
1

Improved Software Testing for Open
Architecture

Valdis Berzins

Professor of Computer Science, Naval Postgraduate School

Agenda

• Research Context
– U.S. Navy Open Architecture
– Problem Addressed & Proposed Solution

• Profile-Based Automated Software Testing
– Automated Testing Process
– HFPM Functional Concept
– Acquisition Community HFPM Employment
– Deriving HFPs from Historical Data
– Validating HFPs
– Deriving Stress-Testing HFPs from Historical Models

• Conclusions

2

3

U.S. Navy Open Architecture

• A multi-faceted strategy for developing joint
interoperable systems that adapt and exploit
open system design principles and architectures

• OA Principles, processes, and best practices:
– Provide more opportunities for completion and innovation
– Rapidly field affordable, interoperable systems
– Minimize total ownership cost
– Maximize total system performance
– Field systems that are easily developed and upgradable
– Achieve component software reuse

Problem and Proposed Solution

• Traditional U.S. Navy Software T&E practices will
limit many benefits of OA
– It will be virtually impossible to field frequent and rapid

configuration changes

• New Testing Technologies, Processes & Policies
are Needed
– Determine how to Safely Reduce Amount of Testing

Required (Berzins, 2009)
– Transition from Manual Testing to Profile-Based

Automated Statistical Testing

4

HFPM-Based Automated Software
Testing Process

• Software’s requirements, CONOPS, architecture
standards, and interfaces used to establish
boundaries for component testing

• Component’s external environment analyzed and
characterized

• Environment statistical model (HFPM) used to
automatically generate test cases, execute test cases
and check component outputs

5

Effective for new development efforts, reuse, or COTS acquisition Effective for new development efforts, reuse, or COTS acquisition

6

High-Fidelity Profile Model (HFPM)
• HFPM utilizes statistical environment characterizations to

automatically test software
– Profile-Based => Optimized test case coverage
– Automated => High #s of test cases => High confidence in results
– Concept is scalable from component to system level

• Model is reusable, following component throughout life-cycle
– Profiles can be modified to check component behavior in multiple

environments and at different stress-levels
– Model can be used to check multiple component configurations during

iterative development
– Model architecture is reusable

• HFPM developed to accompany each component during testing
– Initial investment up front enables long-term benefits including reduction in

testing time and more effective & efficient testing

7

8

HFPM-Based Testing Employment for
U.S. Navy Acquisition

• HFPM developed and used during new software
development, COTS acquisition, or reuse event by R&D team
– R&D DT profiles include stress-testing profiles

• Component, HFPM & profiles passed to IV&V for
developmental testing (DT)
– IV&V team can use R&D profiles or modify if desired
– R&D / IV&V DT loop continues until software is mature

• Mature component, HFPM & DT report passed to certification
team for operational testing (OT)
– Certification team defines OT requirements
– R&D OT trusted agents develop operational profiles
– Cert team conducts/witnesses OT and certifies component or sends

back for more development & DT

9

10

Deriving HFPs from Historical Data

• Collecting historical data
– Lots of real data is best
– Else can approximate using known constraints

• Characterizing historical data
– Maximum Likelihood parameter estimation
– Maximum A Posteriori probability estimation
– Kernel density Estimation
– Parzen Neural Network

11

Example: Maritime tracks

12

Notional Small Boat Maximum Velocity PDF (Knots) (Dailey, 2010)

Validating HFPs

• Bayesian Information Criterion
– Minimize (K ln N – 2 ln L)

• K: number of free parameters to be estimated
• N: number of data points
• L: maximum of the likelihood function for the estimated

model

• Goodness of Fit Tests
– Minimize sum of squared error

• Confidence calculation based on amount of
historical data

13

Deriving Stress-Testing HFPs from
Historical Models

• Standard deviation-based methods
• Scale-expanding transformations

– P(x-m) P((x-m)/s), s ∈ {10, 100, 1000, …}
– Work for numerical and vector types

• Probability scaling transformations
– P(x) P(x)1/n, n ∈ {2, 3, … , 20}
– Work for arbitrary data types

• Utilization of dominating test cases
• Defining coverage criteria

14

Example: Probability Scaling Transformation

15

Original N = 2 N = 3 N = 4 N = 5 N = 10 N = 15 N = 20
P1 0.88888889 0.670925 0.526601 0.432891 0.369481 0.233181 0.134859 0.128692
P2 0.1 0.225035 0.254214 0.250707 0.238684 0.187417 0.128468 0.12409
P3 0.01 0.071162 0.117996 0.140983 0.150599 0.14887 0.12206 0.119418
P4 0.001 0.022504 0.054769 0.079281 0.095022 0.118252 0.115971 0.114922
P5 0.0001 0.007116 0.025421 0.044583 0.059955 0.093931 0.110186 0.110595
P6 0.00001 0.00225 0.0118 0.025071 0.037829 0.074612 0.10469 0.106432
P7 0.000001 0.000712 0.005477 0.014098 0.023868 0.059266 0.099468 0.102425
P8 0.0000001 0.000225 0.002542 0.007928 0.01506 0.047077 0.094506 0.098568
P9 0.00000001 7.12E-05 0.00118 0.004458 0.009502 0.037395 0.089792 0.094857

Dominating Cases for Stress Testing

Error Type Heuristics for choosing
stress test cases

Numeric Overflow Largest and smallest
representable numbers

Buffer Overflow Very long input string
Free Storage Overflow Create many new objects
Wrong Conditional Logic Data values close to the both

sides of an interval boundary
Unprotected Pointers Null pointer
Unprotected Division Zero

16

Conclusions

• Effective and cost-efficient testing can be
achieved by a mixture of automation methods
– Determine which tests can be safely eliminated
– Determine which test cases will most-likely expose errors

• This research defines a statistically-based
automated testing process that can be executed
using historical environment data
– Reduces testing time while increasing coverage
– Model-driven process is reusable, scalable
– Process should enable benefits brought on by OA

17

