-technical context in which a system is developed and used. The
stakeholders and users of an OSS system typically include the developers of that system; they
know its goals and requirements implicitly, and can adapt and evolve the system to follow their
understanding of the context in which it is used. If DoD is to achieve quick response, rapid
adaptation, and context-appropriate use of OSS, it may be necessary to have a representative
group of the personnel that are to use and adapt it to the needs they see around them, be OSS
developers for that system.

182

Following from our analysis above, it appears there are a new set of requirements that are
emerging that will need to be addressed in any acquisition of a software-intensive system that is
stipulated to employ an OA that accommodates OSS components or connectors. Identifying
specific requirements for a given program acquisition or system development contract can
benefit from consideration of the the following guidelines for how best to realize an OA:

Determining how much openness is required or desired.
Identifying guidelines and incentives for software development contractors that
encourage them to develop, provide, and distribute/deploy OA systems with OSS
components, connectors, and configuration that minimize conflicting OSS license
obligations.

e Determining the restrictions, if any, that the OSS licenses used by different software
system components, connectors, or configurations within a OA system.

e |dentifying alternative OSS component, connector, or configuration candidates that may
satisfy a specified overall system architecture.

e Determining scenarios that help reveal whether there are OSS licensing conflicts for a
given set of OSS components, connectors, or configuration.

e Identifying and analyzing any OSS licensing obligations that must be satisfied for the
resulting system to be available for redistribution.

e Identifying and validating OSS license conformance criteria for configured systems
intended for redistribution.

Further elaboration on these guidelines is subject to additional research, application, and
refinement. However, they do provide a useful starting point for discussion, debate, and action
in program acquisition.

Software system configurations in OAs are intended to be adapted to incorporate new
innovative software technologies that are not yet available. These system configurations will
evolve and be refactored over time at ever increasing rates [Sca07], components will be
patched and upgraded (perhaps with new license constraints), and inter-component
connections will be rewired or remediated with new connector types. As such, sustaining the
openness of a configured software system will become part of ongoing system support,
analysis, and validation. This in turn may require ADLs to include OSS licensing properties on
components, connectors, and overall system configuration, as well as in appropriate analysis
tools [cf. BCK03, MRT99].

Constructing these descriptions is an incremental addition to the development of the
architectural design, or alternative architectural designs. But it is still timeconsuming, and may
present a somewhat daunting challenge for large pre-existing systems that were not originally
modeled in our environment.

Advances in the identification and extraction of configured software elements at build time, and
their restructuring into architectural descriptions is becoming an ever more automatable

183

endeavor [cf. ChS90, KaC99, JBAO08]. Further advances in such efforts have the potential to
automatically produce architectural descriptions that can either be manually or
semi-automatically annotated with their license constraints, and thus enable automated
construction and assessment of build-time software system architectures.

The list of recognized OSS licenses is long and ever-growing, and as existing licenses are
tested in the courts we can expect their interpretations to be clarified and perhaps altered; the
GPL definition of “work based on the Program”, for example, may eventually be clarified in this
way, possibly refining the scope of reciprocal obligations. Our expressions of license rights and
obligations are for the most part compared for identical actors, actions, and objects, then by
looking for “must not” in one and either “must” or “may” in the other, so that new licenses may
be added by keeping equivalent rights or obligations expressed equivalently. Reciprocal
obligations, however, are handled specially by hard-coded algorithms to traverse the scope of
that obligation, so that addition of obligations with different scope, or the revision of the
understanding of the scope of an existing obligation, requires development work. Possibly these
issues will be clarified as we add more licenses to the tool and experiment with their application
in OA contexts.

Subsequently, our scheme for specifying software licenses offers the potential for the creation of
shared repositories where these licenses can be accessed, studied, compared, modified, and
redistributed.

Moving forward, at least two topics merit discussion following from our approach to semantically
modeling and analyzing OA systems that are subject to heterogeneous software licenses. One
is how our results might shed light on software systems whose architectures articulate a
software product line, while the other is how our approach might be extended to also address
the semantic modeling and analysis of software system security requirements.

Organizing and developing software product lines (SPLs) relies on the development and use of
explicit software architectures [Bos00, CINO1]. However, the architecture of a SPL is not
necessarily an OA — there is no requirement for it to be so. Thus, we are interested in
discussing what happens when SPLs may conform to an OA, and to an OA that may be subject
to heterogeneously licensed SPL components. Three considerations come to mind. First, If the
SPL is subject to a single homogeneous software license, which may often be the case when a
single vendor or government contractor has developed the SPL, then the license may act to
reinforce a vendor lock-in situation with its customers. One of the motivating factors for OA is
the desire to avoid such lock-in, whether or not the SPL components have open or
standardscompliant APls. Second, if an OA system employs a reference architecture much like
we have in the design-time architecture depicted in Figure 1, which is then instantiated into a
specific software product configuration, as suggested in the build-time architecture shown in
Figure 2, then such a reference or design-time architecture as we have presented it here

184

A N . A
[Web Browser User] [Word Processor User] [Email & Calendar]i

\ Interface Interface User Interface !
{_Connector 1 {_Connector 2 } {_Connector 3)

a

\

|1 Email Server |

Figure 1. An example design-time OA system view, including software component and
connector types, within specified cybersecurity containers.

(ot i N e s i 2 O R L A
[Firefox User] [AbiWord User] [Gnome Evolution]

| Interface Interface User Interface)

""""'_'_'_'_'_}'_'_',Z'_', """""" T ok I b
i _alf_!ﬂff_f{?f{qt'-f_s_ i i _{"Hﬂqurf_s_ 0 __XWindows

:' Firefox HE AbiWord i || Gnome Evolution |

e T S TP eCRT I | G— et g 1), S — -

i___dJavaScriptscripts ie——— :

\‘-_‘..__1 ______________________

e T, L e e _________"_ ________
(H’J@‘E.’é’i’?ﬁ?{’! Calls; Unix _9_)_’_5!?*_7!_@?!-’_5.)
B {_ SMPT/TLS/SSL |
§ 4
e e : e e — ;
___Apache HTTPD || (_Fedora/SE Linux] ||| XMail |

Figure 2. An example integration and test build-time OA system view, including software
component and connector instances, within specified cybersecurity containers.

185

effectively defines a SPL consisting of possible different system instantiations composed from
similar components instances (e.g., different but equivalent Web browsers, word processors,
email, calendaring applications, relational database management systems). Third, if the SPL is
based on an OA that integrates software components from multiple vendors or OSS
components that are subject to heterogeneous licenses, then we have the situation analogous
to what we have presented in the preceding chapters, as well as in this chapter. So SPL
concepts are compatible with OA systems that are composed from heterogeneously licensed
components.

Next, as already noted, software licenses represent a collection of rights and obligations for
what can or cannot be done with a licensed software component. Licenses thus denote non-
functional requirements that apply to a software systems or system components as intellectual
property (IP) during their development and deployment. But rights and obligations are not
limited to concerns or constraints applicable only to software as IP. Instead, they can be written
in ways that stipulate non-functional requirements of different kinds. Consider, for example, that
desired or necessary software system security properties can also be expressed as rights and
obligations addressing system confidentiality, integrity, accountability, system availability, and
assurance [BrA05, BrA08].

Traditionally, developing robust specifications for non-functional software system security
properties in natural language often produces specifications that are ambiguous, misleading,
inconsistent across system components, and lacking sufficient details [YaC06]. Using a
semantic model to formally specify the rights and obligations required for a software system or
component to be secure [BrA05, BrA08, YaC06] means that it may be possible to develop both
a “security architecture” notation and model specification that associates given security rights
and obligations across a software system, or system of systems. Similarly, it suggests the
possibility of developing computational tools or interactive architecture development
environments that can be used to specify, model, and analyze a software system’s security
architecture at different times in its development — design-time, build- time, and run-time.

The approach we have been developing for the past few years for modeling and analyzing
software system license architectures for OA systems [AAS09, AAS13, ScA08], may therefore
be extendable to also being able to address OA systems with heterogeneous “software security
license” rights and obligations. Furthermore, the idea of common or reusable software security
licenses may be analogous to the reusable security requirements templates proposed by
Firesmith [Fir04] at the Software Engineering Institute. Consequently, such an exploration and
extension of the semantic software license modeling, meta-modeling, and computational
analysis tools to also support software system security can be recognized as a promising next
stage of our research studies.

Our approach to specifying and analyzing the security requirements for a complex OA system is
based on the use of a security license. As noted, a security license [AIS12] is a new kind of

186

information structure whose purpose is to declare operational capabilities that express the
obligations and rights of users or program to access, manipulate, control, update, or evolve
data, control signals, and accessible software system elements. Our proposed security license
is influenced by IP licenses that are employed to specify property control and declared copyright
freedoms/restrictions, such as those for OSS components subject to licenses like the GPLv2,
MPL, LGPL, or others. These IP licenses as information structures often pre-exist to facilitate
their widespread use, dissemination, and common interpretation. Further, the choice of which IP
license to choose or assign to a software component results from a trade-off analysis typically
performed by the components producers, rather than the system integrators or consumers, as a
way to protect or propagate the obligations and rights to use, evolve, and redistribute the
updated component’s open source code.

The security licenses we propose may or not necessarily exist prior to their specification and
assignment to a given OA system. Similarly, we may anticipate or expect that generic security
licenses will emerge and be assigned by software component producers, as they have for OSS
components, though no such security licenses from producers yet exist. However, one follow-on
goal we seek to address is whether and how best to specify security licenses for different types
of software elements or components so that it becomes possible to semi-automatically specify
the security license for a given component or composed OA system through the reuse and
instantiation of security requirement templates. This idea is somewhat similar to the license
templates and taxonomy that is employed by the Creative Commons for non-software
intellectual property like online art or new media content (cf.
http://creativecommons.org/licenses/). In this regard, it may be possible to develop a technique
and supporting computational environment whereby system integrators or consumers can
conveniently specify the security requirements they seek (e.g. fill out online security
requirements forms), while the environment interprets these specifications to generate
operational security capabilities that can be guard the entry and exit of data or control
information from the appropriate containment vessel that encapsulates the corresponding
system element. Consequently, this is a topic for further study and investigation.

Next, one might wonder why it is not simply desirable to have maximum system security under
all circumstances. When considering the alternative run-time system composition variants
shown in Figure 2, it appears there may be trade-offs in one layout of security capabilities over
another. For example, if the layout in Figure 2 were revised so that each OA software element
(i.e., each component and connector instance) this potentially maximizes security by
encapsulating each system element within its own containment vessel. This in turn requires a
VM technology of a kind different from that commonly available (e.g., like VMware), and instead
requires a new lightweight VM technology that can provide security capabilities (e.g., create,
read, update authorizations) for potentially smallscale software elements (e.g., Cshell
inter-application integration or run-time scripts). Similarly, the different security containment
layouts may affect system performance, ease of evolutionary update, and associated level of
security administration. For example, if all top-row softwre components were running on a single
personal computer, it might be the choice to simplinstall a virtual machine on the PC, so that all

187

http://creativecommons.org/licenses/

local components and connectors are containied within a single virtual machine. This would be
a simpler to install and administer security container scheme, though providing a leser level of
security, which might be acceptable for PC users at home. But these again all represent
trade-offs in the desire to achieve affordable, practical, and evermore robust and testable
secure software component/system capabilities build-time and run-time. Thus, we take the
position that it is better to provide the ability to specify and analyze the security requirements of
different software elements at designtime, as well as specify and analyze the security
capabilities at buildtime and run-time, rather than the current practice that does not account for
system architecture nor license architecture, and is thus inherently vulnerable to attacks that
can otherwise be prevented or detected.

One other topic that follows from our approach to semantically modeling and analyzing OA
systems that are subject to software security licenses. More specifically, how our approach and
emerging results might shed light on software systems whose architectures articulate a software
product line.

Accordingly, organizing and developing software product lines (SPLs) relies on the development
and use of explicit software architectures [Bos00, CINO1]. However, the architecture of a secure
SPL is not necessarily a secure OA — there is no requirement for it to be so. Thus, we are
interested in discussing what happens when SPLs may conform to a secure OA, and to an OA
that may be composed from secure SPL components. Three considerations come to mind.

First, if the SPL is subject to a single homogeneous security software license, which may often
be the case when a single vendor or government contractor has developed the SPL, then the
security license may act to reinforce a vendor lock-in situation with its customers. One of the
motivating factors for OA is the desire to avoid such lock-in, whether or not the SPL components
have open or standards-compliant APlIs.

Second, if an OA system employs a reference architecture much like we have in the design-time
architecture depicted in Figure 1, which is then instantiated into a specific software product
configuration, as suggested in the build-time architecture shown in Figure 2, then such a
reference or design-time architecture as we have presented it here effectively defines a SPL
consisting of possible different system instantiations composed from similar components
instances (e.g., different but equivalent Web browsers, word processors, email, calendaring
applications, relational database management systems).

Third, if the SPL is based on an OA that integrates software components from multiple vendors
or OSS components that are subject to heterogeneous security licenses (i.e., those that may
possible conflict with one another), then we have the situation analogous to what we have
presented in this paper. So secure SPL concepts are compatible with secure OA systems that
are composed from heterogeneously security licensed components.

188

Our goal in this study is to develop and demonstrate a new approach to address challenges in
the acquisition of secure OA software systems. Program managers, acquisition officers and
contract managers will increasingly be called on to provide review and approval of security
measures that are employed during the design, implementation, and deployment of OA
systems. We seek to make this a simpler and more transparent endeavor. This requires security
policies that are appropriate for review and approval during acquisition by people who may not
be expert in the specifics of how best to insure that secure systems will result. Our view is to
address this need by investigating how best to specify or model system security in ways that
can accommodate security as a continuous process that must be supported throughout the
system acquisition life cycle for OA systems [ScA08, ScA11].

Our efforts reported here reveal that it is possible to employ a scheme through which complex
OA systems can be designed, built, and deployed with alternative components and connectors
into functionally similar system versions, in ways that allow for overall system security through
the use of multiple security mechanisms. We described a scheme for how to realize and specify
such OA system configurations in ways that are inherently compatible with existing security
mechanisms, and this scheme does not assume that individual system elements must be
secure before inclusion into the secured system’s configuration. Central to our scheme is the
incorporation of software product line concepts that are integrated with security mechanisms in
a coherent way that is amenable to automated support and acquisition management. We also
provided a case study that reveals where and how we specify a secure OA enterprise system
product line in ways that can accommodate the diverse needs of software producers and
developers, system integrators, users and acquisition managers. What remains as an important
next step for this line of research effort is to more fully articulate how to simply and transparently
specify OA system security using streamlined security policies using the kind of system security
licenses we anticipate [ScA11], as well as designing and developing a prototype automated
system that can support the modeling and analysis of OA system security policies, alternative
version OA system configurations, and different OA security licenses.

How best to improve and streamline acquisition processes for secure OA systems

The transition to the development, deployment, and sustainment of software-intensive systems
based on an OA means that new or revised acquisition processes may be needed. In particular,
we believe such advances call for (a) the adoption of open business models within DoD and its
industry partners, (b) open source approaches to creating Web-based acquisition processes
[Sca01] that specifically address BBP initiatives, and (c) employing techniques for streamlining
these processes [ChS01, Nis98, Sca01, ScN97] for secure OA systems. Each is described in
turn in this section.

Encourage the adoption of acquisition business models in open source formats

One goal of BBP initiatives is to reduce costs by improving competition. Such a situation may be
disconcerting to legacy software producers who are long experienced with the long-term
development of proprietary, large-scale software systems with closed architectures that are

189

subject to traditional, cumbersome, and costly software product licenses and license
management regimes [And12, Ko09]. A move towards agile and adaptive development of
secure OA systems based on software components, that can be developed/integrated more
rapidly and at lower cost with more favorable IP licenses, represents a new acquisition strategy
[RBC12, ScA13b]. This suggests the need to incentivize software producers and system
integrators, so as to insure their ability to effectively produce both proprietary and OSS
components that are economically viable yet cost effective to the Government over the life of
such systems. The overall BBP mandate recognizes this situation, but does not specify the
means for how best to accomplish it. We believe one promising candidate is for Defense
Enterprises and Program Offices to adopt new open business models.

The business models we have in mind should be rendered in an open source format. Such
models should be computer-processable (i.e., amenable to automated enactment support) and
transparent to participants in the acquisition workforce (e.g., available through Web-based
application systems [Sca01, ScN97]). They should be similarly open to participants in software
producer, system integrator, and system user enterprises. These models should incorporate a
product line of common/reusable open system architectures that can integrate functionally
similar software components in order to realize domain-specific system solutions (e.g., for
domains like command and control, weapon systems, or enterprise computing) [BeJ10, GuC10,
JoB11, RBC12, ScA12b, SEI07, WoS11]. These business models should incorporate
Web-based computational models of acquisition processes [Nis98, Sca01, ScN97] that manage
the system development and support processes that surround the OA product line system
models. Finally, these business models should highlight which acquisition or system
development processes, or OA system features, require attention to IP licenses.

Prior research has demonstrated that significant cost reductions and process streamlining are
possible when open source business process models are utilized [ChS01, Nis98, ScN97,
Scal1]. These kinds of models can be subjected to performance measurement across multiple
acquisition process enactments, continuous improvement, and process redesign by the
acquisition workforce [Sca01]. Now we propose to enhance and extend their value through the
incorporation of OA system models. While demonstrating such a capability is beyond the scope
of this study, prior research results suggest the plausibility of such an approach. So future
acquisition research targeting BBP may be directed to creation of open business models that
can be openly accessed, reused, modified, and redistributed where appropriate.

Encourage the development, (re)use, and refinement of open source models of acquisition
processes

As noted, prior research has demonstrated the value and real payoffs of Web-based
computational models for Defense acquisition processes [ChS01, Nis98, ScN97, Sca01].
However, many technological advances, organizational transformations, and shifting Defense
priorities have occurred since these results were first demonstrated and deployed years ago.
Our own studies on design of secure OA system product lines are an example of technological
advances not addressed in our earlier process models. But without explicit, open source

190

process models that can be enacted through Web-based user interfaces (i.e., Web browsers
accessing remote application services while tracking process enactment progress and
performance parameters), then the ability to realize their benefits like process streamlining and
cost reduction are elusive and difficult to manifest. Among the reasons for why this is so
includes overcoming gaps for how best to: (a) monitor and measure acquisition process
performance without automated enactment support; (b) redesign legacy processes to better
accommodate technical advances and to remove ineffective bureaucratic procedures, or that
transform acquisition processes in ways that do more with less while also empowering the
acquisition workforce; (c) design new acquisition processes like those for acquiring secure,
component-based OA software systems subject to multiple IP licenses; and (d) accommodate
software IP licenses and license management regimes as acquisition process cost elements. To
better understand what gaps exist in these four areas, we now describe techniques for
streamlining the acquisition processes for secure OA system.

Develop and employ techniques for streamlining acquisition processes for secure OA systems
A goal of this paper is to identify ways and means for streamlining acquisition processes for
secure OA systems. In particular, we focus on four kinds of techniques that can be used to
streamline such processes in ways that are responsive to the BBP initiative for open system
architectures subject to complex IP licenses. These techniques are illustrative rather than
exhaustive, as other kinds of techniques in other areas are also expected to exist and be
available for practice by the acquisition workforce.

e Acquisition Process Measurement and Assessment — The most direct way to determine
the efficiency and effectiveness of acquisition processes is by measuring their structural
attributes. Such attributes indicate things such as (a) length of longest path of process
steps/actions (process length); (b) number of distinct process paths (process width); (c)
number of sub-process levels (process depth); (d) total number of process steps
(process size); and (e) process size divided by process length (process parallelism), and
others metrics [Ni98]. But without an explicit graph-based model of acquisition
processes, such measurements are impractical or implausible. Nonetheless, such
metrics are a key for where to look for process improvement or process redesign
opportunities. One might also recognize that some acquisition processes are
underspecified, for example, by not explicitly accounting for where software licenses are
negotiated or license trade-off analysis done. Similarly, as OA systems may include
software components subject to different licenses [ASA10], then how are
componentcomponent license interactions assessed or analyzed, if at all? If acquisition
processes do not explicitly account for new acquisition or license management activities
that emerge due to advances in OA system development, then such processes are
underspecified, which means their costs are hidden and difficult to control/minimize.
Thus, if the goal of BBP is to help improve the affordability of OA systems within the
DoD, then we need to be able to systematically model, measure, and assess our
acquisition processes [Sca01]. Similarly, we need to better understand how to measure

191

and assess open business models for use within DoD and its industry partners to
incentivize and continuously improve competition and Defense affordability

Acquisition Process Redesign and Evolution — Once we have the ability to measure and
assess current/emerging acquisition processes for secure component-based OA
systems, we can then begin to analyze (or simulate) them in ways that reveal process
redesign opportunities and transformation heuristics [ChS01, Nis98, ScN97, Sca01].
Among the acquisition process pathologies we seek to identify are those where
measured processes reveal sub-processes with low effectiveness (indicating high levels
of iterative rework), low efficiency (indicating slow or bureaucratically cumbersome
process steps that add marginal value to process completion), and problematic
sub-processes (indicating underspecified process steps, steps that generate processing
delays due to missing/or incorrect acquisition data, or inappropriate automated process
enactment support). For example, current processes that assume long-term acquisition
of monolithic software systems with proprietary components integrated within a closed
architecture, are likely not well-suited to address the challenges for acquiring secure OA
systems that integrate software components from different online repositories. We also
place our acquisition workforce at a disadvantage if we do not empower them with the
ability to measure, assess, and adaptively redesign their processes as technological
advances like component-based OA systems are to be acquired. New software
component technologies and software ecosystem niches [ScA12a] are also emerging
which necessitate new continuous development processes and new license
management practices, and thus redesign/evolution of acquisition processes [ScA13a,
SBN12]. These examples all point to new opportunities to redesign, evolve or other
transform existing acquisition processes to better fit the challenges posed by the
development, deployment, and support of secure, component-based OA systems.
Finally, we can empower the acquisition workforce to realize continuously improved
acquisition processes if we can provide them with the training and resources for
modeling, analyzing, and redesigning their acquisition processes in ways that empower
them to utilize Web-based automated process enactment systems, which also allow
them to try out and walkthrough alternative process redesigns before committing to their
use in daily operations.

Design New Acquisition Processes — Across the DoD community, there are many
variations in practice for how to specify and model the architecture of a softwareintensive
system. Some practices focus attention primarily on identification of major components
or abstract layers, while minimizing (or ignoring) attention to interfaces and
interconnections, which are more challenging to identify and manage. However, the BBP
initiative for OA systems points to the need for managing explicit interface specifications
that identify and reinforce the use of standard interfaces [DAU12]. Without such interface
and interconnection specifications, it is not possible to determine the scope or potential
conflicts/matches between the IP licenses (and thus TD rights) for the overall system
architecture. In contrast, we have demonstrated in our prior research that

192

component-based OA systems become tractable and evolvable from IP license
management and security perspectives when the system architecture of components,
connectors, and interfaces are explicitly modeled [ASA10, ScA11, ScA12a, ScA12b,
ScA13b].

The use of standard interfaces allows for simpler renderings of OA system structure, and thus
simplifies license analysis. Further, once interfaces and interconnections become explicit,
software component producers, system integrators, and/or system consumers can
determine/negotiate which interfaces should be standardized in order to improve competition
and affordability. These standards may then define acceptable data types, relationships
between data types, data attribute value ranges, and exceptional data values in ways that are
open, sharable, and reusable, as well as extensible when appropriate. Such improvements
become possible by enabling an agile, adaptive ecosystem for software components of different
size and capability relative to OA system product lines for different application domains [RBC12,
ScA12a, ScA13b]. Therefore, another important technique for streamlining the acquisition of
secure, component-based OA systems, in line with BBP initiatives, is to provide the acquisition
workforce with the resources and automated support to design and computationally enact new
acquisition processes (i.e., explicitly modeled processes [ChS01, Nis98, ScN97, Sca01]), where
the processes are open, agile, and adaptive. Such modeled processes may also then be
shared, reused, continuously improved, and redistributed across the ecosystem of Defense
Enterprises and Program Offices.

e Cost Management as an Acquisition Process Design Element — Part of the promise of
the move to OA systems stems from their perceived potential to reduce acquisition life
cycle costs, improve competition, and improve Defense affordability [DAU12]. But where
and how are the associated cost factors or cost drivers for OA systems identified,
tracked, and managed? After all, if we do not know where the cost factors are, or what
activities, conditions, or events drive OA system acquisition costs, then we cannot
effectively control such costs, nor make well-informed system capability/cost tradeoffs.
For example, people who manage the acquisition of large-scale software systems within
various Defense Enterprises are familiar with the many types of end-user license
agreements for proprietary, closed source software systems [And12]. In contrast, these
people may not know how best to manage the acquisition of OA systems whose
software components are jointly subject to different OSS or proprietary licenses.

The acquisition workforce has also learned in practice that software IP licenses are subject to
change over time. However, one consequence is that long-lived or widely used software
systems become more costly and much less amenable to technology substitution or vendor
replacement, thereby reducing competition due to vendor lock-in. This works against Defense
affordability. In contrast, emerging online repositories offer different kinds of software
component with different functional capabilities (described earlier), along with different IP
licenses and end-user licenses (e.g., low cost, per user licenses). These repositories of software
components represent a means for increased competition and affordability, but subject to

193

different acquisition, development or integration processes that are just coming to light.
Accordingly, we believe that streamlining the acquisition process for secure, component-based
OA systems requires that IP license cost obligations (e.g., license fees for end-user
agreements) and license management regimes need to be incorporated into: process
measurement and assessment, process redesign and evolution, and design of new acquisition
processes. This is also a subject for further acquisition research, but one offering practical
nearterm consequence.

Achieving Better Buying Power Goals

Better Buying Power (http://bbp.dau.mil/) is part of DoD's mandate to do more without more by
implementing best practices in acquisition. BBP identifies seven areas of focus that group a
larger set of a few dozen initiatives that offer the potential to restore affordability in defense
procurement and improve defense industry productivity. One of the seven areas focuses on
promoting or increasing competition, and this area includes an initiative to “enforce open system
architectures and effectively manage technical data rights” [DAU12]. Technical data rights
pertain to two categories of Intellectual Property (IP): they refer to the Government's rights to (a)
technical data (TD — e.g., product design data, computer databases, computer software
documentation); and (b) computer software (CS — e.g., source code, executable code, design
details, processes, and related materials). These rights are realized through IP licenses
provided by system product or service providers (e.g., software producers) to the Government
customer, so long as the customer fulfills the obligations stipulated in the license agreement
(e.g., to indicate how many software users are authorized to use the licensed product or service
according to a fee paid).

As already noted, our acquisition research has focused on issues addressing OA systems and
IP licenses since 2008 [ScA08], as well as forward to the acquisition of secure OA systems for
command and control (C2) and enterprise information systems [ScA11, ScA12b, ScA13b],
where security requirements can be expressed in a manner similar to IP obligations and rights.
Therefore, here we turn to identify how a sample of different goals of the BBP initiatives interact
or relate to the trends and challenges examined so far in this paper. Representative BBP goals
are highlighted, then followed by a brief examination.

e Increase competition — One central purpose for acquiring OA systems is to increase the
likelihood of competition among system producers who can provide software
components that can be replaced by similar offerings by other component producers. We
demonstrate how this can work when system architectures are explicitly modeled, and
their software components and interconnections are similarly specified in an open
manner [AAS13, ScA12a].

e Adopt OA systems that utilize standardized interfaces — Open system architectures that

can accommodate common components from alternative producers require that
components utilize standardized interfaces, whether in the form of: open Application

194

http://bbp.dau.mil/

Program Interfaces (APIs); standard data exchange protocols; or standard data
representations, formats, and meta-data [ScA08]. But also noted earlier, app and widget
components at present have a plethora of standardized interfaces, and it is unclear
which will survive, be sustained, be widely adopted (inside/outside of DoD), and be
evolved [End13a].

e Ultilize open source software components where appropriate to reduce costs — another
aspect of openness that OA systems embrace and DoD policy accepts is to utilize
system components developed as open source software (OSS) [DIS12]. Utilization of
OSS components, along with composing OA systems that incorporate OSS and closed,
proprietary components, does require careful attention to the management and analysis
of multiple IP licenses that apply to different OA system components, as well as
determining what overall IP and/or cybersecurity rights and obligations apply to the
overall system [AAS13, ScA12a], especially for C2 systems [AAS13, ScA13b, ScA13c].

e Increase small business roles and opportunities — one way to increase competition in the
realm of OA systems is to identify where smaller scale software applications (apps) or
widgets can be utilized, which might be produced by small businesses or startup
ventures which dominate much of the online markets for Web-based or mobile device
apps/widgets. Small businesses may further be advantaged by their utilization of OSS
infrastructure components, platforms, or remote services, since large commercial
contractors may not see sufficient profit margins to develop proprietary alternatives. So
OAsystems that accommodate OSS components that can integrate custom
apps/widgets into innovative system capabilities (C2SC), may then realize new
opportunities for DoD customers. Other small business opportunities may similarly arise
for such ventures that focus on emerging cybersecurity assessment or tool development
services.

e Use technical development phase for true risk reduction and rapid prototyping — In
looking forward, there is potential interest in seeing the BPP initiative evolve to also
address risk as an implicit cost driver. This might allow or innovative ways and means to
reduce emerging risks through accelerated or “look ahead” system acquisition and
development approaches that emphasize increased reliance on rapid prototyping. This
kind of rapid prototyping might even be performed by appropriately trained end-users or
warfighters. A move towards OA systems for Web-based and mobile devices that rely on
apps/widgets retrieved from online marketplaces, that can be composed through
interpretive software program “scripting” and mashup techniques, is a clear example of
this [End13, GMH13 GuW12, ScA13a]. Thus, it is not surprising to find such emerging
techniques being investigated and assessed for possible production of new C2
capabilities [GBC14, GMH13, ScA13b].

Doing more without more — an overall summary of the current BBP initiative is focusing attention
of how to make acquisition more agile, to do more without more, and to develop a new

195

generation acquisition workforce that can enact acquisition processes that are thin and flexible
when needed, yet robust and cost-effective, while also being amenable to continuous
improvement. This is indeed a real challenge to fulfill, and beyond the scope of what current
acquisition practices are likely to achieve without targeted investment in acquisition
improvement research. To be clear, one just needs to consider emerging opportunities (and
potential asymmetric cybersecurity threats) that arise through the desire to develop
next-generation C2SC that are to be composed from apps/widgets that can operate on
Web-based/mobile devices. What are the best processes or practices for acquiring, developing,
and sustaining deployed systems that are to be built using these new software technologies
(e.g., apps/widgets for mobile devices)? How should these processes and practices be adapted
to accommodate personal devices (e.g, Apple iPhones, Android tablet, Microsoft Mobile Phone,
Blackberry 10 phone) that individual warfighters, joint force troops, or contracted service
providers bring with them into the battlespace? How must acquisition processes be best
adapted to accommodate and rely on software supply chains that arise around
consumer-oriented app marketplaces as possible ways/means for doing more (e.g., rapidly
prototyping warfighter composable C2 app/widget mashups [GMH13]) without more (e.g.,
warfighters who bring their own mobile computing devices for use in C2 contexts) [GBC14]?
Once again, these are critical questions to address and resolve through new acquisition
research and supporting technology development.

Emerging Challenges in Achieving BBP through OA Software Systems

The business models and IP licenses for software components are tightly coupled: software
component licenses codify component producer business models. Said more simply, licenses
codify business models. So different software business models imply different software license
obligations and rights, and different license types reflect different possible business models.
Licenses are generally recognized as contracts regarding IP expressed through terms and
conditions that specify obligations and rights stipulated by the component's producer to
enable/constrain what can be done with the component by its integrator or end-users.
Understanding and assuring software IP obligations and rights is iroutinely a task for acquisition
management, and thus a task to be competently performed by the acquisition workforce

Obligations (like purchase costs/fees paid, or to insure access to open source software code
modifications) denote conditions, events, or actions imposed by a software producer (the
licensor) that must be fulfilled by the software integrator/customer enterprise (the licensee) in
order to realize the rights granted or withheld by the licenses (right to use; right to distribute
copies; no right to distribute modified copies, etc.). Note that software system integrators play a
role is shaping the obligations and rights imposed on customer enterprises based on choices
they make in how software component-based systems are designed, built, and deployed. So
where/who does system integration occurs matters, as does whether customer enterprises that
acquire systems have policies that determine which software licenses (or business models) they
will accept.

196

Similarly, we note that “cybersecurity requirements” can also be expressed and analyzed in
terms of obligations and rights [ScA11, ScA12b]. This suggests the the problems and solutions
to software IP license management will be similar in kind or form to those for cybersecurity
assurance. Below, we just focus attention to software IP obligations and rights, though the same
consequences may apply to the cybersecurity of OA systems and components.

There are many unstated consequences that can arise when software licenses are not well
understood. Here are some examples we have seen within the DoD context.

Different military services specify which software licenses they do and do not accept.
This can give rise to service X refusing to use any software component subject to license
A (e.g., GPL—Gnu Public License), while service Y deploys mission-critical command
and control systems that incorporate components subject to license A [ScCA08]. This
may imply that service X will not allow connection of its C2 systems to serviceY C2
systems, which can readily look like a bad outcome.

Acquisition program managers/staff (including in-house legal counsel) may not
understand how software licenses affect OA system design, and vice-versa.
Component-based system design can determine which software licenses will fit, or
which can fit if the system design is altered to encapsulate desirable software
components with somewhat problematic license obligations or rights [ScA13a].

Software license obligations and rights propagate through system development life cycle
activities in ways not well understood by system developers, integrators, end-users, or
acquisition managers. We have investigated and described many examples of this in a
recent paper [ScA13a] that shows how license constraints are mediated by

software system design, build-integration, deployment, post-deployment support tools
and activities.

Different acquisition programs within DoD and other government agencies may
independently reinterpret software component licenses. This realizes enterprise-wide
inefficiencies, as well as increases avoidable costs. It appears to be technically possible
to codify software component licenses by type or producer, especially with regards to
performative obligations and operational rights that Program Offices or customer
organizations seek. The license modeling techniques we have investigated
demonstrates the potential, practicality, and scalability of such possibility [AAS13,
ScA12a, ScA12b, ScA13b]. However, it may be most efficient and most effective for DoD
to have common legal interpretations for different licenses (or different ~ business
models). Such interpretations could be common, if produced by a central legal authority
(e.g., Office of General Counsel). Alternatively, it may also be possible for DoD and other
government agencies to provide an open framework or (acquisition) policy

guidance whose purpose is to encourage software producers to not only provide
software licenses in current narrative forms, but also to provide them in computer

197

processable forms (using domain-specific languages) amenable to automated license
analysis. Once again, this is a form of guidance and training we can provide, but it is not
one that we can impose on anyone. We believe it is in the best interest of DoD and other
government agencies to employ software licenses that are both human readable and
formally processable though automated means, at least in terms of software license
obligation and right determinations.

Failure to understand software license obligation and rights propagation can reduce DoD
buying power, increase software life cycle costs, and reduce competition. Guidance
from the OUSD for Acquisition, Technology, and Logistics recommends programmatic
adoption of different Better Buying Power initiatives grouped into seven focus areas of
relevance (http://bbp.dau.mil/sevenareas.html) as programmatic methods for doing more
without spending more. Acquiring licensed software components is a cost-generating
activity, whose costs/fees can be reduced while acquiring evermore agile and adaptive
software components and open architecture component-based systems. However,
software license non-compliance or worse, infringement, on the part of DoD will
generate costs, program delays, as well as reduce agility and adaptation, all of which
can be avoided. Such situations can and must be avoided through acquisition and
development practices with little/no additional cost to affect. Such practices can be
codified within open source business processes or open source computational business
process models that can be shared, customized to specific program needs,

redistributed and archived [ScA13b].

Software producers often provide idiosyncratic licenses that generally conform to
common business models and common license types. This seems mainly to arise from
efforts by software producers to protect or update their business models in ways that
improve their financial yield or protect/lock-in their customer base. This in turn
generates demand for time, attention, and effort from legal counsel that support
acquisition programs, while also reducing the effectiveness and timeliness of program
acquisition efforts. DoD and other government agencies may be able to explicitly specify
in advance what kinds of generic software license obligations they will accept and what
kinds of generic software rights they seek, through their own explicit business models.
Such specifications can be codified and provided to software producers in open source
manner through software license acquisition policies. Software producers might then
separate license terms and conditions that do and do not address current license
acquisition policies, in order to streamline licensing design and analysis practices for the
mutual benefit of software producers, integrators, and customers.

Software producers generally provide software licenses that are assumed to legally
dominate in systems composed of components from different software producers or
integrators. We refer to software systems (or systems of systems) composed from
components (e.g., apps, widgets) subject to different licenses as
“heterogeneously-licensed systems” (HLS) [ASA10, AAS13]. Popular Web browsers that

198

http://bbp.dau.mil/sevenareas.html

are compatible with widgets, apps, or plug-in components (e.g., Google Chrome, Mozilla
Firefox) are subject to dozens of component licenses. Popular COTS software
components also sometimes encompass components subject to multiple licenses. In
both situations, the component producer asserts overall component license

obligations and rights in ways that are compatible with the licenses included therein (or
so we hope). But when we deploy components that are composed into complex system
architectures, or employ components that support on-demand download and implicit
integration of smaller components (widgets, plug-ins, scripts, etc.) from online stores,
then analysis of license obligation and rights propagation or encapsulation matters. Such
technical details can readily overwhelm program acquisition managers and legal staff,
thereby reducing the agility and adaptation of component-based system development or
deployment. Provision of automated license analysis capabilities within software license
management systems should be able to overcome this situation.

Given the challenges of HLS, it is unclear what kinds of trade-offs can/should be
addressed by software system integrators or program acquisition staff to maximize
overall system development agility and evolutionary adaptation. This situation is not
unique to DoD, but is in fact widespread. However, as DoD and other government
agencies move to embrace agile and adaptive component-based software systems to
realize new, more timely system capabilities at lower cost compared to legacy
approaches, then there is need to provide guidance for how to identify and manage such
trade-offs. Failure to recognize the challenges of analyzing and managing HLS systems
translates into opportunities lost while avoidable costs increase. We can and should

do better than this. But this will require that resources be allocated to identify, articulate,
train, and iteratively refine best practices about how, where, when, and why these
trade-offs arise. Such knowledge should therefore be captured, codified, shared,
accessed, updated, and redistributed in an open source manner.

Software IP license and cybersecurity obligations and rights must be tracked,
accounted, and managed. A move to component-based open architecture systems
increases organizational overhead for managing software licenses. This overhead can
be reduced, or better transformed into productive, value-adding business practices,
through use of automated software obligations and rights management systems
(SORMS). While Software License Management Systems exist and are routinely used
by software component producers (to keep track of who has a licensed copy of their
software products), SORMS do not exist at this time for software system integrators or
customer enterprises.

DoD and other Government agencies would financially and administratively benefit from
engaging the development and deployment of an open source automated SORMS.
This may represent the lowest cost means for simplifying license analysis while
maximizing the benefits of agile and adaptive component-based software systems
acquisition within the DoD and other government agencies. SORMS can help to better

199

DoD software buying power. Similarly, an open source SORMS would also be of value
to smaller or startup software producers who may best be able to create innovative and
agile software components (widgets) in cost-competitive ways. Last, an open source
SORMS intended for software integrator/customer enterprises would be of value to
large, established DoD software producers, as a medium through which larger-scale
software component acquisitions (e.g., components acquired for standardized
deployment throughout an enterprise can be negotiated and simplified.

Finally, as suggested along the way, all of these consequences can be both anticipated and
mitigated through action and careful investment in enabling solutions.

New Practices to Realize Cost-Effective Acquisition of OA Software Systems for
Web-Based and Mobile Devices

The trends and concerns identified above point to substantial challenges in identifying what can
be done to both realize cost-effective BBP for Web-based and mobile device software apps, and
to do so in ways that enable and empower the acquisition workforce in the years ahead.
Technology, better buying practices, new business models, and new cybersecurity requirements
all point to the need for future research and development of new acquisition support
technologies, work processes, and guidance practices. The goal is to make sure that acquisition
time and effort does not become the main cost and the main risk factor going forward on the
path to agile OA Web-based or mobile compatible C2 system development, deployment, and
sustaining system evolution.

At this point, we see at least three key areas of opportunity for future acquisition research and
development. First, we need to research and develop worked examples of well-formed OA
system architectures that are appropriate for C2 system capabilities, and that accommodate
Web-based apps, widgets, and mobile devices. Such OA system architectures should specify
representative and standardized component interfaces. The examples should also include
carefully specified shared agreements that account for different IP licenses and diverse
business models of software producers, system integrators, and multiple end-user organizations
who must collectively act in ways that enable agile development and adaptive evolution of
demonstrable C2 system capabilities.

Second, we need robust open source models of application security processes and reusable
cybersecurity requirements that account for exigencies in heterogeneous app/widget software
ecosystems, account for software evolution dynamics, formation and continuous improvement
of automation-compatible shared agreements, and more. These models should account for
description of current process practices, prescription of required verification and validation
activities and outcome (deliverable documents or online artifacts), and proscription of what
tools/techniques to use, by whom, when, where, and how.

200

Third, we need reasonably precise, human readable and computer processable domain
specific languages (DSLs) for specifying, and automated analysis tools for continuously
assessing and continuously improving, cybersecurity and IP license requirements for
dynamically evolving Web/mobile C2 systembased capabilities. The DSLs needed must be able
to specify and operationalize the shared agreements between different DoD organizations,
government agencies, and commercial enterprises involved in producing, integrating, or
evolving component-based OA C2 system capabilities.

Overall, what we call for is similar in kind to what we have already produced and applied in other
software development domains, using then current technologies [JeS05, ScA08]. What we now
call for is a reinvention and repurposing of these concepts, but in contemporary forms scaled
and secured in ways that best meet the needs of the DoD program offices, acquisition program
managers, and others in the acquisition workforce to best support BBP 3.0 initiatives for
Web-based and mobile device software components (widgets, apps, plug-ins).

Conclusions

The DoD, other government agencies, and most large-scale business enterprises continually
seek new ways to improve the functional capabilities of their software-intensive systems. The
acquisition of OA systems that can adapt and evolve through replacement of functionally similar
software component applications (apps) and widgets is an innovation that can lead to lower cost
systems through more agile system development and adaptive system evolution. Our research
identifies and analyzes how new software component apps and widgets, their IP license and
cybersecurity requirements, and new software business models can interact to drive down (or
drive up) total system costs across the system acquisition life cycle. The availability of such new
scientific knowledge and technological practices can give rise to more effective expenditures of
public funds and improve the effectiveness of future software-intensive systems used in
government and industry.

Our study reported here also identifies a new set of technical risks that can dilute the
cost-effectiveness of Better Buying Power efforts. It similarly suggests that current acquisition
practices aligned with BBP can also give rise to acquisition management activities that can
dominate and overwhelm the costs of OA system development. This adverse condition can
arise through app/widget vetting, new software business models, opaque and/or underspecified
acquisition management processes, and the evolving interactions of new software development
and deployment techniques. Unless proactive investment in acquisition research and
development can give rise to worked examples, open source models, and new acquisition
management system technologies, the likelihood of acquisition management dominating agile
development and adaptive deployment of component-based OA C2 system capabilities.

Overall, this report serves to help describe and detail how Web-based and mobile device

software component technologies, IP licenses, security requirements, business models, and
adaptive system evolution interact. It also highlights what policies, practices, or technologies

201

within the DoD and other government agencies can simplify or exacerbate OA system cost
arising at different points in the acquisition life cycle. Our common goal is to increase the ways,
means, and beneficial consequences of the transition to the costeffective acquisition of
Web-based and mobile device OA software systems whose acquisition, development,
deployment, and ongoing evolution are agile and adaptive.

References

[AASQ9] Alspaugh, T.A, Asuncion, H. and Scacchi, W. (2009). Intellectual property rights
requirements for heterogeneously-licensed systems. In Proc. 17th IEEE International
Requirements Engineering Conference (RE’09), 24-33, Aug. 31-Sept. 4 2009.

[AAS13] Alspaugh, T.A, Asuncion, H. and Scacchi, W. (2013). The Challenge of
Heterogeneously Licensed Systems in Open Architecture Software Ecosystems, in S. Jansen,
S. Brinkkemper, and M. Cusumano (Eds.), Software Ecosystems: Analyzing and Managing
Business Networks in the Software Industry, Edward Elgar Publishing, 103-120, Northampton,
MA.

[AIS12] Alspaugh, T.A, Scacchi, W. (2012). Security Licensing, Proc. Fifth Intern. Workshop on
Requirements Engineering and Law, 25-28, September 2012.

[ASA10] Alspaugh, T.A, Scacchi, W., and Asuncion, H. (2010). Software Licenses in
Context: The Challenge of Heterogeneously Licensed Systems, Journal of the
Association for Information Systems, 11(11), 730-755, November 2010.

[And12] Anderson, S. (2012). Software Licensing — Smart Spending in These Changing
Times, CHIPS: The Department of the Navy's Information Technology Magazine, July-
September, 28-31.

[BCKO3] Bass, L., Clements, P., and Kazman, R., (2003). Software Architecture in Practice, 2nd
Edition, Addison-Wesley Professional,New York..

[Bed10] Bergey, J., & Jones, L. (2010). Exploring acquisition strategies for adopting a
software product line approach. Proc. 7th Acquisition Research Symposium. Vol. 1, 111-
122, Naval Postgraduate School, Monterey, CA.

[Bos00] Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley Professional, New York.

[BrAO5] Breaux, T.D. and Anton, A.l. (2005). Analyzing goal semantics for rights, permissions,

and obligations. In Proc. 13th IEEE International Conference on Requirements Engineering
(RE'05), 177-188, 2005.

202

[BrA08] Breaux, T.D. and Anton, A.l. (2008). Analyzing regulatory rules for privacy and security
requirements. IEEE Transactions on Software Engineering, 34(1), 5-20, 2008.

[ChS90] Choi, S. and Scacchi, W. (1990). Extracting and Restructuring the Design of Large
Systems, IEEE Software, 7(1), 66-71.

[ChS01] Choi, S.J. And Scacchi, W. (2001). Modeling and Simulating Software
Acquisition Process Architectures, Journal of Systems and Software, 59, 343-354, 2001.

[CINO1] Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, New York, 2001.

[CrS02] Crowston, K. and Scozzi, B., (2002). Open Source Software Projects as Virtual
Organizations. IEE Proceedings--Software, 149, 1, 3-17.

[DAU12], Defense Acquisition University (2012). Open Systems Architecture and
Technical Data Rights...Management Approaches, http://bbp.dau.mil/docs/Open
%20Systems%20Architecture%20and%20Technical%20Data%20Rights
%20.%20.%20.%20Management%20Approaches.pdf accessed 30 October 2012.

[DIS12], Defense Information Systems Agency (2012). DOD Open Source and
Community Source Software Development in Forge.mil, SoftwareForge
Document ID — doc26066doc26066 http://www.disa.mil/News/Conferences-and-
Events/DISA- Mission-Partner-Conference-
2012/~/media/Files/DISA/News/Conference/2012/
DoD_Open_Source_Community _Forge.pdf accessed 30 October 2012.

[End13] Endres-Niggemeyer, B. (2013). The Mashup Ecosystem, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 1-50.

[End13a] Endres-Niggemeyer, B. (2013). Mashups Live on Standards, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 51-89.

[FIRO4] D. Firesmith. Specifying reusable security requirements. Journal of Object Technology,
3(1), 61-75, Jan-Feb. 2004.

[GBC14] George, A., Bowers, A., Galdorisi, G., Hszieh, S., Morris, M., and Raney, C. (2014).
DoD Application Store: Enabling C2 Agility, Proc. 19Th Intern. Command and Control Research
and Technology Symposium, Paper-104, Alexandria, VA, June 2014.

[GMH13] George, A., Morris, M., Galdorisi, G., Raney, C., Bowers, A., and Yetman, C. (2013)
Mission Composable C3 in DIL Information Environments using Widgets and App Stores. Proc.

203

18Th Intern. Command and Control Research and Technology Symposium, Paper-036,
Alexandria, VA, June 2013.

[GuC10] Guertin, N. and Clements, P. (2010). Comparing Acquisition Strategies: Open
Architecture versus Product Lines, Vol. 1, 78-90, Proc. 7th Acquisition Research Symposium,
Naval Postgraduate School, Monterey, CA.

[GuW12] Guertin, N. and Womble, B. (2012). Competition and the DoD Marketplace, Proc. 9th
Acquisition Research Symposium. Vol. 1, 76-82, Naval Postgraduate School, Monterey, CA.

[JBAO8] Jansen, A., Bosch, J., and Avgeriou, P. (2008). Documenting After the Fact:
Recovering Architectural Design Decisions, J. Systems and Software, 81(4), 536-557.

[JeS05] Jensen, C. and Scacchi, W. (2005). Process Modeling Across the Web Information
Infrastructure, Software Process--Improvement and Practice, 10(3), 255-272, July-September
2005.

[JoB11] Jones, L. and Bergey, J. (2011). An Architecture-Centric Approach for Acquiring
Software-Reliant System, Proc. 8th Acquisition Research Symposium, Vol. 1, Naval
Postgraduate School, Monterey, CA.

[KaC99] Kazman, R. and Carriére, J. (1999). Playing Detective: Reconstructing Software
Architecture from Available Evidence. J. Automated Software Engineering, 6(2), 107-138.

[Ke12] Kenyon, H. (2012). DoD, Intel Officials Bullish On Open Source Software;
Government-wide Software Foundation In The Mix, AOL Defense, October 2012.

[Kon09] Konary, A. (2009). Software Licensing and Entitlement Management: The Next
Software Licensing and Entitlement Management: The Next Generation, IDC White Paper,
October 2009.
http://learn.flexerasoftware.com/content/ECM-WP-Software-Licensing-Entitlement-
Management , accessed 2 February 2013.

[MRT99] Medvidovic, N.,Rosenblum, D.S., and Taylor, R.N. (1999). A Language and
Environment for Architecture-Based Software Development and Evolution. In Proc. 21st Intern.

Conf. Software Engineering (ICSE '99). 44-53, IEEE Computer Society. Los Angeles, CA.

[Nis98] Nissen, M.E. (1998). Redesigning Reengineering through Measurement-Driven
Inference, MIS Quarterly, 22(4). 509-534.

[NoS99] Noll, J. and Scacchi, W., (1999). Supporting Software Development in Virtual
Enterprises, Jour. Digital Information, 1(4), February.

204

[RBC12] Reed, H., Benito, P., Collens, J., and Stein, F. (2012). Supporting Agile C2 with
an Agile and Adaptive IT Ecosystem, 17th. Intern. Command and Control Research and
Technology Symposium (ICCRTS), Paper-044, Fairfax, VA, June 2012.

[Sca01] Scacchi, W. (2001). Redesigning Contracted Services Procurement for Internet-
Based Electronic Commerce: A Case Study, J. Information Technology and Management, 2(3),
313-334.

[Sca07] Scacchi, W., (2007). Free/Open Source Software Development: Recent Research
Results and Methods, in M. Zelkowitz (Ed.), Advances in Computers, 69, 243-295.

[ScA08] Scacchi, W. and Alspaugh, T., (2008). Emerging Issues in the Acquisition of Open
Source Software within the U.S. Department of Defense, Proc. 5th Acquisition Research
Symposium, NPS-AM-08-036, Naval Postgraduate School, Monterey, CA, May.

[ScA11] Scacchi, W. and Alspaugh, T., (2011). Advances in the Acquisition of Secure
Systems Based on Open Architectures, Proc. 8th Acquisition Research Symposium, Vol. 1,
Naval Postgraduate School, Monterey, CA.

[ScA12a] Scacchi, W. and Alspaugh, T., (2012a) Understanding the Role of Licenses and
Evolution in Open Architecture Software Ecosystems, Journal of Systems and Software, 85(7),
1479-1494, July 2012.

[ScA12b] Scacchi, W. and Alspaugh, T., (2012b). Addressing Challenges in the Acquisition of
Secure Software Systems with Open Architectures, Proc. 9th Acquisition Research Symposium,
Vol. 1, 165-184, Naval Postgraduate School, Monterey, CA.

[ScA13a] Scacchi, W. and Alspaugh, T. (2013a). Processes in Securing Open Architecture
Software Systems, Proc. 2013 Intern. Conf. Software and System Processes, San Francisco,
CA, May 2013.

[ScA13b] Scacchi, W. and Alspaugh, T. (2013b). Challenges in the Development and Evolution
of Secure Open Architecture Command and Control Systems, Proc. 18th. Intern. Command and
Control Research and Technology Symposium, Paper-098, Alexandria, VA, June 2013.

[ScB12] Scacchi, W., Brown, C. and Nies, K. (2012). Exploring the Potential of Virtual Worlds for
Decentralized Command and Control, Proc. 17th. Intern. Command and Control Research and
Technology Symposium (ICCRTS), Paper 096, Fairfax, VA, June 2012.

[SFF06] Scacchi, W., Feller, J., B. Fitzgerald, Hissam, S.and Lakhani, K., (2006). Understanding

Free/Open Source Software Development Processes, Software Process--Improvement and
Practice, 11(2), 95-105, March/April.

205

[ScJ08] Scacchi, W. and Jensen, C., (2008). Governance in Open Source Software
Development Projects: Towards a Model for Network-Centric Edge Organizations, Proc. 13th.
Intern. Command and Control Research and Technology Symp., Bellevue, WA, (to appear,
June).

[ScN97] Scacchi, W. and Noll. J. (1997). Process-Driven Intranets: Life Cycle Support for
Process Reengineering, IEEE Internet Computing, 1(5):42-49.

[SEIO7] Northrop, L., & Clements, et al., Software Engineering Institute (2007). A Framework for
Software Product Line Practice, Version 5.0.
http://www.sei.cmu.edu/productlines/ frame_report/index.html

[WoS11] Womble, B., Schmidt, W., Arendt, M., and Fain, T. (2011). Delivering Savings with
Open Architecture and Product Lines, Proc. 8th Acquisition Research Symposium, Vol. 1, Naval
Postgraduate School, Monterey, CA.

[YaCO06] S. S. Yau and Z. Chen. A framework for specifying and managing security

requirements in collaborative systems. In Proc. Third International Conference on Autonomic
and Trusted Computing (ATC 2006), 500-510, 2006.

206

ACQUISITION RESEARCH PROGRAM

*
‘ , GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY

" NAVAL POSTGRADUATE SCHOOL
555 DYER ROAD, INGERSOLL HALL
\ / MONTEREY, CA 93943

www.acquisitionresearch.net

	NPS-ARP-FinalReport-Scacchi-Volume-02
	Binder1.pdf
	Chapter-01-OAAcquisitionMotivation
	Chapter-02-OpenArchitectures
	Chapter-03-LicenseChallengesForOA
	Chapter-04-LicenseLegalFoundations
	Chapter-05-AutomatingLicenseAnalysis
	Chapter-06-EcosystemsProductLines
	Chapter-07-Processes-SecuringOA
	Chapter-08-Secure-OA
	Chapter-09-ClassicalRequirements-Provisionments
	Chapter-10-DiscussionRecommendations

	Back Cover.pdf
	Report Cover
	1. Double click the header or footer area (see below).
	2. Make changes to the existing header or footer, on the first page. Close the header or footer.
	Page Layout
	Organization

	2. Acknowledgements
	3. About the Author

