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Abstract 

We develop a simulation model to aid in identifying and evaluating promising 

alternatives to achieve improvements in weapon system-level availability when 

outsourcing logistics services for system components.  Two outcomes are valued:  

improvements in average operational availability for the weapon system, and 

reductions in the probability that operational availability of the weapon system falls 

below a given planning threshold (readiness risk).  In practice, these outcomes must 

be obtained through performance-based agreements with logistic providers.  The 

size of the state space, and the non-linear and stochastic nature of the variables 

involved precludes the use of optimization approaches.  Instead, we use designed 

experiments to evaluate simulation scenarios in an intelligent way.  This is an 

efficient approach that enables us to assess average readiness and readiness risk 

outcomes of the alternatives, as well as to identify the components and logistics 

factors with the greatest impact on operational availability. 

Keywords: Performance-based Logistics, Operational Availability, 

Outsourcing, Design of Experiments 
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Executive Summary 

We develop a simulation model to aid in identifying and evaluating promising 

alternatives to achieve improvements in weapon system-level availability when 

outsourcing logistics services for system components.  Two outcomes are valued:  

improvements in average operational availability for the weapon system, and 

reductions in the probability that operational availability of the weapon system falls 

below a given planning threshold (readiness risk).  In practice, these outcomes must 

be obtained through performance-based agreements with logistic providers.  The 

size of the state space, and the non-linear and stochastic nature of the variables 

involved precludes the use of optimization approaches.  Instead, we use designed 

experiments to evaluate simulation scenarios in an intelligent way.  This is an 

efficient approach that enables us to assess average readiness and readiness risk 

outcomes of the alternatives, as well as to identify the components and logistics 

factors with the greatest impact on operational availability.  

We believe that our results illustrate that this approach has the potential to 

significantly improve decision-making related to readiness improvement efforts for 

weapon system programs. 
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1. Introduction 

Performance Based Contracts are becoming increasingly popular in both the 

Department of Defense and the commercial defense industry.   Performance-Based 

Logistics (PBL) contracts are a type of performance-based contract intended to 

improve weapon system availability at a reduced cost.   

The unique aspect of performance-based contracts is their outcome focus; 

the client organization specifies key performance goals and allows the vendor to 

determine the best way of obtaining those goals (Assistant Secretary of the Navy for 

Research, Development and Acquisition [ASN-RDA] 2003).  Such contracts are 

called contra proferentem, because in contrast to typical contract law, ambiguities in 

the contract (in particular, lack of detail in methods for obtaining the contracted 

results) are construed in favor of the client organization, rather than the vendor.  

Indeed, the main point of performance-based contracts is to outsource not only the 

tasks involved in obtaining an outcome (e.g., the inventory management required to 

improved system availability), but also the risk associated with those tasks.  In other 

words, the client wishes to rely on the outcomes specified in the contract, and to 

have the vendor bear the risks associated with insuring the delivery of those 

outcomes.  Hence, in such contracts it is important for the client organization to 

evaluate not only expected outcomes, but also the associated risk (Doerr et al., 

2005).  

In the model we develop, system operational availability, or the average 

percentage of assets which are available for operations (Ao) is a valued outcome, 

but it does not address the risk associated with contract performance.  We will use 

readiness risk (Kang et al., 2005) as a measure of the risk that a vendor will fail to 

deliver a desired threshold of operational availability, such as the probability that less 

than 80% of a given type of aircraft will be available for operations at any given time.  
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The simulation approach we describe in this paper is intended to help 

decision-makers develop the most effective alternatives for reducing readiness risk 

of a weapon system.  The alternatives involve specifying component-level outcomes 

for one or more of four logistic elements:  component-level inventory service level, 

reduction in component failure rate, increase in component repair rate, or reductions 

in component logistic delay (the time required for transportation and administrative 

work).  Our model captures the joint affect of all of these component-level logistic 

elements on operational availability and calculates a lifecycle cost for each 

alternative.  We then use a design of experiments approach developed for large-

scale simulation experiments (Kleijnen et al., 2005) to sample the state space of 

possible alternatives in an intelligent way.  Using this sampling approach, we can 

estimate which logistic elements and which components have the greatest potential 

to improve availability.  

The contribution of our work lies in the integrative nature of our solution 

approach.  We apply a recently developed method for sampling in large-scale 

simulation experiments and use a performance metric (readiness risk) designed for 

performance-based agreements.    
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2. Background 

In this section, we will review the literature on both Performance-Based 

Logistics and Design of Experiments, in order to place our own work in the context of 

what has been done before. 

Performance-based Logistics 
There is a small but growing literature on various aspects of Performance-

Based Logistics (PBL) contracting.  For instance: Berkowitz et al. (2003) conduct a 

survey of military applications of PBL and formulate a set of best practice 

recommendations.  Apgar and Keane (2004) describe the strategic goals of PBL and 

assert that the principle of specifying outcomes rather than methods is consistent 

with a broad long-standing military strategy known as “commander’s intent.”  Doerr 

et al. (2005) examine metrics for PBL and develop an argument for the centrality of 

risk measurement in such contracts.  Kim et al. (2006) look at a situation in which a 

contractor awarded a system-level prime contract for availability improvement must 

negotiate with subcontractors to achieve given component-level performance.  But a 

recent Government Accountability Office report (GAO, 2004) is critical of systems-

level PBL contracts, and recommends greater emphasis on PBL contracts at the 

component level to better maintain control over costs and performance.  As Kang et 

al. (2005) show, the proper valuation and management of such component-level 

contracts entails the development of a comprehensive model which incorporates key 

performance dimensions of all critical components.  They demonstrate tradeoffs 

between readiness risk and lifecycle cost on given alternatives, with a numerical 

analysis using two (disjoint) simulations.   

Risk-based capacity models such as the one proposed in this paper have 

been the subject of a great deal of research in the commercial sector (Van Miegham, 

2003) and have also been applied to the acquisition of production capacity for airfoils 

used in military aircraft (Prueitt & Park, 2003).  Risk-based capacity models deal with 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 3- 
k^s^i=mlpqdo^ar^qb=p`elli=



 

technological, demand, or price uncertainty, and are not directly applicable to the 

valuation of logistic services or the impact those services will have on system 

availability.  The probability that Ao will remain above a certain planning threshold 

(or target readiness) is what we call readiness risk.  This measure is not new—it is 

one of many imbedded in a system used by the US Air Force for planning levels of 

spare-parts inventory (Slay et al., 1996).  Methodologically, it is simply a type of 

quantile analysis.  But from the warfighter’s point of view, this risk may be the key 

performance dimension (Eaton et al., 2006).  The warfighter, after all, is less 

concerned with the average number of mission-capable aircraft than he is concerned 

with the probability that he will have enough aircraft to fly a particular mission.   

Performance-based contracting changes the way risk should be valued and 

measured in component-level contracts to improve system availability.  The impact 

of variance in component-level reliability (e.g., failure rates) and maintainability (e.g., 

repair time) on average system availability was well understood (Blanchard et al., 

1996) before PBL contracts ever became popular. More recent work examines 

alternatives for reliability or maintenance improvement at the component level, with 

the primary outcome being system-level availability (Cassady et al., 2004).  These 

authors use a cost function which assumes a continuous range of available 

alternatives for both reliability and maintenance, but they do not examine logistic 

delay (which we will show to be a critical logistic element in determining system 

availability), nor do they use readiness risk as an outcome measure. 

Within the field of reliability engineering, reliability allocation methods seek to 

minimize the cost of allocating resources for component-level reliability in order to 

obtain a given system-level reliability requirement (Kececioglu, 1991, pp. 363-399).  

These procedures generally assume a continuous range of reliability is available for 

each component and that the cost of achieving higher reliability levels increases 

exponentially.  This work differs from ours in that they are primarily focused on 

reliability (failure rates) as an outcome measure at the component and system level.  
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Design of Experiments 
Clearly, simulation models of even relatively simple logistics systems can 

have a very large number of inputs—many of which may be uncertain or unknown—

that potentially impact the model’s performance. In the design of experiments (DOE) 

literature, these are referred to as factors.  Factors can be qualitative or quantitative.  

They can include distributional models (e.g., the use of exponential, triangular, or 

(truncated) normal distributions for service times), parameters of these distributions 

(e.g., means, standard deviations, or rates),  or different policy choices that 

determine how a subsystem within the model behaves (e.g., use of priority queues 

to process critical components more rapidly).  

In real-world experiments, it is difficult to control more than a handful of 

factors at a time.  This is not the case for simulation experiments, where the analyst 

has the ability to specify the levels (values) for all of the input factors before running 

the simulation.  Still, once the factors and potential levels have been determined, this 

creates a huge number of potential scenarios (or design points).  For example, if an 

analyst wished to explore nine factors, each at 10 levels, there are one billion (109) 

different scenarios that could be considered. The design might need to be replicated 

for stochastic simulations, because specifying all input factors does not remove 

randomness from the output.  Such a large experiment is clearly impractical.  Even if 

it were possible to run all scenarios in a reasonable amount of time, the volumes of 

output data would easily overwhelm most post-processing analytic tools, leaving the 

analyst limited in his/her abilities to statistically interpret the results.  

Fortunately, efficient experimental designs can be used to specify a small 

number of suitable scenarios.  The following characteristics of experimental designs 

are desirable (Cioppa et al., 2004; Kleijnen et al., 2005): 

• the ability to examine many variables (ten or more) efficiently; 

• the ability to approximate orthogonality between inputs, to facilitate 
response surface metamodeling; 
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• the existence of minimal a priori assumptions about the response 
surface;  

• the flexibility to allow for the estimation of many effects, interactions, 
thresholds, and other features of the response surface; and 

• the availability of an easy method for generating the design. 

Kleijnen et al. (2005) discuss situations where various classes of designs are 

appropriate, but there is no one-fits-all design.  In our explorations of readiness risk, 

we want to screen many variables for importance, while simultaneously maintaining 

the ability to fit complex meta-models to a handful of input variables that are found to 

have the most impact on the responses.  Given this and the above design goals, the 

nearly orthogonal Latin hypercubes constructed by Cioppa and Lucas (2006) are 

particularly useful.   

We remark that the use of designed experiments for simulation models 

involving many factors has been successfully applied to a host of other military 

applications.  Links to over 40 Master of Science theses by students at the Naval 

Postgraduate School (NPS) are available online at the SEED Center for Data 

Farming web pages at <http://diana.cs.nps.navy.mil/seedlab>, along with links to 

papers, software, spreadsheets, and other tools to facilitate experimental design.  

Summaries of successful studies conducted in the US or in several allied countries 

are available at the Project Albert web site at <http://www.projectalbert.org>.  
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3. Case Study 

We use the decision environment of Kang et al. (2005) in this paper, but we 

develop an integrative model investigate potential alternatives for development. We 

are interested in readiness analyses of an unmanned aerial vehicle (UAV) squadron 

that has 40 aerial vehicles (AV).  When a critical component in an AV fails, the faulty 

component is removed from the AV, an RFI (ready-for-issue) spare is installed, and 

the faulty component is sent to the repair facility. After the repair is complete, the 

component becomes an RFI spare and is sent to the spare pool. When a critical 

component fails, and an RFI spare is not available, the AV will be grounded (and will 

become not mission capable, or NMC) until an RFI component is available. A failure 

of a non-critical component may degrade readiness, but the system is assumed to 

be operable (that is, mission capable (MC) or partially mission capable (PMC)).  In 

this case study, we do not consider “cannibalization,” the swapping of a working 

component from one downed AV to another.   

Our simulation model estimates the average operational availability and the 

readiness risk at various thresholds of interest.  Our goal is to better understand how 

changes in reliabilities, number of spare parts and other logistics factors (e.g., repair 

times and transportation delays) affect the average operational availability and the 

readiness risk of the squadron.  

We consider three critical components in this case study: engines, propellers, 

and avionic computers.  We assume that the time between failures for each 

component follows an exponential distribution. The ranges of MTBF (mean time 

between failures) of the individual components are provided in Table 1, along with 

the ranges of the number of spare components, component repair times (in hours), 

and the transportation/logistics delay (in days).   

 

 
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 7- 
k^s^i=mlpqdo^ar^qb=p`elli=



 

Table 1. Ranges of Input Parameters 

Input Parameter Range 
MTBF of Engine 200 - 400 hrs 
MTBF of Propeller 150 – 300 hrs 
MTBF of Avionic Computer 300 – 600 hrs 
Spare Engines 1 – 20 units 
Spare Propellers 1 – 20 units 
Spare Avionic Computers 1 – 20 units 
Repair Time for Engines 1 – 30 hrs 
Repair Time for Propellers 1 – 30 hrs 
Repair Time for Avionic 
Computers 1 – 30 hrs 

Transportation/Administrative 
Delay for Each Failure 1 – 15 days 

 

Several designs are possible, but we use an NOLH with 257 runs (Cioppa & 

Lucas, 2006).  This design is capable of handling up to 29 factors without increasing 

the number of scenarios. It can be easily constructed by entering the low and high 

values in Table 1 into a spreadsheet (Sanchez, 2005). (We remark that that ten input 

factors could be examined using a NOLH with as few as 33 scenarios if the 

simulation run-time was long.  Because our model runs quickly, we opt for a larger 

design to allow a more detailed investigation of our model’s behavior.)  The input 

parameters for the first ten scenarios are shown in Table 2. In all, there are ten 

different simulation inputs used as factors for our designed experiment.  In addition, 

there is a stochastic element that occurs due to the pseudo-random numbers 

generated for stochastic failure times, repair times, and transportation/administrative 

delay times. 
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Table 2. Input Parameter Settings for First 10 of 257 Scenarios 

 

For each scenario, the simulation model reads a row of data from the 

spreadsheet excerpted in Table 2.  The MTBFs of three components are first read, 

followed by the number of spares for each component, the modes of the component 

repair times, and the mode for the transportation/administrative delay. The repair 

times are assumed to follow symmetric triangular distributions with lower and upper 

bounds of 0.5(mode) and 1.5(mode), respectively.   The same approach is used for 

the repair-time distributions. The transportation and administrative delay (in days) 

follows a symmetric triangular with lower and upper bounds of 0.75(mode) and 

1.25(mode), respectively.  Flight operations are conducted 24 hours per day, seven 

days per week. Each air vehicle operates an average of four hours per day.   The 

repair shop operates eight hours per day, seven days per week.  
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4.  Results 

We ran a total of 257 scenarios, each of which is simulated over a period of 

1,000,000 hours—sufficiently long that we need not be concerned about initial bias.  

The results of the simulation are the average Ao (operational availability) and the 

quantiles (10%, 20%, … , 80%, and 90%) of Ao; these are automatically written onto 

an EXCEL spreadsheet worksheet and then imported into JMP software for further 

analysis.  We remark that the outputs must be matched to the scenarios 

(specifically, the levels of each input factor must be available) in order to analyze the 

data.  Also, for large experiments it can be very helpful to automate the process of 

running the simulation for different scenarios; see Kleijnen et al. (2005) or Sanchez 

(2006) for further discussion. 

For demonstration purposes, we present only the results for the average Ao 

and its 80% quantile (i.e., the probability that the Ao goes below 80%).  Our intent is 

to illustrate the types of insights that can be gained from a designed experiment 

approach, rather than to make inferences regarding readiness risk for a real 

weapons system. 

Average Operational Availability 
We begin assessing the output by looking at histograms of the simulation 

responses.  This can be a way of “accidentally” performing verification and validation 

of a simulation model by revealing combinations of input-factor settings for which the 

model does not work properly—presenting results that may, at first glance, challenge 

the analyst’s intuition, or suggesting additional features that should be included in 

the simulation model (Kleijnen et al., 2005). Our results indicate that the average 

operational availability differs widely across the different scenarios.  The Ao ranges 

from 0.599 to 0.976.  The average Ao across the 257 scenarios is 0.795 with a 

standard deviation of 0.085. It appears that at least one of the input factors does, 

indeed, have a substantial influence on the system’s performance. 
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After confirming that the results appear reasonable, we turn to our main 

goals—identifying those factors and components that have the greatest impact on 

performance.  A useful, non-parametric tool is a regression tree (Friedman, 2002), 

as in Figure 1.  These graphics have proven beneficial in both communicating and 

helping analysts understand the results of thousands of runs over many factors.  

Regression trees are more human-readable and can be easier to understand than 

multiple regression models.  Trees simply show the structure in the data.  Initially, 

the data are grouped in a single cluster.  All potential input factors are examined to 

identify how best to split them to yield two leaves so that the variability in the 

response within each leaf decreases and the variability in the response between the 

leaves increases.  

Figure 1 shows the regression tree for predicting the average Ao from the 257 

simulation scenarios.  The dominant factor is clearly the average 

transportation/administrative delay.  For example, the first split at the top indicates 

that the average Ao is 0.737 across the 138 scenarios that had a mean 

transportation/administration delay of eight or more days.  In contrast, the average 

Ao was 0.862 (17% higher) among the 119 scenarios that had a mean 

transportation/administration delay of less than eight days.  Even with only four 

splits, the regression tree achieves an R2 value of 0.74. 
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Figure 1.  Regression Tree for Average Ao, First Experiment 

Because they are easy to interpret, regression trees are useful displays for 

succinctly presenting the results to decision-makers. For larger trees with many 

leaves, it may be helpful if the leaves corresponding to favorable, intermediate, and 

unfavorable outcomes are colored green, yellow, and red, respectively (Cioppa et 

al., 2004). 

Regression trees are non-parametric approaches for fitting a statistical model 

to the simulation output.  They can clearly identify subsets of the output that behave 

much differently than the rest.  Regression metamodels can also be valuable.  They 

may confirm the regression tree results concerning which factor or factors have the 

greatest influence on the results, or they may allow more succinct descriptions of the 

simulation model’s performance if it can be well-described by simple polynomial 

metamodels. 
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Accordingly, we also fit regression metamodels of the Ao as a function of 

main effects, quadratic effects, and two-way interactions of the ten input factors.  

There are a total of 65 potential terms in the model (ten main effects, ten quadratic 

effects, and 45 two-way interactions).  We use stepwise regression to identify the 

most important factors, then simplify the model even further by eliminating a few 

terms with p-values in order of magnitude higher than the others. Our final 

metamodel is shown in Figure 2.  The adjusted R2 is 0.97, indicating that the 

regression metamodel does an excellent job of explaining the variability in the 

simulation output.  We tried other models as well.  For example, a model with only 

six significant main effects (three MTBFs, the transportation/administrative delay, 

and mean repair times for the two least reliable components: propellers and 

engines) yields an R2 of 0.92.  This simpler model might also be used to make 

inferences. 

The large |t_ratio| for the mean transportation/ administrative delay (Figure 2) 

shows it to be the dominant factor, and agrees with our regression tree results. Note 

that the numbers of spare parts do not appear in the model.  This means that raising 

them from their lowest levels to the highest levels in Table 1 does not lead to any 

appreciable improvement in the average operational availability.  This suggests that 

it might be possible to entirely eliminate increases in spare parts as an improvement 

option, or even to reduce spare parts levels, without adversely affecting operational 

availability.  Of course, such a possibility would need to be confirmed by running 

new scenarios and observing the output. 
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Figure 2.  Regression Metamodel for Average Ao, First Experiment 

A plot of the residuals vs. the predicted values (not shown) indicates that 

there are a few outliers from this metamodel.  Three points result in substantially 

lower operational availability than predicted.  Depending on the vendor PBL contract, 

these could be worth a closer look. 

Because it can be difficult to look at a regression equation and get an 

accurate sense of how the factors and interactions affect the response, interaction 

plots are often useful.  The interaction plot for our regression metamodel appears in 

Figure 3.  This consists of several small subplots that indicate how the predicted 

performance (Ao) varies as a function of pairs of input factors.  For example, the 

subplot that appears at the center of the upper row shows the joint effect of the 

MTBF for aircraft engines and the (mean) engine repair hours.  The flat upper line (in 

blue) shows that when the MTBF is 400 hours, changing the engine repair time 

between its low and high values (1-30 hours) has little impact on Ao.   But, if the 

MTBF for engines is only 200 hours (lower line, in red), then longer engine repair 

times decrease Ao.  The difference in slopes indicates an interaction between 

engine MTBF and repair times: the impact of high repair times is mitigated by large 

MTBF.  An even stronger interaction is observed between MTBF and repair times for 

the propellers. 
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Transportation/administrative delays are so dominant that we re-ran the 

experiment after fixing the average delays to five days for all scenarios.  (Note that 

individual delays still follow a random distribution.)  These results allow us to focus 

on the other factor effects and interactions.  A portion of the regression tree, 

corresponding to the better outcomes, is provided in Figure 4.  Here, we see the 

impact of the MTBF and repair times for the least reliable component (propellers); 

the next component to show up in the tree is the engine, via its MTBF.  The left-hand 

portion of this regression tree (not shown) has the same variables at each branch, 

although the “splits” at the branches occur at different factor levels. 

 

 
Figure 3.  Interaction Profile Plot, First Experiment 

Readiness Risk: 80th Percentile 
The analyses for the 80th percentile of readiness risk are similar, with a few 

interesting differences from a decision-maker’s point of view (See Figures 5 and 6).  

Briefly, when the mean transportation/administrative delay varies between one day 

and 15 days (see Figure 5), it is the dominant factor in both the regression tree and 

the regression metamodel.  The “splits” which the regression tree uses to break this 
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delay into different components differ slightly from those for the average Ao.  For 

example, the best leaf for readiness risk of 80% or better corresponds to an average 

transportation/administrative delay of less than six days and a MTBF for propellers 

of at least 201 hours.  The best leaf in the regression tree for average operational 

availability, however, corresponds to an average transportation/administrative delay 

of less than three days and a MTBF for propellers of at least 186 hours.  These 

differences confirm that the measures are not substitutes for one another.  The cost 

of reducing transportation delays, for example, from six to three days may be 

considerable, and may not be justified if readiness risk is the appropriate measure.  

Our regression tree with four splits and five leaves yields an R2 of 0.78, and our 

regression model with seven terms (five main effects and two interactions) yields an 

R2 of 0.92.  

For the second experiment with the transportation/administrative delay fixed 

to five days (see Figure 6), we once again find that the least reliable components are 

the major determinants of performance.  The results are similar to those for average 

Ao (Figure 4); although once again, individual regression coefficients differ from the 

levels at which splits occur in the regression tree—which has implications for 

decision-making in a performance-contracting environment.  

The most significant difference between the average Ao results (reported in 

Figures 1 and 4) and the readiness risk results (reported in Figures 5 and 6) are in 

the range of outcomes and the variance in the estimated parameters.   

=
=

The difference in variance in parameter estimates can be seen by looking at 

the coefficient of variation of the estimates reported in the leaf nodes.  For example, 

one of the leaf nodes in Figure 1 shows a coefficient of variation of 0.047 

(0.04/0.859).  However, the corresponding leaf in Figure 5 shows a coefficient of 

variation of 0.84 (27.3/32.5).  Comparing charts in general, the reader will see more 

relative variance in the readiness risk estimates than in the average Ao estimates.  

This difference is most likely an artifact of our design: we used a fixed number of 

runs and run sizes to estimate both the mean and the 80% readiness risk, although 
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it is known that tail probability estimates are less stable than estimates of the mean 

of a distribution.  Since our readiness risk estimates are sufficiently accurate for our 

purposes, and because there are other advantages to maintaining an identical 

number of simulation runs and run sizes, we believe this difference in the quality of 

the estimates is justifiable. 

The differences in range of outcome, however, may have important 

implications for decision-makers and those who assess the results of their decisions.  

The average Ao reported in Figure 4 was 84.8%, and the range of outcomes varied 

from 67.2% to 88.4%.  The average readiness risk reported in Figure 6 was 28.5%, 

but the range of outcomes was from 13.1% to 81.2% (that is, in the leaf 

corresponding to the best performance cases, Ao dropped below 80% only 13.1% of 

the time, while in the leaf corresponding to the worst cases, Ao drops below 80% 

over 81% of the time).  The decisions being simulated have a far greater impact on 

readiness risk (the risk of falling below the desired readiness threshold) than they 

have on average availability.  There is nothing especially surprising in this, since a 

small change in the mean of a distribution can easily create large differences in tail 

probabilities.  However, if readiness risk is the appropriate measure of availability, 

our results imply that readiness improvement efforts may have a far greater impact 

on readiness than what is suggested by a simple examination of average Ao. 
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5. Final Remarks 

As we discuss earlier, the simulation model used in this paper is not intended 

to provide detailed insights regarding a particular real-world situation.  For example, 

the use of exponential times between failures may not be appropriate, and the 

triangular service time distributions are unlikely to be accurate representations of 

real-world data.  However, the same approach can easily be applied to simulations 

that are more realistic. 

We believe that our results illustrate that this approach has the potential to 

significantly improve decision-making related to readiness improvement efforts for 

weapon system programs.  

Figure 4:  Results for Ao, Second Experiment 
(Transportation/Administrative Delay not changed across scenarios) 
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Figure 5. Results for Readiness Risk, First Experiment 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Results for Readiness Risk, Second Experiment 
(Transportation/Administrative Delay not changed) 
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