
VT-TE-19-196 

 

  

Dynamic Contracting of Verification Activities by Applying Set-

based Design to the Definition of Verification Strategies 

29 August 2019 

Dr. Alejandro Salado 

Peng Xu 

Virginia Tech 

Approved for public release; distribution is unlimited. 

Prepared for the Naval Postgraduate School, Monterey, CA 93943. 

Disclaimer: This material is based upon work supported by the Naval Postgraduate School Acquisition 
Research Program under Grant No. HQ0034-18-1-0002. The views expressed in written materials or 
publications, and/or made by speakers, moderators, and presenters, do not necessarily reflect the official 
policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or 
organizations imply endorsement by the U.S. Government. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The research presented in this report was supported by the Acquisition Research 
Program of the Graduate School of Business & Public Policy at the Naval 
Postgraduate School. 

To request defense acquisition research, to become a research sponsor, or to print 
additional copies of reports, please contact any of the staff listed on the Acquisition 
Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/


Executive Summary 

This report describes recent research in support of acquisition programs that 

use verification activities to elicit evidence of contractual fulfillment. Thus, the 

importance of adequately defining verification activities in any acquisition program is 

unquestionable. Its significance extends beyond contracting though. The biggest 

portion of the development financial budget is spent in executing verification activities 

and verification activities are the main vehicle in discovering knowledge about the 

system, which is key to reduce development risk. In current practice, a verification 

strategy is defined at the beginning of an acquisition program and is agreed upon by 

customer and contractor at contract signature. Hence, the resources necessary to 

execute verification activities at various stages of the system development are 

allocated and committed at the beginning, when a small amount of knowledge about 

the system is available. However, contractually committing to a fixed verification 

strategy at the beginning of an acquisition program fundamentally leads to 

suboptimal acquisition performance. Essentially, the uncertain nature of system 

development will make verification activities that were not previously planned 

necessary and will make some of the planned ones unnecessary. Therefore, dynamic 

contracting of verification activities is necessary to guarantee optimality of acquisition 

programs in this area. 

In order to cope with these challenges, this research project addressed the 

main question of whether set-based design can enable the execution of dynamic 

contracts for verification strategies, ultimately resulting in more valuable verification 

strategies than current practice. In particular, this research project had the following 

objectives: (1) Given an optimal verification strategy at a point in time, generate a set 

of optimal future verification paths; and (2) Conduct a comparative analysis between 

set-based design for verification and a benchmark. This research employed a 

combination of a computational framework and a simulation tool. The hypotheses 

were tested on a notional Earth observation satellite instrument, representative of 

those of interest to the Air Force. 



By fulfilling the research objectives, this research is anticipated to promote 

higher early safety and efficacy of commercial products and public services. While an 

application for the Air Force has been used as a test case, the methodologies and 

insights provided in this work can be applicable to a broad range of systems that are 

subjected to limited verification: other defense systems, space systems, aeronautics, 

automotive systems, manufacturing systems, electronic products, civil infrastructure, 

public health systems, or transportation systems. 

The research has already resulted in one published paper for the 2019 

Acquisition Research Symposium, one published paper for the 2019 INCOSE 

International Symposium, and one published paper in Wiley’s Systems Engineering 

journal. Two other journal papers resulting from this work are currently under 

preparation and will be submitted before the end of 2019. 
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Background 

Verification activities, which usually take the form of a combination of 

analyses, inspections, and tests, consume a significant part, if not the biggest part, 

of the development costs of large-scale engineered systems (Engel, 2010). 

Verification occurs at various integration levels and at different times during its life 

cycle (Engel, 2010). Under a common master plan, low level verification activities 

are executed as risk mitigation activities, such as early identification of problems, or 

because some of them are not possible at higher levels of integration (Engel, 2010). 

Therefore, a verification strategy is defined “aiming at maximizing confidence on 

verification coverage, which facilitates convincing a customer that contractual 

obligations have been met; minimizing risk of undetected problems, which is 

important for a manufacturer’s reputation and to ensure customer satisfaction once 

the system is operational; and minimizing invested effort, which is related to 

manufacturer’s profit” (Salado, 2015). Essentially, verification activities are the 

vehicle by which contractors can collect evidence of contractual fulfillment in 

acquisition programs. 

In current practice, a verification strategy is defined at the beginning of an 

acquisition program and is agreed upon by customer and contractor at contract 

signature. Hence, the resources necessary to execute verification activities at 

various stages of the system development are allocated and committed at the 

beginning, when a small amount of knowledge about the system is available (Engel, 

2010). However, the necessity and value of a verification activity cannot be 

measured independently of the overall verification strategy (Salado & Kannan, 

2018b). Instead, the necessity to perform a given verification activity depends on the 

results of all verification activities that have been previously performed (Salado & 

Kannan, 2018b). For example, testing the mass of a component is considered more 

necessary if a previous analysis has shown low margin with respect to the success 

criterion than if the analysis has shown ample margin. Thus, contractually 

committing to a fixed verification strategy at the beginning of an acquisition program 

fundamentally leads to suboptimal acquisition performance. Essentially, the 



uncertain nature of system development will make verification activities that were not 

previously planned necessary and will make some of the planned ones unnecessary 

(Salado & Kannan, 2018b). The former can be handled through change requests 

(CR) but they require unplanned financial investments. The latter can be recovered 

in a few cases through negative change requests but, in general, they imply a waste 

of the financial investment because the investment has been committed to the 

contractor.  

In this context, dynamic contracting of verification activities becomes 

necessary to guarantee optimality of acquisition programs in this area (Xu & Salado, 

2019). Instead of contracting a predefined set of activities at the beginning of a 

project, the necessity and contracting of each verification activity (or subsets of 

them) are evaluated and executed as the system development progresses (Xu & 

Salado, 2019). Set-based design has been proposed as part of this research to 

support such contracting approach (Xu & Salado, 2019). Informed by the benefits of 

set-based design in conceptual design (Singer, Doerry, & Buckley, 2009), an overall 

set of verification activities is considered, but not contracted, at the beginning of a 

project. A vector of investment opportunities indicates the development stages in 

which verification activities may be contracted and executed. Based on their results, 

the set of remaining verification paths to the end of the system development is 

updated (Xu & Salado, 2019). 

 

  



Literature Investigation 

Set-based Design 

Verification strategies are defined in current practice at the beginning of an 

acquisition program and are agreed upon by customer and contractor at contract 

signature, when a small amount of knowledge about the system is available (Engel, 

2010). Such lack of knowledge in early design activities motivated the emergence of 

set-based design (Bernstein, 1998). Set-based design is built on the principle of 

working simultaneously with a plethora of design alternatives, instead of converging 

quickly to a single option (Bernstein, 1998). As the knowledge about the system 

increases, suboptimal alternatives are discarded until a preferred one remains 

(Bernstein, 1998). A key aspect is that discarding is not an activity at a given point of 

time, like a traditional trade-off, but a time-continuous activity that occurs as new 

knowledge is available (Bernstein, 1998). A formal formulation of set-based design 

and how it make product development resilient against changes in external factors is 

given in (Rapp, Chinnam, Doerry, Murat, & Witus, 2018). 

Set-based design has been successfully applied in the conceptual stages of 

naval systems (Singer et al., 2009), graphic industry products (Raudberget, 2010), 

automotive products (Raudberget, 2010), and aeronautic systems (Bernstein, 1998), 

among others. Historical analysis of the use of set-based design has shown that it 

inherently eliminates root causes of rework in system development (Kennedy, 

Sobek, & Kennedy, 2014). Researchers have integrated set-based design with 

tradespace exploration to further strengthen its value by leveraging the numerous 

solutions that tradespace exploration provides to generate the initial set (Small et al., 

2018). However, empirical research about the implementation of set-based design in 

an industrial setting showed that there are some discrepancies as to how to 

operationalize the approach (Hansen & Muller, 2012). It remains to explore if this 

was an anecdotal episode or if it happens in general.  



Verification as an engineering endeavor 

Consider “a generic model of the expected utility , ,S p tE U 
 

 provided by a 

system S  at time t  with respect to a set of preferences P , as given in Eq. (1), 

   , , , , ,S P t U A t A nE U F S B S t P       (1) 

where AS  is a set of system characteristics,  ,t A nB S t  is the belief at time t  that 

those system characteristics will be exhibited by the system at a later time nt , and 

UF  is a set of expected utility functions, associated with beliefs on those functions, 

that map system attributes, beliefs of system attributes, and preferences to expected 

utility” (Salado & Kannan, 2018b). In this context, a verification activity is one that 

“affects at least  ,t A nB S t ” (Salado & Kannan, 2018b). That is, a verification activity 

is one that, as a minimum, provides information about the system under 

development.  

For the purpose of this research, two main characteristics of verification lead 

to the need for dynamic contracting of verification strategies. First, the value of each 

verification activity is not absolute, but depends on the results of prior verification 

activities (Salado & Kannan, 2018b). This means that the value of a verification 

activity cannot be determined individually, but in the context of the knowledge at the 

time of executing the activity. Therefore, the expected value provided by a 

verification activity evolves as a function of the results of previous verification 

activities. Second, although verification activities are objective, the confidence that 

they generate is subjective (Salado & Kannan, 2018b). This means that not only 

prior verification activities influence the value of a verification activity, but also the 

engineer or the team in charge of processing and interpreting the results of a given 

verification activity do so. Given the long development times necessary in some 

large-scale systems, it is common that the team in charge of executing verification 

activities towards the later stages of the system development is different from the 

team that planned those verification activities early in the lifecycle. Hence, changes 

in the perceived value of a verification activity is inherent to the nature of a large-



scale system development, under the assumption that the teams will change as the 

development progresses. 

Mathematical models of verification strategies 

In this report, a verification strategy is understood to be a set of verification 

activities organized as an acyclic directed graph (Salado & Kannan, 2018a). A 

verification activity is understood to be the collection of information about a specific 

aspect of the system under development (for simplicity we will call this a system 

parameter) and verification evidence refers to such information. Furthermore, it is 

assumed that the level of confidence in the correct performance of the system is 

shaped by the system architecture (e.g., maturity and coupling of the system’s 

components) and the results of the various verification activities (Salado & Kannan, 

2019).  

Mathematically, this understanding is captured by “modeling the engineer’s 

posterior belief distribution  |  s  based on his/her prior belief distribution     and 

the density function  |f v , conditioned on the collected verification evidence v ”, 

where   is the system parameter that is verified and *Vv is a specific vector of 

verification results (or verification evidence) (Salado & Kannan, 2019). Using this 

mathematical framework, a verification strategy is modeled as a Bayesian network 

BN A B   , where (Salado & Kannan, 2019): 

  ,V D   is a simple directed graph that captures the planned execution of 

verification activities. The set V  is a set of verification activities and D  is a 

set of tuples  ,a b , with ,a b V , that describes the relative order in which 

verification activities are planned to be executed (Salado & Kannan, 2018a). 

  ,ZA D  is a simple directed graph that captures the properties of the 

system architecture, specifically the coupling between the different 
components forming the system, as well as their individual maturity. The set 

Z captures the prior beliefs on the absence of errors in the system 

parameters and the information dependencies between those parameters 

are captured in the set       , : , , |ZD a b a b f b f b   a . 

   , ,ZB V D   is a simple directed graph that captures the ability of the 

verification activities to provide information about one or more system 



parameters, where       , : , , |ZD a b a b V f b f b    a . 

Resulting graphs modeling verification strategies can be reduced to a 

combination of a finite set of patterns (Salado & Kannan, 2019). Identification of 

patterns may aid in interpreting the role of the various verification activities within a 

strategy. For example, a dynamic network (as will be used later in this report) 

indicates that certain activities may make some prior activities irrelevant once the 

new ones have been executed (Salado & Kannan, 2019). 

It should be noted that the previous notation may not be followed throughout 

the report; it has been used here for consistency with the original source. 

This modeling approach forms the basis for the mathematical model underlying 

the application of set-based design to the design of verification strategies presented 

in this report. The basic notation is represented in Figure 1. System parameters are 

denoted by i  and verification activities by iV . Arrows represent information 

dependencies.  

θ1 θ2

V1 V2 V3 V4
 

Figure 1. Example of modeling notation 

In the example in Figure 1, 1  could represent, for example, the performance 

of a prototype, which is verified through an analysis 1V  and a test 2V  (such that the 

result of the analysis shapes the confidence on the expected result of the test). Such 

prototype performance shapes the confidence on the performance of the actual 

system 2 , which is verified through verification activities 3V  and 4V .  

  



Set-Based Design Applied to Verification 

Strategies 

Concept 

Note: This section has been slightly adapted from a publication by the authors 

prepared, submitted, and published during the period of performance of this 

research (Xu & Salado, 2019). 

The approach developed in this research is graphically compared against the 

current paradigm for contracting verification activities in Figure 2. In the current 

paradigm (top part of the figure), a contract for a verification strategy is fixed at the 

beginning of the system development program. The strategy is defined by the black 

dots connected by the orange line, which represent the verification activities that will 

be executed throughout the system development.  

t1 t2 t3 t4

/V

V1

V2

t1 t2 t3 t4 t1' t2 t3 t4 t1 t2 t3 t4

This is the optimal 
strategy, agreed upon 
contractual signature.

Circled activity showed 
low margin. Unplanned 
purple activity needs to 
be added through CR.

Circled activity showed 
nominal margin. No 
change to strategy.

Circled activity showed 
ample margin. Yellow 
activity provides no 
value, but it is executed.

Coriginal= Ʃ Cblack dots Cfinal=Coriginal +  purple Cfinal=Coriginal +  purple Cfinal=Coriginal +  purple 
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Circled activity showed 
ample margin. Strategies 
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Figure 2. Current vs Set-based approaches for designing verification strategies 



(C: cost of executing verification; ti: verification events; /V: no verification; Vi: 

verification activity) 

Without loss of generality, it is possible to assume that such verification strategy 

was determined optimal at the beginning of the program, that is, with the knowledge 

available at that point in time. Consider now that the verification activity 1V  at 1t  shows 

a tight margin with respect to the expected result of the activity. This may lead to a 

lower than expected confidence on the system being absent of errors that triggers the 

need for an additional, unplanned verification activity 2V  at 1t . Because the contract 

was fixed, such an activity needs to be contractually introduced through a change 

request.  

Consider on the contrary, that the verification activity 1V  at 3t  showed much 

better results than previously expected. This may yield a higher than expected 

confidence on the system being absent of errors, potentially making verification 

activity 2V  at 3t  unnecessary or of little value, because of how confidence builds up 

on prior information (Salado & Kannan, 2018b; Salado, Kannan, & Farkhondehmaal, 

2018). 

Consider now the proposed set-based design approach, depicted on the 

bottom side of Figure 2. In this case, an optimal strategy is also determined at 1t . 

However, because the value of verification activities may change as results become 

available (Salado & Kannan, 2018b), a set (represented by the dotted lines connecting 

the dots) is considered instead of just one strategy, and only the first verification 

activity 1V  at 1t  is contracted at this point. This set is the set of all possible verification 

strategies that are consistent with the optimal verification strategy (that is, formed by 

all verification strategies that have the first activity in common).  

Assume then that verification activity 1V  at 1t  provides low margin with respect 

to the expected results, as was the case before. With the updated confidence level, a 

new optimal strategy is selected within the remaining set. Then, the set is reduced to 

include only those verification activities that are consistent with the new optimal 



strategy. In this way, verification activity 2V  at 1t  is contracted as well. The process of 

identifying new optimal strategies based on updated confidence and reducing the set 

of remaining verification activities to those consistent with the new optimal strategy, 

continues at each t . 

Assume later in the system development that, as was the case when describing 

the current paradigm, verification activity 1V  at 3t  shows ample margin with respect to 

the expected result. The next assessment of the remaining optimal path yields a set 

of verification strategies that do not include verification activity 2V  at 3t . Based on this 

result, 2V  is not contracted at 3t . Consequently, this approach does not waste 

resources in activities that become no longer needed as verification evidence 

becomes available.  

Process 

The basic process that has been developed in this project to apply set-based 

design to the design of verification strategies consists of the following steps (Xu & 

Salado, 2019): 

Step 1.  Determine optimal verification strategy at Time 1. 

Step 2.  Choose first (timewise) verification activity (or subset of verification 
activities). 

Step 3.  Execute activity and update Bayesian network. 

Step 4.  Determine optimal remaining verification strategy and return to Step 
2. 

After each selection of an optimal strategy, the set of potential verification 

strategies is given by those strategies that share the first (timewise) verification 

activity (or subset of verification activities). Therefore, as the optimal remaining 

verification strategies are determined, the set shrinks until verification is completed.  

In addition, the set of verification strategies can be further reduced by 

eliminating those sets that are dominated by optimal strategies throughout the 

system development. This reduction is useful for managing the resulting complexity.  



An example of the evolution of the set of verification strategies after applying 

set-based design is provided in (Xu & Salado, 2019) and shown in Figure 3. At T1, 

the optimal verification strategy contains V1 at T1. Two results are considered, either 

the activity passes or fails. In each case, the optimal strategy out of the set of 

remaining strategies can be computed. In both cases, the optimal strategy contains 

V2 at T2. The process continues by assessing how the optimal strategy changes on 

each path as the results of the next verification activity (in this case V2 in each path) 

are known. This process is repeated until T5. It should be noted how the result of 

each verification activity changes the optimality of the remaining verification strategy. 
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Figure 3. Verification path tree (Xu & Salado, 2019) 

Overall in this example, eleven verification strategies dominate every other 

verification strategy in the set. Because of this, it suffices to work with an initial set of 

verification strategies (i.e., before T1) that contains those eleven strategies. In case 

V1 passes, the set shrinks to contain five strategies (strategies 7 to 11) after T1 and 

before T2. Otherwise, the set shrinks to contain six strategies (strategies 1 to 6). This 

process continuous until verification is completed. This evolution is consistent with 

the set-based design paradigm, since multiple alternatives are considered 

simultaneously and some of them are progressively discarded from the set until a 

single alternative finally remains.  



Application 

The proposed set-based approach was tested on four cases, which are 

reported in this section. The first case was used as a proof-of-concept. A simple 

verification network was employed, as a well as a simple model of rework activities. 

The second case employed a more sophisticated model of rework. The third and 

fourth cases were used as first attempts to address large verification networks. The 

third case leveraged the Monte Carlo method. The fourth case leveraged the parallel 

tempering algorithm. 

Case 1. Proof-of-concept. 

Note: This section has been slightly adapted from a publication by the authors 

prepared, submitted, and published during the period of performance of this 

research (Xu & Salado, 2019). 

Description 

The notional verification strategy in Figure 1 was used for this case. All nodes 

were assigned binary values for computational simplicity. This simplification does not 

affect the purpose of the case. System parameter nodes may take the values of no 

error or error, which are denoted by e  and e , respectively. Verification activity nodes 

may take the values of pass or fail. A time vector  1,..., nT T  is defined, where the 

element iT  precedes temporally the element 1iT   for each 0,..., 1i n  . No specific 

time unit was employed, because only temporal order is relevant to the example. Each 

element in the vector will be referred to as time event. 

It was assumed that at most one verification activity is performed at each time 

event and that any given verification activity is performed at most once during the 

entire verification strategy. Furthermore, restrictions on the feasibility to perform a 

given verification activity at a given time event were defined and are listed in Table 1. 

The restrictions are intended to capture realistic constraints that may exist on the 

feasibility to perform a given verification activity at some point in the system 



development. For example, it is likely that tests on prototypes can happen since an 

earlier time event than tests on the final product.  

Table 1. Activity Constraint Table 

Time event Feasible verification activities 

T1    1 3 5,L T V V  

T2    2 3 4 5, ,L T V V V  

T3    3 3 4 5, ,L T V V V  

T4    4 5 6,L T V V  

T5    5 5 6,L T V V  

T6    6 5 6,L T V V  

*    all feasible activities at i iL T T  

The goodness or preference of a verification strategy was determined by three 

main factors: (1) its cost of execution, which is given by the fixed cost to execute each 

of its verification activities; (2) the expected cost to repair/rework the system when 

deemed necessary to do so as a function of the available verification evidence; and 

(3) the expected impact cost of the system exhibiting an error once deployed. 

Mathematically, the expected cost of a verification strategy S  was modeled as: 

         
 

     
*1 1 1

( | ) | | e

j

o n o

T V jk jk R jk k I k
V k j kv L T v

E C S C V P v P v v C P v P e v C     
    

             
V V

 

 (0) 

where:  

 VC V  is the fixed cost to execute verification activity V , 

V Is the set of verification activities included in the verification strategy S, 

 v is a specific vector of verification results, 



 |jkP v  is the confidence level of the kth system parameter node at Tj given 

the verification results v, 

( | )jk v   is the indicator function that equals 1 if ( | )jk lP v H  , where Hl is a 

decision threshold, as will be explained in the next paragraph; 

otherwise its value is 0, 

 R jkC   is the rework cost necessary to recover a failure detected during 

verification at Tj, 

*
V is the set of verification results and rework efforts possible as per the 

previous rework decisions given the set of verification activities V, 

 |P e v   is the probability that the system exhibits an error, given the 

specific verification results v, and 

 IC e   is the financial impact of the system exhibiting an error once it is 

operational. 

The treatment of rework costs deserves additional discussion. A failed 

verification activity does not necessarily lead to rework; since rework is only necessary 

if worth doing. An automated rework decision process, caricaturized in Figure 4, is 

used in this case. Two confidence thresholds    , 0.4,0.95l uH H   distinguish 

between three decision zones, which are defined such that: 

1) Zone 1 reflects a confidence state that is considered not acceptable. Therefore, 
if the confidence on the system being absent of errors drops to Zone 1, then a 
rework activity is executed. The rework activity results in the confidence 
increasing to the level it would be, had the verification activity yielded pass 
results. This is meaningful because the purpose of the verification activity that 
failed was to achieve certain confidence level. 

2) Zone 2 reflects a confidence state that is in line with the confidence expected 
as the execution of the verification strategy progresses. Therefore, if (i) the 
confidence on the system being absent of errors falls in Zone 2 and (ii) the 
confidence level expected at completion of the verification strategy -assuming 
all remaining activities pass- falls in Zone 3, then the execution of the 



verification strategy continues as planned. If this condition is not met, then a 
rework activity is planned until such an objective is reached. 

3) Zone 3 reflects a confidence state that does not require the collection of 
additional knowledge; the engineer is convinced about the correct function of 
the system. Therefore, if the confidence on the system being absent of errors 
falls in Zone 3, rework activities are not executed. In addition, reaching Zone 3 
implies for the set-based approach presented in this paper (with the 
corresponding dynamic contracting structure) that no other verification activity 
will be executed, and the system can be deployed. However, for the benchmark 
(with static contracting), it is assumed that remaining pre-contracted verification 
activities will still be executed. 

Probability assignments use synthetic data and are given in the Appendix. 

Following the modeling approach presented in (Salado & Kannan, 2019), prior beliefs 

were assigned to system parameter nodes, which capture the initial belief on the state 

of the system (i.e., being absent of errors), and conditional probability tables were 

created for the verification activity nodes. Posterior beliefs were calculated for system 

parameters through Bayesian update of the outcomes of the verification activity 

nodes. Probability update was conducted in this study using the Bayesian Network 

Toolbox for MATLAB®, which estimates the posterior probabilities of all nodes by the 

variable elimination method.  
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Figure 4. Zones for deciding next verification activity and need for rework (Xu & Salado, 
2019). 



Cost values employed in this case, given in the Appendix, were also synthetic, 

but reasonable. The following assumptions were made: (1) rework cost increases with 

time, (2) the impact cost during deployment is much larger than the rework cost and 

the verification cost; (3) rework cost is in general higher than verification execution 

cost; and (4) verification execution cost is positively related to the information it yields. 

Results 

Given the constraints in Table 1, an initial set of 198 verification strategies 

could be enumerated before the first time-interval. Among them, the optimal one is 

S1 = (V1, V2, NoV, V3, V4, NoV), where NoV indicates that no verification activity is 

executed at that time interval. This strategy has an expected total cost of $3,226k 

and an initial confidence on the system being absent of errors of 0.76. As discussed, 

S1 is used as the baseline verification strategy for the benchmark.  

As an example, the evolution of one of the paths for the proposed set-based 

approach is described. V1 is executed in the first time-interval because it is part of 

the optimal strategy identified before initiating the execution of the verification 

strategy. If the verification activity passes, the number of verification strategies 

remaining in the set reduces to 55 (all strategies that begin with V1) and the 

confidence on the system being absent of error increases to 0.84 (as determined 

through Bayesian update of Figure 1). The optimal verification strategy out of the 

remaining set becomes S2= (V1, V2, V3, V4, NoV, NoV), with a lower expected cost 

of $2,994k. On the other hand, if the activity fails, the set of remaining verification 

activities would contain 115 elements and the confidence on the system being 

absent of error would drop to 0.57. Since this level is still larger than 0.40, the rework 

activity would not be entertained yet. The process repeats again by identifying a new 

optimal strategy and reducing the set accordingly until the verification activity on the 

last time interval is executed. 

The possible set reductions led to 11 feasible paths for the proposed set-

based approach. As illustrated in Figure 3, the set of all possible paths could be 

represented as a tree plot. The expected cost of each approach to design 

verification strategies was calculated as the sum of the cost of each path weighted 



by its resulting probability of occurrence. The probability of occurrence for each path 

was computed as the product of all the probabilities of all activities along the branch. 

Detailed results are shown in Table 2. 

Table 2. Table of All Cost Items at T7 

Path 
Number 

Path 
Probability 
(PP)  

 2 errorP   
 

E[CI] CR CV 

Path Cost 
(CP=E[CI]+ 
CR+ CV) 

1 0.0295 0.9077 5538 700 425 6663 

2 0.0116 0.9077 5538 200 425 6163 

3 0.1169 0.9657 2058 200 350 2608 

4 0.0265 0.9077 5538 500 425 6463 

5 0.0104 0.9077 5538 0 425 5963 

6 0.1051 0.9657 2058 0 350 2408 

7 0.0446 0.9364 3816 300 225 4341 

8 0.0554 0.9364 3816 0 225 4041 

9 0.0936 0.9316 4104 500 425 5029 

10 0.0449 0.9316 4104 0 425 4529 

11 0.4615 0.9750 1500 0 350 1850 

 

Similarly, the benchmark could yield 16 possible paths. All paths are shown in 

Figure 5 (dotted, red lines represent benchmark paths; solid, blue lines represent 

set-based paths). The vertical axis represents the total expected cost of the 

verification strategy on each time interval. The resulting cost is given therefore after 

completion of the last time interval (to the right extreme in the plot). The total 

expected cost of the set-based approach is 

11

1

$3,004ki i
i

PP PC


 
, which is smaller 

than that of the benchmark, $3,214k. This result provides an indication that the 

proposed approach yields indeed more valuable verification strategies than the 

benchmark, although additional cases need to be run to confirm this result.  



 

Figure 5. Comparison between Set-based Design and Traditional Strategy (Xu & Salado, 
2019) 

Figure 5 provides in addition an interest insight about the properties of the 

proposed set-based approach to design verification strategies and contract 

verification activities. As can be seen, the amplitude of the tree corresponding to the 

benchmark approach (red dotted line) is larger than that of the set-based design 

method (blue solid line). This indicates that the benchmark approach responds more 

slowly to adjusting its parameters than the set-based design approach when 

receiving information from verification evidence. In cost control terms, this indicates 

that the benchmark approach is inefficient when compared against the proposed set-

based approach.  

Case 2. Improved model of rework 

Description 

Consider the simple overarching verification network in Figure 6. It represents 

the way in which a set of available verification activities provide information about a 

system parameter S  (e.g., the mass of the system). In the figure, C  represents 

another parameter that provides information about S  (e.g., the mass of a system 



component), 1V  is a verification activity that provides information about C  (e.g., a 

test of the mass of a system component), and 2V  is a verification activity that 

provides information about S  (e.g., a test of the mass of the system). 

θS

θC

V2

V1

E1

θS

θC

V2

V1

E2

V2

 

Figure 6. Overarching verification network 

Five verification strategies can be devised by leveraging the overarching network 

(notation from (Salado & Kannan, 2018a) is used): 

 1 ,S     

  2 1 ,S V   

  3 2 ,S V   

     4 1 2 1 2, , ,S V V V V  

     5 1 2 2 1, , ,S V V V V  

It was assumed that 5S  is not meaningful and therefore it was not further 

considered. 

The cost to execute a verification activity is denoted by V . Table 3 lists the cost to 

execute each verification strategy. It was assumed that no overlap exists in the cost 

of executing the verification activities.  

Table 3. Cost to execute verification strategies 

Strategy Cost function 

1S   1 $0V S   

2S     2 1 $200KV VS V    

3S     3 2 $200KV VS V    

4S       4 1 2V V VS V V     



 

The cost impact associated to deploying the system with an error is denoted by I . 

Table 4 lists the expected costs of impact for each strategy. It was assumed that 

10,000KI  . 

Table 4. Impact cost of deploying the system with an error 

Strategy Cost function 

1S     1I S IE S P e        

2S     2 1|I S IE S P e V p         

3S     3 2|I S IE S P e V p         

4S     4 1 2| ,I S IE S P e V p V p          

 

Note that    3 4I IE S E S         because 1V  becomes disconnected from S  once 

2V  is known. 

Rework cost is denoted by R . The key aspect is that the cost of rework 

depends on when the rework happens or, more accurately, on whether rework 

requires integration and de-integration activities or not. Hence, it is necessary to 

capture the cause of the error, as well as the moment in which the error is found. It 

was assumed that rework results in a state of knowledge equivalent to V p . This is 

because, in the theoretical framework used in this research, system attributes are 

not accessible, but only verification evidence is (Salado & Kannan, 2019).  

Contrary to the previous case, it was assumed in this case that rework is performed 

as soon as a verification activity fails. This implies the following: 

 For 1S ,  1 0RE S     because, since there is no verification activity 

executed, errors cannot be found and rework activities initiated.  

 For 2S ,      2 1 ,R RE S P V p C C       , where  ,R A B  indicates that 

rework happens for assembly A when integrated at assembly level B. In this 

case,  ,C C  means that rework happens on the component when it is at the 

component level (that is, when the component is not integrated at system 



level). Only  ,R C C  is considered in the model because, since no 

verification at system level occurs, errors can only be found at the component 
level.  

Calculation for 3S  becomes more sophisticated because, while the failure is 

detected on a verification activity at the system level, the error may result from an 

error at system level and/or an error at component level (note that in some cases 

solving the problem at the component level automatically solves the problem at the 

system level and in some cases the system level problem persists and also needs to 

be fixed). This needs to be considered in the calculation of the expected rework cost. 

The following basic algorithm was used: 

1) If an error is found, try to solve at system level. 

2) If not solvable, try also at component level. 

Note that a different algorithm could have been defined, trying to fix the 

problem at component level before trying at system level. However, based on 

experience, it was assumed that de-integration activities are less preferred. Under 

these conditions, the expected rework cost for 3S  is given by Eq. (3), 

          3 2 2, , | ,R R S C RE S P V f S S P e e V f C S                     (3) 

The following aspect is of interest in the previous equation. Note that, if the 

verification activity fails, rework automatically happens at the system level. As 

stated, rework at the component level is performed only if the problem persists. This 

was modeled by the probability that there is an error at both the system level and the 

component level. This is because: 

1) If the error was only at the system level, then the rework at system level 
would fix it. 

2) If the error was only at the component level, then there is not really a 
problem at system level and the fix would also work. 

3) The cost of rework of system level is already accounted for, so this is why 
only the cost of the component level fixed is considered in that case. 

Calculation for 4S  builds upon the same idea: 



1) If the component level verification activity fails, then a rework activity at the 
component level occurs. Afterwards, if the system level verification activity 

fails, the same situation as in 2S  applies with the difference that probability 

of errors is conditioned to the component level activity passed (because of 
the rework activity). 

2) If the component level verification activity passes and then the system 

level verification activity fails, the same situation as in 3S  applies with the 

difference that probability of errors is conditioned to the component level 
activity passed. 

Under these conditions, the expected rework cost for 4S  is given by Eq. (4), 

 
              

      

4 1 2 1 1 2 1

2 1

, | , |

, , | , ,

R R R

R S C R

E S P V f C C P V f V p S S P V p P V f V p

S S P e e V f V p C S

  

   

              

     
   

(4) 

Table 5 lists the corresponding rework cost used in the model. 

Table 5. Rework costs 

 ,R x y  
y 

C S 

x 
C $200K $1,000K 

S n/a $500K 

 

Note that all cost figures are synthetic. Probability assignments use synthetic 

data and are given in the Appendix. As in the previous case, the modeling approach 

presented in (Salado & Kannan, 2019) was employed. Prior beliefs were assigned to 

system parameter nodes, which capture the initial belief on the state of the system 

(i.e., being absent of errors), and conditional probability tables were created for the 

verification activity nodes. Posterior beliefs were calculated for system parameters 

through Bayesian update of the outcomes of the verification activity nodes. 

Probability update was conducted in this study using the Bayesian Network Toolbox 

for MATLAB®, which estimates the posterior probabilities of all nodes by the variable 

elimination method.  



Results 

Because of the size of the network and the input data, this case is not able to 

distinguish between the current acquisition paradigm and set-based design. 

However, the case was only used to explore the application of the refined rework 

model, so the case is still useful.  

Results are shown in Figure 7. Two time-events are represented, one at Time 

Interval = 1 (denoted by T1) and one at Time Interval = 2 (denoted by T2). 

Verification activities V1 and V2 are conducted at T1 and T2, respectively. Solid 

continuous lines are used for visualization purposes. Bifurcations differentiate the 

cost of potential paths should the verification activity pass or fail. Because of the 

setup of the case, the cost differences are caused only by the rework actions. The 

paths with positive slope indicate that the verification activity failed and, 

consequently, a rework activity was initiated. On the contrary, the paths with 

negative slope indicate that the verification activity passed and, consequently, 

rework activity was not initiated. The key insight of the picture is the consistency with 

which rework at different levels of integration is treated; in line with the input data. As 

can be seen, the delta rework cost after V2 is larger than after V1. This is, as 

discussed, because not only rework at higher integration levels is more expensive, 

but there is a chance that the problem at system level is caused by a problem at 

component level. Such de-integration effort considerable increases the resulting 

rework cost. 
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Figure 7. Plot of Verification Paths 

Case 3. Extending the size of the verification strategy: A Monte Carlo 
approach 

Description 

The partial verification network of a space system in Figure 8 was used for 

this case. It captures all verification activities that may be leveraged to verify three 

system parameters: field of view (denoted by 1 ), modular transfer function (denoted 

by 3 ), and mechanical load (denoted by 2 ). The space instrument consists of a 

telescope, a spectrometer, and camera. The network also includes telescope, 

spectrometer, and camera parameters that provide information about the three 

system parameters to be verified. Furthermore, the network includes various 

verification models that may be used to support verification activities (e.g., 

mathematical models, prototypes, and the final product). These parameters are 

denoted by i , with 1,2,3i  . Verification activities are noted by iV . The details of the 

verification network are given in (Salado & Kannan, 2019). Overall, the network has 

21 parameter nodes and 29 verification activity nodes. The network was 

characterized with notional values. A partial snapshot is shown in the Appendix for 



information purposes (note: the full dataset is too large for representation in this 

report). 
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Figure 8. Verification network used in Cases 3 and 4 (Salado & Kannan, 2019) 

Method 

The Monte-Carlo (MC) method has been explored to cope with the complexity 

resulting from large verification strategies. This is necessary because brute force 

(i.e., exhaustively evaluating all possible verification strategies for a system) is 

infeasible in realistic systems. The explored MC method has two stages: importance 

sampling (Stage I) and importance resampling (Stage II). At Stage I, the expected 

cost of each candidate node is obtained, forming a cost vector. The task of 

importance sampling is to obtain one convergent cost vector. That is, after Stage I, 

the cost vector is no longer changed and is used to calculate the importance of each 

node. At Stage II, another set of sample paths are generated. They are used to take 

a close observation at those nodes with the larger importance identified in Stage I. 

The target of this stage is to identify the optimal node with the lowest expected cost. 

The basic idea is to compare the top two candidate nodes by the two-sample t-test. 

The overall procedure of this method is shown in Figure 9. It consists of three loops. 



They are designed for cost vector, node importance, and required sample sizes 

separately. The final decision is made according to the t-test.  

 

Generate 30*Nt Sample Paths with 

Uniform Node Importance

Calculate Expected Cost 

of Each Path

Form Node Vector of Lowest Costs:

E.g. Ct = [CN26 , CN27, CN29, CN50, CNoV, CN28]

Calculate Expected Cost 

of Each Candidate Node

Compared with Ct-1, is Ct 

convergent?

Nt+1=Nt+RoundSize 

No

Calculate Node Importance by Wi = exp(-λ·Ci)

Update the weights of all 30·Nt sample paths 

by WPj = ΠWi

Update cost vector with path weights WPj  as 

Ci+1
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convergent?
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obtain the sample size Sstd
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No
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that O1 & O2 are the same?

Do Two Sample T Test for Two 

Groups of Paths of O1 & O2

Choose O1 as the final 

decision
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Choose either O1 or O2 

No
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Calculate Expected Cost of 

Each Path

Calculate Expected Cost of 

Each Candidate Node

Ncre=max((S1-Sstd,)*Naccu/S1, 

(S2-Sstd,)*Naccu/S2)

 

Figure 9. MC method process description 

In the first loop, a convergent cost vector is obtained. To ensure all nodes 

have enough samples for observations, the first node of each path is fixed and the 

same number of samples Nt is allocated for each node available at the first time-

interval. The total number in this case was 30* Nt. Criterion of convergence was 

determined as follows. First, the cost vectors are calculated round by round. The 



round size between two sequential rounds is constant. Then two cost vectors are 

compared. If they are close or similar enough with each other, this loop ends. If the 

number of nodes that appear in both cost vectors is larger than one threshold, it is 

claimed as convergent. 

In the second loop, the task is to determine node importance. The motivation 

of this step is to assign more weights to those important nodes in the following 

resampling process. As low-cost nodes are preferable in this case, the exponential 

function W exp( )C   has been adopted. The adjustment factor, λ, is used to 

control the shape of the mapping function. If λ is too large, those nodes with large 

costs may not have enough samples for observation. But if λ is too small, the 

following resampling process may generate more samples to guarantee the 

performance. In order to make λ meaningful, λ is set such that the maximum and 

minimum costs of the sample paths satisfy 

max

min

exp( )
10

exp( )

C

C









. 

In the third and final loop, importance resampling is performed to compare the 

costs of two nodes that are the most likely to be chosen. Since the method relies on 

the technique of hypothesis test, a power analysis is done first to ensure there are 

enough samples for testing. Hence, the MC method is conducted incrementally. The 

samples are generated batch by batch until the power analysis passes. At each 

round, the two nodes O1 & O2 of the minimum costs are chosen. The costs of all 

paths starting with O1 & O2 are collected as two distributions. In this case, for 

simplicity and without loss of generality, it is assumed that they follow normal 

distributions. First, their means and standard variances, which are denoted as M1, 

M2, SD1, and SD2, are calculated. Then, the error M1 - M2  is used as the estimated 

difference and 

2 2
1 2

2

SD SD

as the estimated standard deviation σ. They are used 

to derive the required sample size Sstd. The difference between Sstd  and S1(or S2) is 

used to determine the extra sample size of the next round. Notably, all previous 

samples would be reused until the power analysis passes. In this way, the conditions 

of the hypothesis test can be satisfied. Finally, the two-sample t test is implemented 



for the null hypothesis that two nodes O1 & O2 share the same distribution. If the 

hypothesis is rejected, then O1 is significantly better than O2. Otherwise, there is no 

difference between O1 & O2 and either of them may be chosen as the final decision.  

Results  

When applying the MC approach to the case in Figure 8, the first loop 

stopped when 17 sample paths for each candidate node were evaluated, yielding a 

total of 510 paths. As examples, the cost vector for Nt=17 is [26, 27, NoV, 30, 46, 28] 

and the cost vector for Nt=14 is [26, 27, NoV, 46, 30, 41]. They both share 26, 27, 

NoV, 46, 30. So it is judged as convergent. Their mean values are shown in Tables 

6 and 7 for information. 

Table 6. Means when Nt=17 

No V N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30 

11038 14811 13449 15603 14481 9746 10269 12202 12406 12046 

N 31 N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40 

14058 13072 15199 12936 15523 12546 15393 13149 14110 16120 

N 41 N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50 

12954 13444 13158 14994 14109 12098 13285 12488 13047 12570 

 

Table 7. Means when Nt=14 

No V N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30 

11478 15037 14432 15465 14910 9857 10691 12983 13509 12118 

N 31 N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40 

13063 13505 14629 12661 15822 13379 14546 14292 12725 15463 

N 41 N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50 

12311 13098 14249 15050 13491 11920 15095 12828 12970 13131 

 

Setting in the second loop the ratio to 10, the resulting node importance after 

normalization is shown for information in Table 8. 



Table 8. Node Importance when λ=3.97 

No V N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30 

0.047
1 

0.026
5 

0.032
5 

0.021
2 

0.027 0.055
7 

0.052
4 

0.039
6 

0.037
9 

0.04 

N 31 N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40 

0.028
6 

0.034
9 

0.023
9 

0.035
2 

0.023
3 

0.04 0.022
9 

0.032
6 

0.029
1 

0.020
9 

N 41 N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50 

0.034
8 

0.032 0.033
7 

0.025
1 

0.027
2 

0.038 0.032
8 

0.037
2 

0.032
5 

0.035
5 

 

For the Third Loop, the node importance is fixed as those in Table 8. The loop 

stopped when there were 2200 samples in total. O1 & O2 are N 26 and N 27. Their 

sample sizes were 129 and 85. Their means and standard deviations were O1 [9436, 

1765.1], O2 [10240, 1694.3]. The required sample size was 77. Because 77 < 85 

and 77< 129, the t test could be done. The p value was 0.0006. Hence, the null 

hypothesis was rejected and declare that O1 is better. Therefore, at T1, Node 26 

should be verified first. 

The performance of this method to find optimal verification strategies within a 

set-based design framework are shown in the Findings section. 

Case 4. Extending the size of the verification strategy: A state-based approach 

Description 

The case in Figure 8 is used in this case as well. A different rework model 

was used in this case. It was assumed that rework is always triggered when the 

confidence drops below a preset threshold. Revenue was also incorporated as a 

factor, as opposed to cost of impact of error. Revenue was modeled as positive if a 

present threshold of confidence was achieved (that is, the system is deployed), and 

zero if the threshold would not be reached. Mathematically, the expected overall cost 

of one completed verification strategy was modeled as:  

𝐶𝑡𝑜𝑡𝑎𝑙 =∑𝐶𝑉𝑖(𝑉𝑖)

𝑖

+∑𝐶𝑅𝑖(𝑡)𝛿(𝜃𝑘 < H1|𝑽)

𝑖

−∑𝑅𝐸𝑘𝑃𝑟(𝜃𝑘|𝑽)𝛿(𝜃𝑘 < H2|𝑽)

𝑘

 



where 𝐶𝑉𝑖(𝑉𝑖)  is the fixed cost to execute verification activity Vi,  𝐶𝑅𝑡 is the rework 

cost at each time point t, and 𝑃(𝜃𝑘|𝑽) is the confidence level of the kth system 

parameter node given the verification results V. The term 𝛿(𝜃𝑘|𝑽) acts as an 

indicator function that equals 1 if 
( | )kP  V

 is smaller than some lower threshold; 

otherwise its value is 0. The lower threshold for rework is denoted by H1 and the 

upper threshold for deployment is denoted by H2.  

All CPTs were generated according to the Noisy-OR model. The dataset is 

too large and has not been included in this report. The revenue coefficient was set to 

$100,000. H2 was set to 0.9 and H1 to 0.5. Five time-intervals were defined. 

Verification activity costs and basic rework costs are provided in the Appendix. 

Rework cost was modeled as being exponentially proportional to the time interval 

when the rework happens (Blanchard & Fabrycky, 1990). Specifically, the factors [1, 

1.41, 2, 2.82, 4] were applied to each time-interval respectively.  

Method 

In this case, the verification strategy design problem is treated as a kind of 

Markov Decision Process (MDP). The highly structured state space of the 

verification strategy imposes however challenges to computational efficiency. 

Parallel Tempering (PT) (Earl & Deem, 2005), which is also known as replica 

exchange Markov Chain Monte Carlo (MCMC) method and is an extension of the 

traditional Simulated Annealing (SA) method, is employed. The PT method contains 

N replicas of the system that are simulated simultaneously at various settings. 

Although this requires computing several replicas instead of a single system, it still 

improves the overall efficiency with respect to the traditional Monte Carlo method 

employed in Case 3. The PT algorithm that was employed in this case is shown in 

Table 9. Selection of number of swaps, denoted by Ns, and number of MC iterations, 

denoted by Nit, was done following the guidelines in (Wang, Hyman, Percus, & 

Caflisch, 2009). 



Table 9. PT algorithm employed in Case 4 

 

The parameters Nit and Ns were set as 10 as 20, respectively, to accelerate 

the computation efficiency. Their suitability for convergence was confirmed by 

leveraging Step 11 in Table 9. The temperature vector was designed as [15.6 31.3 

62.5 125 250 500 1000 2000 4000 8000 16000 32000 64000]. This vector derives 

from the interval of the overall verification strategy cost, which leads to the ranges 

E = [-1.4*10-5, 1.4*10-5] and   = [2.14*10-5, 0.03]. Finally, a geometric 

progression of temperatures satisfying 1 / 2i iT T   was assumed.  

Two approaches were designed to update the path sample. In the first one, 

the path is updated by randomly switching two activities of each path. In the second 

one, a randomly selected activity is updated. Importance weights are used to select 

the activity to be changed. The importance weight of one activity Vi was calculated 

by observing the response range |P(Vi | Vs = T) - P(Vi | Vs = F)| when the selected 

Table 1. Parallel Tempering Algorithm 

Input:  {Tk} ––– Temperature set;     M ––– Number of temperatures; 

Nit––– Number of MC iterations between swaps;  Ns ––– Total number of swaps 

Output: the optimal sample xopt 

1. Initialize all M replicas {Xm} 

2. For i = 1 … Ns  

3.  For m = 1 … M 

4.   Run Metropolis method for all M replicas {Xm} for Nit iterations. 

5.  End 

6.  Generate one random number k from [1, 2, … , M-1]. 

7.  Swap Xk with Xk+1 with probability min(1,exp( E))p    . 

8. End 

9. Choose the optimal sample xopt from all M replicas 

10. Set {Xm} as the initial ones and go to Step 2 

11. Stop if xopt remains the same 



activity is assigned as P/F. During the actual update, the first approach is used with 

80% likelihood while the second one with 20% likelihood. In this way, one new path 

can be generated without significantly modifying the original one. 

Results 

To illustrate the PT algorithm, the optimization process at the first time-

interval, that is, for the state where no activity has been done yet, is shown. The 

configuration of all 13 temperatures is shown in Figure 10. When there is one swap 

between two neighboring temperatures, the two corresponding dash lines will 

intersect with each other. In particular, the configuration that results in the optimal 

path is plotted with a red solid line. It is generated at the track of Temperature 500 

and decreases to the lowest temperature all the way. Their corresponding real-time 

overall costs and global optimal costs are shown in Figures 11 and 12, respectively. 

The real-time and global optimal costs of the optimal configuration are also plotted 

as red solid lines. Stability of the optimal configuration was achieved after 600 

iterations. The determined optimal path was [V26, V24, V22, V34, V46], so verification 

activity V26 is the appropriate action for the next time-interval and the set of possible 

verification strategies shrinks to include only those that begin with such activity. All 

other verification strategies are discarded. 

 

Figure 10. Swap plot of the configurations of all temperatures 



 

Figure 11. Overall cost of the configuration that generates the optimal path 

 

Figure 12. Globally optimal overall cost of all configuration 

This method is then recursively applied on each time-interval, where a new 

optimal verification strategy is found, its first activity is then selected for action and 



the set of possible verification strategies shrunk accordingly, and based on the 

results of this newly selected verification activity, a new remaining verification 

strategy is determined. The results are summarized in Table 10. For each state, the 

optimal activity for the next time interval is shown in bold and the expected costs of 

the optimal paths are listed in the fourth column. As can be seen, the verification 

strategy adapts as necessary, as a function of the results of the different verification 

activities. 

Table 10. The state-action table 

Time 
Interval 

State  
(Si) 

Optimal Path  
(Pi) 

Expected Cost 
(CPi) 

Note 

T1 Null [26, 24, 22, 34, 46] -78173  

T2 V26 = F [26, 22, 48, 43, 23] -69696  

T3 V26 = F, V22 = F/T [26, 22, 23, 48, 44] -61537 
Rework if 
V22 = F 

T4 V26 = F, V22 = T, V23 = F [26, 22, 23, Null, Null] 3995.6  

T4 V26 = F, V22 = T, V23 = T [26, 22, 23, 48, 43] -76865  

T5 
V26 = F, V22 = T, V23 = T, 
V48 = F 

[26, 22, 23, 48, Null] 4395.6  

T5 
V26 = F, V22 = T, V23 = T, 
V48 = T 

[26, 22, 23, 48, 43] -79553  

T2 V26 = T [26, 24, 46, 22, 0] -82347  

T3 V26 = T, V24 = F/T [26, 24, 22, Null, Null] -79764 
Rework if 
V24 = F 

T4 V26 = T, V24 = T, V22 = F [26, 24, 22, Null, Null] 4061.3  

T4 V26 = T, V24 = T, V22 = T [26, 24, 22, Null, Null] -88094  

 

These results are also graphically shown as a tree plot in Figure 13. The 

posterior possibility of each result accompanies each branch of the activity node for 

information. All these possible activities constitute the final policy for the verification 

strategy of the system under study. The final path out of the 12 possible will depend 

on how each verification activity materializes, that is, on the results of each 

verification activity as they are executed at different time-intervals. 
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Figure 13. Plot of all possible activities 

The performance of this method to find optimal verification strategies within a set-

based design framework are shown in the Findings section. 

  



Findings 

The previous four cases provide two main results. First, the set-based design 

approach to dynamically design and contract verification strategies yields verification 

strategies with higher expected value than those designed using current practice. 

Consider the red (solid) and blue (dashed) lines in Figure 14, which plots the real-

time verification costs for various verification paths in the context of the verification 

problem defined in Cases 3 and 4 for the network depicted earlier in Figure 8. The 

blue (dashed) line represents the optimal verification strategy designed using the 

current paradigm to contracting verification strategies. As discussed previously, this 

paradigm consists of determining a verification activity at the beginning of the project 

and execute it regardless of the results, with the caveat that additional verification 

activities may be contracted if the achieved confidence is not sufficiently high. The 

red (solid) line represents the optimal verification strategy designed applying set-

based design, as developed in this research project. Parallel tempering was 

employed to determine the optimal verification strategies under both design 

paradigms in order to factor out the approximation method. Whereas the expected 

value of the optimal verification strategy under the current paradigm (static 

verification strategy) was $78,173, the expected value of the verification strategy 

under set-based design (dynamic verification strategy) was $80,980. (Note: value 

has been determined as the inverse of cost). 

Second, parallel tempering provided better results than Monte Carlo to deal 

with the complexity of large networks. The results obtained with Monte Carlo 

method, when applied to the current paradigm (static verification) are plotted as a 

green (dashed dotted) line in Figure 14. The best verification strategy identified 

using the Monte Carlo method had an expected value of $60,291, well below the 

one identified using parallel tempering, as described above. 

It should be noted that all values that have been used in these simulations are 

synthetic. Specific results should not be interpreted as a metric of performance 



improvement. Instead, the results provide an indication of the potential value of the 

method developed in this research project. 

 

Figure 14. Comparison of Three Strategies 

  



Recommendations and Future Directions 

This research has shown that there is value in not anchoring to a specific 

verification strategy early in a system development, specially for system with long 

development cycles. Dynamically adapting the verification strategy as results 

become available is necessary to effectively and efficiently leverage the knowledge 

gained through the execution of verification activities. Not doing so is inherently 

suboptimal, leading to spending resources in unnecessary verification activities and 

creating gaps in the verification coverage, with its corresponding risk of failure or 

degraded performance once the system is deployed and put into operation. 

This work suggests that transforming the way in which verification activities 

are planned and contracted in acquisition programs is essential to improve system 

affordability and mission early success. Government should not contract a fixed 

verification strategy at the beginning of a project, but rather allocate a verification 

budget in a similar way in which contingencies and risks are budgeted. This budget 

can then be used as verification results become available, selecting individually the 

verification activity that provides the maximum expected value at each time-interval 

during the system development. This dynamic scheme for contracting verification 

activities is consistent with the mathematical properties of verification and 

guarantees efficiency and effectiveness of the verification strategy at completion of 

the system development. 

The results of this research also suggest a need for methods that can cope 

with scalability issues. The application cases that have been used in this project are 

significantly simpler than those faced in actual acquisition programs, in terms of the 

size of the problem: number of parameters to be verified, number of potential 

verification activities, and number of time-intervals in which verification may be 

executed. The two approximation methods that have been explored have provided 

promising results. Future work is necessary to assess their performance at different 

levels of complexity. 



Finally, simple approximations have been used to model rework activities and 

contractual structures. In terms of rework, two main limitations have been used for 

simplicity. Predefined rules for initiating rework activities have been used throughout 

the study. In realistic settings however, default protocols for rework activities may 

yield suboptimal actions. Future work is necessary to include formal decision points 

after verification results are available to determine if a rework activity is worth 

executing or not. Furthermore, the rework models employed in this project model the 

effect of rework as an action that brings the system back to its desired state before 

the verification activity was executed. However, such a model captures the effects of 

repair activities (i.e., solving a manufacturing problem), not those of rework activities. 

Rework activities change the internal structure of the system. Therefore, they impact 

the prior information relevant to its correct operation and make the model of the 

verification strategy for the system obsolete. Future work is necessary to incorporate 

accurate effects of rework in the models of verification strategies. 

In terms of modeling contractual mechanism, this project has assumed that 

each verification can be simply paid for independently. However, this is in general 

not the case. For example, some verification activities require initial investment 

before they can be employed. Therefore, considering a verification activity at a future 

time-interval may require a partial expenditure at an earlier time-interval. This 

dependency has an impact on the way in which the set of verification strategies 

evolve with time. Future work is necessary to accurately model this type of 

verification development dependencies. Furthermore, the contractual structure that 

can guarantee fixed prices for a flexible contract over long development times is not 

evident. Premiums or incentives may be necessary to incorporate contract flexibility. 

Pricing and granularity of contractual options will also likely play a significant role in 

constraining the extent to which verification strategies can be adapted. Future work 

is necessary to consider these aspects.  

 

  



Conclusions 

This report presents a transformative approach to design verification 

strategies and contract verification activities. Instead of relying on a verification 

strategy that remains static during a system’s development, the approach presented 

in this report suggests that the content of the verification strategy, and hence the 

contracting of its verification activities, need to be performed dynamically as the 

results of verification activities become available. This approach enables the 

acquisition of more affordable systems, while also improving the confidence on their 

correct operation, by facilitating the selection of necessary verification activities and 

the de-scoping of unnecessary ones.  

The approach presented in this report leverages the concept of set-based 

design and applies it to the design of verification strategies. Furthermore, the 

approach builds upon a mathematical framework that describes the properties of 

verification. Because verification activities provide information about the system, the 

value of verification activities cannot be determined in absolute terms, but it is a 

function of the knowledge at the time of executing the verification activity. Therefore, 

past results play a major role in determining the value (and hence necessity) of 

future verification activities. 

This new conceptualization departs from existing practice and the state of the 

art. The approach has been tested on several cases, representing the partial 

verification of a space instrument. The cases have confirmed the adequacy of the 

presented set-based design method to design and contract verification strategies. 

Overall, in all cases the application of the set-based design method yielded 

verification strategies with higher expected value than those yielded by using 

existing practice. Furthermore, the issue of scalability has also been explored in this 

project. Given the size of realistic systems and acquisition structures, the solution 

space of verification strategies cannot be exhaustively explored. Monte Carlo and 

Parallel Tempering have been studied as approximation methods to explore the 

solution space with promising results. 



Finally, the research has already resulted in one published paper for the 2019 

Acquisition Research Symposium, one published paper for the 2019 INCOSE 

International Symposium, and one published paper in Wiley’s Systems Engineering 

journal. Two other journal papers resulting from this work are currently under 

preparation and will be submitted before the end of 2019. 

  



Appendix – Data Used in Application Cases 

Case 1. Proof-of-concept. 

Table A1.1 P(θ1) 

θ1 Probability assignment 

Error 0.8 

No Error 0.2 
 

Table A1.2 P(θ2| θ1) 

θ1 θ2 Probability assignment 

Error Error 0.8 

Error No Error 0.2 

No Error Error 0.1 

No Error No Error 0.9 

Table A1.3 P(V1| θ1) 

θ1 V1 Probability assignment 

Error Fail 0.7 

Error Pass 0.3 

No Error Fail 0.2 

No Error Pass 0.8 

Table A1.4 P(V2| V1, θ1) 

θ1 V1 V2 Probability assignment 

Error Fail Fail 0.9 

Error Fail Pass 0.1 

Error Pass Fail 0.6 

Error Pass Pass 0.4 

No Error Fail Fail 0.2 

No Error Fail Pass 0.8 

No Error Pass Fail 0.1 

No Error Pass Pass 0.9 

Table A1.5 P(V3| θ2) 

θ2 V3 Probability assignment 

Error Fail 0.9 

Error Pass 0.1 

No Error Fail 0.4 

No Error Pass 0.6 

Table A1.6 P(V4| V3, θ2) 

θ1 V1 V2 Probability assignment 

Error Fail Fail 0.9 



Error Fail Pass 0.1 

Error Pass Fail 0.4 

Error Pass Pass 0.6 

No Error Fail Fail 0.3 

No Error Fail Pass 0.7 

No Error Pass Fail 0.1 

No Error Pass Pass 0.9 
 

Table A1.7. Cost Values  

Vi CV(Vi) ($k) Tj CR at Tj ($k) System error CI( k ) ($k) 

V1 50 1 100 2  60,000 

V2 100 2 200   

V3 75 3 300   

V4 200 4 400   

  5 500   

  6 600   
 

Case 2. Improved model of rework. 

Table A2.1. Conditional Probability Table for system parameter 

θC θS  |S CP  
 

Error Error 0.79 

Error No Error 0.21 

No Error Error 0.27 

No Error No Error 0.73 
 

Table A2.2. Prior probabilities of the component parameter 

θC  CP 
 

Error 0.20 

No Error 0.80 
 

Table A2.3. Conditional Probability Table for verification activity V1 

θC V1  1 | CP V 
 

Error Fail 0.73 

Error Pass 0.27 

No Error Fail 0.05 

No Error Pass 0.95 



Table A2.4. Conditional Probability Table for verification activity V2 

θS V2  2 | SP V 
 

Error Fail 0.85 

Error Pass 0.15 

No Error Fail 0.18 

No Error Pass 0.82 

 

Case 3. Extending the size of the verification strategy: A Monte Carlo 

approach 



Table A3.1. Partial dataset of the characterization of the verification network in Figure 

8 

 

Node No. CPT

1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

3 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94

4 0.03 0.97

5 0.29 0.71

6 0.95 0.95 0.87 0.92 0.92 0.87 0.83 0.73

7 0.18 0.82

8 0.09 0.91

9 0.24 0.76

10 0.02 0.98

11 0.27 0.73

12 0.85 0.05 0.15 0.95

13 0.95 0.05 0.05 0.95

14 0.6 0.22 0.4 0.78

15 0.81 0.07 0.19 0.93

16 0.34 0.66

17 0.27 0.73

18 0.22 0.78

19 0.02 0.98

20 0.33 0.67

21 0.08 0.92

22 0.95 0.88 0.82 0.52 0.05 0.12 0.18 0.48

23 0.83 0.34 0.17 0.66

24 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.92

25 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.92

26 0.83 0.05 0.17 0.95

27 0.95 0.95 0.87 0.05 0.05 0.05 0.13 0.95

28 0.18 0.82

29 0.08 0.92

30 0.93 0.85 0.85 0.5 0.07 0.15 0.15 0.5

31 0.95 0.78 0.83 0.26 0.05 0.22 0.17 0.74

32 0.95 0.2 0.05 0.8

33 0.95 0.95 0.95 0.74 0.95 0.95 0.95 0.7

34 0.36 0.64

35 0.95 0.95 0.95 0.91 0.95 0.76 0.95 0.43

36 0.9 0.9 0.69 0.58 0.1 0.1 0.31 0.42

37 0.95 0.82 0.95 0.5 0.05 0.18 0.05 0.5

38 0.64 0.22 0.36 0.78

39 0.81 0.23 0.19 0.77

40 0.95 0.95 0.82 0.14 0.05 0.05 0.18 0.86

41 0.69 0.4 0.31 0.6

42 0.94 0.82 0.79 0.32 0.06 0.18 0.21 0.68

43 0.95 0.79 0.89 0.29 0.05 0.21 0.11 0.71

44 0.95 0.9 0.95 0.32 0.05 0.1 0.05 0.68

45 0.91 0.09 0.09 0.91

46 0.82 0.11 0.18 0.89

47 0.8 0.11 0.2 0.89

48 0.73 0.66 0.27 0.34

49 0.65 0.43 0.35 0.57

49 0.74 0.13 0.26 0.87



Case 4. Extending the size of the verification strategy: A state-based approach 

Table A4.1. Activity Cost 

N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30 N 31 

350 800 300 250 300 350 350 550 450 650 

N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40 N 41 

300 700 250 700 450 550 250 250 800 1000 

N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50  

450 650 950 950 250 250 400 850 250  

 

Table A4.2. Basic Rework Cost 

N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29 N 30 N 31 

1800 1000 2200 1800 1800 1600 1000 2200 1400 1200 

N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40 N 41 

2600 2200 1000 2000 1000 2600 3200 2000 2600 1000 

N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50  

2000 1000 1800 1200 1000 2400 1400 1000 1000  
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