
VT-TE-19-196

Dynamic Contracting of Verification Activities by Applying Set-

based Design to the Definition of Verification Strategies

29 August 2019

Dr. Alejandro Salado

Peng Xu

Virginia Tech

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Disclaimer: This material is based upon work supported by the Naval Postgraduate School Acquisition
Research Program under Grant No. HQ0034-18-1-0002. The views expressed in written materials or
publications, and/or made by speakers, moderators, and presenters, do not necessarily reflect the official
policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or
organizations imply endorsement by the U.S. Government.

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Executive Summary

This report describes recent research in support of acquisition programs that

use verification activities to elicit evidence of contractual fulfillment. Thus, the

importance of adequately defining verification activities in any acquisition program is

unquestionable. Its significance extends beyond contracting though. The biggest

portion of the development financial budget is spent in executing verification activities

and verification activities are the main vehicle in discovering knowledge about the

system, which is key to reduce development risk. In current practice, a verification

strategy is defined at the beginning of an acquisition program and is agreed upon by

customer and contractor at contract signature. Hence, the resources necessary to

execute verification activities at various stages of the system development are

allocated and committed at the beginning, when a small amount of knowledge about

the system is available. However, contractually committing to a fixed verification

strategy at the beginning of an acquisition program fundamentally leads to

suboptimal acquisition performance. Essentially, the uncertain nature of system

development will make verification activities that were not previously planned

necessary and will make some of the planned ones unnecessary. Therefore, dynamic

contracting of verification activities is necessary to guarantee optimality of acquisition

programs in this area.

In order to cope with these challenges, this research project addressed the

main question of whether set-based design can enable the execution of dynamic

contracts for verification strategies, ultimately resulting in more valuable verification

strategies than current practice. In particular, this research project had the following

objectives: (1) Given an optimal verification strategy at a point in time, generate a set

of optimal future verification paths; and (2) Conduct a comparative analysis between

set-based design for verification and a benchmark. This research employed a

combination of a computational framework and a simulation tool. The hypotheses

were tested on a notional Earth observation satellite instrument, representative of

those of interest to the Air Force.

By fulfilling the research objectives, this research is anticipated to promote

higher early safety and efficacy of commercial products and public services. While an

application for the Air Force has been used as a test case, the methodologies and

insights provided in this work can be applicable to a broad range of systems that are

subjected to limited verification: other defense systems, space systems, aeronautics,

automotive systems, manufacturing systems, electronic products, civil infrastructure,

public health systems, or transportation systems.

The research has already resulted in one published paper for the 2019

Acquisition Research Symposium, one published paper for the 2019 INCOSE

International Symposium, and one published paper in Wiley’s Systems Engineering

journal. Two other journal papers resulting from this work are currently under

preparation and will be submitted before the end of 2019.

VT-TE-19-196

Dynamic Contracting of Verification Activities by Applying Set-

based Design to the Definition of Verification Strategies

29 August 2019

Dr. Alejandro Salado

Peng Xu

Virginia Tech

Disclaimer: This material is based upon work supported by the Naval Postgraduate School Acquisition
Research Program under Grant No. HQ0034-18-1-0002. The views expressed in written materials or
publications, and/or made by speakers, moderators, and presenters, do not necessarily reflect the official
policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or
organizations imply endorsement by the U.S. Government.

THIS PAGE LEFT INTENTIONALLY BLANK

Table of Contents

Background .. 1

Literature Investigation ... 3

Set-based Design ... 3

Verification as an engineering endeavor... 4

Mathematical models of verification strategies ... 5

Set-Based Design Applied to Verification Strategies ... 7

Concept .. 7

Process ... 9

Application ... 11

Case 1. Proof-of-concept. ... 11

Description .. 11

Results .. 15

Case 2. Improved model of rework ... 17

Description .. 17

Results .. 22

Case 3. Extending the size of the verification strategy: A Monte Carlo approach . 23

Description .. 23

Method .. 24

Results .. 27

Case 4. Extending the size of the verification strategy: A state-based approach . 28

Description .. 28

Method .. 29

Results .. 31

Findings ... 35

Recommendations and Future Directions .. 37

Conclusions ... 39

Appendix – Data Used in Application Cases .. 41

References .. 47

THIS PAGE LEFT INTENTIONALLY BLANK

List of Figures

Figure 1. Example of modeling notation ... 6

Figure 2. Current vs Set-based approaches for designing verification strategies 7

Figure 3. Verification path tree (Xu & Salado, 2019) .. 10

Figure 4. Zones for deciding next verification activity and need for rework (Xu &

Salado, 2019). ... 14

Figure 5. Comparison between Set-based Design and Traditional Strategy (Xu &

Salado, 2019) .. 17

Figure 6. Overarching verification network ... 18

Figure 7. Plot of Verification Paths ... 23

Figure 8. Verification network used in Cases 3 and 4 (Salado & Kannan, 2019) 24

Figure 9. MC method process description ... 25

Figure 10. Swap plot of the configurations of all temperatures 31

Figure 11. Overall cost of the configuration that generates the optimal path 32

Figure 12. Globally optimal overall cost of all configuration 32

Figure 13. Plot of all possible activities .. 34

Figure 14. Comparison of Three Strategies ... 36

THIS PAGE LEFT INTENTIONALLY BLANK

List of Tables

Table 1. Activity Constraint Table .. 12

Table 2. Table of All Cost Items at T7 .. 16

Table 3. Cost to execute verification strategies ... 18

Table 4. Impact cost of deploying the system with an error 19

Table 5. Rework costs ... 21

Table 6. Means when Nt=17 .. 27

Table 7. Means when Nt=14 .. 27

Table 8. Node Importance when λ=3.97 .. 28

Table 9. PT algorithm employed in Case 4 .. 30

Table 10. The state-action table .. 33

THIS PAGE LEFT INTENTIONALLY BLANK

Background

Verification activities, which usually take the form of a combination of

analyses, inspections, and tests, consume a significant part, if not the biggest part,

of the development costs of large-scale engineered systems (Engel, 2010).

Verification occurs at various integration levels and at different times during its life

cycle (Engel, 2010). Under a common master plan, low level verification activities

are executed as risk mitigation activities, such as early identification of problems, or

because some of them are not possible at higher levels of integration (Engel, 2010).

Therefore, a verification strategy is defined “aiming at maximizing confidence on

verification coverage, which facilitates convincing a customer that contractual

obligations have been met; minimizing risk of undetected problems, which is

important for a manufacturer’s reputation and to ensure customer satisfaction once

the system is operational; and minimizing invested effort, which is related to

manufacturer’s profit” (Salado, 2015). Essentially, verification activities are the

vehicle by which contractors can collect evidence of contractual fulfillment in

acquisition programs.

In current practice, a verification strategy is defined at the beginning of an

acquisition program and is agreed upon by customer and contractor at contract

signature. Hence, the resources necessary to execute verification activities at

various stages of the system development are allocated and committed at the

beginning, when a small amount of knowledge about the system is available (Engel,

2010). However, the necessity and value of a verification activity cannot be

measured independently of the overall verification strategy (Salado & Kannan,

2018b). Instead, the necessity to perform a given verification activity depends on the

results of all verification activities that have been previously performed (Salado &

Kannan, 2018b). For example, testing the mass of a component is considered more

necessary if a previous analysis has shown low margin with respect to the success

criterion than if the analysis has shown ample margin. Thus, contractually

committing to a fixed verification strategy at the beginning of an acquisition program

fundamentally leads to suboptimal acquisition performance. Essentially, the

uncertain nature of system development will make verification activities that were not

previously planned necessary and will make some of the planned ones unnecessary

(Salado & Kannan, 2018b). The former can be handled through change requests

(CR) but they require unplanned financial investments. The latter can be recovered

in a few cases through negative change requests but, in general, they imply a waste

of the financial investment because the investment has been committed to the

contractor.

In this context, dynamic contracting of verification activities becomes

necessary to guarantee optimality of acquisition programs in this area (Xu & Salado,

2019). Instead of contracting a predefined set of activities at the beginning of a

project, the necessity and contracting of each verification activity (or subsets of

them) are evaluated and executed as the system development progresses (Xu &

Salado, 2019). Set-based design has been proposed as part of this research to

support such contracting approach (Xu & Salado, 2019). Informed by the benefits of

set-based design in conceptual design (Singer, Doerry, & Buckley, 2009), an overall

set of verification activities is considered, but not contracted, at the beginning of a

project. A vector of investment opportunities indicates the development stages in

which verification activities may be contracted and executed. Based on their results,

the set of remaining verification paths to the end of the system development is

updated (Xu & Salado, 2019).

Literature Investigation

Set-based Design

Verification strategies are defined in current practice at the beginning of an

acquisition program and are agreed upon by customer and contractor at contract

signature, when a small amount of knowledge about the system is available (Engel,

2010). Such lack of knowledge in early design activities motivated the emergence of

set-based design (Bernstein, 1998). Set-based design is built on the principle of

working simultaneously with a plethora of design alternatives, instead of converging

quickly to a single option (Bernstein, 1998). As the knowledge about the system

increases, suboptimal alternatives are discarded until a preferred one remains

(Bernstein, 1998). A key aspect is that discarding is not an activity at a given point of

time, like a traditional trade-off, but a time-continuous activity that occurs as new

knowledge is available (Bernstein, 1998). A formal formulation of set-based design

and how it make product development resilient against changes in external factors is

given in (Rapp, Chinnam, Doerry, Murat, & Witus, 2018).

Set-based design has been successfully applied in the conceptual stages of

naval systems (Singer et al., 2009), graphic industry products (Raudberget, 2010),

automotive products (Raudberget, 2010), and aeronautic systems (Bernstein, 1998),

among others. Historical analysis of the use of set-based design has shown that it

inherently eliminates root causes of rework in system development (Kennedy,

Sobek, & Kennedy, 2014). Researchers have integrated set-based design with

tradespace exploration to further strengthen its value by leveraging the numerous

solutions that tradespace exploration provides to generate the initial set (Small et al.,

2018). However, empirical research about the implementation of set-based design in

an industrial setting showed that there are some discrepancies as to how to

operationalize the approach (Hansen & Muller, 2012). It remains to explore if this

was an anecdotal episode or if it happens in general.

Verification as an engineering endeavor

Consider “a generic model of the expected utility , ,S p tE U 
 

 provided by a

system S at time t with respect to a set of preferences P , as given in Eq. (1),

   , , , , ,S P t U A t A nE U F S B S t P    (1)

where AS is a set of system characteristics,  ,t A nB S t is the belief at time t that

those system characteristics will be exhibited by the system at a later time nt , and

UF is a set of expected utility functions, associated with beliefs on those functions,

that map system attributes, beliefs of system attributes, and preferences to expected

utility” (Salado & Kannan, 2018b). In this context, a verification activity is one that

“affects at least  ,t A nB S t ” (Salado & Kannan, 2018b). That is, a verification activity

is one that, as a minimum, provides information about the system under

development.

For the purpose of this research, two main characteristics of verification lead

to the need for dynamic contracting of verification strategies. First, the value of each

verification activity is not absolute, but depends on the results of prior verification

activities (Salado & Kannan, 2018b). This means that the value of a verification

activity cannot be determined individually, but in the context of the knowledge at the

time of executing the activity. Therefore, the expected value provided by a

verification activity evolves as a function of the results of previous verification

activities. Second, although verification activities are objective, the confidence that

they generate is subjective (Salado & Kannan, 2018b). This means that not only

prior verification activities influence the value of a verification activity, but also the

engineer or the team in charge of processing and interpreting the results of a given

verification activity do so. Given the long development times necessary in some

large-scale systems, it is common that the team in charge of executing verification

activities towards the later stages of the system development is different from the

team that planned those verification activities early in the lifecycle. Hence, changes

in the perceived value of a verification activity is inherent to the nature of a large-

scale system development, under the assumption that the teams will change as the

development progresses.

Mathematical models of verification strategies

In this report, a verification strategy is understood to be a set of verification

activities organized as an acyclic directed graph (Salado & Kannan, 2018a). A

verification activity is understood to be the collection of information about a specific

aspect of the system under development (for simplicity we will call this a system

parameter) and verification evidence refers to such information. Furthermore, it is

assumed that the level of confidence in the correct performance of the system is

shaped by the system architecture (e.g., maturity and coupling of the system’s

components) and the results of the various verification activities (Salado & Kannan,

2019).

Mathematically, this understanding is captured by “modeling the engineer’s

posterior belief distribution  |  s based on his/her prior belief distribution    and

the density function  |f v , conditioned on the collected verification evidence v ”,

where  is the system parameter that is verified and *Vv is a specific vector of

verification results (or verification evidence) (Salado & Kannan, 2019). Using this

mathematical framework, a verification strategy is modeled as a Bayesian network

BN A B   , where (Salado & Kannan, 2019):

  ,V D  is a simple directed graph that captures the planned execution of

verification activities. The set V is a set of verification activities and D is a

set of tuples  ,a b , with ,a b V , that describes the relative order in which

verification activities are planned to be executed (Salado & Kannan, 2018a).

  ,ZA D is a simple directed graph that captures the properties of the

system architecture, specifically the coupling between the different
components forming the system, as well as their individual maturity. The set

Z captures the prior beliefs on the absence of errors in the system

parameters and the information dependencies between those parameters

are captured in the set       , : , , |ZD a b a b f b f b   a .

   , ,ZB V D  is a simple directed graph that captures the ability of the

verification activities to provide information about one or more system

parameters, where       , : , , |ZD a b a b V f b f b    a .

Resulting graphs modeling verification strategies can be reduced to a

combination of a finite set of patterns (Salado & Kannan, 2019). Identification of

patterns may aid in interpreting the role of the various verification activities within a

strategy. For example, a dynamic network (as will be used later in this report)

indicates that certain activities may make some prior activities irrelevant once the

new ones have been executed (Salado & Kannan, 2019).

It should be noted that the previous notation may not be followed throughout

the report; it has been used here for consistency with the original source.

This modeling approach forms the basis for the mathematical model underlying

the application of set-based design to the design of verification strategies presented

in this report. The basic notation is represented in Figure 1. System parameters are

denoted by i and verification activities by iV . Arrows represent information

dependencies.

θ1 θ2

V1 V2 V3 V4

Figure 1. Example of modeling notation

In the example in Figure 1, 1 could represent, for example, the performance

of a prototype, which is verified through an analysis 1V and a test 2V (such that the

result of the analysis shapes the confidence on the expected result of the test). Such

prototype performance shapes the confidence on the performance of the actual

system 2 , which is verified through verification activities 3V and 4V .

Set-Based Design Applied to Verification

Strategies

Concept

Note: This section has been slightly adapted from a publication by the authors

prepared, submitted, and published during the period of performance of this

research (Xu & Salado, 2019).

The approach developed in this research is graphically compared against the

current paradigm for contracting verification activities in Figure 2. In the current

paradigm (top part of the figure), a contract for a verification strategy is fixed at the

beginning of the system development program. The strategy is defined by the black

dots connected by the orange line, which represent the verification activities that will

be executed throughout the system development.

t1 t2 t3 t4

/V

V1

V2

t1 t2 t3 t4 t1' t2 t3 t4 t1 t2 t3 t4

This is the optimal
strategy, agreed upon
contractual signature.

Circled activity showed
low margin. Unplanned
purple activity needs to
be added through CR.

Circled activity showed
nominal margin. No
change to strategy.

Circled activity showed
ample margin. Yellow
activity provides no
value, but it is executed.

Coriginal= Ʃ Cblack dots Cfinal=Coriginal + purple Cfinal=Coriginal + purple Cfinal=Coriginal + purple

t1 t2 t3 t4

/V

V1

V2

t1 t2 t3 t4 t1' t2 t3 t4 t1 t2 t3 t4

This is the initial set of
96 strategies, resulting
from optimal.

Circled activity showed
low margin. Do purple
activity; reduce space to
48 strategies.

Circled activity showed
nominal margin. Follow
optimal path; reduce
space to 24 strategies.

Circled activity showed
ample margin. Strategies
with yellow activity are
suboptimal; reduce space
to 3 strategies. Choose
one.

Cinitial= [a, b]; Set bounds depending on

strategy. Invest only what it is performed.

Cfinal= Ʃ Cblack dots

C
u

rr
en

t
p

ar
ad

ig
m

Se
t-

b
as

ed
 v

er
if

ic
at

io
n

Figure 2. Current vs Set-based approaches for designing verification strategies

(C: cost of executing verification; ti: verification events; /V: no verification; Vi:

verification activity)

Without loss of generality, it is possible to assume that such verification strategy

was determined optimal at the beginning of the program, that is, with the knowledge

available at that point in time. Consider now that the verification activity 1V at 1t shows

a tight margin with respect to the expected result of the activity. This may lead to a

lower than expected confidence on the system being absent of errors that triggers the

need for an additional, unplanned verification activity 2V at 1t . Because the contract

was fixed, such an activity needs to be contractually introduced through a change

request.

Consider on the contrary, that the verification activity 1V at 3t showed much

better results than previously expected. This may yield a higher than expected

confidence on the system being absent of errors, potentially making verification

activity 2V at 3t unnecessary or of little value, because of how confidence builds up

on prior information (Salado & Kannan, 2018b; Salado, Kannan, & Farkhondehmaal,

2018).

Consider now the proposed set-based design approach, depicted on the

bottom side of Figure 2. In this case, an optimal strategy is also determined at 1t .

However, because the value of verification activities may change as results become

available (Salado & Kannan, 2018b), a set (represented by the dotted lines connecting

the dots) is considered instead of just one strategy, and only the first verification

activity 1V at 1t is contracted at this point. This set is the set of all possible verification

strategies that are consistent with the optimal verification strategy (that is, formed by

all verification strategies that have the first activity in common).

Assume then that verification activity 1V at 1t provides low margin with respect

to the expected results, as was the case before. With the updated confidence level, a

new optimal strategy is selected within the remaining set. Then, the set is reduced to

include only those verification activities that are consistent with the new optimal

strategy. In this way, verification activity 2V at 1t is contracted as well. The process of

identifying new optimal strategies based on updated confidence and reducing the set

of remaining verification activities to those consistent with the new optimal strategy,

continues at each t .

Assume later in the system development that, as was the case when describing

the current paradigm, verification activity 1V at 3t shows ample margin with respect to

the expected result. The next assessment of the remaining optimal path yields a set

of verification strategies that do not include verification activity 2V at 3t . Based on this

result, 2V is not contracted at 3t . Consequently, this approach does not waste

resources in activities that become no longer needed as verification evidence

becomes available.

Process

The basic process that has been developed in this project to apply set-based

design to the design of verification strategies consists of the following steps (Xu &

Salado, 2019):

Step 1. Determine optimal verification strategy at Time 1.

Step 2. Choose first (timewise) verification activity (or subset of verification
activities).

Step 3. Execute activity and update Bayesian network.

Step 4. Determine optimal remaining verification strategy and return to Step
2.

After each selection of an optimal strategy, the set of potential verification

strategies is given by those strategies that share the first (timewise) verification

activity (or subset of verification activities). Therefore, as the optimal remaining

verification strategies are determined, the set shrinks until verification is completed.

In addition, the set of verification strategies can be further reduced by

eliminating those sets that are dominated by optimal strategies throughout the

system development. This reduction is useful for managing the resulting complexity.

An example of the evolution of the set of verification strategies after applying

set-based design is provided in (Xu & Salado, 2019) and shown in Figure 3. At T1,

the optimal verification strategy contains V1 at T1. Two results are considered, either

the activity passes or fails. In each case, the optimal strategy out of the set of

remaining strategies can be computed. In both cases, the optimal strategy contains

V2 at T2. The process continues by assessing how the optimal strategy changes on

each path as the results of the next verification activity (in this case V2 in each path)

are known. This process is repeated until T5. It should be noted how the result of

each verification activity changes the optimality of the remaining verification strategy.

T1 T2 T3 T4 T5

Pass

Fail

Fail

Pass

V2

V4

V4

V3

V1

T6 T7

S
y

stem
 N

o
d

e
 C

o
n

fid
e
n

ce

V3

V2

V3

V4

V3

Fail

Pass

Fail

Pass Pass

Fail

Pass

Fail

Pass

Fail

Pass

Fail

Pass

Fail
Pass

Fail

No Rework

Rework

1

2

3

4

5

6

7

8

9

10

11

1 Path Number

Figure 3. Verification path tree (Xu & Salado, 2019)

Overall in this example, eleven verification strategies dominate every other

verification strategy in the set. Because of this, it suffices to work with an initial set of

verification strategies (i.e., before T1) that contains those eleven strategies. In case

V1 passes, the set shrinks to contain five strategies (strategies 7 to 11) after T1 and

before T2. Otherwise, the set shrinks to contain six strategies (strategies 1 to 6). This

process continuous until verification is completed. This evolution is consistent with

the set-based design paradigm, since multiple alternatives are considered

simultaneously and some of them are progressively discarded from the set until a

single alternative finally remains.

Application

The proposed set-based approach was tested on four cases, which are

reported in this section. The first case was used as a proof-of-concept. A simple

verification network was employed, as a well as a simple model of rework activities.

The second case employed a more sophisticated model of rework. The third and

fourth cases were used as first attempts to address large verification networks. The

third case leveraged the Monte Carlo method. The fourth case leveraged the parallel

tempering algorithm.

Case 1. Proof-of-concept.

Note: This section has been slightly adapted from a publication by the authors

prepared, submitted, and published during the period of performance of this

research (Xu & Salado, 2019).

Description

The notional verification strategy in Figure 1 was used for this case. All nodes

were assigned binary values for computational simplicity. This simplification does not

affect the purpose of the case. System parameter nodes may take the values of no

error or error, which are denoted by e and e , respectively. Verification activity nodes

may take the values of pass or fail. A time vector  1,..., nT T is defined, where the

element iT precedes temporally the element 1iT  for each 0,..., 1i n  . No specific

time unit was employed, because only temporal order is relevant to the example. Each

element in the vector will be referred to as time event.

It was assumed that at most one verification activity is performed at each time

event and that any given verification activity is performed at most once during the

entire verification strategy. Furthermore, restrictions on the feasibility to perform a

given verification activity at a given time event were defined and are listed in Table 1.

The restrictions are intended to capture realistic constraints that may exist on the

feasibility to perform a given verification activity at some point in the system

development. For example, it is likely that tests on prototypes can happen since an

earlier time event than tests on the final product.

Table 1. Activity Constraint Table

Time event Feasible verification activities

T1    1 3 5,L T V V

T2    2 3 4 5, ,L T V V V

T3    3 3 4 5, ,L T V V V

T4    4 5 6,L T V V

T5    5 5 6,L T V V

T6    6 5 6,L T V V

*    all feasible activities at i iL T T

The goodness or preference of a verification strategy was determined by three

main factors: (1) its cost of execution, which is given by the fixed cost to execute each

of its verification activities; (2) the expected cost to repair/rework the system when

deemed necessary to do so as a function of the available verification evidence; and

(3) the expected impact cost of the system exhibiting an error once deployed.

Mathematically, the expected cost of a verification strategy S was modeled as:

         
 

     
*1 1 1

(|) | | e

j

o n o

T V jk jk R jk k I k
V k j kv L T v

E C S C V P v P v v C P v P e v C     
    

             
V V

 (0)

where:

 VC V is the fixed cost to execute verification activity V ,

V Is the set of verification activities included in the verification strategy S,

 v is a specific vector of verification results,

 |jkP v is the confidence level of the kth system parameter node at Tj given

the verification results v,

(|)jk v  is the indicator function that equals 1 if (|)jk lP v H  , where Hl is a

decision threshold, as will be explained in the next paragraph;

otherwise its value is 0,

 R jkC  is the rework cost necessary to recover a failure detected during

verification at Tj,

*
V is the set of verification results and rework efforts possible as per the

previous rework decisions given the set of verification activities V,

 |P e v  is the probability that the system exhibits an error, given the

specific verification results v, and

 IC e  is the financial impact of the system exhibiting an error once it is

operational.

The treatment of rework costs deserves additional discussion. A failed

verification activity does not necessarily lead to rework; since rework is only necessary

if worth doing. An automated rework decision process, caricaturized in Figure 4, is

used in this case. Two confidence thresholds    , 0.4,0.95l uH H  distinguish

between three decision zones, which are defined such that:

1) Zone 1 reflects a confidence state that is considered not acceptable. Therefore,
if the confidence on the system being absent of errors drops to Zone 1, then a
rework activity is executed. The rework activity results in the confidence
increasing to the level it would be, had the verification activity yielded pass
results. This is meaningful because the purpose of the verification activity that
failed was to achieve certain confidence level.

2) Zone 2 reflects a confidence state that is in line with the confidence expected
as the execution of the verification strategy progresses. Therefore, if (i) the
confidence on the system being absent of errors falls in Zone 2 and (ii) the
confidence level expected at completion of the verification strategy -assuming
all remaining activities pass- falls in Zone 3, then the execution of the

verification strategy continues as planned. If this condition is not met, then a
rework activity is planned until such an objective is reached.

3) Zone 3 reflects a confidence state that does not require the collection of
additional knowledge; the engineer is convinced about the correct function of
the system. Therefore, if the confidence on the system being absent of errors
falls in Zone 3, rework activities are not executed. In addition, reaching Zone 3
implies for the set-based approach presented in this paper (with the
corresponding dynamic contracting structure) that no other verification activity
will be executed, and the system can be deployed. However, for the benchmark
(with static contracting), it is assumed that remaining pre-contracted verification
activities will still be executed.

Probability assignments use synthetic data and are given in the Appendix.

Following the modeling approach presented in (Salado & Kannan, 2019), prior beliefs

were assigned to system parameter nodes, which capture the initial belief on the state

of the system (i.e., being absent of errors), and conditional probability tables were

created for the verification activity nodes. Posterior beliefs were calculated for system

parameters through Bayesian update of the outcomes of the verification activity

nodes. Probability update was conducted in this study using the Bayesian Network

Toolbox for MATLAB®, which estimates the posterior probabilities of all nodes by the

variable elimination method.

Compare

P(θ) &{Hl, Hu}

Hu

Hl

Stop Verification

Need More

Observation

Rework

> Hu

< Hl

[Hl, Hu]

Activity Vi

Zone 1

Zone 2

Zone 3

Figure 4. Zones for deciding next verification activity and need for rework (Xu & Salado,
2019).

Cost values employed in this case, given in the Appendix, were also synthetic,

but reasonable. The following assumptions were made: (1) rework cost increases with

time, (2) the impact cost during deployment is much larger than the rework cost and

the verification cost; (3) rework cost is in general higher than verification execution

cost; and (4) verification execution cost is positively related to the information it yields.

Results

Given the constraints in Table 1, an initial set of 198 verification strategies

could be enumerated before the first time-interval. Among them, the optimal one is

S1 = (V1, V2, NoV, V3, V4, NoV), where NoV indicates that no verification activity is

executed at that time interval. This strategy has an expected total cost of $3,226k

and an initial confidence on the system being absent of errors of 0.76. As discussed,

S1 is used as the baseline verification strategy for the benchmark.

As an example, the evolution of one of the paths for the proposed set-based

approach is described. V1 is executed in the first time-interval because it is part of

the optimal strategy identified before initiating the execution of the verification

strategy. If the verification activity passes, the number of verification strategies

remaining in the set reduces to 55 (all strategies that begin with V1) and the

confidence on the system being absent of error increases to 0.84 (as determined

through Bayesian update of Figure 1). The optimal verification strategy out of the

remaining set becomes S2= (V1, V2, V3, V4, NoV, NoV), with a lower expected cost

of $2,994k. On the other hand, if the activity fails, the set of remaining verification

activities would contain 115 elements and the confidence on the system being

absent of error would drop to 0.57. Since this level is still larger than 0.40, the rework

activity would not be entertained yet. The process repeats again by identifying a new

optimal strategy and reducing the set accordingly until the verification activity on the

last time interval is executed.

The possible set reductions led to 11 feasible paths for the proposed set-

based approach. As illustrated in Figure 3, the set of all possible paths could be

represented as a tree plot. The expected cost of each approach to design

verification strategies was calculated as the sum of the cost of each path weighted

by its resulting probability of occurrence. The probability of occurrence for each path

was computed as the product of all the probabilities of all activities along the branch.

Detailed results are shown in Table 2.

Table 2. Table of All Cost Items at T7

Path
Number

Path
Probability
(PP)

 2 errorP   

E[CI] CR CV

Path Cost
(CP=E[CI]+
CR+ CV)

1 0.0295 0.9077 5538 700 425 6663

2 0.0116 0.9077 5538 200 425 6163

3 0.1169 0.9657 2058 200 350 2608

4 0.0265 0.9077 5538 500 425 6463

5 0.0104 0.9077 5538 0 425 5963

6 0.1051 0.9657 2058 0 350 2408

7 0.0446 0.9364 3816 300 225 4341

8 0.0554 0.9364 3816 0 225 4041

9 0.0936 0.9316 4104 500 425 5029

10 0.0449 0.9316 4104 0 425 4529

11 0.4615 0.9750 1500 0 350 1850

Similarly, the benchmark could yield 16 possible paths. All paths are shown in

Figure 5 (dotted, red lines represent benchmark paths; solid, blue lines represent

set-based paths). The vertical axis represents the total expected cost of the

verification strategy on each time interval. The resulting cost is given therefore after

completion of the last time interval (to the right extreme in the plot). The total

expected cost of the set-based approach is

11

1

$3,004ki i
i

PP PC


 
, which is smaller

than that of the benchmark, $3,214k. This result provides an indication that the

proposed approach yields indeed more valuable verification strategies than the

benchmark, although additional cases need to be run to confirm this result.

Figure 5. Comparison between Set-based Design and Traditional Strategy (Xu & Salado,
2019)

Figure 5 provides in addition an interest insight about the properties of the

proposed set-based approach to design verification strategies and contract

verification activities. As can be seen, the amplitude of the tree corresponding to the

benchmark approach (red dotted line) is larger than that of the set-based design

method (blue solid line). This indicates that the benchmark approach responds more

slowly to adjusting its parameters than the set-based design approach when

receiving information from verification evidence. In cost control terms, this indicates

that the benchmark approach is inefficient when compared against the proposed set-

based approach.

Case 2. Improved model of rework

Description

Consider the simple overarching verification network in Figure 6. It represents

the way in which a set of available verification activities provide information about a

system parameter S (e.g., the mass of the system). In the figure, C represents

another parameter that provides information about S (e.g., the mass of a system

component), 1V is a verification activity that provides information about C (e.g., a

test of the mass of a system component), and 2V is a verification activity that

provides information about S (e.g., a test of the mass of the system).

θS

θC

V2

V1

E1

θS

θC

V2

V1

E2

V2

Figure 6. Overarching verification network

Five verification strategies can be devised by leveraging the overarching network

(notation from (Salado & Kannan, 2018a) is used):

 1 ,S   

  2 1 ,S V 

  3 2 ,S V 

     4 1 2 1 2, , ,S V V V V

     5 1 2 2 1, , ,S V V V V

It was assumed that 5S is not meaningful and therefore it was not further

considered.

The cost to execute a verification activity is denoted by V . Table 3 lists the cost to

execute each verification strategy. It was assumed that no overlap exists in the cost

of executing the verification activities.

Table 3. Cost to execute verification strategies

Strategy Cost function

1S  1 $0V S 

2S    2 1 $200KV VS V  

3S    3 2 $200KV VS V  

4S      4 1 2V V VS V V   

The cost impact associated to deploying the system with an error is denoted by I .

Table 4 lists the expected costs of impact for each strategy. It was assumed that

10,000KI  .

Table 4. Impact cost of deploying the system with an error

Strategy Cost function

1S    1I S IE S P e      

2S    2 1|I S IE S P e V p       

3S    3 2|I S IE S P e V p       

4S    4 1 2| ,I S IE S P e V p V p        

Note that    3 4I IE S E S        because 1V becomes disconnected from S once

2V is known.

Rework cost is denoted by R . The key aspect is that the cost of rework

depends on when the rework happens or, more accurately, on whether rework

requires integration and de-integration activities or not. Hence, it is necessary to

capture the cause of the error, as well as the moment in which the error is found. It

was assumed that rework results in a state of knowledge equivalent to V p . This is

because, in the theoretical framework used in this research, system attributes are

not accessible, but only verification evidence is (Salado & Kannan, 2019).

Contrary to the previous case, it was assumed in this case that rework is performed

as soon as a verification activity fails. This implies the following:

 For 1S ,  1 0RE S    because, since there is no verification activity

executed, errors cannot be found and rework activities initiated.

 For 2S ,      2 1 ,R RE S P V p C C       , where  ,R A B indicates that

rework happens for assembly A when integrated at assembly level B. In this

case,  ,C C means that rework happens on the component when it is at the

component level (that is, when the component is not integrated at system

level). Only  ,R C C is considered in the model because, since no

verification at system level occurs, errors can only be found at the component
level.

Calculation for 3S becomes more sophisticated because, while the failure is

detected on a verification activity at the system level, the error may result from an

error at system level and/or an error at component level (note that in some cases

solving the problem at the component level automatically solves the problem at the

system level and in some cases the system level problem persists and also needs to

be fixed). This needs to be considered in the calculation of the expected rework cost.

The following basic algorithm was used:

1) If an error is found, try to solve at system level.

2) If not solvable, try also at component level.

Note that a different algorithm could have been defined, trying to fix the

problem at component level before trying at system level. However, based on

experience, it was assumed that de-integration activities are less preferred. Under

these conditions, the expected rework cost for 3S is given by Eq. (3),

          3 2 2, , | ,R R S C RE S P V f S S P e e V f C S                  (3)

The following aspect is of interest in the previous equation. Note that, if the

verification activity fails, rework automatically happens at the system level. As

stated, rework at the component level is performed only if the problem persists. This

was modeled by the probability that there is an error at both the system level and the

component level. This is because:

1) If the error was only at the system level, then the rework at system level
would fix it.

2) If the error was only at the component level, then there is not really a
problem at system level and the fix would also work.

3) The cost of rework of system level is already accounted for, so this is why
only the cost of the component level fixed is considered in that case.

Calculation for 4S builds upon the same idea:

1) If the component level verification activity fails, then a rework activity at the
component level occurs. Afterwards, if the system level verification activity

fails, the same situation as in 2S applies with the difference that probability

of errors is conditioned to the component level activity passed (because of
the rework activity).

2) If the component level verification activity passes and then the system

level verification activity fails, the same situation as in 3S applies with the

difference that probability of errors is conditioned to the component level
activity passed.

Under these conditions, the expected rework cost for 4S is given by Eq. (4),

              

      

4 1 2 1 1 2 1

2 1

, | , |

, , | , ,

R R R

R S C R

E S P V f C C P V f V p S S P V p P V f V p

S S P e e V f V p C S

  

   

              

     

(4)

Table 5 lists the corresponding rework cost used in the model.

Table 5. Rework costs

 ,R x y
y

C S

x
C $200K $1,000K

S n/a $500K

Note that all cost figures are synthetic. Probability assignments use synthetic

data and are given in the Appendix. As in the previous case, the modeling approach

presented in (Salado & Kannan, 2019) was employed. Prior beliefs were assigned to

system parameter nodes, which capture the initial belief on the state of the system

(i.e., being absent of errors), and conditional probability tables were created for the

verification activity nodes. Posterior beliefs were calculated for system parameters

through Bayesian update of the outcomes of the verification activity nodes.

Probability update was conducted in this study using the Bayesian Network Toolbox

for MATLAB®, which estimates the posterior probabilities of all nodes by the variable

elimination method.

Results

Because of the size of the network and the input data, this case is not able to

distinguish between the current acquisition paradigm and set-based design.

However, the case was only used to explore the application of the refined rework

model, so the case is still useful.

Results are shown in Figure 7. Two time-events are represented, one at Time

Interval = 1 (denoted by T1) and one at Time Interval = 2 (denoted by T2).

Verification activities V1 and V2 are conducted at T1 and T2, respectively. Solid

continuous lines are used for visualization purposes. Bifurcations differentiate the

cost of potential paths should the verification activity pass or fail. Because of the

setup of the case, the cost differences are caused only by the rework actions. The

paths with positive slope indicate that the verification activity failed and,

consequently, a rework activity was initiated. On the contrary, the paths with

negative slope indicate that the verification activity passed and, consequently,

rework activity was not initiated. The key insight of the picture is the consistency with

which rework at different levels of integration is treated; in line with the input data. As

can be seen, the delta rework cost after V2 is larger than after V1. This is, as

discussed, because not only rework at higher integration levels is more expensive,

but there is a chance that the problem at system level is caused by a problem at

component level. Such de-integration effort considerable increases the resulting

rework cost.

F1

F2

F2

Figure 7. Plot of Verification Paths

Case 3. Extending the size of the verification strategy: A Monte Carlo
approach

Description

The partial verification network of a space system in Figure 8 was used for

this case. It captures all verification activities that may be leveraged to verify three

system parameters: field of view (denoted by 1), modular transfer function (denoted

by 3), and mechanical load (denoted by 2). The space instrument consists of a

telescope, a spectrometer, and camera. The network also includes telescope,

spectrometer, and camera parameters that provide information about the three

system parameters to be verified. Furthermore, the network includes various

verification models that may be used to support verification activities (e.g.,

mathematical models, prototypes, and the final product). These parameters are

denoted by i , with 1,2,3i  . Verification activities are noted by iV . The details of the

verification network are given in (Salado & Kannan, 2019). Overall, the network has

21 parameter nodes and 29 verification activity nodes. The network was

characterized with notional values. A partial snapshot is shown in the Appendix for

information purposes (note: the full dataset is too large for representation in this

report).

θ 1

θ 2 θ 3

θ 4

θ 5

θ 6

θ 7

θ 8θ 9θ 10θ 11

θ 12 θ 13

θ 14 θ 15

θ 16

θ 17

θ 18

θ 19

θ 20

θ 21

V 23 V 24 V 25

V 26 V 27

V 28

V 29

V 30

V 31

V 32

V 33

V 34

V 35

V 36

V 37

V 38

V 39

V 40

V 41

V 42

V 43V 44V 45

V 46

V 47

V 48

V 49V 50

V 22

Figure 8. Verification network used in Cases 3 and 4 (Salado & Kannan, 2019)

Method

The Monte-Carlo (MC) method has been explored to cope with the complexity

resulting from large verification strategies. This is necessary because brute force

(i.e., exhaustively evaluating all possible verification strategies for a system) is

infeasible in realistic systems. The explored MC method has two stages: importance

sampling (Stage I) and importance resampling (Stage II). At Stage I, the expected

cost of each candidate node is obtained, forming a cost vector. The task of

importance sampling is to obtain one convergent cost vector. That is, after Stage I,

the cost vector is no longer changed and is used to calculate the importance of each

node. At Stage II, another set of sample paths are generated. They are used to take

a close observation at those nodes with the larger importance identified in Stage I.

The target of this stage is to identify the optimal node with the lowest expected cost.

The basic idea is to compare the top two candidate nodes by the two-sample t-test.

The overall procedure of this method is shown in Figure 9. It consists of three loops.

They are designed for cost vector, node importance, and required sample sizes

separately. The final decision is made according to the t-test.

Generate 30*Nt Sample Paths with

Uniform Node Importance

Calculate Expected Cost

of Each Path

Form Node Vector of Lowest Costs:

E.g. Ct = [CN26 , CN27, CN29, CN50, CNoV, CN28]

Calculate Expected Cost

of Each Candidate Node

Compared with Ct-1, is Ct

convergent?

Nt+1=Nt+RoundSize

No

Calculate Node Importance by Wi = exp(-λ·Ci)

Update the weights of all 30·Nt sample paths

by WPj = ΠWi

Update cost vector with path weights WPj as

Ci+1

Compared with Ci, is Ci+1

convergent?

Yes

No

Generate Nicre Sample Paths

with Node Importance W

Select Two Nodes O1 & O2

with the Lowest Costs

Count # of the Sample Paths

of O1 & O2 as S1 & S2

Do Power Analysis to

obtain the sample size Sstd

S1 > Sstd & S2 > Sstd ?

Set Naccu = Naccu + Nicre

No

Reject the hypothesis

that O1 & O2 are the same?

Do Two Sample T Test for Two

Groups of Paths of O1 & O2

Choose O1 as the final

decision

Yes

Yes

Choose either O1 or O2

No

Yes

Calculate Expected Cost of

Each Path

Calculate Expected Cost of

Each Candidate Node

Ncre=max((S1-Sstd,)*Naccu/S1,

(S2-Sstd,)*Naccu/S2)

Figure 9. MC method process description

In the first loop, a convergent cost vector is obtained. To ensure all nodes

have enough samples for observations, the first node of each path is fixed and the

same number of samples Nt is allocated for each node available at the first time-

interval. The total number in this case was 30* Nt. Criterion of convergence was

determined as follows. First, the cost vectors are calculated round by round. The

round size between two sequential rounds is constant. Then two cost vectors are

compared. If they are close or similar enough with each other, this loop ends. If the

number of nodes that appear in both cost vectors is larger than one threshold, it is

claimed as convergent.

In the second loop, the task is to determine node importance. The motivation

of this step is to assign more weights to those important nodes in the following

resampling process. As low-cost nodes are preferable in this case, the exponential

function W exp()C  has been adopted. The adjustment factor, λ, is used to

control the shape of the mapping function. If λ is too large, those nodes with large

costs may not have enough samples for observation. But if λ is too small, the

following resampling process may generate more samples to guarantee the

performance. In order to make λ meaningful, λ is set such that the maximum and

minimum costs of the sample paths satisfy

max

min

exp()
10

exp()

C

C









.

In the third and final loop, importance resampling is performed to compare the

costs of two nodes that are the most likely to be chosen. Since the method relies on

the technique of hypothesis test, a power analysis is done first to ensure there are

enough samples for testing. Hence, the MC method is conducted incrementally. The

samples are generated batch by batch until the power analysis passes. At each

round, the two nodes O1 & O2 of the minimum costs are chosen. The costs of all

paths starting with O1 & O2 are collected as two distributions. In this case, for

simplicity and without loss of generality, it is assumed that they follow normal

distributions. First, their means and standard variances, which are denoted as M1,

M2, SD1, and SD2, are calculated. Then, the error M1 - M2 is used as the estimated

difference and

2 2
1 2

2

SD SD

as the estimated standard deviation σ. They are used

to derive the required sample size Sstd. The difference between Sstd and S1(or S2) is

used to determine the extra sample size of the next round. Notably, all previous

samples would be reused until the power analysis passes. In this way, the conditions

of the hypothesis test can be satisfied. Finally, the two-sample t test is implemented

for the null hypothesis that two nodes O1 & O2 share the same distribution. If the

hypothesis is rejected, then O1 is significantly better than O2. Otherwise, there is no

difference between O1 & O2 and either of them may be chosen as the final decision.

Results

When applying the MC approach to the case in Figure 8, the first loop

stopped when 17 sample paths for each candidate node were evaluated, yielding a

total of 510 paths. As examples, the cost vector for Nt=17 is [26, 27, NoV, 30, 46, 28]

and the cost vector for Nt=14 is [26, 27, NoV, 46, 30, 41]. They both share 26, 27,

NoV, 46, 30. So it is judged as convergent. Their mean values are shown in Tables

6 and 7 for information.

Table 6. Means when Nt=17

No V N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30

11038 14811 13449 15603 14481 9746 10269 12202 12406 12046

N 31 N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40

14058 13072 15199 12936 15523 12546 15393 13149 14110 16120

N 41 N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50

12954 13444 13158 14994 14109 12098 13285 12488 13047 12570

Table 7. Means when Nt=14

No V N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30

11478 15037 14432 15465 14910 9857 10691 12983 13509 12118

N 31 N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40

13063 13505 14629 12661 15822 13379 14546 14292 12725 15463

N 41 N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50

12311 13098 14249 15050 13491 11920 15095 12828 12970 13131

Setting in the second loop the ratio to 10, the resulting node importance after

normalization is shown for information in Table 8.

Table 8. Node Importance when λ=3.97

No V N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30

0.047
1

0.026
5

0.032
5

0.021
2

0.027 0.055
7

0.052
4

0.039
6

0.037
9

0.04

N 31 N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40

0.028
6

0.034
9

0.023
9

0.035
2

0.023
3

0.04 0.022
9

0.032
6

0.029
1

0.020
9

N 41 N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50

0.034
8

0.032 0.033
7

0.025
1

0.027
2

0.038 0.032
8

0.037
2

0.032
5

0.035
5

For the Third Loop, the node importance is fixed as those in Table 8. The loop

stopped when there were 2200 samples in total. O1 & O2 are N 26 and N 27. Their

sample sizes were 129 and 85. Their means and standard deviations were O1 [9436,

1765.1], O2 [10240, 1694.3]. The required sample size was 77. Because 77 < 85

and 77< 129, the t test could be done. The p value was 0.0006. Hence, the null

hypothesis was rejected and declare that O1 is better. Therefore, at T1, Node 26

should be verified first.

The performance of this method to find optimal verification strategies within a

set-based design framework are shown in the Findings section.

Case 4. Extending the size of the verification strategy: A state-based approach

Description

The case in Figure 8 is used in this case as well. A different rework model

was used in this case. It was assumed that rework is always triggered when the

confidence drops below a preset threshold. Revenue was also incorporated as a

factor, as opposed to cost of impact of error. Revenue was modeled as positive if a

present threshold of confidence was achieved (that is, the system is deployed), and

zero if the threshold would not be reached. Mathematically, the expected overall cost

of one completed verification strategy was modeled as:

𝐶𝑡𝑜𝑡𝑎𝑙 =∑𝐶𝑉𝑖(𝑉𝑖)

𝑖

+∑𝐶𝑅𝑖(𝑡)𝛿(𝜃𝑘 < H1|𝑽)

𝑖

−∑𝑅𝐸𝑘𝑃𝑟(𝜃𝑘|𝑽)𝛿(𝜃𝑘 < H2|𝑽)

𝑘

where 𝐶𝑉𝑖(𝑉𝑖) is the fixed cost to execute verification activity Vi, 𝐶𝑅𝑡 is the rework

cost at each time point t, and 𝑃(𝜃𝑘|𝑽) is the confidence level of the kth system

parameter node given the verification results V. The term 𝛿(𝜃𝑘|𝑽) acts as an

indicator function that equals 1 if
(|)kP  V

 is smaller than some lower threshold;

otherwise its value is 0. The lower threshold for rework is denoted by H1 and the

upper threshold for deployment is denoted by H2.

All CPTs were generated according to the Noisy-OR model. The dataset is

too large and has not been included in this report. The revenue coefficient was set to

$100,000. H2 was set to 0.9 and H1 to 0.5. Five time-intervals were defined.

Verification activity costs and basic rework costs are provided in the Appendix.

Rework cost was modeled as being exponentially proportional to the time interval

when the rework happens (Blanchard & Fabrycky, 1990). Specifically, the factors [1,

1.41, 2, 2.82, 4] were applied to each time-interval respectively.

Method

In this case, the verification strategy design problem is treated as a kind of

Markov Decision Process (MDP). The highly structured state space of the

verification strategy imposes however challenges to computational efficiency.

Parallel Tempering (PT) (Earl & Deem, 2005), which is also known as replica

exchange Markov Chain Monte Carlo (MCMC) method and is an extension of the

traditional Simulated Annealing (SA) method, is employed. The PT method contains

N replicas of the system that are simulated simultaneously at various settings.

Although this requires computing several replicas instead of a single system, it still

improves the overall efficiency with respect to the traditional Monte Carlo method

employed in Case 3. The PT algorithm that was employed in this case is shown in

Table 9. Selection of number of swaps, denoted by Ns, and number of MC iterations,

denoted by Nit, was done following the guidelines in (Wang, Hyman, Percus, &

Caflisch, 2009).

Table 9. PT algorithm employed in Case 4

The parameters Nit and Ns were set as 10 as 20, respectively, to accelerate

the computation efficiency. Their suitability for convergence was confirmed by

leveraging Step 11 in Table 9. The temperature vector was designed as [15.6 31.3

62.5 125 250 500 1000 2000 4000 8000 16000 32000 64000]. This vector derives

from the interval of the overall verification strategy cost, which leads to the ranges

E = [-1.4*10-5, 1.4*10-5] and  = [2.14*10-5, 0.03]. Finally, a geometric

progression of temperatures satisfying 1 / 2i iT T  was assumed.

Two approaches were designed to update the path sample. In the first one,

the path is updated by randomly switching two activities of each path. In the second

one, a randomly selected activity is updated. Importance weights are used to select

the activity to be changed. The importance weight of one activity Vi was calculated

by observing the response range |P(Vi | Vs = T) - P(Vi | Vs = F)| when the selected

Table 1. Parallel Tempering Algorithm

Input: {Tk} ––– Temperature set; M ––– Number of temperatures;

Nit––– Number of MC iterations between swaps; Ns ––– Total number of swaps

Output: the optimal sample xopt

1. Initialize all M replicas {Xm}

2. For i = 1 … Ns

3. For m = 1 … M

4. Run Metropolis method for all M replicas {Xm} for Nit iterations.

5. End

6. Generate one random number k from [1, 2, … , M-1].

7. Swap Xk with Xk+1 with probability min(1,exp(E))p    .

8. End

9. Choose the optimal sample xopt from all M replicas

10. Set {Xm} as the initial ones and go to Step 2

11. Stop if xopt remains the same

activity is assigned as P/F. During the actual update, the first approach is used with

80% likelihood while the second one with 20% likelihood. In this way, one new path

can be generated without significantly modifying the original one.

Results

To illustrate the PT algorithm, the optimization process at the first time-

interval, that is, for the state where no activity has been done yet, is shown. The

configuration of all 13 temperatures is shown in Figure 10. When there is one swap

between two neighboring temperatures, the two corresponding dash lines will

intersect with each other. In particular, the configuration that results in the optimal

path is plotted with a red solid line. It is generated at the track of Temperature 500

and decreases to the lowest temperature all the way. Their corresponding real-time

overall costs and global optimal costs are shown in Figures 11 and 12, respectively.

The real-time and global optimal costs of the optimal configuration are also plotted

as red solid lines. Stability of the optimal configuration was achieved after 600

iterations. The determined optimal path was [V26, V24, V22, V34, V46], so verification

activity V26 is the appropriate action for the next time-interval and the set of possible

verification strategies shrinks to include only those that begin with such activity. All

other verification strategies are discarded.

Figure 10. Swap plot of the configurations of all temperatures

Figure 11. Overall cost of the configuration that generates the optimal path

Figure 12. Globally optimal overall cost of all configuration

This method is then recursively applied on each time-interval, where a new

optimal verification strategy is found, its first activity is then selected for action and

the set of possible verification strategies shrunk accordingly, and based on the

results of this newly selected verification activity, a new remaining verification

strategy is determined. The results are summarized in Table 10. For each state, the

optimal activity for the next time interval is shown in bold and the expected costs of

the optimal paths are listed in the fourth column. As can be seen, the verification

strategy adapts as necessary, as a function of the results of the different verification

activities.

Table 10. The state-action table

Time
Interval

State
(Si)

Optimal Path
(Pi)

Expected Cost
(CPi)

Note

T1 Null [26, 24, 22, 34, 46] -78173

T2 V26 = F [26, 22, 48, 43, 23] -69696

T3 V26 = F, V22 = F/T [26, 22, 23, 48, 44] -61537
Rework if
V22 = F

T4 V26 = F, V22 = T, V23 = F [26, 22, 23, Null, Null] 3995.6

T4 V26 = F, V22 = T, V23 = T [26, 22, 23, 48, 43] -76865

T5
V26 = F, V22 = T, V23 = T,
V48 = F

[26, 22, 23, 48, Null] 4395.6

T5
V26 = F, V22 = T, V23 = T,
V48 = T

[26, 22, 23, 48, 43] -79553

T2 V26 = T [26, 24, 46, 22, 0] -82347

T3 V26 = T, V24 = F/T [26, 24, 22, Null, Null] -79764
Rework if
V24 = F

T4 V26 = T, V24 = T, V22 = F [26, 24, 22, Null, Null] 4061.3

T4 V26 = T, V24 = T, V22 = T [26, 24, 22, Null, Null] -88094

These results are also graphically shown as a tree plot in Figure 13. The

posterior possibility of each result accompanies each branch of the activity node for

information. All these possible activities constitute the final policy for the verification

strategy of the system under study. The final path out of the 12 possible will depend

on how each verification activity materializes, that is, on the results of each

verification activity as they are executed at different time-intervals.

T1 T2 T3 T4 T5

T

F

F

T

V22

V26

V24

F

F

T

T

No Rework

Rework

1 Path Number

0.8240

0.8399

0.8687

0.4884

0.4892

0.8931

0.5550

V23 V48 V43

V22

F 0.6782

T 0.8945

F 0.8394

T 0.8963

F 0.8145

T 0.9013

0.9216
1

Overall Cost ($)

-91205

F

T

0.5550

V22

0.9216

2 950

1'

2'

3

4

5

6

V23 V48 V43

F 0.6782

T 0.8945

F 0.8394

T 0.8963

F 0.8145

T 0.9013

3'

4'

5'

6'

-88094

4061

-87634

2500

1850

1450

-85088

5046

4396

3996

Figure 13. Plot of all possible activities

The performance of this method to find optimal verification strategies within a set-

based design framework are shown in the Findings section.

Findings

The previous four cases provide two main results. First, the set-based design

approach to dynamically design and contract verification strategies yields verification

strategies with higher expected value than those designed using current practice.

Consider the red (solid) and blue (dashed) lines in Figure 14, which plots the real-

time verification costs for various verification paths in the context of the verification

problem defined in Cases 3 and 4 for the network depicted earlier in Figure 8. The

blue (dashed) line represents the optimal verification strategy designed using the

current paradigm to contracting verification strategies. As discussed previously, this

paradigm consists of determining a verification activity at the beginning of the project

and execute it regardless of the results, with the caveat that additional verification

activities may be contracted if the achieved confidence is not sufficiently high. The

red (solid) line represents the optimal verification strategy designed applying set-

based design, as developed in this research project. Parallel tempering was

employed to determine the optimal verification strategies under both design

paradigms in order to factor out the approximation method. Whereas the expected

value of the optimal verification strategy under the current paradigm (static

verification strategy) was $78,173, the expected value of the verification strategy

under set-based design (dynamic verification strategy) was $80,980. (Note: value

has been determined as the inverse of cost).

Second, parallel tempering provided better results than Monte Carlo to deal

with the complexity of large networks. The results obtained with Monte Carlo

method, when applied to the current paradigm (static verification) are plotted as a

green (dashed dotted) line in Figure 14. The best verification strategy identified

using the Monte Carlo method had an expected value of $60,291, well below the

one identified using parallel tempering, as described above.

It should be noted that all values that have been used in these simulations are

synthetic. Specific results should not be interpreted as a metric of performance

improvement. Instead, the results provide an indication of the potential value of the

method developed in this research project.

Figure 14. Comparison of Three Strategies

Recommendations and Future Directions

This research has shown that there is value in not anchoring to a specific

verification strategy early in a system development, specially for system with long

development cycles. Dynamically adapting the verification strategy as results

become available is necessary to effectively and efficiently leverage the knowledge

gained through the execution of verification activities. Not doing so is inherently

suboptimal, leading to spending resources in unnecessary verification activities and

creating gaps in the verification coverage, with its corresponding risk of failure or

degraded performance once the system is deployed and put into operation.

This work suggests that transforming the way in which verification activities

are planned and contracted in acquisition programs is essential to improve system

affordability and mission early success. Government should not contract a fixed

verification strategy at the beginning of a project, but rather allocate a verification

budget in a similar way in which contingencies and risks are budgeted. This budget

can then be used as verification results become available, selecting individually the

verification activity that provides the maximum expected value at each time-interval

during the system development. This dynamic scheme for contracting verification

activities is consistent with the mathematical properties of verification and

guarantees efficiency and effectiveness of the verification strategy at completion of

the system development.

The results of this research also suggest a need for methods that can cope

with scalability issues. The application cases that have been used in this project are

significantly simpler than those faced in actual acquisition programs, in terms of the

size of the problem: number of parameters to be verified, number of potential

verification activities, and number of time-intervals in which verification may be

executed. The two approximation methods that have been explored have provided

promising results. Future work is necessary to assess their performance at different

levels of complexity.

Finally, simple approximations have been used to model rework activities and

contractual structures. In terms of rework, two main limitations have been used for

simplicity. Predefined rules for initiating rework activities have been used throughout

the study. In realistic settings however, default protocols for rework activities may

yield suboptimal actions. Future work is necessary to include formal decision points

after verification results are available to determine if a rework activity is worth

executing or not. Furthermore, the rework models employed in this project model the

effect of rework as an action that brings the system back to its desired state before

the verification activity was executed. However, such a model captures the effects of

repair activities (i.e., solving a manufacturing problem), not those of rework activities.

Rework activities change the internal structure of the system. Therefore, they impact

the prior information relevant to its correct operation and make the model of the

verification strategy for the system obsolete. Future work is necessary to incorporate

accurate effects of rework in the models of verification strategies.

In terms of modeling contractual mechanism, this project has assumed that

each verification can be simply paid for independently. However, this is in general

not the case. For example, some verification activities require initial investment

before they can be employed. Therefore, considering a verification activity at a future

time-interval may require a partial expenditure at an earlier time-interval. This

dependency has an impact on the way in which the set of verification strategies

evolve with time. Future work is necessary to accurately model this type of

verification development dependencies. Furthermore, the contractual structure that

can guarantee fixed prices for a flexible contract over long development times is not

evident. Premiums or incentives may be necessary to incorporate contract flexibility.

Pricing and granularity of contractual options will also likely play a significant role in

constraining the extent to which verification strategies can be adapted. Future work

is necessary to consider these aspects.

Conclusions

This report presents a transformative approach to design verification

strategies and contract verification activities. Instead of relying on a verification

strategy that remains static during a system’s development, the approach presented

in this report suggests that the content of the verification strategy, and hence the

contracting of its verification activities, need to be performed dynamically as the

results of verification activities become available. This approach enables the

acquisition of more affordable systems, while also improving the confidence on their

correct operation, by facilitating the selection of necessary verification activities and

the de-scoping of unnecessary ones.

The approach presented in this report leverages the concept of set-based

design and applies it to the design of verification strategies. Furthermore, the

approach builds upon a mathematical framework that describes the properties of

verification. Because verification activities provide information about the system, the

value of verification activities cannot be determined in absolute terms, but it is a

function of the knowledge at the time of executing the verification activity. Therefore,

past results play a major role in determining the value (and hence necessity) of

future verification activities.

This new conceptualization departs from existing practice and the state of the

art. The approach has been tested on several cases, representing the partial

verification of a space instrument. The cases have confirmed the adequacy of the

presented set-based design method to design and contract verification strategies.

Overall, in all cases the application of the set-based design method yielded

verification strategies with higher expected value than those yielded by using

existing practice. Furthermore, the issue of scalability has also been explored in this

project. Given the size of realistic systems and acquisition structures, the solution

space of verification strategies cannot be exhaustively explored. Monte Carlo and

Parallel Tempering have been studied as approximation methods to explore the

solution space with promising results.

Finally, the research has already resulted in one published paper for the 2019

Acquisition Research Symposium, one published paper for the 2019 INCOSE

International Symposium, and one published paper in Wiley’s Systems Engineering

journal. Two other journal papers resulting from this work are currently under

preparation and will be submitted before the end of 2019.

Appendix – Data Used in Application Cases

Case 1. Proof-of-concept.

Table A1.1 P(θ1)

θ1 Probability assignment

Error 0.8

No Error 0.2

Table A1.2 P(θ2| θ1)

θ1 θ2 Probability assignment

Error Error 0.8

Error No Error 0.2

No Error Error 0.1

No Error No Error 0.9

Table A1.3 P(V1| θ1)

θ1 V1 Probability assignment

Error Fail 0.7

Error Pass 0.3

No Error Fail 0.2

No Error Pass 0.8

Table A1.4 P(V2| V1, θ1)

θ1 V1 V2 Probability assignment

Error Fail Fail 0.9

Error Fail Pass 0.1

Error Pass Fail 0.6

Error Pass Pass 0.4

No Error Fail Fail 0.2

No Error Fail Pass 0.8

No Error Pass Fail 0.1

No Error Pass Pass 0.9

Table A1.5 P(V3| θ2)

θ2 V3 Probability assignment

Error Fail 0.9

Error Pass 0.1

No Error Fail 0.4

No Error Pass 0.6

Table A1.6 P(V4| V3, θ2)

θ1 V1 V2 Probability assignment

Error Fail Fail 0.9

Error Fail Pass 0.1

Error Pass Fail 0.4

Error Pass Pass 0.6

No Error Fail Fail 0.3

No Error Fail Pass 0.7

No Error Pass Fail 0.1

No Error Pass Pass 0.9

Table A1.7. Cost Values

Vi CV(Vi) ($k) Tj CR at Tj ($k) System error CI(k) ($k)

V1 50 1 100 2 60,000

V2 100 2 200

V3 75 3 300

V4 200 4 400

 5 500

 6 600

Case 2. Improved model of rework.

Table A2.1. Conditional Probability Table for system parameter

θC θS  |S CP  

Error Error 0.79

Error No Error 0.21

No Error Error 0.27

No Error No Error 0.73

Table A2.2. Prior probabilities of the component parameter

θC  CP 

Error 0.20

No Error 0.80

Table A2.3. Conditional Probability Table for verification activity V1

θC V1  1 | CP V 

Error Fail 0.73

Error Pass 0.27

No Error Fail 0.05

No Error Pass 0.95

Table A2.4. Conditional Probability Table for verification activity V2

θS V2  2 | SP V 

Error Fail 0.85

Error Pass 0.15

No Error Fail 0.18

No Error Pass 0.82

Case 3. Extending the size of the verification strategy: A Monte Carlo

approach

Table A3.1. Partial dataset of the characterization of the verification network in Figure

8

Node No. CPT

1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

3 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94

4 0.03 0.97

5 0.29 0.71

6 0.95 0.95 0.87 0.92 0.92 0.87 0.83 0.73

7 0.18 0.82

8 0.09 0.91

9 0.24 0.76

10 0.02 0.98

11 0.27 0.73

12 0.85 0.05 0.15 0.95

13 0.95 0.05 0.05 0.95

14 0.6 0.22 0.4 0.78

15 0.81 0.07 0.19 0.93

16 0.34 0.66

17 0.27 0.73

18 0.22 0.78

19 0.02 0.98

20 0.33 0.67

21 0.08 0.92

22 0.95 0.88 0.82 0.52 0.05 0.12 0.18 0.48

23 0.83 0.34 0.17 0.66

24 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.92

25 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.92

26 0.83 0.05 0.17 0.95

27 0.95 0.95 0.87 0.05 0.05 0.05 0.13 0.95

28 0.18 0.82

29 0.08 0.92

30 0.93 0.85 0.85 0.5 0.07 0.15 0.15 0.5

31 0.95 0.78 0.83 0.26 0.05 0.22 0.17 0.74

32 0.95 0.2 0.05 0.8

33 0.95 0.95 0.95 0.74 0.95 0.95 0.95 0.7

34 0.36 0.64

35 0.95 0.95 0.95 0.91 0.95 0.76 0.95 0.43

36 0.9 0.9 0.69 0.58 0.1 0.1 0.31 0.42

37 0.95 0.82 0.95 0.5 0.05 0.18 0.05 0.5

38 0.64 0.22 0.36 0.78

39 0.81 0.23 0.19 0.77

40 0.95 0.95 0.82 0.14 0.05 0.05 0.18 0.86

41 0.69 0.4 0.31 0.6

42 0.94 0.82 0.79 0.32 0.06 0.18 0.21 0.68

43 0.95 0.79 0.89 0.29 0.05 0.21 0.11 0.71

44 0.95 0.9 0.95 0.32 0.05 0.1 0.05 0.68

45 0.91 0.09 0.09 0.91

46 0.82 0.11 0.18 0.89

47 0.8 0.11 0.2 0.89

48 0.73 0.66 0.27 0.34

49 0.65 0.43 0.35 0.57

49 0.74 0.13 0.26 0.87

Case 4. Extending the size of the verification strategy: A state-based approach

Table A4.1. Activity Cost

N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30 N 31

350 800 300 250 300 350 350 550 450 650

N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40 N 41

300 700 250 700 450 550 250 250 800 1000

N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50

450 650 950 950 250 250 400 850 250

Table A4.2. Basic Rework Cost

N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30 N 31

1800 1000 2200 1800 1800 1600 1000 2200 1400 1200

N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40 N 41

2600 2200 1000 2000 1000 2600 3200 2000 2600 1000

N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50

2000 1000 1800 1200 1000 2400 1400 1000 1000

THIS PAGE LEFT INTENTIONALLY BLANK

References

Bernstein, J. I. (1998). Design methods in the aerospace industry: looking for
evidence of set-based practices. (MSc), Massachusetts Institute of
Technolog, Boston, MA, USA.

Blanchard, B. S., & Fabrycky, W. J. (1990). Systems engineering and analysis (Vol.
4): Prentice Hall New Jersey;.

Earl, D. J., & Deem, M. W. (2005). Parallel tempering: Theory, applications, and new
perspectives. Physical Chemistry Chemical Physics, 7(23), 3910-3916.
doi:10.1039/B509983H

Engel, A. (2010). Verification, Validation, and Testing of Engineered Systems.
Hoboken, NJ: John Wiley & Sons, Inc.

Hansen, E., & Muller, G. (2012). 11.3.1 Set-based design – the lean tool that eludes
us; Pitfalls in implementing set-based design in Kongsberg Automotive.
INCOSE International Symposium, 22(1), 1603-1618. doi:doi:10.1002/j.2334-
5837.2012.tb01425.x

Kennedy, B. M., Sobek, D. K., & Kennedy, M. N. (2014). Reducing Rework by
Applying Set-Based Practices Early in the Systems Engineering Process.
Systems Engineering, 17(3), 278-296. doi:doi:10.1002/sys.21269

Rapp, S., Chinnam, R., Doerry, N., Murat, A., & Witus, G. (2018). Product
development resilience through set-based design. Systems Engineering,
21(5), 490-500. doi:doi:10.1002/sys.21449

Raudberget, D. (2010). Practical Applications of Set-Based Concurrent Engineering
in Industry. Journal of Mechanical Engineering, 56(11), 685.

Salado, A. (2015). Defining Better Test Strategies with Tradespace Exploration
Techniques and Pareto Fronts: Application in an Industrial Project. Systems
Engineering, 18(6), 639-658. doi:10.1002/sys.21332

Salado, A., & Kannan, H. (2018a). A mathematical model of verification strategies.
Systems Engineering, 21, 583-608.

Salado, A., & Kannan, H. (2018b). Properties of the Utility of Verification. Paper
presented at the IEEE International Symposium in Systems Engineering,
Rome, Italy.

Salado, A., & Kannan, H. (2019). Elemental Patterns of Verification Strategies.
Systems Engineering, In press.

Salado, A., Kannan, H., & Farkhondehmaal, F. (2018). Capturing the Information
Dependencies of Verification Activities with Bayesian Networks. Paper
presented at the Conference on Systems Engineering Research (CSER),
Charlottesville, VA, USA.

Singer, D. J., Doerry, N., & Buckley, M. E. (2009). What Is Set-Based Design? Naval
Engineers Journal, 121(4), 31-43. doi:10.1111/j.1559-3584.2009.00226.x

Small, C., Buchanan, R., Pohl, E., Parnell, G. S., Cilli, M., Goerger, S., & Wade, Z.
(2018). A UAV Case Study with Set-based Design. INCOSE International
Symposium, 28(1), 1578-1591. doi:doi:10.1002/j.2334-5837.2018.00569.x

Wang, C., Hyman, J. D., Percus, A., & Caflisch, R. (2009). Parallel tempering for the
traveling salesman problem. International Journal of Modern Physics C,
20(04), 539-556. doi:10.1142/s0129183109013893

Xu, P., & Salado, A. (2019). A Concept for Set-based Design of Verification
Strategies. Paper presented at the INCOSE International Symposium,
Orlando, FL, USA.

 www.acquisitionresearch.net

