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Proceedings of the Annual Acquisition Research Program 
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Abstract  
The Department of Defense is transforming its logistics and business systems to 

become agile, global-in-reach, and readily adaptable to evolving threats—all with significantly 
reduced Total Ownership Costs. However, the scope and complexity of these systems pose 
significant technical and programmatic challenges, successful management of which requires 
accurate engineering, planning, and cost estimation data. Because these programs and 
systems are information intensive, the costs of data acquisition are governed by the efficiency of 
communication, coordination and control activities. Likewise, they govern the capability of tools 
such as Earned Value Management (EVM). Unfortunately, much of the information essential to 
formulating accurate Planned Value (PV) estimates is not available until after a program is well 
underway. The key to information/data accuracy lies in the rate and extent to which uncertainty 
surrounding estimates is eliminated.  

The confidence that can be placed in estimates, such as Planned Value, depends on a 
range of factors—all dominated by the maturity and discipline of Project Management, Quality 
Assurance, Enterprise Architecture, and Systems Engineering. Unfortunately, measures of their 
effectiveness have traditionally proven to be hard to implement, hard to interpret, and lack a 
clear relationship to the accuracy of Planned Value calculations.  

However, several observations from Information Theory can be applied to these 
estimation problems. These include: (1) directly measuring the often unknown and usually 
unobservable “true” Planned Value parameters; (2) measuring the indirect costs for coordination 
and control—which represent the vast majority of activity costs for information-intensive 
organizations and programs—which could pave the way for more efficient and more 
comprehensive Activity-based Costing.  

The strategy employed in this paper is to develop measurement models based on 
estimation techniques borrowed from Adaptive Control Theory (i.e., for closed-loop systems with 
unidentified components). The models predict the extent and rate of change (reduction) of 
uncertainty with respect to the confidence intervals bounding Planned Value calculations. By 
implication, the reduction (convergence) rate also indirectly measures the efficiency of 
information utilization of an organization—and, thus, System Effectiveness. 

The measurement models outlined in this paper incorporate metrics from standard 
program management “Dashboards,” (a few of which are provided in the Glossary) along with 
measures of response delay and uncertainty that can be implemented as a discrete event 
simulation whose outputs can be compared against project data repositories—such as NASA’s 
SEL (Software Engineering Laboratory). The benefits of this approach include providing 
Decision Makers with: (1) “on-demand” capability for assessing both confidence levels for EV 
estimates, their underlying Planned Value calculations, and other project management 
parameters; (2) the rate of improvement in those confidence levels; (3) heuristic insight into the 
dynamics and consequences of decisions for their projects under a range of uncertain 
conditions.  
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The proposed measurement models are part of the shift to performance and model-
based acquisitions in which cost, performance, and schedule trade-offs are quantitatively 
integrated to enhance the decision support available to program managers throughout a 
program’s lifecycle. 

Key Terms: Earned Value, Planned Value, Information Theory, Enterprise Architecture, 
Systems Engineering, Adaptive Estimation, Control Theory, Project Management, Information 
Productivity Paradox 

Introduction 
Earned Value Management (EVM) enables managers to anticipate problems and to take 

pre-emptive action. But, EVM implicitly assumes a level of accuracy for Planned Value (PV) that 
may not be justified, especially at the onset of a project, even for organizations with 
demonstrated capabilities. This is due to the inherent complexity and scope of the large-scale 
COTS Acquisition/IT modernization initiatives, rapidly evolving environments environment, and 
the continual evolution of technology.  

However, organizations with strong Program Management and Systems Engineering 
capabilities can rapidly improve their estimates of project control variables such as scope, risk, 
schedule, and cost. These capabilities determine the rate at which the uncertainty can be 
removed from the information employed by an organization. The processes governing these 
rates and associated uncertainty levels can be modeled using traditional state variable methods 
and several results from Information Theory. The models generate (indirect) measures of the 
gap between estimated and “true” (and unobservable) parameter values that quantify the level 
of non-specificity (uncertainty) of the information resident in PV and related estimates. This 
provides a basis for determining whether and when enough information is available to satisfy 
specific confidence levels for estimates. The steady growth of best practices, as advocated by 
the CMMI, 6-Sigma, OPM3, and the availability of project management tools, indicate that the 
methods discussed in this paper can be applied at reasonable cost to provide previously 
unavailable decision support capabilities. 

The approach outlined in this paper also scales up to large-scale, COTS-based IT 
modernization projects, which have minimal software development requirements, but 
nonetheless a large number of unknowns. For example, a “typical” SAP business system 
implementation will have thousands of critical parameters, each of which may be associated 
with a range of interdependencies that generate (unrecognized) ripple effects. Compounding 
these effects is a range of Information Assurance, Inter-operability, mission and agency-related 
requirements, undocumented complexities associated with yet-to-be phased-out legacy 
systems, all in addition to the competing demands of the program’s stakeholders. The outcome 
is substantial integration, cost, performance, and schedule risk that results in the high level of 
uncertainty that drives the “Information Productivity Paradox.” 

The Information Productivity Paradox 
The Information Productivity Paradox results from technology investments that do not 

improve productivity, because these investments do not contribute to technical and 
programmatic integration. That is, the new technology does not eliminate traditional 
organizational “stove-pipes”). Invariably, this is a consequence of immature organizational 
processes (e.g., as defined by the CMMI, OPM3, 6-Sigma) that result in poor planning and 
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oversight. The low level of integration exhibited by bureaucratic organizations drives the low 
level of rate-of-change and the absence of timely feedback, which limits the capability to “learn,” 
thus constraining the integration needed to improve productivity. The consequences of this 
adverse feedback loop include limited capability to control the prime cost driver of information 
intensive organizations—the effort consumed in the coordination and control of information (“10 
Myths,” construx.com). 

Absent that control, uncertainty levels will be high, thus precluding the “agility” needed to 
achieve the pre-requisites for accurate EVM. The attributes of that agility include:  

 Commonality of data and information processes   

 Efficiencies of scale  

 Integration across functions 

 Availability of real-time information  

 Processing efficiency 

The relationships underlying these attributes can be expressed as a state variable 
system of organizational dynamics, using the methods pioneered by Jay Forrester (1999) that 
can establish the convergence rate of estimated and true Planned Values. 

The strategy behind this approach is called “adaptive estimation” and has been applied 
to a wide range of processing and signal control applications in electrical utilities, manufacturing, 
and aerospace (Schweppe, 1973), which will be discussed after some basic EVM concepts are 
introduced. 

How EVM Works—An Example 
EV measures work—accomplished against a predefined schedule, thus enabling 

decision makers to systematically assess progress. As the elements of work are completed, 
their budgets are “earned,” thus quantifying the amount of work accomplished over time. This is 
Earned Value Management (EVM). 
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Figure 1. The Evolution of Cost Fidelity (McConnell, 1997, p. 31) 

But, EVM assumes that Planned Value data is accurate, a condition that is rarely 
satisfied at the onset of a large scale IT infrastructure modernization, regardless of capability 
level. The variability of estimates is particularly pronounced at the onset of an IT modernization 
project, as illustrated in Figure 2, below.   

EV is calculated as follows. 

Schedule Variance (SV) is defined as: 

[4.1] SV = EV – PV 

Progress against project schedule can be measured by evaluating [4.1] over a sequence 
of points in time, noting at each such time point whether {SV < 0, or SV >= 0}. PV is the a priori 
estimate of the work to be accomplished, and EV is what we observe at the end of each 
reporting period. If EV < PV at the end of a reporting period, then SV < 0 for that period. This 
means that the project is slipping schedule, and value is not “earned” since work is not 
completed on schedule. But, if SV >=0 then work is completed on schedule; so, the dollar value 
of the budget is “earned.” 

For example, if a widget worth $100.00 is to be delivered at the end of the month (this is 
the Planned Value), and the widget is completed by the end of the month, the Earned Value is 
$100.00, and the Schedule Variance is 0.  
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But, if the widget is only half completed at the end of the month, then the value earned is 
EV = $50.00, resulting in SV = -$50.00, which indicates that the project is slipping schedule, 
since only one-half the PV (Planned Value) was, in fact, delivered, or “earned.” 

Similarly, Cost Variance (CV) is defined as: 

[4.2] CV = EV - AC  

So, if the cost of producing one-half of a widget is $200.00 – the Actual Cost (AC), then 
the CV, from Eqn [4.2], would be $50.00 – $200.00, or -$150.00. 

But, these calculations assume that PV accurately represents the “true” workload, which 
takes time to calculate accurately, even for highly capable organizations, as illustrated in Figure 
1. Indeed, the NASA Software Engineering Laboratory (SEL) includes in its estimation process 
a 40% increase in the estimate of total workload made at project inception that will be needed to 
complete a project (Suter, 2005).  

The variance equations [4.1], [4.2] can be treated as rate equations for closed loop State 
Variable systems, from which the amount of uncertainty associated with the convergence rates 
portrayed in Figure 1 can be estimated. To that end, we consider next the construction of a 
State Variable system. 

Rate Equations, Organizational Dynamics and EVM 
The complex mixture of organizational time-lagged response rates, transient and steady 

state conditions generate different time shapes due to delay modulation that varies as a 
consequence of differing levels of information availability. Rate (action) variables indicate how 
fast levels of funding, resources, quality, risk, rework, action items, products 
developed/integrated/delivered, are changing. They determine not present, but future value, as 
indicated by the rate change in level per unit of time. 

The Cost and Schedule variance equations [4.1], [4.2] are rate equations defined by 
organizational policy, and can be derived using the following methodology: 

♦ Define the goal (e.g., an objective function defining cost, schedule, quality and other to be 
optimized (i.e., maximized or minimized as appropriate)  

♦ Observe the condition of the system (e.g., using methods such as periodic reviews of 
program progress, burn rates, requirement churn rates, quality, acceptance rates for tasks 
completed, etc.) 

♦ Provide the means to express the discrepancy between goal and observed condition; e.g., 
between “true” Planned Value (PV) and the estimated Planned Value.  

♦ Indicate what action is to occur, given the discrepancy observed  

The rate equations [4.1] and [4.2] are instances of state variable systems which have the 
general form: 

[5.2 ]   [dSV(t)/dt ]  = dx(t)/ dt = A*x + b*u + e1*v1 
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           [dCV(t)]/dt]      

The composition of the state variable vector, x, is arbitrary and can consist of standard 
project variables such as schedule, cost, functionality, risk, quality, performance, each of which 
could be decomposed into ever finer levels of detail.  

A, the coefficient matrix describes the processing efficiency of the organization in 
responding to events. It can represent system efficiency as a ratio of Input/Output coefficients 
as measured in terms of processing rates/hr, tasks completed/week, etc. (To maintain 
mathematical tractability, it is normally treated as a constant, but can be made function of time.) 

u(t) is the control vector, and consists of adjustments to the state variables as defined by 
management-concerning factors such as resource and budget allocations, schedules. The 
effectiveness u(t) is constrained by situational awareness and organizational capability, and, 
hence, the quality and timeliness of the information available. 

v(t) is vector of observational errors caused by factors such as incomplete, poor, or 
delayed information.  

b, d are vector coefficients of the control variables u(t), v(t) 

e1, e2 are vector coefficients of the control variables v1(t), v2(t) 

“t” is time, and is the yardstick for measuring delay effects, task time, interrupt time, 
transient and steady state responses, etc. (It is implicit on the right-hand side of [5.2]) 

Model Based Measures of Uncertainty 
Delay is inherent to organizations because information cannot be gathered, analyzed, or 

transmitted instantaneously. Thus, changes in the environment, slips in schedule may, or may 
not, be recognized when they occur. For example, decreases in data quality typically generate 
increased disruption in operation. As more resources are shifted to fixing and correcting data 
records, the rate at which information is processed decreases. The resulting inefficiency 
generates increased correction and rework rates, along with increased delays in task 
completion.  

The net effect is a decrease in “situational awareness” that adversely impacts Planned 
Value calculations. The consequence is a “Nash Equilibrium” which is the point at which the 
cost of acquiring the information needed to identify a better solution exceeds the perceived 
benefit (In Game Theory, a Nash Equilibrium occurs when no player has any incentive to 
unilaterally change his action, since a change in strategy by any one of them would lead that 
player to “earn” less than if remaining with his current strategy). H. Simon termed this 
“satisficing” (March & Simon, 1967). The location of that equilibrium point can be inferred by 
measuring the uncertainty inherent in state variable estimates. Capable organizations (as 
defined by the CMMI, OPM3, 6-Sigma, etc.) will systematically shift the equilibrium point over 
the course of a project to one affording more accurate assessments of “true” PV (Suter, 2005). 

That convergence is possible because organizational policy drives the level of 
organizational and technical integration that govern the timeliness and quality of information 
available to decision makers. Unlike resource flows, information flows are not conserved (i.e., 
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the use information does not deplete it). But, the value of information decays overtime and does 
so more rapidly in environments characterized by high levels of Entropy. The impact is 
especially pronounced for organizations with limited capacity for information processing that 
reside in rapidly evolving environments.  

The interrelationships among these variables constitute a closed-loop feedback system 
that impacts PV estimates in various ways such as: 

• The rate of change (e.g., improvement in the accuracy of PV estimates), while influenced 
by many factors, can be considered as proportional to delays in decision-making. That is a 
surrogate indicator of system effectiveness, a key component of which is information 
processing capability.   

• Fluctuations in the variability of (cost, schedule, quality, etc.) estimates are a consequence 
of (multiple) response lags arising from the interaction of factors such as: open-action 
items, unmanaged issues, delays in recognizing and adjusting to changes in requirements, 
scope, budget, market conditions.  

(The glossary lists some measures of these factors that could be built from a standard 
collection of project management dashboard metrics.)  

The “damp-out” rates for these fluctuations reflect different adjustment intervals that 
correspond to the level of organizational integration. Where the integration level is “low,” 
information transmission delays and distortion rates will result in sub-optimal policy decisions— 
the “Nash Equilibrium” effect. The consequences include an inability to control the continual 
stream of transient effects because of the greatly diminished timeliness and the value (quality) 
of the available information that precludes acquiring a true picture of the situation.  Among the 
unfortunate results is a continual stream of “brush fires” that must be brought under control.   

 The following Figure illustrates a few of these (overly simplified) feedback dynamics. 
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Figure 2. Organizational Capability/Information Effectiveness Feedback System 

The key relationships in Figure 2 can be represented as a set of equations comprised of 
two basic entities:  

(1) Levels - the amount of some quantity  

(2) Rates - the measure of change in level per unit of time.  

There are two types of rate:  

(2.1) Controllable: denoted as rectangles pointing to the right (these are the decision 
variables available to Management)  

(2.2) Not controllable: denoted as circles (which are functions of the controllable rates and 
their interactions with other rate parameters). 

There are two types of delay impact rates:  

(1) Task Execution (physical delay) 

(2) Time to recognize changes (informational delay) 

The impacts of the physical rates and levels on the flow of tasks are considered next, 
while those of information flows are considered in Section 8, below. 

[6.1] TB present = TB previous + � *(TQ – TC) 

The current Task Backlog (TB present) is the product of the reporting interval, �  and the 
backlog incurred during previous reporting which is defined as the difference between Tasks-in-
Queue (TQ) and tasks completed (TC). 

TC decomposes into Task Delivered (TD)—those accepted by the customer; and, TR, 
those not accepted which must be reworked. Thus, if TD > TQ, the present backlog is reduced; 
otherwise, it increases. 

[6.2] TC = TD + TR   

Tasks completed is the sum of Tasks Delivered (accepted by the customer) and those to 
be reworked (TR) 

[6.3] TQ = EPV+ TR  

Indirectly, TQ depends on EPV (which will vary inversely to accuracy of the resource and 
time requirement estimate) and the amount of Task Rework (TR)—due to defects, the failure to 
satisfy requirements, etc. “True Workload” (TW) is unknown because project scope typically is 
not well defined, requirements are not well understood and are subject to change.  While TW is 
not directly observable, the gap between it and TQ is a function of the amount of (relevant) 
information available to decision makers—which is a function of overall System Effectiveness, a 
quantity that can be estimated, as explained in Section 8, below. 
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[6.4] ITD = TB/TDR   

Impending Task Delays (ITD) can be expressed as the ratio of the Task Backlog (TB) 
(measured in units) to the Task Delivery Rate (TDR)—measured in units/month, which leaves 
ITD as an estimate of the time needed to complete backlogged tasks. This delay is based on 
physical capacity to handle the workload.  

There is also a second type of delay based on Entropy/Uncertainty-driven time delays. 
The first of these is: 

[6.5] RCTD = (1/TDDR)*(ITD – CDR) 

Recognized Change in Task Delay (RCTD) is defined as proportional to the difference 
between ITD and the time required to recognize delay in task completion, labeled as 
“Completion Delay Recognized” (CDR). The product of this difference and the fraction of Time 
for Delivery Delay Recognition (TDDR) indicate how quickly an organization can adjust to the 
gap between ITD and CDR (i.e., to the difference between physically driven and informational 
delays)—and this is a function of the amount of new information becoming available to decision-
makers in each reporting period.  

[6.6] CDR present = CDR previous + � *RCTD 

Completion Delay Recognized (CDR) equals the Completion Delay Recognized for the 
previous period plus the product of the reporting time period, � and RCTD. 

[6.7] TER present  = TER previous + � * KSE *SE 

Current Task Execution Rate (TER) is defined as equal to TER for the previous time 
period plus an amount proportional to System Effectiveness. 

The relationships of Figure 2, above, illustrate the role of information flows on system 
operations and on the capability to develop accurate PV estimates.  Assessing that impact is the 
province of Information Theory. 

Information Theory and Its Applications to EV Estimation 
For many applications, measures on state variable system parameters are either 

distorted or are outright impossible. Consequently, the observation process itself must be 
modeled (in its simplest form the process is illustrated in Figure 3). The first step in modeling 
estimate accuracy is to distinguish between two general types of noise and their effects. First 
are those caused by imperfections in the measurement of the output variables; the second are 
those caused by excluding (simplifying) processes from state space models with the aim of 
simplifying them. The effects of both must be factored into the models. 

Figure 3. The Estimation Environment—Signals, Measurement, Design 
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Both types of noise can be modeled using any (combination) of the four general 
estimation models found in the signal processing and statistical research literature. These are: 
the Fisher, Unknown-but-Bounded, Weighted Least Squares (WLS) and Bayesian. Of these, we 
shall only consider the first. By way of background, the WLS is limited to correlational analysis, 
and does not make any assumptions about underlying physical processes, which means that it 
is of limited value for the purposes of this paper.  

While WLS imposes the fewest assumptions, Bayesian models impose the strongest 
assumptions; namely, all of the state variable parameters have known underlying probability 
distributions as do its [Bayesian’s] corresponding error and observation models. Unknown-but-
Bounded (U-b-B) methods assume that observations on x can be viewed either as means to 
find: (1) the center of some set, or (2) a point estimate; with the � covariance matrix defining the 
size and shape of the set (often assumed in Signal Processing to be ellipsoid in shape). U-b-B 
models can be used to analyze systems such as [6.1] – [6.6], where both x and v are assumed 
to be unknown.  The Fisher estimation model assumes no a priori knowledge of the vector of 
state variable vector, “x” (i.e., it assumes no underlying probability distribution, and is thus 
defined as “unknown”). Only the noise vector “v” is characterized as a random variable (i.e., it 
has an underlying probability distribution).  

The questions of interest in this paper include: 

 What do differences in response times indicate for the accuracy of PV estimates?  

 What does the “time shape” (e.g., attributes such as lag, curvature, frequency, 
amplitude, variability) of a response indicate about the level of confidence that could be 
placed in estimate accuracy? 

 When, and under what conditions, can the accuracy of PV estimates be considered 
acceptable? 

 What effects do modeling errors have on the design and cost of decision support 
systems? 

 How can measures of information uncertainty be used to establish confidence levels for 
various parameter estimates? (Klir, 2006—This text provides a comprehensive 
introduction to Information Theory.)  

The first step in answering these questions is to develop a (static) linear estimation 
model of the observation process: 

[7.1] z = H*x + v 

Where: 

z: Is the set of observations on x as filtered (e.g., “distorted”) by H and v 

H: Defines the coefficient matrix of structural relationships defining the observability of 
the (unknown) state variables, x, that impact the observations z.  These relationships can be 
extracted from models such as those outlined in Figure 4, above.   
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v: In the Fisher model, it represents disturbances to observation of an uncertain nature, 
with:  

[7.2] E {v} = 0 

[7.3] E {v*v’} = R, which serves as a measure v 

The objective is to find a “best” estimation model that minimizes the error:   

[7.4] | x true – x^ |< �  

Where: 

��: Is some arbitrarily small amount 

x true: Is not known  

x^: Is the estimated, and distorted, value of x true, the “true” value of x is based on  

z actual : The vector of recorded observation values 

v actual: The actual value of uncertainty in the observation  

Using these (redefined) variables, [7.1] becomes 

[7.5] z actual = H* x true + v actual 

z actual and H are known, but x true and v actual are not known. So, x^ is constrained to 
depend on the known terms and on the uncertainty models for the unknown terms. For 
example, one element of the state variable vector x true is “True Workload” (TW), while EPV is 
an element of x^; v actual consists of errors in recording observations (observed data values), and 
H is the structure of organizational relations that systematically filter/distort z actual  

Using the known terms and candidate uncertainty models, the task is to: 

(1) Develop a computational model that best minimizes the error (gap) in [7.4]. 

(2) Determine how close is to x^ is to x true, which has the corollary problem of 
determining whether and how long it will take x^ to converge to x true. 

For Planned Value, [7.4] becomes 

[7.4’] |TPV – EPV| < �  

Which can be read as: the gap between “true” and estimated planned value is 
acceptably small. 

For the Fisher model, the covariance matrix, � can be pre-computed independently of z 
as follows: 

[7.6] �Fisher = [H’*R-1*H]-1 
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The error uncertainty, as measured in terms of the covariance matrix (�Fisher) can be 
used to determine whether and when the estimates, x^, will satisfy a pre-specified degree of 
accuracy, even though x true itself is not observable (Harley, 1928—Harley developed a measure 
of uncertainty for finite sets, which Shannon adapted to Communications Theory.).  

The estimate, x^ Fisher is: 

[7.7] x^ Fisher = �Fisher*H’*R-1*z    

[7.8] � (N|N)  ����Q > 0, R > 0  

If [7.8] is satisfied, then the covariance matrix is unique, positive definite, and satisfies 
Controllability (Q>0) and Observability (R>0) conditions—discussion of which is beyond the 
scope of this paper, except to note that they determine when [7.6], [7.7] will provide satisfactory 
estimates of x true. Also, beyond the scope of this paper are the conditions under which ill-
conditioned covariance matrices, biased, bounded, weighted, non-optimum estimators, and the 
conditions under which the “whiteness” of residuals can be used to define estimates that satisfy 
pre-defined confidence intervals. 

Adaptive Estimation—Planned Value Estimation and Uncertainty 
The organizational dynamics illustrated in Figure 2, above, constitute an incompletely 

specified closed loop state space system (i.e., one with unknown components). For these 
situations, estimates of state variables are updated as new information becomes available. This 
strategy is known as “adaptive estimation” and can be implemented using any of the standard 
estimation models, depending on the assumptions we make concerning the physical and 
information processes of interest.  

Schematically, the estimation problem can be portrayed as: 
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+ +
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Figure 4. Estimation for Decision Support Systems 

The first step in applying adaptive estimation to Planned Value estimates is to note that 
the state variable model, [5.2], can be represented in discrete time-case state variable model 
as: 

[8.1] x(n+1) = A(n)x(n) + G(n)*w(n)   
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Assuming H, A, G are known functions of time, [8.1] predicts the system state at time 
‘n+1’, over a set of discrete points in time, n = 0, 1, 2…   

In discrete time form, the estimation model, Eqn [7.5], becomes: 

[8.2] z(n) actual = H(n)*x(n) true + v(n) actual 

z actual and H are assumed to be known, but x true and v actual are not known  

The expectation and covariance of v are:  

[8.3] E(v) = 0; R = [v*v’] 

Applying [7.6], an estimator could be defined as: 

[8.4] W Fisher = � Fisher *H’ R-1 

Then  

[8.5] x^ (n) Fisher = W Fisher*z(n) n = 1, 2, …  

The conditions that would make W Fisher a “best” estimator are those of [7.8], above. And, 
they indicate when x^ (e.g., EPV) is sufficiently close to “true” Planned Value (x true), as 
measured against a pre-defined confidence level.  

The observations up to time n, z(1)…z(n) provide an estimate the state x^(n+1). The 
following table summarizes the key parameters of the state variable estimation problem, Eqn 
[8.1], [8.2].   

Table 1. State Variable Parameters 

Variable Description 

z(n) Observations of x(n) filtered by z = H*x +v. Example, if z(1) is EPV, 
then the estimate of actual PV is x^(1) = W*z(1) 

v(n) Recording errors—observation uncertainty, which may be due to 
limited or incomplete data 

w(n) Uncertain inputs to organization processes—due to changes in project 
scope, environment 

A(n) Structural determinants of organizational dynamics 

x^(n1|n2) Is the best estimate of  x(n1) using observations z(1)… z(n2) (One 
element of this vector is Estimated PV)  

x true   Actual system state (i.e., “true” PV, which accurately represents the 
“true workload) 
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G(n) The (structured) relationships governing the handling of uncertain 
inputs 

H(n) Structural relationships governing observation (recording) accuracy     

“n” Discrete time points n = 0, 1, 2…k 

x(0) Vector of Initial conditions, which may be uncertain, such as a first 
estimate of Planned Value 

R Observability covariance error matrix with E{v}= 0 and with R = E{v*v’} 
for the model z= H*x + v 

Q Q= E{w*w’} is the Controllability covariance matrix of uncertain inputs 
to organizational processes, and E{w} =0  

 

To determine the amount of new information that becomes available to a project, and 
moves a project closer to satisfying the conditions of [7.9], we define: 

[8.6] J(N|N) = �-1
 Fisher (N|N), N = 0, 1, 2… 

J(N|N) is the inverse of the covariance matrix is the Fisher Information Matrix, and 
measures the amount of information contained in x^(N|N); that is, z(1)… z(N) about x(N). (A 
discussion of why this is so is beyond the scope of this paper but can be found in Klir (2006), 
and Schweppe (1973). 

[8.7] X(N|N) = J(N|N)*x^( N|N)  

Is the actual information in x^(N|N); i.e., is contained in z(1)…z(N)] about x(N), 

where x(N |N) is read as the state vector x at time “N” given “N” observations 
(Schweppe, 1973, sec. 6.2).  

Without going into detail, J and X can be used to measure how much information is lost 
due to the presence of uncertain inputs w(n) to the system. They also provide a means to 
construct an “Information Discount Rate (IDR)” against which the value and rate of investment in 
policies, tools aimed at reducing uncertainty, could be assessed. (IDR is a rate used to 
determine the present value of future information that can be constructed from estimates of the 
rate at which “uncertainty” is removed over a succession of estimates. This provides one 
mechanism to assess various projects estimates.) 

System Effectiveness (SE) can be defined as proportional to the ratio of amount of 
change in new information acquired between the present time period (N+1) to that acquired in 
previous time period (N), as measured by [8.8], [8.9], both of which provide feedback to the 
organizational models of [6.1] - [6.7]. For example, TDDR of Eqn [6.4], above, is dependent on 
the amount of time required for sufficient information to be acquired for decision making, thus 
making it proportional to SE, where:  
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[8.8] SE = J(N+1)/J(N) – measures the percent gain in information between reporting 
periods N and (N+1). (Other measures are, of course, possible and may prove more useful) 

[8.9] TDDR = K3*SE (N+1) = K4* J(N+1)/J(N)  

 Thus, various types of delay such as TDDR can be made explicit functions (changes in 
information available to decision makers) and can be used to explicitly model the information 
flows that govern organizational effectiveness as in Eqn [6.5]. 

Some of these effects, including their impact on the evolution of accuracy of Planned 
Value estimates, are illustrated in the following graph—using “synthetic” (and “smoothed-out”) 
data.  
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Figure 5. Information Uncertainty Impacts to Planned Value Estimates 

The State Variables referenced in Figure 5 are: 

TW = True Workload (assumed proportional to True Planned Value) 

RCTD = Time to Recognize Delay in Task Completion 

EPV = Estimated Planned Value 

TER = Task Execution Rate 

TB = Task Backlog 

The Figure is a heuristic device to illustrate the fluctuations in the coupled feedback loop 
systems of Eqn [6.1] – [6.7], the interactions of which govern task flows and the associated 
delays (such as RCTD) in information flows and other system parameters such as task 
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execution rates (TER), and Task Backlog (TB) levels. The interactions determine the rate at 
which uncertainty (non-specificity) is reduced and, thus, the degree of confidence that can be 
placed in EV.  

Thus, in the Figure, EV steadily approaches “true” PV (with a slope that approximates 
the inverse of the uncertainty level (entropy), while RCTD and TER share a (coupled) time-
lagged oscillation rate that declines over time as does the Task Backlog (TB) level.  

Summary 
EVM is a valuable tool for managing complex projects, but it rests upon assumptions 

that can be difficult to satisfy, especially at the onset of a project, and which may never be 
satisfied by projects with low management capability levels.  

However, state variables methods, combined with results from Information Theory can 
be used to assess the accuracy of Planned Value estimates, the specificity of the underlying 
information, and, thus, the degree of confidence they merit. These are effects of 
information/system efficiency that can be inferred from measures such as the variability and 
time-lagged responses of rate parameters in response to perturbations and shifts in levels of 
uncertainty.  

The next step is to complete and to refine the models, their associated measures, and 
then validate them against actual project data. Then, they can be implemented as software 
based tools for use with existing Project Planning tools. 

The measurement models outlined in the paper provide the means to provide decision 
support in a cost-effective manner where they can be integrated with the automated data-
acquisition tools; where improvements in organizational capabilities levels are present, the 
methods outlined in this paper can be implemented. 

Glossary 
Term Definition 

Activity-based Costing 
(ABC) 

Is based on the assumption that products directly consume 
activities, not resources.  Therefore, the cost of a product is the 
sum of all the costs of the activities performed to produce that 
product. 

Actual Cost (AC) The funds spent on work as of some specific date 

Controllability Is satisfied if an input to a system exists which takes the state of 
the system from any point to any other point in a specified time 

Discount Rate 

 

The interest rate used in determining the present value of future 
cash flows. 

Cost Variance (CV) CV = EV – AC 

Information Discount Rate The rate used to determine the present value of future information 
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(IDR) 

 

flows that can be constructed from estimates of the rate at which 
“uncertainty” (i.e., the non-specificity) of the information is 
removed from estimates provided to decision makers. 

Entropy The uncertainty (non-specificity) resident in information. The 
formal theory and measurement of uncertainty was first developed 
by Harley (1928, p. 535-563). Shannon employed the measure to 
quantify uncertainty in communication systems, and the amount of 
information needed to reduce that uncertainty acceptable levels. It 
is a point-wise information metric that quantifies the association 
strength between 2 events by measuring (in probability terms) the 
amount of information that event 1 tells us about a second event.  

Earned Value (EV)  The measure of work completed within a pre-determined time 
period. Thus, if the Planned Value of the work to be completed 
within a month is $100.00, if that amount of work is completed 
within that time period, then the budgeted amount for that work is 
“earned.” 

Earned Value 
Management (EVM) 

The set of methods, policies and procedures use to estimate EV 

Observability 

 

Is satisfied if it is possible to determine the state of a system from 
knowledge of the output, and input, without knowledge of initial 
conditions 

Planned Value (PV) The amount of work budgeted for completion within a specific 
period of time 

SEL Software Engineering Laboratory at NASA, Goddard 

Schedule Variance (SV) SV = EV – PV 

  

Organizational Capability 
Measures include: 

 

BGCI: The Binary Group 
Index  

Measures whether the vendor passes or fails a group of Binary 
Exit or Entry Criteria 

DAI: Deliverable 
Acceptance Index  

 

Measures the Quality performance standard for all acceptance-
based deliverables. 

DAI = the number of times a developer submits the final version of 
a deliverable before approval by the customer 

RA/RE: Results 
Achieved/Results 
Expected Index  

 

Measures the percentage of expected results actually achieved for 
results-based deliverables. The type of results will differ by 
deliverable (e.g., training results for training deliverable, test 
results for a test deliverable) but the method to collect and assess 
the results (the RA/RE Index) will be consistent 

SVI: Schedule Variance SVI is the difference in the number of days between the expected 
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Index 

 

and actual delivery date for a milestone or deliverable. It provides 
a schedule performance standard for all deliverables and 
milestones 
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