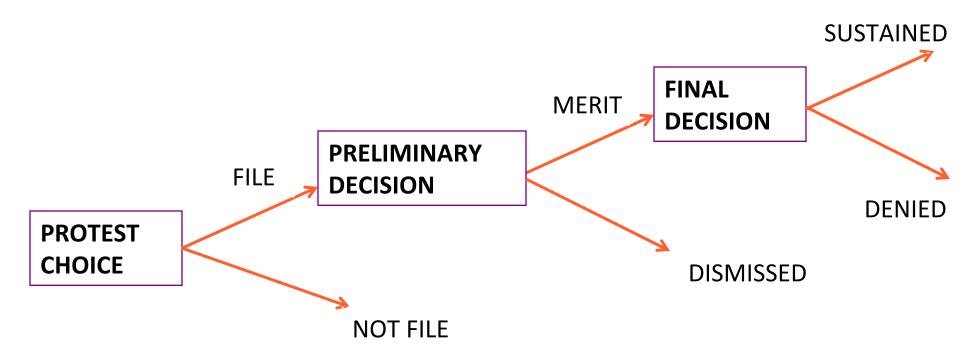
Split Awards & Bid Protests in Acquisition Acquisition Research Symposium

May 2010

Peter J. Coughlan William Gates


Graduate School of Business & Public Policy

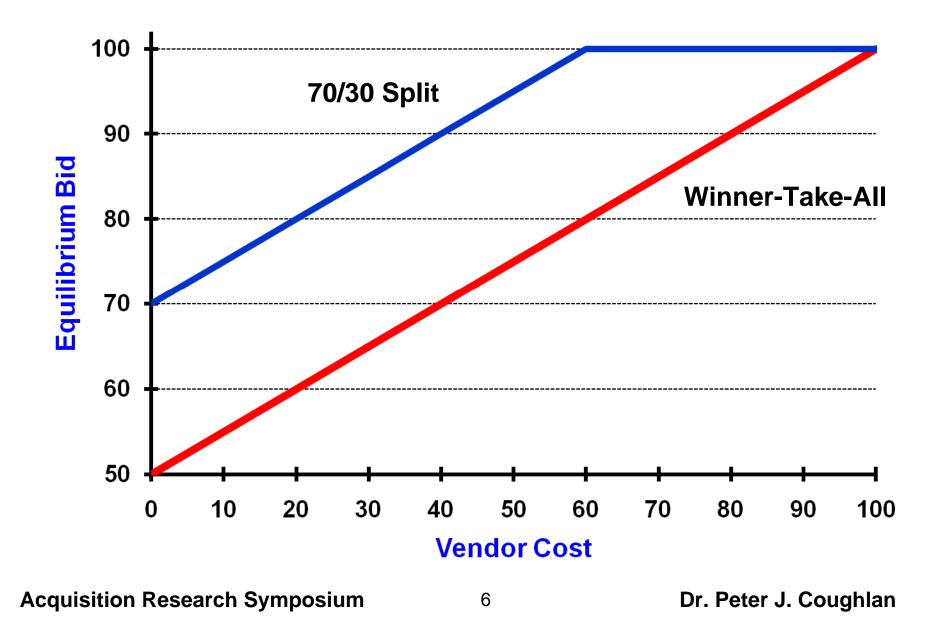
Naval Postgraduate School

Managing Bid Protests

- U Objective is <u>not</u> to minimize number of bid protests
- **u** Protests may correct procurement mistakes:
 - Honest mistake: Limited information & bounded rationality
 - "Dishonest" mistake: Bias by procurement officials
- u Objective is to "right size" number of protests
 - Encourage protests that correct (significant) mistakes
 - Discourage protests that don't make significant corrections
- What are DoD's "levers of control" for managing the number and nature of protests?

The Bid Protest Process

- Probability (Merit)
- Probability (Sustained/Merit)


Managing Vendor Protest Incentives

- u Profit from Protest
 - = Expected Benefits Expected Costs
- u Expected Benefits
 - = Prob (Merit)×Prob (Sustained Merit)× Added Revenue
- u Expected Costs
 - = Search & Information + Legal + Reputation + Opportunity Costs
- Levers of control?
 - Influence expected benefits
 - Influence expected costs
 - Encourage "good" protests, discourage "bad" protests

Split-Awards to Manage Bid Protests

- Benefit of winning protest much larger under "winner-take-all" vs. split-award
 - Winner-take-all = 100% vs. 0%
 - Split-award \approx 70% vs. 30%
- u Raises "hurdle" to file protest
 - Expected benefit insufficient for "bad" protests?
 - Expected benefit sufficient for "good" protests?
- u Key question: What is the right split?

The Problem with Fixed Splits

Simple Model: Two Sellers

Notation:

- P_L = Lower bid price
- P_H = Higher bid price
- Let $R = P_L / P_H$

• $0 \leq R \leq 1$

- S_L = Share or split awarded low bidder
- S_H = Share or split awarded high bidder

•
$$S_L + S_H = 1$$

• $0 \le S_H \le \frac{1}{2} & \frac{1}{2} \le S_L \le$

Endogenous Split Award Function

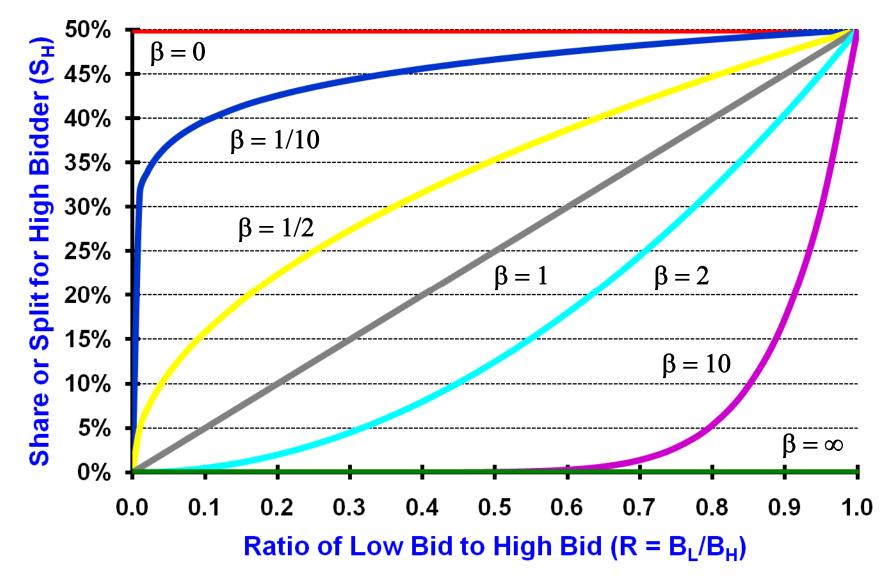
Example Split Function:

• $S_H = \alpha R^{\beta}$

- α = maximum share to low value bidder ($0 \le \alpha \le \frac{1}{2}$)
- $\beta \ge 0$
- ${\rm S}_{\rm H}$ is increasing in α & R
- S_{H} is decreasing in β

DoD decision: What are the best $\alpha \& \beta$?

Split Award Scenarios with $S_H = \alpha R^{\beta}$


	β = 0	0 < β < 1	β = 1	$1 < \beta < \infty$	$\beta = \infty$
	S _H = 0	S _H = 0	S _H = 0	S _H = 0	S _H = 0
α = 0	Winner- Take-All	Winner- Take-All	Winner- Take-All	Winner- Take-All	Winner- Take-All
0 < α < ½	S _H = α Fixed Split	$0 \le S_H \le \alpha$ $S_H > \alpha r$	$0 \le S_H \le \alpha$ $S_H = \alpha r$	$0 \le S_H \le lpha$ $S_H < lpha r$	S _H = 0 Winner- Take-All
α = 1/2	S _H = ½ Even Split	$0 \le S_{H} \le \frac{1}{2}$ $S_{H} > \frac{1}{2}r$	$0 \le S_{H} \le \frac{1}{2}$ $S_{H} = \frac{1}{2}r$	$0 \le S_{H} \le \frac{1}{2}$ $S_{H} < \frac{1}{2}r$	S _H = 0 Winner- Take-All

Better for High Bidder Worse for Low Bidder

Worse for High Bidder Better for Low Bidder

Acquisition Research Symposium

Split Award Scenarios with $S_H = \frac{1}{2}R^{\beta}$

Factors Under Investigation

- u Imperfect information & error
- u Dynamic/repeated procurement
- u Learning/experience effects
- u Pre-bid investment & innovation
- u Economies of scale

Imperfect Information & Award Error

- u Award error could arise from a number of sources:
 - Imperfect information about bids (price or quality)
 - Accidental error by buying agent
 - Buying agent bias
- For simplicity, we model the source of award error as imperfect information about seller bids

Imperfect Information & Award Error

- Without loss of generality, assume buyer knows P_H
 but has imperfect information about P_L
- u Let $R = P_L / P_H$

 $-0 \leq R \leq 1$

u Let r = Buyer's estimate of R

 $-0 \leq r \leq 1$

- u $r \sim B(N,R)$ Bernoulli?
 - Binomial with N draws & expected value R
 - Higher N \Rightarrow more accurate estimate of R