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Abstract 

This proposed research has the explicit goal of proposing a reusable, 

extensible, adaptable, and comprehensive advanced analytical modeling process to 

help the U.S. Navy in quantifying, modeling, valuing, and optimizing a set of ship 

design options to create a business case for making strategic decisions under 

uncertainty. Specifically, we look at a portfolio of options onboard multiple ships 

across different classes, both at the Program Executive Office Ships (PEO-SHIPS) 

and extensible to the Navy Fleet. This portfolio of options approach will provide tools 

to allow decision-makers to decide on the optimal flexible options to implement and 

allocate in different types of ships subject to budget constraints across multiple types 

of ships. The office of Chief of Naval Operations (CNO) is also interested in applying 

portfolio optimization to choose among various programs across the various 

departments and divisions in the Navy, and applications within the CNO community 

will be addressed further in a follow-on research article.  



Acquisition Research Program 
Graduate School of Business & Public Policy - ii - 
Naval Postgraduate School 

 

 

 

 

 

 

 

 

 

THIS PAGE LEFT INTENTIONALLY BLANK 

  



Acquisition Research Program 
Graduate School of Business & Public Policy - iii - 
Naval Postgraduate School 

NPS-AM-18-010 

 

ACQUISITION RESEARCH PROGRAM 
SPONSORED REPORT SERIES 

  

Portfolio Optimization of Flexible Ship Options 

15 November 2017 

Dr. Johnathan Mun, Professor of Research, Information Science 

Graduate School of Business & Public Policy 

Naval Postgraduate School 

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy 
position of the Navy, the Department of Defense, or the federal government. 



Acquisition Research Program 
Graduate School of Business & Public Policy - iv - 
Naval Postgraduate School 

 

 

 

 

 

 

 

 

 

THIS PAGE LEFT INTENTIONALLY BLANK 

  



Acquisition Research Program 
Graduate School of Business & Public Policy - v - 
Naval Postgraduate School 

Table of Contents 

Introduction ................................................................................................................ 1 

Portfolio Optimization .......................................................................................... 2 

Real Options Valuation ........................................................................................ 3 

Research Process and Layout of the Paper .............................................................. 7 

Literature Review .......................................................................................... 7 

Portfolio Optimization .................................................................................... 7 

Conclusions and Recommendations ............................................................. 7 

Appendices ................................................................................................... 7 

Literature Review ....................................................................................................... 9 

Portfolio Modeling in Military Applications ........................................................... 9 

Portfolio Applications in Industry ....................................................................... 15 

Portfolio Optimization ............................................................................................... 19 

What Is Portfolio Optimization? ......................................................................... 19 

The Travel Cost Planner .................................................................................... 20 

The Lingo of Optimization .................................................................................. 29 

Optimization Application at PEO-IWS and NAVSEA ................................................ 33 

Conclusions and Recommendations ........................................................................ 47 

References .............................................................................................................. 49 

Appendix A: The Theory of Strategic Real Options, Knowledge Value Added, and 
Integrated Risk Management ................................................................................... 53 

The Real Options Solution in a Nutshell ............................................................ 55 

Industry Leaders Embracing Strategic Real Options .................................. 56 

Knowledge Value Added (KVA) ......................................................................... 60 

Integrated Risk Management (IRM)................................................................... 64 

Appendix B: A Refresher on Portfolio Optimization.................................................. 69 

Discrete Integer Optimization ............................................................................ 72 

Efficient Frontier and Advanced Optimization .................................................... 75 

Biographies .............................................................................................................. 77 
 

  



Acquisition Research Program 
Graduate School of Business & Public Policy - vi - 
Naval Postgraduate School 

 

 

 

 

 

 

 

 

 

THIS PAGE LEFT INTENTIONALLY BLANK 

  



Acquisition Research Program 
Graduate School of Business & Public Policy - vii - 
Naval Postgraduate School 

List of Acronyms 

AAW   Anti-Aircraft Warfare  
ACB   Advanced Concept Build 
ASUW  Anti-Surface Warfare 
AWS   Anti-Submarine Warfare 
CBO   Congressional Budget Office 
CNO   Chief of Naval Operations 
CSBA   Center for Strategic and Budgetary Assessments 
CUO   Common Units of Output 
DDG   Arleigh Burke Class of Guided Missile Destroyers 
DOD   U.S. Department of Defense 
FASO   Flexible and Adaptable Ship Options 
FSC   Future Surface Combatants 
IRM   Integrated Risk Management 
IRR   Internal Rate of Return 
KVA   Knowledge Value Added 
LCS   Littoral Combat Ship 
MAS   Modular Adaptable Ships 
MIRR   Modified Internal Rate of Return 
NAVSEA  Naval Sea Systems Command 
NPV   Net Present Value 
OFT   Office of Force Transformation 
OPNAV  Navy Operations 
OSD   Office of the Secretary of Defense 
PEO-SHIPS  Program Executive Office, SHIPS 
PEO-IWS   Program Executive Office, Integrated Warfare Systems 
PG&E   Pacific Gas and Electric 
ROI   Return on Investment 
ROKI   Return on Knowledge Investment 
ROK   Return on Knowledge 
ROM   Rough Order Magnitude 
ROV   Real Options Valuation 
SoS    System of Systems  
SME   Subject Matter Expert 
VLS   Vertical Launch Systems  



Acquisition Research Program 
Graduate School of Business & Public Policy - viii - 
Naval Postgraduate School 

 

 

 

 

 

 

 

 

 

THIS PAGE LEFT INTENTIONALLY BLANK 

  



Acquisition Research Program 
Graduate School of Business & Public Policy - ix - 
Naval Postgraduate School 

List of Figures 

Figure 1: What Is Optimization? ............................................................................... 20 

Figure 2: The Travel Cost Planner ........................................................................... 21 

Figure 3: Multiple Combinations of the Travel Cost Problem ................................... 22 

Figure 4: Portfolio Optimization Settings .................................................................. 23 

Figure 5: Portfolio Optimization Results ................................................................... 25 

Figure 6: Multi-Criteria Portfolio Optimization Results .............................................. 26 

Figure 7: Visualizing the Optimization Process ........................................................ 30 

Figure 8: Optimization With Uncertainties and Risk ................................................. 31 

Figure 9: Capital Budgeting Results Comparison .................................................... 37 

Figure 10: Program Rankings .................................................................................. 38 

Figure 11: Comparison of Simulated NPV Probability Distributions ......................... 39 

Figure 12: Comparison of Simulated IRR Probability Distributions .......................... 39 

Figure 13: Economic Probability of Success ............................................................ 40 

Figure 14: Comparison of Options Decision Risk Profile ......................................... 40 

Figure 15: Portfolio Optimization 1 ........................................................................... 41 

Figure 16: Portfolio Optimization 2 ........................................................................... 42 

Figure 17: Portfolio Optimization 3 (OPNAV) ........................................................... 43 

Figure 18: Portfolio Optimization 4 (COMMAND)..................................................... 43 

Figure 19: Portfolio Optimization 5 (KVA) ................................................................ 44 

Figure 20: Portfolio Optimization 6 (Weighted Average) .......................................... 45 

Figure 21: Portfolio Optimization 7 (Combined View) .............................................. 46 

Figure 22: Measuring Output ................................................................................... 61 

Figure 23: KVA Metrics ............................................................................................ 62 

Figure 24: Comparison of Traditional Accounting Versus Process-Based Costing .. 62 

Figure 25: U.S. Probability Risk Distribution Spreads .............................................. 67 



Acquisition Research Program 
Graduate School of Business & Public Policy - x - 
Naval Postgraduate School 

Figure 26: Integrated Risk Management Process .................................................... 68 

Figure 27: Discrete Go and No-Go Decision for Project and Program Selection ..... 73 

Figure 28: Portfolio Optimization Model Settings ..................................................... 74 

Figure 29: Optimal Selection of Projects Maximizing Sharpe Ratio ......................... 74 

Figure 30: Generating Changing Constraints in an Efficient Frontier ....................... 76 

Figure 31: Efficient Frontier Results ......................................................................... 76 

 

 

 



Acquisition Research Program 
Graduate School of Business & Public Policy - 1 - 
Naval Postgraduate School 

Introduction 

This research showcases how portfolio optimization can be applied in the 

Navy as well as across the Department of Defense (DOD) in general, where multiple 

competing stakeholders (e.g., Office of the Secretary of Defense, Office of the Chief 

of Naval Operations, Congress) have specific objectives (e.g., capability, efficiency, 

cost effectiveness, competitiveness, lethality) as well as constraints (e.g., time, 

budget, schedule, manpower) and domain requirements (e.g., balancing the needs 

of anti-submarine warfare, anti-aircraft warfare, missile defense). This first-step 

research project provides an overview of the methodology employing nominal data 

variables to illustrate the analytics; it will be followed up by subsequent research with 

more case-specific examples using actual subject matter expert (SME) data from the 

Office of the Chief of Naval Operations.  

The Army Review to Rank 780 Programs by Priority (September 15, 2016), 

which is a broad strategic review of about 780 Army weapon and equipment 

programs, is about to get underway to set priorities for the future. The goal of the 

Strategic Portfolio Analysis and Review, or SPAR, is “very simple,” according to 

Lieutenant General John M. Murray, the Army’s deputy chief of staff for programs. 

“We’re going to go through every program we have—780-ish programs in the 

Army—and model them in a high-end, near-peer scenario with an actual simulation,” 

he said. “We’re going to try to figure out how to assign some sort of value to that 

capability based on its contribution to the fight.” 

Similarly, to maintain a high level of competitiveness, corporations in the 

private sector need to continually invest in technology, research and development 

(R&D), and other capital investment projects. But resource constraints require 

organizations to strategically allocate resources to a subset of possible projects. A 

variety of tools and methods can be used to select the optimal set of technology 

projects. However, these methods are only applicable when projects are 

independent and are evaluated in a common funding cycle. When projects are 

interdependent, the complexity of optimizing even a moderate number of projects 

over a small number of objectives and constraints can become overwhelming. 
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Dickinson, Thornton, and Graves (2001) present a model developed for the Boeing 

Company in Seattle to optimize a portfolio of product development improvement 

projects. The authors illustrate how a dependency matrix (modeling of 

interdependencies among projects) is applied in a nonlinear integer programming 

methodology to optimize project selection. The model also balances risk, overall 

objectives, and the cost and benefit of the entire portfolio. Once the optimum 

strategy is identified, the model enables the team to quickly quantify and evaluate 

small changes to the portfolio. 

In the U.S. military context, risk analysis, real options analysis, and portfolio 

optimization techniques enable a new way of approaching the problems of 

estimating return on investment (ROI) and the risk value of various strategic real 

options. There are many DOD requirements for using more advanced analytical 

techniques. For instance, the Clinger-Cohen Act of 1996 mandates the use of 

portfolio management for all federal agencies. The GAO’s 1997 report entitled 

Assessing Risks and Returns: A Guide for Evaluating Federal Agencies’ IT 

Investment Decision-Making requires that IT investments apply ROI measures. DOD 

Directive (DODD) 8115.01 (DOD, 2005) mandates the use of performance metrics 

based on outputs, with ROI analysis required for all current and planned IT 

investments. DODD 8115.bb (2006) implements policy and assigns responsibilities 

for the management of DOD IT investments as portfolios within the DOD enterprise 

where it defines a portfolio to include outcome performance measures and an 

expected return on investment. The DOD’s Risk Management Guidance Defense 

Acquisition Guidebook requires that alternatives to the traditional cost estimation 

need to be considered because legacy cost models tend not to adequately address 

costs associated with information systems or the risks associated with them (see 

Mun, 2012). 

Portfolio Optimization 

Optimization is a rich and storied discipline designed to use data and 

information to guide decision-making in order to produce an optimal or very close to 

optimal outcome. However, “government agencies have been much slower to use 
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these approaches to increase efficiency and mission effectiveness, even though 

they collect more data than ever before” (Bennett, 2017). For these government 

agencies, optimization solutions can utilize the large amounts of data from different 

sources to provide decision-makers with decision alternatives that optimally meet 

agency objectives. 

Greiner, McNutt, Shunk, and Fowler (2001) correctly state that standard 

economic measures such as internal rate of return (IRR), net present value (NPV), 

and return on investment (ROI) are commonly used in evaluating commercial-based 

R&D projects to help identify optimal choices. However, such economic measures in 

their commercial form are of little use in evaluating weapon systems development 

efforts. Therefore, this paper examines the challenges faced by the DOD in 

determining the value of weapon systems during the R&D portfolio selection 

processes. 

Beaujon, Marin, and McDonald (2001) looked at balancing and optimizing a 

portfolio of R&D projects with a mathematical formulation of an optimization model 

designed to select projects for inclusion in an R&D portfolio, subject to a wide variety 

of constraints (e.g., capital, headcount, strategic intent, etc.). There does seem to be 

general agreement that all of the proposed methods are subject to considerable 

uncertainty. A systematic way to examine the sensitivity of project selection 

decisions to variations in the measure of value is developed by the authors. 

Real Options Valuation 

In order to successfully implement the Surface Navy’s Flexible Ships concept, 

PEO-SHIPS requires a new methodology that assesses the total future value of 

various combinations of Flexible Ships design features and how they will enable 

affordable warfighting relevance over the ship’s full-service life. Examples of Flexible 

Ships design features include decoupling payloads from platforms, standardizing 

platform-to-payload interfaces, allowance for rapid reconfiguration of onboard 

electronics and weapons systems, preplanned access routes for mission bays and 

mission decks, and allowance for sufficient growth margins for various distributed 

systems. This research analyzes the application of strategic Real Options Valuation 
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methodology within the Integrated Risk Management process to assess the total 

future value of Flexible Ships design features and its use in the Future Surface 

Combatant Analysis of Alternatives. The explicit goal of the current research is to 

propose a reusable, extensible, adaptable, and comprehensive advanced analytical 

modeling process to help the Navy in quantifying, modeling, valuing, and optimizing 

a set of ship design options to create a business case for making strategic decisions 

under uncertainty, optimizing various capabilities and requirements for various ship 

platforms, and selecting the optimal portfolio, sequenced in phases over time, 

subject to leadership and warfighter needs and requirements within budgetary and 

personnel constraints. 

The Real Options Valuation methodology is a new approach used 

successfully in various commercial industries to assess the total future value, 

including benefits and costs, of decisions made when a high degree of uncertainty 

exists at the time the decisions need to be made. To successfully implement the 

Surface Navy’s Flexible Ships concept, PEO-SHIPS needs a new methodology that 

assesses the total future value of various combinations of Flexible Ships design 

features and how they will enable affordable warfighting relevance over the full ship 

service life. Examples of Flexible Ships design features include the following: 

• Decoupling payloads from platforms 
• Standard platform-to-payload interfaces 
• Rapid reconfiguration 
• Preplanned access routes 
• Sufficient growth margins for distributed systems 

This research analyzes the application of the strategic Real Options Valuation 

methodology to assess the total future value of Flexible Ships design features, and, 

if successful, this methodology will be used during the Future Surface Combatant 

Analysis of Alternatives (AOA). 

This research has the explicit goal of proposing a reusable, extensible, 

adaptable, and comprehensive advanced analytical modeling process to help the 

U.S. Navy in quantifying, modeling, valuing, and optimizing a set of ship design 
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options to create a business case for making strategic decisions under uncertainty. 

Specifically, we will look at a portfolio of options onboard multiple ships across 

different classes, both at the PEO-SHIPS and extensible to the Navy Fleet. This 

portfolio of options approach will provide tools to allow decision-makers to decide on 

the optimal flexible options to implement and allocate in different types of ships 

subject to budget constraints across multiple types of ships. The process will 

• create and model multiple objective optimization models based on IRM 
methodology built on Monte Carlo risk simulation and Real Options 
Valuation models. These models will identify which Flexible Ship options 
and Modular Ship Design options have a positive return on investment 
under uncertainties.  

• allow ship design options to be vetted and modeled, where the options 
will be framed in context. 

• optimize the portfolio of options (i.e., given a set of Flexible Ship options 
and Modular Ship Design options with different costs, benefits, 
capabilities, and uncertainties, clarify which design options should be 
chosen given constraints in budget, schedule, and requirements). 
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Research Process and Layout of the Paper 

The remainder of the current research paper is laid out as follows. 

Literature Review 

This section provides a review of the existing literature in terms of portfolio 

optimization approaches and needs within the DOD, specifically within the U.S. 

Navy, and, for comparison, within the commercial industrial sector.  

Portfolio Optimization 

This section represents the main crux of the research, where the basics of 

portfolio optimization are reviewed, and a simple travel cost planner example is used 

to illustrate how quickly a portfolio optimization can become mathematically 

intractable. Then a case example within the PEO-IWS and NAVSEA domain is 

illustrated and shows how standard capital budgeting with economic and financial 

information as well as noneconomic data and information is used in a portfolio.  

Conclusions and Recommendations 

This final section details our conclusions and recommendations going forward 

regarding the proposed analytical process, data requirements, analyst/engineer 

training, and modeling tools.  

Appendices 

The theory of real options valuation and associated methods is covered in 

Appendix A. This appendix is included to provide a more comprehensive and stand-

alone research article for the reader’s convenience. The recommended decision 

analytics framework is briefly explained. This framework will structure the ROV 

models and methodology in a way that relates to the various design implementations 

and facilitates data collection, data analysis, and recommendations, regardless of 

the design-type alternatives. In addition, the ROV analytical modeling methods are 

introduced as part of the Integrated Risk Management (IRM) process, where other 
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advanced decision analytical methodologies such as Monte Carlo risk simulation, 

Knowledge Value Added (KVA), and Portfolio Optimization approaches will also be 

used. 

A quick refresher on how an optimization model can be set up is included in 

Appendix B to provide an overview of the standard portfolio model settings and 

requirements. 
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Literature Review 

Portfolio Modeling in Military Applications 

Burk and Parnell (2011) reviewed the use of portfolio decision analysis in 

military applications, such as weapon systems, types of forces, installations, and 

military R&D projects. They began with comparing military and commercial portfolio 
problems in general, discussing the distinguishing characteristics of the military 

decision environment: hostile and adaptive adversaries, a public decision process 

with multiple stakeholders, and high system complexity. Based on their work, the 

authors observed that the “most widespread prominent feature of these applications 
is the careful modeling of value from multiple objectives.” What they found surprising 

was that “quantitative methods of measuring and valuing risk are surprisingly rare, 

considering the high level of uncertainty in the military environment.” Their analysis 

examined portfolio applications in more detail, looking at how military analysts model 
portfolio values, weight assessments, constraints and dependencies, and 

uncertainty and risk.  

Davendralingam and DeLaurentis (2016) looked at analyzing military 
capabilities as a system of systems (SoS) approach. According to the authors, this 

approach creates significant development challenges in terms of technical, 

operational, and programmatic dimensions. Tools for deciding how to form and 

evolve SoS that consider performance and risk are lacking. Their research 
leveraged tools from financial engineering and operations research perspectives in 

portfolio optimization to assist decision-making within SoS. The authors 

recommended the use of more robust portfolio algorithms to address inherent real-

world issues of data uncertainty, inter-nodal performance, and developmental risk. A 
naval warfare situation was developed in the paper to model scenario applications to 

find portfolios of systems from a candidate list of available systems. Their results 

show how the optimization framework effectively reduces the combinatorial 

complexity of trade-space exploration by allowing the optimization problem to handle 
the mathematically intensive aspects of the decision-making process. As a result, 

the authors concluded that human decision-makers can be tasked to focus on 
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choosing the appropriate weights for risk aversion in making final decisions rather 

than on the mathematical constructs of the portfolio. 

Sidiropoulos, Sidiropoulou, and Lalagas (2014) ran a portfolio management 

analysis with a focus on identifying and assessing current commercial off-the-shelf 
(COTS) Portfolio Analysis (PA) software products and solutions. Risk Simulator was 

used to develop portfolio models. These models were populated with relevant data 
and then run through an appropriate number of simulation iterations to assess 

candidate projects with respect to risk and Expected Military Value (EMV). The 

examples and models used in this paper discuss Portfolio Management Analysis 

(PMA) during various stages of project management and systems engineering. The 
goal for PMA is realized after the entire project design infrastructure is implemented 

and the end users’ instruments are provided for implementation. The authors’ intent 

was to identify “approaches and tools to incorporate PMA net-centric strategies to 

meet war fighter and business operations requirements, while continuing to maintain 
current levels of service, ensuring conservation of manpower and meeting 

infrastructure resource requirements.” 

Flynn and Field (2006) looked at quantitative measures that are under 

development to assess the Department of the Navy’s (DON’s) portfolio of 
acquisitions to improve business practices through better analytical tools and 

models. The authors found that the DON’s time would be better served by shifting its 

attention from analyzing individual acquisition programs (now studied exhaustively) 
to analyzing a portfolio of systems as a whole. This approach is similar to the 

methodology employed as a best practice in the private sector. According to the 

research, this high-level view provides senior military leaders valuable metrics for 

measuring risks and uncertainties of costs, capabilities, and requirements. Armed 
with these metrics, senior leaders can make better choices, among a set of plausible 

portfolios, to satisfy the Navy's national security objectives. To support their analysis, 

a subset of the current DON portfolio was selected by financial management and 

acquisition staff with which to test a methodology of portfolio analysis in the areas of 
Mine Countermeasures, a diverse, representative system of programs. This pilot 

model is a multi-phase process that included gathering life-cycle cost data for the 

various systems to be analyzed, establishing a scoring system using subject matter 
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experts to determine how effectively current and future systems match capabilities to 

requirements, and developing a means to display results by which decision-makers 
can examine risk-reward analysis and conduct trade-offs. The researchers’ ultimate 

goal was to assess military investments using portfolio analysis methodology. 

The GAO (1997, 2007) emphasized the approach of optimizing a portfolio mix 

to manage risk and maximize the rate of return. Although the DOD produces 
superior weapons, the GAO reported that the department has failed to deliver 

weapon systems on time, within budget, and with desired capabilities. While recent 

changes to the DOD's acquisition policy held the potential to improve outcomes, 

programs continue to experience significant cost and schedule overruns. The GAO 
was asked to examine how the DOD's processes for determining needs and 

allocating resources can better support weapon system program stability. To do this, 

in accordance to the report, the GAO compared the DOD's processes for investing in 

weapon systems to the best practices that successful commercial companies use to 
achieve a balanced mix of new products, including companies such as Caterpillar, 

Eli Lilly, IBM, Motorola, and Procter and Gamble. Based on the reports, the GAO 

found that to achieve a balanced mix of executable development programs and 

ensure a good return on their investments, the successful commercial companies 
the GAO reviewed take an integrated, portfolio management approach to product 

development. Through this approach, companies assess product investments 

collectively from an enterprise level, rather than as independent and unrelated 
initiatives. These commercial entities weigh the relative costs, benefits, and risks of 

proposed products using established criteria and methods, and select those 

products that can exploit promising market opportunities within resource constraints 

and move the company toward meeting its strategic goals and objectives. In these 
firms, investment decisions are frequently revisited, and if a product falls short of 

expectations, companies make tough go/no-go decisions over time. The companies 

GAO reviewed have found that effective portfolio management requires a 

governance structure with committed leadership, clearly aligned roles and 
responsibilities, portfolio managers who are empowered to make investment 

decisions, and accountability at all levels of the organization. In contrast, the DOD 

approves proposed programs with much less consideration of its overall portfolio 
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and commits to them earlier and with less knowledge of cost and feasibility. 

Although the military services fight together on the battlefield as a joint force, they 
identify needs and allocate resources separately, using fragmented decision-making 

processes that do not allow for an integrated, portfolio management approach like 

that used by successful commercial companies. Consequently, the DOD has less 

assurance that its investment decisions address the right mix of warfighting needs, 
and it starts more programs than current and likely future resources can support, a 

practice that has created a fiscal bow wave. If this trend goes unchecked, Congress 

will be faced with a difficult choice: pull dollars from other high-priority federal 

programs to fund DOD acquisitions or accept gaps in warfighting capabilities. 

Wismeth (2012) noted that the Army has implemented the Army Portfolio 

Management Solution (APMS) to facilitate collection and analysis of information 

necessary to prioritize the thousands of IT investments within its portfolio. IT 

investments are grouped according to the mission capabilities they support: 
Warfighter, Business, and Enterprise Information Environment Mission Areas, each 

of which is led by a three- or four-star level general officer or senior executive. 

According to Botkin (2007), government agencies and the Department of 

Defense require decision-support tools when making funding decisions regarding 
portfolios of programs or projects. Government agencies have had some success in 

applying Project Portfolio Management (PPM) when choosing among potential 

programs; however, once programs are underway, financial managers routinely face 
funding optimization decisions similar to those of private-sector stock market 

portfolio managers. While private-sector portfolio managers rely on “stock-price” 

based financial portfolio analysis to aid decision-making, government financial 

managers lack an equivalent “stock-price” metric for program or project 
performance. Botkin’s (2007) research suggests the government’s Earned Value 

Management System (EVMS) metrics may be used to generate a suitable proxy with 

which financial portfolio analysis can be conducted. From this analysis, risk and 

return trade-offs can be quantified and used when making portfolio decisions. An 
example using representative EVM data is presented in Botkin’s work. 

Recommendations on the possible applicability and limitations of the technique are 

discussed.  
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The Office of Naval Research (ONR) is responsible for defining and 

sponsoring the R&D necessary to support both the current and future requirements 
of the Navy and Marine Corps. Silberglitt et al. (2004) and Silberglitt and Sherry 

(2002) note that to accomplish this mission, the ONR must fund a broad spectrum of 

research, ranging from basic research needed to open up new options for the long-

term, to very near-term advanced technology development to support the current 
fleet. ONR must make its R&D funding decisions in the presence of uncertainty 

(uncertainty in required capabilities, uncertainty in performance requirements, and 

uncertainty in the feasibility of a technology or R&D approach). Silberglitt’s report 

described the adaptation of an R&D portfolio management decision framework 
recently developed by RAND. 

Janiga and Modigliani (2014) recommended that the DOD foster dynamic and 

innovative solutions for tomorrow’s warfighter by designing acquisition portfolios that 

deliver an integrated suite of capabilities. Program executive officers (PEO) today 
often focus on executing a dozen similar but independent programs. In contrast, 

large commercial businesses manage integrated product lines for items ranging from 

automobiles and electronics to software and health services. The DOD could 

leverage this model as a basis for constructing portfolios of similar programs that 
deliver enhanced capabilities in shorter timeframes. 

Jocic and Gee (2013) provided a comparison of space services delivered by 

multiple systems in a portfolio that allows a normalized valuation of disparate system 
features and can be visualized via a three-dimensional graph consisting of 

capability, cost, and schedule axes. Portfolio optimization is attained by being within 

the efficient performance frontier in the cost-capability plane, staying within the 

budgetary constraints in the cost-schedule plane, and decreasing the likelihood of a 
capability gap in the schedule-capability plane. The desired portfolio capability is 

derived from the conflict scenario outcomes that are generated through military utility 

analysis. 

The Institute for Defense Analyses (IDA) prepared a document for the Office 
of the Director, Acquisition Resources and Analysis, under a task titled “Portfolio 

Optimization Feasibility Study” (Weber et al., 2003). The objective was to study the 
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feasibility of using optimization technology to improve long-term planning of defense 

acquisition. The model described in this document is an example of optimization 
technology that can estimate and optimize production schedules of Acquisition 

Category I programs over a period of 18 years. 

Vascik, Ross, and Rhodes (2015) found that the modern warfighter operates 

in an environment that has dramatically evolved in sophistication and 
interconnectedness over the past half century. With each passing year, the infusion 

of ever more complex technologies and integrated systems places increasing 

burdens on acquisition officers to make decisions regarding potential programs with 

respect to the joint capability portfolio. Furthermore, significant cost overruns in 
recent acquisition programs reveal that, despite efforts since 2010 to ensure the 

affordability of systems, additional work is needed to develop enhanced approaches 

and methods. Vascik’s paper discussed research that builds on prior work that 

explored system design trade-spaces for affordability under uncertainty, extending it 
to the program and portfolio level. Time-varying exogenous factors, such as 

resource availability, stakeholder needs, or production delays, may influence the 

potential for value contribution by constituent systems over the life cycle of a 

portfolio, and make an initially attractive design less attractive over time. Vascik 
introduced a method to conduct portfolio design for affordability by augmenting 

Epoch-Era Analysis with aspects of Modern Portfolio Theory. The method is 

demonstrated through the design of a carrier strike group portfolio involving the 
integration of multiple legacy systems with the acquisition of new vessels. 

According to DODD 5100.96 (2017), the DOD Space Assessment (PDSA) 

monitors and oversees the performance of the entire DOD space portfolio. The 

PDSA, in assessing space-related threats, requirements, architectures, programs, 
and their synchronization, advises senior DOD leadership and recommends NSS 

enterprise-level adjustments. It conducts an annual strategic assessment, or Space 

Strategic Portfolio Review (SPR) when directed, assisted by the DSC and DCAPE, 

to address space posture and enterprise-level issues and provides the DMAG and 
the Secretary and Deputy Secretary of Defense with results of the analysis, which 

may include prioritized programmatic choices for space capabilities. 
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Portfolio Applications in Industry  

Dunlop (2004) studied how the amount of wind power capacity in Europe and 

the U.S. was growing rapidly and becoming increasingly attractive to institutional 

private equity investors. The author applied modern portfolio theory and the capital 
asset pricing model to wind farms to discover if the model can be successfully 

adapted to the wind power sector and if geographical diversification would reduce 

production volatility. By substituting stock return data with wind power production 

data, he found that beta can be a useful tool in risk measurement for wind farm 
selection. He also found that up to 30% of production risk can be diversified away in 

a practical portfolio to smooth cash flow returns. 

According to Haq, Gandhi, and Bahl (2012), for many firms, advanced 

physical portfolio optimization can provide ways to grow earnings and improve 
overall margins. Energy companies, including producers, suppliers, or merchant 

traders of gas, power, oil, or chemicals, that are looking to improve revenues should 

manage their businesses using a systematic market-based approach that treats all 
assets in the business—physical assets, term contracts, transport or storage leases, 

and positions—as an integrated portfolio. The key concept in advanced physical 

portfolio optimization is that the value of a business should be denominated by the 

value of the portfolio as a whole and by how the portfolio is managed. The major 
benefit of advanced physical portfolio optimization is that it improves the 

management of the overall business at the lowest level of granularity. Advanced 

physical portfolio optimization provides recommended transactions to maximize 

profit within asset and contractual constraints. 

Yang, Lin, Chang, and Chang (2011) discussed the portfolio selection for 

military investment assets based on semi-variance as a measure of risk. In this 

paper the researchers propose a new definition of military investment assets for 

portfolio selection. Based on the new definition, a semi-variance model is provided. 
In order to give efficient portfolios to the risk model, the heuristic algorithms are 

proposed to solve the portfolio selection problem which is otherwise hard to solve 

with the existing algorithms in traditional ways. In addition, a measure of risk 
including cardinality constraints is provided for the portfolio selection problem. The 
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cardinality constraints intensify the compatibility of the risk model in a portfolio 

problem. One numerical example of weighted allocations taking different risk values 
is also given to illustrate the quantitative idea for the decision-maker in military 

investment assets. 

Setter and Tishler (2007) noted that an ever‐growing share of defense R&D 

expenditures is being dedicated to the development and fielding of integrative 

technologies that enable separate individual systems to work in a coordinated and 
synergistic fashion as a single system. The researchers explore the optimal defense 

budget allocation to the development and acquisition of weapon systems and to the 

development of integrative technologies. They develop a suitable optimization 

framework, and then use it to derive the optimal budget allocation and analyze its 
properties. Finally, they use U.S. defense budget data to calibrate the parameters of 

the model and provide a quantitative measure for the apparent U.S. military 

supremacy. 

Military applications are producing massive amounts of data due to the use of 
multiple types of sensors on the battlefield. Yang, Yang, Wang, and Huang (2016) 

investigated the weapon system portfolio problem with the valuable knowledge 

extracted from these sensor data. The objective of weapon system portfolio 

optimization is to determine the appropriate assignment of various weapon units, 
which maximizes the expected damage of all hostile targets, while satisfying a set of 

constraints. Yang et al. (2016) present a mixed integer nonlinear optimization model 

for the weapon system portfolio problem. In order to solve this model, an adaptive 
immune genetic algorithm using crossover and mutation probabilities that are 

automatically tuned in each generation is proposed. A ground-based air defensive 

scenario is introduced to illustrate the feasibility and efficiency of their proposed 

algorithm. In addition, several large-scale instances that are produced by a test-case 
generator are also considered to demonstrate the scalability of the algorithm. 

Comparative experiments have shown that their algorithm outperforms its 

competitors in terms of convergence speed and solution quality, and it is competent 

for solving weapon system portfolio problems under different scales. 
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Girotra, Terwiesch, and Ulrich (2007) noted that understanding the value of a 

product development project is critical to a firm’s choice in project portfolio selection. 
The value of a project to a firm depends not only on its properties but also on the 

other projects being developed by the firm. This is due to interactions with the other 

projects that address the same consumer need and require the same development 

resources. In their study, the authors investigated the structure and significance of 
these portfolio-level project interactions using a pharmaceutical industry data set. 

The study exploited the natural experiment of a product development failure to give 

a measure of the value of a drug development project to a firm. It then explained the 

variance in the value of projects based on interactions with other projects in the 
firm’s portfolio. 

Johannessen (2015) studied the use of real options and portfolio optimization 

to improve the quality of the information obtained in the decision-making process 

and to optimize the project selection for wind power portfolios. The model developed 
in this thesis was applied to TrønderEnergi’s investment portfolio. The projects 

considered were located in Central Norway. 

Brown and Anthony (2011) noted how Pacific Gas and Electric (PG&E) was 

able to triple its innovation success rate by promoting a portfolio mind-set. According 
to the authors, P&G communicates to both internal and external stakeholders that it 

is building a varied portfolio of innovation approaches, ranging from sustaining to 

disruptive ones. PG&E also deploys portfolio-optimization tools that help managers 
identify and kill the least-promising programs and nurture the best bets. These tools 

create projections for every active idea, including estimates of the financial potential 

and the human and capital investments that will be required. Some ideas are 

evaluated with classic net-present-value calculations, others with a risk-adjusted, 
real options approach, and still others with more qualitative criteria. Although the 

tools assemble a rank-ordered list of projects, P&G’s portfolio management isn’t, at 

its core, a mechanical exercise; it’s a dialogue about resource allocation and 

business growth building blocks. Numerical input informs but doesn’t dictate 
decisions. 
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According to a paper by Gurgur and Morley (2008), Dennis Garegnani, 

Director of FO&S, Lockheed Martin Space Systems, writes: “The optimization model 
developed for our team has made substantial contributions to the long-term 

effectiveness of our organization. Up until now, capital allocation decisions had been 

made largely based on qualitative, tacit knowledge held by various decision-makers 

within the department and through a painstaking and argumentative review process. 
Adding this quantitative aspect to our investment strategy has undoubtedly benefited 

the department over the long term and in some immediate ways as well.” Garegnani 

further adds that “having the model at Lockheed Martin’s disposal has added 

another level of credibility to the department among its peers. Organization of past 
financial performance data to predict and control future financial performance has 

long been needed and the model has addressed this issue as well. Watching the 

correction and evolution of the model to match our needs has been extraordinarily 

constructive for the entire department. Simply put, the optimization model has been 
a huge success and directly affects our productivity and ability to deliver positive 

results. It has already been recognized as a best practice” (Gurgur & Morley, 2008). 

As further testimony to the usefulness of portfolio optimization, in 

ExxonMobil’s 2015 Summary Annual Report, the company states that “capturing the 
highest value for our products combined with our relentless focus on operational 

excellence, disciplined cost management, selective investments, and portfolio 

optimization generates superior shareholder returns.” 

Another example of the application of portfolio optimization in industry is 

provided by Kellogg’s Global CMO, Mark Baynes, in his statement that portfolio 

optimization “really [provides] the ability to prioritize brands in our investments 

against ensuring that our portfolio spending remains relative and competitive against 
each of the markets where we're investing” (Lazar, Bryant, Baynes, & Dissinger, 

2011). Additionally, Zacks Equity Research (2015) attributed DuPont's higher 

earnings in the fourth quarter of 2014 to the company’s focus on executing strategic 

actions including portfolio optimization, disciplined capital allocation, and cost 
control.  
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Portfolio Optimization  

What Is Portfolio Optimization? 

In today’s competitive global conditions, the DOD is faced with many difficult 

decisions. These decisions include allocating financial resources, building or 

expanding facilities, managing inventories for maintenance, and determining force-

mix strategies. Such decisions might involve thousands or millions of potential 

alternatives. Considering and evaluating each of them would be impractical or even 

impossible. A model can provide valuable assistance in incorporating relevant 

variables when analyzing decisions and in finding the best solutions for making 

decisions. Models capture the most important features of a problem and present 

them in a form that is easy to interpret. Models often provide insights that intuition 

alone cannot. An optimization model has three major elements: decision variables, 

constraints, and an objective. In short, the optimization methodology finds the best 

combination or permutation of decision variables (e.g., which products to sell and 

which projects to execute) such that the objective is maximized (e.g., in revenues 

and net income) or minimized (e.g., in risk and costs) while still satisfying the 

constraints (e.g., budget and resources), as shown in Figure 1.  

Obtaining optimal values generally requires that you search in an iterative or 

ad hoc fashion. This search involves running one iteration for an initial set of values, 

analyzing the results, changing one or more values, rerunning the model, and 

repeating the process until you find a satisfactory solution. This process can be very 

tedious and time consuming even for small models, and it is often not clear how to 

adjust the values from one iteration to the next. 

A more rigorous method systematically enumerates all possible alternatives. 

This approach guarantees optimal solutions if the model is correctly specified. 

Suppose that an optimization model depends on only two decision variables. If each 

variable has 10 possible values, trying each combination requires 100 iterations (102 

alternatives). If each iteration is very short (e.g., two seconds), then the entire 

process could be done in approximately three minutes of computer time.  
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However, instead of two decision variables, consider six, then consider that 

trying all combinations requires 1,000,000 iterations (106 alternatives). It is easily 

possible for complete enumeration to take weeks, months, or even years to carry 

out. 

  

Figure 1: What Is Optimization? 

The Travel Cost Planner  

A very simple example is in order. Figure 2 illustrates the traveling financial 

planner problem. Suppose the traveling financial planner has to make three sales 

trips: to New York, to Chicago, and to Seattle. Further suppose that the order of 

arrival at each city is irrelevant. All that is important in this simple example is to find 

the lowest total cost possible to cover all three cities. Figure 2 also lists the flight 

costs between these different cities.  

The problem here is cost minimization, suitable for optimization. One basic 

approach to solving this problem is through an ad hoc or brute force method. That is, 

an individual could manually list all six possible permutations, as seen in Figure 3. 

 

What Is Optimization? 
An approach used to find the combination of inputs to achieve the 

best possible output subject to satisfying certain prespecified 
constraints and conditions. Examples of applications include: 

 
 What stocks to pick in a portfolio, as well as the weights of 

each stock as a percent of total budget 
 Optimal staffing needs for a production line 
 Project strategy selection and prioritization 
 Inventory optimization 
 Optimal pricing and royalty rates 
 Utilization of employees for workforce planning 
 Configuration of machines for production scheduling 
 Location of facilities for distribution 
 Tolerances in manufacturing design 
 Treatment policies in waste management 
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Clearly the cheapest itinerary is going from the east coast to the west coast, going 

from New York to Chicago and finally on to Seattle. Here, the problem is simple and 

can be calculated manually, as there were three cities and, hence, six possible 

itineraries. However, add two more cities and the total number of possible itineraries 

jumps to 120. Performing an ad hoc calculation will be fairly intimidating and time 

consuming. On a larger scale, suppose there are 100 cities on the salesman’s list; 

the possible itineraries will be as many as 9.3 x 10157. The problem will take many 

years to calculate manually, which is where optimization software steps in, 

automating the search for the optimal itinerary.  

 

 

Figure 2: The Travel Cost Planner 

 

 

Travel Cost Planning Problem 
 

You have to travel and visit clients in New York, Chicago, and 
Seattle. You may start from any city, and you will stay at your final 
city (i.e., you will need to purchase three airline tickets). Your goal is 
to travel as cheaply as possible given these rates: 

• Seattle to Chicago: $325 

• Chicago to Seattle: $225 

• New York to Seattle: $350 

• Seattle to New York: $375 

• Chicago to New York: $325 

• New York to Chicago: $325 

How do you solve the problem? 

 Ad-hoc approach: start trying different 
combinations 

 Enumeration: look at all possible alternatives 
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Figure 3: Multiple Combinations of the Travel Cost Problem 

The example illustrated to this point is a deterministic optimization problem, 

that is, the airline ticket prices are known ahead of time and are assumed to be 

constant. Now suppose the ticket prices are not constant but are uncertain, following 

some distribution (e.g., a ticket from Chicago to Seattle averages $325, but is never 

cheaper than $300 and usually never exceeds $500). The same uncertainty applies 

to tickets for the other cities. The problem now becomes an optimization under 

uncertainty. Ad hoc and brute force approaches simply do not work under 

uncertainty. Software such as ROV Risk Simulator can take over this optimization 

problem and automate the entire process seamlessly. The next section discusses 

the terms required in an optimization under uncertainty.  

Figure 4 illustrates the Portfolio Optimization’s Optimization Settings in the 

ROV PEAT software application (courtesy of www.realoptionsvaluation.com). In the 

Portfolio Optimization section of this tool, the individual projects can be modeled as 

 

Multiple Combinations 
 

o Seattle–Chicago–New York: $325 + $325 = $650 

o Seattle–New York–Chicago: $375 + $325 = $700  

o Chicago–Seattle–New York: $225 + $375 = $600 

o Chicago–New York–Seattle: $325 + $350 = $675 

o New York–Seattle–Chicago: $350 + $325 = $675 

o New York–Chicago–Seattle: $325 + $225 = $550 

 

Additionally, say you want to include San Antonio and 
Denver. For the five cities, you now have 5! = 5×4×3×2×1 = 
120 combinations 

• What about 100 different cities? You would have 100! = 
100×99×98×…×1 = 
93,326,215,443,944,200,000,000,000,...,000 = 9.3 × 10157 
combinations! 
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a portfolio and optimized to determine the best combination of projects for the 

portfolio.  

The projects can be modeled as a portfolio and optimized to determine the 

best combination of projects for the portfolio in the Optimization Settings subtab. 

Analysts start by selecting the optimization method (Static or Dynamic Optimization). 

Then they select the decision variable type Discrete Binary (choose which Project or 

Options to execute with a go/no-go binary 1/0 decision) or Continuous Budget 

Allocation (returns percentage of budget to allocate to each option or project as long 

as the total portfolio is 100%); select the Objective (Max NPV, Min Risk, etc.); set up 

any Constraints (e.g., budget restrictions, number of projects restrictions, or create 

customized restrictions); select the options or projects to optimize/allocate/choose 

(default selection is all options); and when completed, click Run Optimization.  

 

Figure 4: Portfolio Optimization Settings 
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Figure 5 illustrates the Optimization Results, which returns the results from 

the portfolio optimization analysis. The main results are provided in the data grid, 

showing the final Objective Function results, final Optimized Constraints, and the 

allocation, selection, or optimization across all individual options or projects within 

this optimized portfolio. The top left portion of the screen shows the textual details 

and results of the optimization algorithms applied, and the chart illustrates the final 

objective function. The chart will only show a single point for regular optimizations, 

whereas it will return an investment efficient frontier curve if the optional Efficient 

Frontier settings are set (min, max, step size).  

Figures 5 and 6 are critical results for decision-makers as they allow decision-

makers flexibility in designing their own portfolio of options. For instance, Figure 5 

shows an efficient frontier of portfolios, where each of the points along the curve are 

optimized portfolios subject to a certain set of constraints. In this example, the 

constraints were the number of options that can be selected in a ship and the total 

cost of obtaining these options, which is subject to a budget constraint. The colored 

columns on the right in Figure 5 show the various combinations of budget limits and 

maximum number of options allowed. For instance, if a program office in the Navy 

only allocates $2.5 million (see the Frontier Variable located on the second row) and 

no more than four options per ship, then only options 3, 7, 9, and 10 are feasible, 

and this portfolio combination would generate the biggest bang for the buck while 

simultaneously satisfying the budgetary and number of options constraints. If the 

constraints were relaxed to, say, five options and $3.5 million budget, then option 5 

is added to the mix. Finally, at $4.5 million and no more than seven options per ship, 

options 1 and 2 should be added to the mix. Interestingly, even with a higher budget 

of $5.5 million, the same portfolio of options is selected. In fact, the Optimized 

Constraint 2 shows that only $4.1 million is used. Therefore, as a decision-making 

tool for the budget-setting officials, the maximum budget that should be set for this 

portfolio of options should be $4.1 million. Similarly, the decision-maker can move 

backwards, where, say, if the original budget of $4.5 million was slashed by 

Congress to $3.5 million, then the options that should be eliminated would be 

options 1 and 2.  
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While Figure 5 shows the efficient frontier where the constraints such as 

number of options allowed and budget were varied to determine the efficient portfolio 

selection, Figure 6 shows multiple portfolios with different objectives. For instance, 

the five models shown were to maximize the financial bang for the buck (minimizing 

cost and maximizing value while simultaneously minimizing risk), maximizing 

OPNAV (Naval Operations) value, maximizing KVA value, maximizing Command 

value, and maximizing a Weighted Average of all objectives. This capability is 

important because depending on who is doing the analysis, their objectives and 

decisions will differ based on different perspectives. Using a multiple criteria 

optimization approach allows us to see the scoring from all perspectives. The option 

with the highest count (e.g., option 5) would receive the highest priority in the final 

portfolio, as it satisfies all stakeholders’ perspectives, and would hence be 

considered first, followed by options with counts of 4, 3, 2, and 1. 

 

Figure 5: Portfolio Optimization Results 
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Figure 6: Multi-Criteria Portfolio Optimization Results 

As a side note and for the purposes of being comprehensive and inclusive, 

we point out that multiple types of algorithms have been developed over the years to 

find the solutions of an optimization problem, from basic linear optimization using the 

simplex model and solving first partial differential equations. However, when more 

and more complex real-life problems are assumed, these basic methods tend to 

break down and more advanced algorithms are required. In solving our efficient 

frontier problem, we utilized a combination of genetic algorithm, Lagrange 

multipliers, and taboo-based reduced gradient search methodologies.  

Simplistically, the Lagrange multiplier solution assumes some nonlinear 

problem of 

min 𝑜𝑜𝑜𝑜max 𝑓𝑓(𝑥𝑥)  

𝑠𝑠. 𝑡𝑡.    𝑔𝑔𝑖𝑖(𝑥𝑥) =  𝑏𝑏𝑖𝑖  ∀ 𝑖𝑖 = 1, … ,𝑚𝑚 

where the equality is often replaced by some inequality values indicating a ceiling or 

floor constraint.  
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From this functional form, we first derive the Lagrange multiplier v for all i 

values: 

𝐿𝐿(𝑥𝑥, 𝑣𝑣) ≜ 𝑓𝑓(𝑥𝑥) + �𝑣𝑣𝑖𝑖[𝑏𝑏𝑖𝑖 − 𝑔𝑔𝑖𝑖(𝑥𝑥)]
𝑚𝑚

𝑖𝑖=1

 

𝑠𝑠. 𝑡𝑡. 𝑐𝑐𝑜𝑜𝑐𝑐𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠 𝑔𝑔𝑖𝑖(𝑥𝑥) = 𝑏𝑏1, … ,𝑔𝑔𝑚𝑚(𝑥𝑥) = 𝑏𝑏𝑚𝑚 

The solution (x*, v*) is a set of points along the Lagrange function L(x,v) if it 

satisfies the condition: 

�∇𝑔𝑔𝑖𝑖(𝑥𝑥∗)𝑣𝑣∗ =
𝑖𝑖

𝑓𝑓(𝑥𝑥∗) 𝑤𝑤ℎ𝑖𝑖𝑐𝑐ℎ 𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑜𝑜𝑟𝑟𝑠𝑠 �
𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝑣𝑣𝑖𝑖 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑗𝑗

∀𝑗𝑗 𝑐𝑐𝑐𝑐𝑎𝑎 
𝑖𝑖

𝑔𝑔𝑖𝑖(𝑥𝑥∗) = 𝑏𝑏𝑖𝑖 

This approach is simple and elegant but limited to linear and quasi-linear, as 

well as some simple nonlinear functional forms of f(x). In order to be able to extend 

the functional form to generalized nonlinear applications, we need to add conditions 

to the solution set and apply some search algorithms to cover a large (and often 

unlimited) set of optimal allocations. One limitation is the requirement that the Kuhn-

Tucker condition is satisfied where the nonlinear problems have a differentiable 

general form: 

min 𝑜𝑜𝑜𝑜max 𝑓𝑓(𝑥𝑥) 

𝑠𝑠. 𝑡𝑡.    𝑔𝑔𝑖𝑖(𝑥𝑥) ≥  𝑏𝑏𝑖𝑖   ∀ 𝑖𝑖 ∈ 𝐹𝐹𝑟𝑟𝑐𝑐𝑠𝑠𝑖𝑖𝑏𝑏𝐹𝐹𝑟𝑟 𝑆𝑆𝑟𝑟𝑡𝑡 

          𝑔𝑔𝑖𝑖(𝑥𝑥) ≤  𝑏𝑏𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝐹𝐹𝑟𝑟𝑐𝑐𝑠𝑠𝑖𝑖𝑏𝑏𝐹𝐹𝑟𝑟 𝑆𝑆𝑟𝑟𝑡𝑡 

          𝑔𝑔𝑖𝑖(𝑥𝑥) = 𝑏𝑏𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝐹𝐹𝑟𝑟𝑐𝑐𝑠𝑠𝑖𝑖𝑏𝑏𝐹𝐹𝑟𝑟 𝑆𝑆𝑟𝑟𝑡𝑡 

and the inequality constraints will need to be active at a local optimum or when the 

Lagrange variable is set to null: 

𝑣𝑣𝑖𝑖[𝑏𝑏𝑖𝑖 − 𝑔𝑔𝑖𝑖(𝑥𝑥)] = 0 

In addition, mathematical algorithms will have to be developed to perform 

both ad-hoc and systematic searches of the optimal solution set. Using an 

enumeration method will take even a supercomputer close to an infinite number of 

years to delineate all possible permutations. Therefore, search algorithms are 
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typically used in generating an efficient frontier using optimization. One simple 

approach is the use of a reduced gradient search method. To summarize the 

approach, we assume 

∇𝑓𝑓(𝑥𝑥) ∙ ∆𝑥𝑥 

where the functional form f(x) is the objective function and is divided into two parts, a 

basic (B) and nonbasic portion (N) that is multiplied by the change in vector direction 

x. Using a Taylor expansion, we obtain: 

∇𝑓𝑓(𝑥𝑥) ∙ ∆𝑥𝑥 = ∇𝑓𝑓(𝑥𝑥)𝐵𝐵 ∙ ∆𝑥𝑥𝐵𝐵 + ∇𝑓𝑓(𝑥𝑥)𝑁𝑁 ∙ ∆𝑥𝑥𝑁𝑁 

= ∇𝑓𝑓(𝑥𝑥)𝐵𝐵 ∙ (−𝐵𝐵−1𝑁𝑁∆𝑥𝑥𝑁𝑁) + ∇𝑓𝑓(𝑥𝑥)𝑁𝑁 ∙ ∆𝑥𝑥𝑁𝑁 

= (∇𝑓𝑓(𝑥𝑥)𝑁𝑁 − ∇𝑓𝑓(𝑥𝑥)𝐵𝐵𝐵𝐵−1𝑁𝑁)∆𝑥𝑥𝑁𝑁 

 The reduced gradient with respect to the solution matrix B is 

𝑜𝑜 ≜ (𝑜𝑜𝐵𝐵, 𝑜𝑜𝑁𝑁) 

where 

𝑜𝑜𝐵𝐵 ≜ 0 

𝑜𝑜𝑁𝑁 ≜ ∇𝑓𝑓(𝑥𝑥)𝑁𝑁 − ∇𝑓𝑓(𝑥𝑥)𝐵𝐵𝐵𝐵−1𝑁𝑁 

Solving for this solution set is manually possible when the number of decision 

variables is small (typically fewer than four or five), but once the number of decision 

variables is large, as in most real-life situations, the manual solution is intractable 

and computer search algorithms have to be employed. The general method 

employed includes taking the following steps: 

1. Estimate starting point and obtain the basis matrix set.  
2. Compute sample test points and obtain the reduced gradient vector 

direction. 
3. Test for constraint feasibilities at the limits. 
4. Solve for the Lagrange optimal set. 
5. Start on a new set of points. 
6. Change the basis set if a better set of points is obtained, or stop 

optimization. 
7. Repeat iteration and advance or stop when tolerance level is achieved.  
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The Lingo of Optimization 

Before embarking on solving an optimization problem, it is vital to understand 

the terminology of optimization––the terms used to describe certain attributes of the 

optimization process. These words include decision variables, constraints, and 

objectives.  

Decision variables are quantities over which you have control; for example, 

the amount of a product to make, the number of dollars to allocate among different 

investments, or which projects to select from among a limited set. As an example, 

portfolio optimization analysis includes a go or no-go decision on particular projects. 

In addition, the dollar or percentage of budget allocation across multiple projects can 

also be structured as decision variables. 

Constraints describe relationships among decision variables that restrict the 

values of the decision variables. For example, a constraint might ensure that the 

total amount of money allocated among various investments cannot exceed a 

specified amount or, at most, that one project from a certain group can be selected. 

Other constraints might concern budget, timing, minimum returns, or risk tolerance 

levels. 

Objectives give a mathematical representation of the model’s desired 

outcome, such as maximizing profit or minimizing cost, in terms of the decision 

variables. In financial analysis, for example, the objective may be to maximize 

returns while minimizing risks (maximizing the Sharpe’s ratio or returns-to-risk ratio). 

Conceptually, then, an optimization model might look like Figure 7. 
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Figure 7: Visualizing the Optimization Process 
 

The solution to an optimization model provides a set of values for the decision 

variables that optimizes (maximizes or minimizes) the associated objective. If the 

real business conditions were simple and if the future were predictable, all data in an 

optimization model would be constant, making the model deterministic.  

In many cases, however, a deterministic optimization model cannot capture 

all the relevant intricacies of a practical decision-making environment. When a 

model’s data are uncertain and can only be described probabilistically, the objective 

will have some probability distribution for any chosen set of decision variables. You 

can find this probability distribution by simulating the model using Risk Simulator. An 

optimization model under uncertainty has several additional elements, including 

assumptions and forecasts. 

Assumptions capture the uncertainty of model data using probability 

distributions, whereas forecasts are the frequency distributions of possible results for 

the model. Forecast statistics are summary values of a forecast distribution, such as 

the mean, standard deviation, and variance. With uncertainty, the optimization 

process (Figure 8) controls the optimization by maximizing or minimizing the 

objective.  

Constant
Constant

Decision Variable

Decision Variable
Decision Variable

Deterministic Optimization Model

Model

Objective

Constraints

    

Filter



Acquisition Research Program 
Graduate School of Business & Public Policy - 31 - 
Naval Postgraduate School 

 

Figure 8: Optimization With Uncertainties and Risk 

Each optimization model has one objective, a variable that mathematically 

represents the model’s objective in terms of the assumption and decision variables. 

Optimization’s job is to find the optimal (minimum or maximum) value of the 

objective by selecting and improving different values for the decision variables. 

When model data are uncertain and can only be described using probability 

distributions, the objective itself will have some probability distribution for any set of 

decision variables.  
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Optimization Application at PEO-IWS and NAVSEA 

The following is a case illustration of portfolio optimization. The values and 

variables shown are nominal and used for illustration only; they should not and have 

not been used for making any actual decisions. Nonetheless, all that has to be done 

in any future real-life applications is to change the names of these options and the 

values. The analytical process and portfolio methodology remain the same. 

The Program Executive Office––Integrated Warfare Systems (PEO-IWS) at 

the U.S. Department of Defense has engaged a graduate student team from the 

Naval Postgraduate School (NPS) to conduct a study to apply the Integrated Risk 

Management (IRM) method to estimate the value stream and cost savings in its 

Advanced Concept Build (ACB) for Navy ships, and to provide a set of solid 

recommendations to its multiple stakeholders going forward. Every few years, Navy 

destroyers will receive ACB updates to the Aegis ship defense system. These 

updates include basic hardware enhancement but mostly software patches and 

updates for their various capabilities (e.g., ballistic missile defense systems, or BMD 

5.X; carry-on cryptologic programs, or CCOPS; weather sensor algorithm updates, 

or Weather NOW; and many others). The issue is that there are more ACB 

capabilities than there is budget available for them. The cost to implement new ACB 

updates can be rather high, and sometimes there are several implementation paths 

or strategic options to consider in each ACB capability. The task is to model each of 

these approaches and provide an assessment and recommendation of the best path 

forward, model each capability, and recommend the best combinatorial portfolio that 

maximizes the utility to the Navy, both monetary (cost savings, KVA analysis, 

benefits) and nonmonetary (OPNAV leadership requirements, force readiness, 

systems integration, obsolescence, etc.).  

One of the modeling problems is that the DOD is not in the business of selling 

its products and services, and, consequently, obtaining a solid set of revenues would 

prove to be difficult. In such situations, we can resort to using KVA analysis or cost 

savings approaches. KVA allows us to generate market comparables as proxy 

variables to determine a shadow price and provide comparable revenues. 
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Alternatively, cost savings, or the amount of money that would not have to be spent, 

can similarly be used as proxy for benefits or revenues in a discounted cash flow 

model. In addition, there might be competing stakeholders and requirements. For 

instance, BMD 5.X is very expensive, provides low cost savings (monetary benefits), 

and is not used often (sometimes not used at all between ACB cycles), but OPNAV 

and the office of the CNO may want this update to maintain readiness for the fleet 

and see this upgrade as critical. These considerations need to be modeled. 

To summarize, this case illustration requires the following assumptions: 

• Model and compare each of these ACB capabilities as a portfolio of static 
NPV, IRR, ROI, and so forth. 

• Using the ROV PEAT software, Monte Carlo risk simulations were run on the 
main inputs based on the Air Force Cost Analysis Agency Handbook (AFCAA 
Handbook) and used to interpret the dynamic results. 

• Portfolio optimization algorithms were run using budgetary and project 
constraints, and efficient frontier analyses based on changing budgets were 
then executed. Finally, OPNAV requirements, KVA valuation, and other 
noneconomic military values were used to run multi-criteria portfolio 
optimizations.  

The following are the parameters of the ACB program under consideration: 

• For all models, we assumed a 10-year time horizon for the cost savings (all 
future savings past Year 10 after discounting will be assumed to be 
negligible). The discounting base year is 2017 (Year 0 and Capital Investment 
is required in 2017) whereas immediate savings and short-term benefits and 
maintenance savings start in Year 1 (2018). This means Year 10 is 2027. 

• The following table shows the remaining relevant information needed to run 
the models. All monetary values are in thousands of dollars ($000).   
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MH60R $550 $30 $60 $400 $3 $2 8.1 1.2 9.11 

CCOPS $650 $5 $10 $300 $3 $2 1.27 2.5 1.43 

Weather $700 $35 $10 $350 $3 $2 5.02 7.5 5.65 

SSDS $1,000 $50 $20 $600 $3 $2 8.83 4.5 9.93 

BMD $2,000 $100 $20 $1,000 $3 $2 9.88 9.7 11.11 

NIFC-CA $1,000 $10 $20 $550 $3 $2 3.64 7.4 4.09 

SPQ-9B $2,000 $100 $20 $750 $3 $2 5.27 4.5 5.93 

CIWS-CEC $850 $75 $20 $550 $3 $2 9.8 7.5 11.02 

RDDL $1,500 $125 $20 $750 $3 $2 5.68 7.5 6.39 

SM-2 BLK $1,000 $125 $20 $550 $3 $2 8.29 8.5 9.33 

 
o “Savings Now” is the immediate monetary cost savings benefits 

obtained by implementing the new upgraded system (e.g., lower 
overhead requirements, reduced parts and labor requirements). This 
amount is applied in the first year of the cash flow stream only (Year 1 
or 2018) as its effects are deemed to be immediate. 

o “Short-Term Benefits” is the savings per year for the first 5 years, 
stemming from reduction in staffing requirements, but these savings 
are deemed to be reabsorbed later on. Savings apply from 2018 to 
2022. 

o “Maintenance Savings” is the savings each year for all 10 years 
starting in 2018 where system maintenance cost is reduced and saved.  

o “Capital Cost” is applied in Year 0 or 2017 as a one-time capital 
expenditure. 

o Assume a “Fixed Direct Cost” and constant “Indirect Operating Cost” 
per year for all 10 years starting in 2018. The new equipment upgrades 
will require some fixed overhead cost and operating expenses to 
maintain. The idea is that these will be less than the total sum of 
benefits obtained by implementing the capability. 

o Value metrics on Innovation, Capability, Time to Intercept, Warfighting 
Impact, Health, and Execution were compiled with the help of subject 
matter experts, and these values are weighted and summarized as 
“OPNAV” (Innovation, Capability, and Execution Health) and 
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“Command” (Time to Intercept and Warfighting Impact) variables. 
These are weighted average values of multiple subject matter experts’ 
estimates of the criticality (1–10, with 10 being the highest) of each 
capability. “KVA” is unit equivalence (this can be multiplied by any 
market price comparable such as $1 million per unit or used as-is in 
the optimization model). These will be used later in the optimization 
section below. 

• Tornado analysis was run using ROV PEAT. 

• The AFCAA Handbook recommendations for uncertainty and risk distributions 
were used, with the following parameters for simulation: 

o Savings Now and Capital Investment inputs were set using Triangular 
distributions based on the risk and uncertainty levels perceived by the 
subject matter experts, or they can be based on a fitting of historical 
data. 

o Run 10,000 to 1,000,000 simulation trials. 
o The multiple simulated distributions’ results were compared using 

Overlay Charts and Analysis of Alternatives.   

• Finally, multiple portfolio optimization models were run in this case illustration 
using the following parameters:   

o Constraints for the portfolio optimization are a $4,000,000 budget and 
less than or equal to 7 Opportunities. The portfolio’s NPV was 
maximized. 

o Investment Efficient Frontier was run between $2,500,000 and 
$5,500,000 with a step of $1,000,000 and no more than 7 
Opportunities. The portfolio’s NPV was maximized. 

o Another Investment Efficient Frontier was run between $2,500,000 and 
$5,000,000 with a step of $500,000 and no more than 7 Opportunities. 
The portfolio’s NPV was maximized. 

o Finally, a series of portfolios using the nonmonetary, noneconomic 
military OPNAV, COMMAND, and KVA estimates were applied in the 
portfolio model but using budgetary constraints. The relevant custom 
military values and their weighted average values for the portfolio were 
maximized.   

Figure 9 shows the results of a capital budgeting analysis. The 10 programs 

under consideration were evaluated based on their financial and economic viability. 

The standard economic metrics such as NPV, IRR, MIRR, ROI, and others are 

shown. The bar chart provides a visual representation of one of the metrics, whereas 

the bubble chart shows multiple result metrics at once (e.g., the NPV on the x-axis 

and the IRR on the y-axis, and size represents NPV with Terminal Value). In this 
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chart, the large-ball programs on the top far right of the chart would be better ranked 

than smaller-ball projects on the bottom left. 

 

 

 

Figure 9: Capital Budgeting Results Comparison  
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Based on the analysis, the top five recommended ACB capabilities based on 

Static Portfolio Analysis are SPQ-9B, SM-2 BLK, MH60R, BMD, and RDDL. Figure 

10 shows a summary of the ranking. Three main distinctions include the following: 

• The highest NPV belongs to SPQ-9B. 

• Middle range NPVs belong to BMD, RDDL, and SM-2 BLK. 

• The lowest range of NPVs belong to MH-60R, CCOPS, Weather, 

SSDS, NIFC-CA, and CIWS-CEC. 

This distinction is generally true for all other metrics. Data from all metrics are 

compared to create a numerical ranking from key figures. Although not black and 

white, this linear ranking helps in decision-making comparative analysis.  

 

Figure 10: Program Rankings 
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Figures 11 and 12 show the PDF Curve Overlay where all the programs’ 

simulation results are overlaid on top of each other. Only the SPQ-9B has a positive 

NPV across all trials. This finding is consistent with the results of the ACB Capability 

Comparison.  

 

Figure 11: Comparison of Simulated NPV Probability Distributions  

 

 

Figure 12: Comparison of Simulated IRR Probability Distributions   



Acquisition Research Program 
Graduate School of Business & Public Policy - 40 - 
Naval Postgraduate School 

Figure 13 shows the probability of success of each program. These are 

currently based on using NPV but can be applied to any noneconomic variable. The 

definition used here is the probability (PROB) of NPV > 0. Based on the values 

below, (1 – PROB)%, is the probability of failure.  

 

Figure 13: Economic Probability of Success  

 

Figure 14: Comparison of Options Decision Risk Profile 
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Figure 15 shows the results of Portfolio 1, which assumes a budget of $4.0 

million, Portfolio Size: ≤7, and the goal of Maximizing Portfolio NPV. In this simple 

optimization, the model recommends excluding CCOPS, SSDS, NIFC-CA, and 

CIWS-CEC from the portfolio. 

Objective Function 1,408,736 

Optimized Constraint 1 7.0000 

Optimized Constraint 2 3,800,000 

MH60R 1.00 

CCOPS 0.00 

Weather 1.00 

SSDS 0.00 

BMD 1.00 

NIFC-CA 0.00 

SPQ-9B 1.00 

CIWS-CEC 0.00 

RDDL 1.00 

SM-2BLK 1.00 

Figure 15: Portfolio Optimization 1  

Figure 16 shows Portfolio Optimization 2, which runs an Investment Efficient 

Frontier. It assumes a budgetary range of $2.5–$5.0 million with a step size of 

$500,000. It also assumes a Portfolio Size ≤7 and the explicit goal of Maximizing 

Portfolio NPV. Weather, SPQ-9B, RDDL, and SM-2 BLK were consistently in the 

optimal portfolio. Based on budget, other capabilities were recommended. Above 

$4.5 million, there is no change to the portfolio. 
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Objective 
Function 1,093,034 1,159,120 1,342,649 1,408,736 1,467,080 1,467,080 

Frontier 
Variable 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000 

Optimized 
Constraint 2,400,000 2,800,000 3,400,000 3,800,000 4,100,000 4,100,000 

MH60R 0.00 1.00 0.00 1.00 1.00 1.00 
CCOPS 0.00 0.00 0.00 0.00 1.00 1.00 
Weather 1.00 1.00 1.00 1.00 1.00 1.00 
SSDS 0.00 0.00 0.00 0.00 0.00 0.00 
BMD 0.00 0.00 1.00 1.00 1.00 1.00 

NIFC-CA 0.00 0.00 0.00 0.00 0.00 0.00 
SPQ-9B 1.00 1.00 1.00 1.00 1.00 1.00 

CIWS-CEC 0.00 0.00 0.00 0.00 0.00 0.00 
RDDL 1.00 1.00 1.00 1.00 1.00 1.00 

SM-2BLK 1.00 1.00 1.00 1.00 1.00 1.00 
 

 

Figure 16: Portfolio Optimization 2  

Figure 17 shows the results for OPNAV, Figure 18 for COMMAND, and 

Figure 19 for KVA. OPNAV Value is a combination of subject matter experts’ 

assessments of Innovation, Capability, and Execution Health metrics. Command 

Value is the subject matter experts’ assessments of Time to Intercept and 

Warfighting Impact. 
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Objective 
Function 40.04 43.68 49.92 53.56 56.87 60.87 64.51 

Frontier 
Variable 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000 5,500,000 

Optimized 
Constraint 2,450,000 3,000,000 3,450,000 4,000,000 4,500,000 4,950,000 5,500,000 

MH60R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
CCOPS 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
Weather 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
SSDS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
BMD 0.00 0.00 1.00 1.00 1.00 1.00 1.00 

NIFC-CA 0.00 1.00 0.00 1.00 0.00 0.00 1.00 
SPQ-9B 0.00 0.00 0.00 0.00 0.00 1.00 1.00 

CIWS-CEC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
RDDL 0.00 0.00 0.00 0.00 1.00 1.00 1.00 

SM-2BLK 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Figure 17: Portfolio Optimization 3 (OPNAV) 
 

Objective 
Function 33.50 40.60 43.20 48.10 52.60 55.10 59.60 

Frontier 
Variable 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000 5,500,000 

Optimized 
Constraint 2,500,000 3,000,000 3,500,000 3,750,000 4,350,000 4,800,000 5,400,000 

MH60R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CCOPS 1.00 0.00 1.00 0.00 0.00 1.00 1.00 
Weather 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
SSDS 0.00 0.00 0.00 0.00 1.00 0.00 1.00 
BMD 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

NIFC-CA 0.00 1.00 0.00 1.00 1.00 1.00 1.00 
SPQ-9B 0.00 0.00 0.00 0.00 0.00 1.00 1.00 

CIWS-CEC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
RDDL 1.00 0.00 1.00 1.00 1.00 1.00 1.00 

SM-2BLK 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Figure 18: Portfolio Optimization 4 (COMMAND) 
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Objective 
Function 31.46 35.80 39.64 43.98 47.59 50.69 55.03 

Frontier 
Variable 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000 5,500,000 

Optimized 
Constraint 2,450,000 3,000,000 3,450,000 4,000,000 4,500,000 4,950,000 5,500,000 

MH60R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
CCOPS 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
Weather 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
SSDS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
BMD 0.00 0.00 1.00 1.00 1.00 1.00 1.00 

NIFC-CA 0.00 1.00 0.00 1.00 0.00 0.00 1.00 
SPQ-9B 0.00 0.00 0.00 0.00 0.00 1.00 1.00 

CIWS-CEC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
RDDL 0.00 0.00 0.00 0.00 1.00 1.00 1.00 

SM-2BLK 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Figure 19: Portfolio Optimization 5 (KVA) 

Figure 20 illustrates the portfolio optimization results of the Weighted Average 
Nonmonetary Values. This objective variable is calculated based on a percentage 

weighted average of all nonmonetary military values that are part of the OPNAV and 

COMMAND variables, as well as any other variables of interest to senior leadership. 
Instead of looking at one variable at a time, this is a cumulative variable where each 

value is weighted based on the decision-makers’ preferences (e.g., Capability may 

be awarded a 30% weight compared to 10% for Health of Execution). The Efficient 

Frontier results are shown in Figure 20.  
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Objective 
Function 33.55 38.66 42.79 47.91 51.08 54.15 59.24 

Frontier 
Variable 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000 5,500,000 

Optimized 
Constraint 2,450,000 3,000,000 3,450,000 4,000,000 4,500,000 4,750,000 5,500,000 

MH60R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
CCOPS 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
Weather 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
SSDS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
BMD 0.00 0.00 1.00 1.00 1.00 1.00 1.00 

NIFC-CA 0.00 1.00 0.00 1.00 0.00 1.00 1.00 
SPQ-9B 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

CIWS-CEC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
RDDL 0.00 0.00 0.00 0.00 1.00 1.00 1.00 

SM-2BLK 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Figure 20: Portfolio Optimization 6 (Weighted Average) 

Figure 21 shows a combined view where multiple optimizations were run and 
compared against one another. Additional constraints can be added as needed, but 

the case illustration applies a $4,000,000 budget and no more than seven programs 

can be chosen at a time. In other words, the following monetary and nonmonetary 
portfolios were optimized:  

• Model 1 – Maximize Monetary Values (NPV) 
• Model 2 – Maximize OPNAV Value (i.e., subject matter experts’ assessments 

of Innovation, Capability, and Execution Health) 
• Model 3 – Maximize All Weighted Average Nonmonetary Values (this is a 

percentage weighted average of all nonmonetary military values that are part 
of the OPNAV and COMMAND variables, as well as any other variables of 
interest to senior leadership) 

• Model 4 – Maximize Military Command Value (i.e., subject matter experts’ 
assessments of Time to Intercept and Warfighting Impact)  

• Model 5 – Maximize KVA Value 

As seen in Figure 21, these 5 portfolios are combined into a matrix that shows 
the count of GO decisions. Clearly, for a decision-maker, the lowest-hanging fruits 

would be to execute the programs starting with the highest count. For instance, 

Weather, BMD, and SM-2BLK would be considered the highest priority, as 



Acquisition Research Program 
Graduate School of Business & Public Policy - 46 - 
Naval Postgraduate School 

regardless of the point of view and stakeholder under consideration, these programs 

have always been chosen.  

Model 1. NPV 2. OPNAV 3. W/AVG 4. COMMAND 5. KVA Count 
Objective 1,408,735.73 51.16 53.56 48.10 53.56   

Budget Constraint 3,800,000 4,000,000 4,000,000 3,750,000 4,000,000   
Program Constraint 6 7 7 6 7   

MH60R 1.00 1.00 1.00 0.00 1.00 4 
CCOPS 0.00 0.00 0.00 0.00 0.00 0 

Weather 1.00 1.00 1.00 1.00 1.00 5 
SSDS 0.00 1.00 1.00 0.00 1.00 3 
BMD 1.00 1.00 1.00 1.00 1.00 5 

NIFC-CA 0.00 1.00 1.00 1.00 1.00 4 
SPQ-9B 1.00 0.00 0.00 0.00 0.00 1 

CIWS-CEC 0.00 1.00 1.00 1.00 1.00 4 
RDDL 1.00 0.00 0.00 1.00 0.00 2 

SM-2BLK 1.00 1.00 1.00 1.00 1.00 5 

Figure 21: Portfolio Optimization 7 (Combined View)  
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Conclusions and Recommendations 

The analytical methods illustrated in this case study apply stochastic risk-

based Monte Carlo simulations to generate tens of thousands to millions of 

scenarios and algorithmic portfolio optimization, by applying economic and 

noneconomic military values. The methods are objective, verifiable, replicable, and 

extensible, and can be easily modified to incorporate additional constraints and 

limitations (e.g., manpower, force mix, minimum capability requirements, domain 

specific requirements, cross-domain needs, etc.).  

It is recommended that any follow-on research incorporate the following 

items: 

• Apply the methods to actual programs with real-life data and 
assumptions, with subject matter estimates. 

• Create new or evaluate existing concepts of military value. These will 
incorporate  

o Data validity tests using applied statistical tests (from basic 
linear and nonlinear correlations to econometric models and 
nonparametric hypothesis tests). These are applied over time to 
identify if the collected data are valid and actually describe what 
we want or expect the data to describe. In other words, are the 
data collected valid, accurate, and precise? 

o Big data analysis—trying to find patterns and analytical 
relationships in large data sets. 

o Historical data to perform backcasting (back testing historical 
data to known historical events). 

o Tweaking and creating lighthouse events and programs in the 
past, assign critical value metrics to these events and programs, 
and use these as guideposts for generating future subject 
matter expert (SME) estimates.  

o Creating more exact definitions and methods for SME 
assumptions that allow for collecting a more objective and 
defensible data set. 

• Utilize multi-objective optimization. Interdependencies and competing 
stakeholder needs (e.g., Congress versus Office of the Secretary of 
Defense [OSD] and other external stakeholders) need to be 
considered. These competing objectives need to be reconciled to 
determine a Pareto optimal portfolio.  
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• Analytical hierarchical processes, multi-objective optimization, and 
other algorithms need to be evaluated and the results compared.   

• Using risk-based simulations, risks of cost and budget overruns as well 
as delivery delays can be modeled and accounted for in the portfolio.  

To summarize, based on the research performed thus far, we conclude that 

the methodology has significant merits and is worthy of more detailed follow-on 

analysis. It is, therefore, recommended that the portfolio optimization methodology 

outlined in this research be applied on a real case study facing the U.S. Navy, using 

actual data and tracking the project’s outcomes over time. The approach described 

does not necessarily have to be performed in lieu of existing methods, but in 

conjunction with them. After all, if the Navy and DOD are spending hundreds of 

billions of dollars on capability upgrades, the least that can be done is to have 

another point of view, an analytically robust and verifiable way of looking at the 

decision portfolios. The more information decision-makers have, the better informed 

they will be and the better their decision outcomes will be.   
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Appendix A: The Theory of Strategic Real Options, 
Knowledge Value Added, and Integrated Risk 
Management 

In the past, corporate investment decisions were cut and dried. Buy a new 

machine that is more efficient, make more products costing a certain amount, and if 

the benefits outweigh the costs, execute the investment. Hire a larger pool of sales 

associates, expand the current geographical area, and if the marginal increase in 

forecast sales revenues exceeds the additional salary and implementation costs, 

start hiring. Need a new manufacturing plant? Show that the construction costs can 

be recouped quickly and easily by the increase in revenues the plant will generate 

through new and improved products, and the initiative is approved.  

However, real-life business conditions are a lot more complicated. Your firm 

decides to go with an e-commerce strategy, but multiple strategic paths exist. Which 

path do you choose? What are the options you have? If you choose the wrong path, 

how do you get back on the right track? How do you value and prioritize the paths 

that exist? You are a venture capitalist firm with multiple business plans to consider. 

How do you value a start-up firm with no proven track record? How do you structure 

a mutually beneficial investment deal? What is the optimal timing for a second or 

third round of financing? 

Real options are useful not only in valuing a firm through its strategic 

business options, but also as a strategic business tool in capital investment 

decisions. For instance, should a firm invest millions in a new facility expansion 

initiative? How does a firm choose among several seemingly cashless, costly, and 

unprofitable information-technology infrastructure projects? Should a firm indulge its 

billions in a risky research and development initiative? The consequences of a 

wrong decision can be disastrous or even terminal for certain firms. In a traditional 

discounted cash flow model, these questions cannot be answered with any certainty. 

In fact, some of the answers generated through the use of the traditional discounted 

cash flow model are flawed because the model assumes a static, one-time decision-
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making process, whereas the real options approach takes into consideration the 

strategic managerial options that certain projects create under uncertainty and 

management’s flexibility in exercising or abandoning these options at different points 

in time, when the level of uncertainty has decreased or has become known over 

time.  

The Real Options Valuation (ROV) approach incorporates a learning model, 

such that management makes better and more informed strategic decisions when 

some levels of uncertainty are resolved through the passage of time, actions, and 

events. Traditional discounted cash flow analysis assumes a static investment 

decision and assumes that strategic decisions are made initially with no recourse to 

choose other pathways or options in the future. To create a good analogy of real 

options, visualize it as a strategic road map of long and winding roads with multiple 

perilous turns and branches along the way. Imagine the intrinsic and extrinsic value 

of having such a road map or global positioning system when navigating through 

unfamiliar territory, as well as having road signs at every turn to guide you in making 

the best and most informed driving decisions. Such a strategic map is the essence 

of real options. 

The answer to evaluating such projects lies in real options analysis, which 

can be used in a variety of settings, including pharmaceutical drug development, oil 

and gas exploration and production, manufacturing, start-up valuation, venture 

capital investment, information technology infrastructure, research and development, 

mergers and acquisitions, e-commerce and e-business, intellectual capital 

development, technology development, facility expansion, business project 

prioritization, enterprise risk management, business unit capital budgeting, licenses, 

contracts, intangible asset valuation, and the like.  

  



Acquisition Research Program 
Graduate School of Business & Public Policy - 55 - 
Naval Postgraduate School 

The Real Options Solution in a Nutshell 

Simply defined, the real options method is a systematic approach and 

integrated solution using financial theory, economic analysis, management science, 

decision sciences, statistics, and econometric modeling in applying options theory in 

valuing real physical assets, as opposed to financial assets, in a dynamic and 

uncertain business environment where business decisions are flexible in the context 

of strategic capital investment decision-making, valuing investment opportunities, 

and project capital expenditures. Real options are crucial in 

• Identifying different acquisition or investment decision pathways or projects 
that management can navigate given highly uncertain business conditions 

• Valuing each of the strategic decision pathways and what they represent in 
terms of financial viability and feasibility 

• Prioritizing these pathways or projects based on a series of qualitative and 
quantitative metrics 

• Optimizing the value of strategic investment decisions by evaluating different 
decision paths under certain conditions or using a different sequence of 
pathways that can lead to the optimal strategy 

• Timing the effective execution of investments and finding the optimal trigger 
values and cost or revenue drivers 

• Managing existing or developing new optionalities and strategic decision 
pathways for future opportunities 

ROV is useful for valuing a project, alternative path, implementation option, or 

ship design through its strategic options especially in capital-intensive investment 

decisions under uncertainty. In a traditional cost-benefit and cash flow model, the 

ROI or cost-benefit question cannot be answered with any certainty. In fact, some of 

the answers generated using traditional cash flow models are flawed because the 

model assumes a static, one-time decision-making process with no recourse to 

choose other pathways or options in the future. In contrast, the real options 

approach takes into consideration the strategic managerial options certain projects 

create under uncertainty and the decision-makers’ flexibility in exercising or 

abandoning these options at different points in time, when the level of uncertainty 

has decreased or has become known over time. 
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Industry Leaders Embracing Strategic Real Options 

The first industries to use real options as a tool for strategic decision were oil 

and gas and mining companies; its use later expanded into utilities, biotechnology, 

and pharmaceuticals; and now into telecommunications, high-tech, and across all 

industries. The following examples relate how real options have been or should be 

used in various kinds of companies.  

Automobile and Manufacturing Industry 

In automobile and manufacturing, General Motors (GM) applies real options 

to create switching options in producing its new series of autos. This option is 

essentially to use a cheaper resource over a given period. GM holds excess raw 

materials and has multiple global vendors for similar materials with excess 

contractual obligations above what it projects as necessary. The excess contractual 

cost is outweighed by the significant savings of switching vendors when a certain 

raw material becomes too expensive in a particular region of the world. By spending 

the additional money in contracting with vendors and meeting their minimum 

purchase requirements, GM has essentially paid the premium on purchasing an 

option to switch, which is important especially when the price of raw materials 

fluctuates significantly in different regions around the world. Having an option here 

provides the holder a hedging vehicle against pricing risks. 

Computer Industry 

In the computer industry, HP–Compaq used to forecast sales in foreign 

countries months in advance. It then configured, assembled, and shipped the highly 

specific configuration printers to these countries. However, given that demand 

changes rapidly and forecast figures are seldom correct, the preconfigured printers 

usually suffer the higher inventory holding cost or the cost of technological 

obsolescence. HP–Compaq can create an option to wait and defer making any 

decisions too early through building assembly plants in these foreign countries. Parts 

can then be shipped and assembled in specific configurations when demand is 

known, possibly weeks in advance rather than months in advance. These parts can 

be shipped anywhere in the world and assembled in any configuration necessary, 
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while excess parts are interchangeable across different countries. The premium paid 

on this option is building the assembly plants, and the upside potential is the savings 

in making wrong demand forecasts.  

Airline Industry 

In the airline industry, Boeing spends billions of dollars and takes several 

years to decide if a certain aircraft model should even be built. If the wrong model is 

tested in this elaborate strategy, Boeing’s competitors may gain a competitive 

advantage relatively quickly. Because so many technical, engineering, market, and 

financial uncertainties are involved in the decision-making process, Boeing can 

conceivably create an option to choose through parallel development of multiple 

plane designs simultaneously, knowing well the increasing cost of developing 

multiple designs simultaneously with the sole purpose of eliminating all but one in 

the near future. The added cost is the premium paid on the option. However, Boeing 

will be able to decide which model to abandon or continue when these uncertainties 

and risks become known over time. Eventually, all the models will be eliminated 

save one. This way, the company can hedge itself against making the wrong initial 

decision and benefit from the knowledge gained through parallel development 

initiatives.  

Oil and Gas Industry 

In the oil and gas industry, companies spend millions of dollars to refurbish 

their refineries and add new technology to create an option to switch their mix of 

outputs among heating oil, diesel, and other petrochemicals as a final product, using 

real options as a means of making capital and investment decisions. This option 

allows the refinery to switch its final output to one that is more profitable based on 

prevailing market prices, to capture the demand and price cyclicality in the market.  

Telecommunications Industry 

In the past, telecommunications companies like Sprint and AT&T installed 

more fiber-optic cable and other telecommunications infrastructure than any other 

company to create a growth option in the future by providing a secure and extensive 
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network and to create a high barrier to entry, providing a first-to-market advantage. 

Imagine having to justify to the board of directors the need to spend billions of 

dollars on infrastructure that will not be used for years to come. Without the use of 

real options, this decision would have been impossible to justify.  

Real Estate Industry 

In the real estate arena, leaving land undeveloped creates an option to 

develop later at a more lucrative profit level. However, what is the optimal wait time 

or the optimal trigger price to maximize returns? In theory, one can wait for an 

infinite amount of time, and real options provide the solution for the optimal timing 

and optimal price trigger value.  

Utilities Industry 

In the utilities industry, firms have created an option to execute and an option 

to expand by installing cheap-to-build inefficient energy generator peaker plants to 

be used only when electricity prices are high and to shut down when prices are low. 

The price of electricity tends to remain constant until it hits a certain capacity 

utilization trigger level, when prices shoot up significantly. Although this occurs 

infrequently, the possibility still exists, and by having a cheap standby plant, the firm 

has created the option to turn on the expanded capacity generation whenever it 

becomes necessary, to capture this upside price fluctuation. 

Pharmaceutical Research and Development Industry  

In pharmaceutical or research and development initiatives, real options can 

be used to justify the large investments in what seems to be cashless and 

unprofitable under the discounted cash flow method but actually creates sequential 

compound options in the future. Under the myopic lenses of a traditional discounted 

cash flow analysis, the high initial investment of, say, a billion dollars in research and 

development may return a highly uncertain projected few million dollars over the 

next few years. Management will conclude under a net present value analysis that 

the project is not financially feasible. However, a cursory look at the industry 

indicates that research and development is performed everywhere. Hence, 
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management must see an intrinsic strategic value in research and development. 

How is this intrinsic strategic value quantified? The real options valuation approach 

would optimally time and spread the billion-dollar initial investment into a multiple-

stage investment structure. At each stage, management has an option to wait and 

see what happens as well as the option to abandon or the option to expand into the 

subsequent stages. The ability to defer cost and proceed only if situations are 

permissible creates value for the investment. 

High-Tech and e-Business Industry  

In e-business strategies, real options can be used to prioritize different e-

commerce initiatives and to justify those large initial investments that have an 

uncertain future. Real options can be used in e-commerce to create incremental 

investment stages compared to a large one-time investment (invest a little now, wait 

and see before investing more) as well as create options to abandon and other 

future growth options. 

Mergers and Acquisitions  

In valuing a firm for acquisition, you should consider not only the revenues 

and cash flows generated from the firm’s operations but also the strategic options 

that come with the firm. For instance, if the acquired firm does not operate up to 

expectations, an abandonment option can be executed where it can be sold for its 

intellectual property and other tangible assets. If the firm is highly successful, it can 

be spun off into other industries and verticals or new products and services can be 

eventually developed through the execution of an expansion option. In fact, in 

mergers and acquisition, several strategic options exist. For instance, a firm acquires 

other entities to enlarge its existing portfolio of products or geographic location or to 

obtain new technology (expansion option); or to divide the acquisition into many 

smaller pieces and sell them off as in the case of a corporate raider (abandonment 

option); or it merges to form a larger organization due to certain synergies and 

immediately lays off many of its employees (contraction option). If the seller does not 

value its real options, it may be leaving money on the negotiation table. If the buyer 
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does not value these strategic options, it is undervaluing a potentially highly lucrative 

acquisition target.  

Knowledge Value Added (KVA) 

In the U.S. military context, the Knowledge Value Added (KVA) methodology 

is a new way of approaching the problems of estimating the productivity (in terms of 

ROI) for military capabilities embedded in processes that are impacted by 

technology. KVA addresses the requirements of the many DOD policies and 

directives by providing a means to generate comparable value or benefit estimates 

for various processes and the technologies and people that execute them. It does 

this by providing a common and relatively objective means for estimating the value 

of new technologies as required by the following: 

• Clinger-Cohen Act of 1996 that mandates the assessment of the cost 
benefits for information technology investments. 

• Government Accountability Office’s (formerly the General Accounting 
Office) Assessing Risks and Returns: A Guide for Evaluating Federal 
Agencies’ IT Investment Decision-Making,” which requires that IT 
investments apply ROI measures.  

• DOD Directive 8115.01, which mandates the use of performance metrics 
based on outputs, with ROI analysis required for all current and planned IT 
investments.  

• The DOD’s Risk Management Guidance Defense Acquisition Guidebook 
that requires alternatives to the traditional cost estimation be considered 
because legacy cost models tend not to adequately address costs 
associated with information systems or the risks associated with them.  

KVA is a methodology that describes all organizational outputs in common 

units, thus providing a means to compare the outputs of all assets (human, machine, 

information technology) regardless of the aggregated outputs produced. It monetizes 

the outputs of all assets, including intangible knowledge assets. Thus, the KVA 

approach can provide insights about the productivity level of processes, people, and 

systems in terms of a ratio of common units of output (CUO). CUO produced by 

each asset (a measure of benefits) is divided by the cost to produce the output. By 

capturing the value of knowledge embedded in an organization’s core processes, 

employees, and technology, KVA identifies the actual cost and value of people, 



Acquisition Research Program 
Graduate School of Business & Public Policy - 61 - 
Naval Postgraduate School 

systems, or processes. Because KVA identifies every process required to produce 

an output and the historical costs of those processes, unit costs and unit values of 

outputs, processes, functions, or services are calculated. An output is defined as the 

result of an organization’s operations; it can be a product or service, as shown in 

Figure 22.  

 

Figure 22: Measuring Output  

For the purpose of this study, KVA was used to measure the value added by 

the human capital assets (i.e., military personnel executing the processes) and the 

system assets (e.g., new sensor) by analyzing the performances of the processes. 

By capturing the value of knowledge embedded in systems and used by operators of 

the processes, KVA identified the productivity of the system-process alternatives. 

Because KVA identifies every process output required to produce the final 

aggregated output, the common unit costs and the common unit values were 

estimated.  

The KVA methodology has been applied in over 80 projects within the DOD, 

from flight scheduling applications to ship maintenance and modernization. In 

general, the KVA methodology was used for this study because it could 

• Compare alternative approaches in terms of their relative productivity 
• Allocate value and costs to common units of output 
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• Measure value added by the system alternatives based on the outputs 
each produced 

• Relate outputs to cost of producing those outputs in common units 

KVA quantifies value in two key productivity metrics: Return on Knowledge 

(ROK) and Return on Knowledge Investment (ROI). Calculations of these key 

metrics are shown in Figure 23. 

Metric Description Type Calculation 

Return on 
Knowledge 
(ROK) 

Basic productivity, 
cash-flow ratio 

Function or 
process level 
performance ratio 

Benefits in common 
units or cost to 
produce the output 

Return on 
Investment 
(ROI) 

Same as ROI at the 
sub-corporate or 
process level 

Traditional 
investment 
finance ratio 

[Revenue – Investment 
Cost] / [Investment 
Cost] 

Figure 23: KVA Metrics 

Although ROI is the traditional financial ratio, ROK identifies how a specific 

process converts existing knowledge into producing outputs so decision-makers can 

quantify costs and measure value derived from investments in human capital assets. 

A higher ROK signifies better utilization of knowledge assets. If IT investments do 

not improve the ROK value of a given process, steps must be taken to improve that 

process’s function and performance (see Figure 24).  
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Traditional Accounting KVA Process Costing Explains H
ow

 It W
as Spent 

 
 
Compensation              5,000 
Benefits/OT                           1,000 
Supplies/Materials              2,000 
Rent/Leases                           1,000 
Depreciation                           1,500 
Admin & Others                 900 
Total                                   $11,400 
 
 

 

 
 

Review Task                    1,000 
Determine OP       1,000 
Input Search Function      2,500 
Search/Collection       1,000 
Target Data Acquisition    1,000 
Target Data Processing    2,000 
Format Report           600 
Quality Control Report         700 
Transmit Report        1,600 
Total                               $11,400 

 

Figure 24: Comparison of Traditional Accounting Versus Process-Based Costing 
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Based on the tenets of complexity theory, KVA assumes that humans and 

technology in organizations add value by taking inputs and changing them 

(measured in common units of complexity) into outputs through core processes. The 

amount of change within a process an asset produces can be described as a 

measure of value or benefit. The additional assumptions in KVA include the 

following: 

• Describing all process outputs in common units (e.g., using a knowledge 
metaphor for the descriptive language in terms of the time it takes an average 
employee to learn how to produce the outputs) allows historical value and 
cost data to be assigned to those processes historically. 

• All outputs can be described in terms of the time required for a single point of 
reference learner to learn to produce them.  

• Learning Time, a surrogate for procedural knowledge required to produce 
process outputs, is measured in common units of time. Consequently, units of 
learning time are proportional to common units of output.  

• Common units of output make it possible to compare all outputs in terms of 
cost per unit as well as value (e.g., price) per unit, because value (e.g., 
revenue) can now be assigned at the suborganizational level. 

• Once cost and revenue streams have been assigned to suborganizational 
outputs, normal accounting, financial performance, and profitability metrics 
can be applied. 

Describing processes in common units also permits, but does not require, 

market comparable data to be generated, particularly important for nonprofits such 

as the U.S. military. Using a market comparables approach, data from the 

commercial sector can be used to estimate price per common unit, allowing for 

revenue estimates of process outputs for nonprofits. This approach also provides a 

common-unit basis to define benefit streams regardless of the process analyzed.  

KVA differs from other nonprofit ROI models because it can allow for revenue 

estimates, enabling the use of traditional accounting, financial performance, and 

profitability measures at the suborganizational level. KVA can rank processes or 

process alternatives by their relative ROIs. This ranking assists decision-makers in 

identifying how much various processes or process alternatives add value.  
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In KVA, value is quantified in two key metrics: Return on Knowledge (ROK: 

revenue/cost) and ROI (revenue-investment cost/investment cost). The raw data 

from a KVA analysis can become the input into the ROI models and various 

forecasting techniques such as real options analysis, portfolio optimization, and 

Monte Carlo simulation. 

Integrated Risk Management (IRM) 

Integrated Risk Management (IRM) is an eight-step, quantitative software-

based modeling approach for the objective quantification of risk (cost, schedule, 

technical), flexibility, strategy, and decision analysis (see Figure 26). The method 

can be applied to program management, resource portfolio allocation, return on 

investment to the military (maximizing expected military value and objective value 

quantification of nonrevenue government projects), analysis of alternatives or 

strategic flexibility options, capability analysis, prediction modeling, and general 

decision analytics. The method and toolset provide the ability to consider hundreds 

of alternatives with budget and schedule uncertainty, and provide ways to help the 

decision-maker maximize capability and readiness at the lowest cost. This 

methodology is particularly amenable to resource reallocation and has been taught 

and applied by the authors for the past 10 years at over 100 multinational 

corporations and over 30 projects at the DOD.  

IRM provides a structured approach that will yield a rapid, credible, 

repeatable, scalable, and defensible analysis of cost savings and total cost of 

ownership while ensuring that vital capabilities are not lost in the process. The IRM + 

KVA methods do this by estimating the value of a system or process in a common 

and objective way across various alternatives and providing the return on investment 

(ROI) of each in ways that are both comparable and rigorous. These ROI estimates 

across the portfolio of alternatives provide the inputs necessary to predict the value 

of various options. IRM incorporates risks, uncertainties, budget constraints, 

implementation, life-cycle costs, reallocation options, and total ownership costs in 

providing a defensible analysis describing management options for the path forward. 

This approach identifies risky projects and programs, while projecting immediate and 
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future cost savings, total life-cycle costs, flexible alternatives, critical success factors, 

strategic options for optimal implementation paths/decisions, and portfolio 

optimization. Its employment presents ways for identifying the potential for cost 

overruns and schedule delays and enables proactive measures to mitigate those 

risks. IRM provides an optimized portfolio of capability or implementation options 

while maintaining the value of strategic flexibility. 

In the current case, IRM provides a way to differentiate among various 

alternatives for implementation of Flexible and Adaptable Ship Options 

(FASO)/Modular Adaptable Ships (MAS) with respect to options in ship design, and 

to postulate where the greatest benefit could be achieved for the available 

investment from within the portfolio of alternatives. As a strategy is formed and a 

plan developed for its implementation, the toolset provides for inclusion of important 

risk factors, such as schedule and technical uncertainty, and allows for continuous 

updating and evaluation by the program manager to understand where these risks 

come into play and to make informed decisions accordingly. 

Using Monte Carlo risk simulation, the resulting stochastic KVA ROK model 

yielded a distribution of values rather than a point solution. Thus, simulation models 

analyze and quantify the various risks and uncertainties of each program. The result 

is a distribution of the ROKs and a representation of the project’s volatility.  

In real options, the analyst assumes that the underlying variable is the future 

benefit minus the cost of the project. An implied volatility can be calculated through 

the results of a Monte Carlo risk simulation. The results for the IRM analysis will be 

built on the quantitative estimates provided by the KVA analysis. The IRM will 

provide defensible quantitative risk analytics and portfolio optimization suggesting 

the best way to allocate limited resources to ensure the highest possible value over 

time.  

The first step in real options is to generate a strategic map through the 

process of framing the problem. Based on the overall problem identification 

occurring during the initial qualitative management screening process, certain 

strategic options would become apparent for each project. The strategic options 
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could include, among other things, the option to wait, expand, contract, abandon, 

switch, stage-gate, and choose.  

Risk analysis and real options analysis assume that the future is uncertain, 

and that decision-makers can make midcourse corrections when these uncertainties 

become resolved or risk distributions become known. The analysis is usually done 

ahead of time and, thus, ahead of such uncertainty and risks. Therefore, when these 

risks become known, the analysis should be revisited to incorporate the information 

in decision-making or to revise any input assumptions. Sometimes, for long-horizon 

projects, several iterations of the real options analysis should be performed, where 

future iterations are updated with the latest data and assumptions. Understanding 

the steps required to undertake an IRM analysis is important because the 

methodology provides insight not only into the methodology itself but also into how 

IRM evolves from traditional analyses, showing where the traditional approach ends 

and where the new analytics start. 

The risk simulation step required in the IRM provides us with the probability 

distributions and confidence intervals of the KVA methodology’s resulting ROI and 

ROK results. Further, one of the outputs from this risk simulation is volatility, a 

measure of risk and uncertainty, which is a required input into the real options 

valuation computations. In order to assign input probabilistic parameters and 

distributions into the simulation models, we relied on the Air Force Cost Analysis 

Agency Handbook (AFCAA Handbook), as seen in Figure 25. In the handbook, the 

three main distributions recommended are the triangular, normal, and uniform 

distributions. We chose the triangular distribution because the limits (minimum and 

maximum) are known, and its shape resembles the normal distribution, with the 

most likely values having the highest probability of occurrence and the extreme ends 

(minimum and maximum values) having considerably lower probabilities of 

occurrence. Also, the triangular distribution was chosen instead of the normal 

distribution because the latter’s tail ends extend toward positive and negative 

infinities, making it less applicable in the model we are developing. Finally, the 

AFCAA Handbook also provides options for left skew, right skew, and symmetrical 

distributions. In our analysis, we do not have sufficient historical or comparable data 
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to make the proper assessment of skew and, hence, revert to the default of a 

symmetrical triangular distribution. 

Figure 26 shows the steps required in a comprehensive IRM process. 

 

Figure 25: U.S. Probability Risk Distribution Spreads 

(Source: Air Force Cost Analysis Agency Handbook)
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Figure 26: Integrated Risk Management Process 
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Appendix B: A Refresher on Portfolio Optimization 

Many algorithms exist to run optimization and many different procedures exist 

when optimization is coupled with Monte Carlo simulation. In Risk Simulator, there 

are three distinct optimization procedures and optimization types as well as different 

decision variable types. For instance, Risk Simulator can handle Continuous 

Decision Variables (1.2535, 0.2215, and so forth), Integer Decision Variables (e.g., 

1, 2, 3, 4 or 1.5, 2.5, 3.5, and so forth), Binary Decision Variables (1 and 0 for go and 

no-go decisions), and Mixed Decision Variables (both integers and continuous 

variables). On top of that, Risk Simulator can handle Linear Optimization (i.e., when 

both the objective and constraints are all linear equations and functions) and 

Nonlinear Optimizations (i.e., when the objective and constraints are a mixture of 

linear and nonlinear functions and equations).  

As far as the optimization process is concerned, Risk Simulator can be used 

to run a Discrete Optimization, that is, an optimization that is run on a discrete or 

static model, where no simulations are run. In other words, all the inputs in the 

model are static and unchanging. This optimization type is applicable when the 

model is assumed to be known and no uncertainties exist. Also, a discrete 

optimization can first be run to determine the optimal portfolio and its corresponding 

optimal allocation of decision variables before more advanced optimization 

procedures are applied. For instance, before running a stochastic optimization 

problem, a discrete optimization is first run to determine if solutions to the 

optimization problem exist before a more protracted analysis is performed.  

Next, Dynamic Optimization is applied when Monte Carlo simulation is used 

together with optimization. Another name for such a procedure is Simulation-

Optimization. That is, a simulation is run first, then the results of the simulation are 

applied in the Excel model, and an optimization is applied to the simulated values. In 

other words, a simulation is run for N trials, and then an optimization process is run 

for M iterations until the optimal results are obtained or an infeasible set is found. 

Using Risk Simulator’s optimization module, you can choose which forecast and 

assumption statistics to use and replace in the model after the simulation is run. 
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Then, these forecast statistics can be applied in the optimization process. This 

approach is useful when you have a large model with many interacting assumptions 

and forecasts, and when some of the forecast statistics are required in the 

optimization. For example, if the standard deviation of an assumption or forecast is 

required in the optimization model (e.g., computing the Sharpe Ratio in asset 

allocation and optimization problems where we have mean divided by standard 

deviation of the portfolio), then this approach should be used.  

The Stochastic Optimization process, in contrast, is similar to the dynamic 

optimization procedure with the exception that the entire dynamic optimization 

process is repeated T times. That is, a simulation with N trials is run, and then an 

optimization is run with M iterations to obtain the optimal results. Then the process is 

replicated T times. The results will be a forecast chart of each decision variable with 

T values. In other words, a simulation is run and the forecast or assumption statistics 

are used in the optimization model to find the optimal allocation of decision 

variables. Then, another simulation is run, generating different forecast statistics, 

and these new updated values are then optimized, and so forth. Hence, the final 

decision variables will each have their own forecast chart, indicating the range of the 

optimal decision variables. For instance, instead of obtaining single-point estimates 

in the dynamic optimization procedure, you can now obtain a distribution of the 

decision variables, hence, a range of optimal values for each decision variable, also 

known as a stochastic optimization.  

Finally, an Efficient Frontier optimization procedure applies the concepts of 

marginal increments and shadow pricing in optimization. That is, what would happen 

to the results of the optimization if one of the constraints were relaxed slightly? Say, 

for instance, the budget constraint is set at $1 million. What would happen to the 

portfolio’s outcome and optimal decisions if the constraint were now $1.5 million, or 

$2 million, and so forth. This is the concept of the Markowitz efficient frontier in 

investment finance, where if the portfolio standard deviation is allowed to increase 

slightly, what additional returns will the portfolio generate? This process is similar to 

the dynamic optimization process with the exception that one of the constraints is 

allowed to change, and with each change, the simulation and optimization process is 
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run, a process best applied manually using Risk Simulator. This process can be run 

either manually (rerunning the optimization several times) or automatically (using 

Risk Simulator’s changing constraint and efficient frontier functionality). For example, 

the manual process is: Run a dynamic or stochastic optimization, then rerun another 

optimization with a new constraint, and repeat that procedure several times. This 

manual process is important, as by changing the constraint, the analyst can 

determine if the results are similar or different, and, hence, whether it is worthy of 

any additional analysis, or to determine how far a marginal increase in the constraint 

should be to obtain a significant change in the objective and decision variables. This 

is done by comparing the forecast distribution of each decision variable after running 

a stochastic optimization. Alternatively, the automated efficient frontier approach will 

be shown later in the chapter. 

One item is worthy of consideration. Other software products exist that 

supposedly perform stochastic optimization, but, in fact, they do not. For instance, 

after a simulation is run, then one iteration of the optimization process is generated, 

and then another simulation is run, then the second optimization iteration is 

generated and so forth. This process is simply a waste of time and resources; that 

is, in optimization, the model is put through a rigorous set of algorithms, where 

multiple iterations (ranging from several to thousands of iterations) are required to 

obtain the optimal results. Hence, generating one iteration at a time is a waste of 

time and resources. The same portfolio can be solved using Risk Simulator in under 

a minute as compared to multiple hours using such a backward approach. Also, 

such a simulation-optimization approach will typically yield bad results and is not a 

stochastic optimization approach. Be extremely careful of such methodologies when 

applying optimization to your models.  

The following are two examples of optimization problems. One uses 

continuous decision variables while the other uses discrete integer decision 

variables. In either model, you can apply discrete optimization, dynamic optimization, 

or stochastic optimization, or even manually generate efficient frontiers with shadow 

pricing. Any of these approaches can be used for these two examples. Therefore, for 

simplicity, only the model setup is illustrated, and it is up to the user to decide which 
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optimization process to run. Also, the continuous decision variable example uses the 

nonlinear optimization approach (because the portfolio risk computed is a nonlinear 

function, and the objective is a nonlinear function of portfolio returns divided by 

portfolio risks), while the second example of an integer optimization is an example of 

a linear optimization model (its objective and all of its constraints are linear). 

Therefore, these two examples encapsulate all of the procedures aforementioned.   

Discrete Integer Optimization 

Sometimes, the decision variables are not continuous but discrete integers 

(e.g., 1, 2, 3) or binary (e.g., 0 and 1). We can use such binary decision variables as 

on-off switches or go/no-go decisions. Figure 27 illustrates a project selection model 

where there are 12 projects listed. Each project, like before, has its own returns 

(ENPV and NPV for expanded net present value and net present value––the ENPV 

is simply the NPV plus any strategic real options values), costs of implementation, 

risks, and so forth. If required, this model can be modified to include required full-

time equivalences (FTE) and other resources of various functions, and additional 

constraints can be set on these additional resources. The inputs into this model are 

typically linked from other spreadsheet models. For instance, each project will have 

its own discounted cash flow or returns on investment model. The application here is 

to maximize the portfolio’s Sharpe Ratio subject to some budget allocation. Many 

other versions of this model can be created, for instance, maximizing the portfolio 

returns, or minimizing the risks, or adding constraints where the total number of 

projects chosen cannot exceed 6, and so forth and so on. All of these items can be 

run using this existing model.  
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Figure 27: Discrete Go and No-Go Decision for Project and Program Selection 

Results Interpretation 
Figure 29 shows a sample optimal selection of projects that maximizes the 

Sharpe Ratio. In contrast, one can always maximize total revenues, but this process 

is trivial and simply involves choosing the highest returning project and going down 

the list until you run out of money or exceed the budget constraint. Doing so will yield 

theoretically undesirable projects as the highest yielding projects typically hold 

higher risks. Now, if desired, you can replicate the optimization using a stochastic or 

dynamic optimization by adding in assumptions in the ENPV and Risk values.  
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Figure 28: Portfolio Optimization Model Settings 

 

Figure 29: Optimal Selection of Projects Maximizing Sharpe Ratio 
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Efficient Frontier and Advanced Optimization  

Figure 30 shows the efficient frontier constraints for optimization. You can get 

to this interface using Risk Simulator software by going to the Efficient Frontier 

button after you have set some constraints. You can now make these constraints 

changing. That is, each of the constraints can be created to step through between 

some minimum and maximum value. As an example, the constraint in cell J17 <= 6 

can be set to run between 4 and 8 (Figure 30). That is, five optimizations will be run, 

each with the following constraints: J17 <= 4, J17 <= 5, J17 <= 6, J17 <= 7, and J17 

<= 8. The optimal results will then be plotted as an efficient frontier and the report 

will be generated (Figure 31).  

Specifically, following are the steps required to create a changing constraint: 

• In an optimization model (i.e., a model with Objective, Decision Variables, and 
Constraints already set up), click on Risk Simulator | Optimization | 
Constraints, and then click on Efficient Frontier. 

• Select the constraint you want to change or step (e.g., J17), enter the 
parameters for Min, Max, and Step Size (Figure 30), and click ADD, then OK, 
and OK again. You should deselect the D17 <= 5000 constraint before 
running. 

• Run Optimization as usual. You can choose static, dynamic, or stochastic. To 
get started, select the Static Optimization to run. 

• The results will be shown as a user interface (Figure 31). Click on Create 
Report to generate a report worksheet with all the details of the optimization 
runs. 
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Figure 30: Generating Changing Constraints in an Efficient Frontier 

 

 

Figure 31: Efficient Frontier Results 
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