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Abstract  
Digital engineering transformation changes the practice of systems engineering, and drives the 
need to re-examine how engineering effectiveness is measured and assessed. Early engineering 
metrics were primarily lagging measures. More recently leading indicators have emerged that 
draw on trend information to allow for more predictive analysis of technical and programmatic 
performance of the engineering effort. By analyzing trends (e.g., requirements volatility) in context 
of the program’s environment and known factors, predictions can be forecast on the outcomes of 
certain activities (e.g., probability of successfully passing a milestone review), thereby enabling 
preventative or corrective action during the program. This paper discusses continuing research 
on the adaptation of existing systems engineering leading indicators (developed under the 
assumptions of document-based engineering) for digital (model-based) engineering. Model-based 
implications identified in the research are discussed in support of the use of existing leading 
indicators in digital engineering programs. An illustrative example describes how measurement 
data can be extracted from a digital system model and composed into indicators. The importance 
of visualization and interactivity is discussed, especially the potential role of visual analytics and 
interactive dashboards. Several recommendations for future research are proposed based on 
interim research findings.  

Introduction  
Defense programs have long used engineering metrics to provide status and historical 

information, but implementation has been limited by the nature of the traditional, document-
based engineering approach. Further, early systems engineering metrics were primarily lagging 
measures, providing information for the next program instead of the current one. Systems 
engineering leading indicators were subsequently developed to allow for more timely predictive 
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analysis of the technical and programmatic performance of the engineering effort on a program. 
Leading indicators use an approach that draws on trend information to allow for more predictive 
insight (Rhodes et al., 2009). A systems engineering leading indicator is a measure for 
evaluating the effectiveness of how a specific program activity impacts engineering 
effectiveness, which may affect the system performance objectives.  

Both lagging and leading indicators are found to be useful in many fields (e.g., 
economics, health, social science; Zheng et al., 2019). While lagging measures (e.g., system 
defects) continue to provide useful information over time for an enterprise, they are insufficient 
for real-time decisions during a program. Relatively little evidence exists on the application of 
leading indicators in the engineering of systems. The value of leading indicators comes from 
examining trends (e.g., requirements volatility) in context of the program’s characteristics and 
known factors. This information can then be used to make predictions to forecast the outcomes 
of certain activities (for example, likelihood of successfully passing a milestone review). Leading 
indicators have provided some improved ability to assess ongoing engineering effort, and where 
necessary, take preventative or corrective action during the program.  

Existing leading indicators were developed under the document-based engineering 
approach. The introduction of digital engineering practices can have a potentially radical or 
disruptive impact on the processes, tools, and time lines of engineering programs. Rapidly 
accelerating analytical and design capabilities will have limited impact on overall program pace 
and effectiveness if reviews and decision-making processes fail to adapt to the processes and 
cadence of digital engineering and management. Research is necessary in order to understand 
and adapt existing indicators for digital engineering and management practice. Additionally, the 
art of the possible needs to be explored including how digital system model information could be 
used to extract and compose base measures into indicators. Investigation is also needed to 
understand how newer sciences and technologies—such as data science, visual analytics, and 
interactive dashboards—could better inform timely leadership decisions in model-centric 
programs.  
Background  

Foundational work on systems engineering leading indicators was initiated in 2004. The 
early efforts produced a systems engineering leading indicators guide (Roedler & Rhodes, 
2007) with 13 leading indicators defined using measurement specifications. This work was 
subsequently evolved through collaboration from organizations and individuals across the 
systems engineering community with over 20 organizations as contributors. The result was a 
second version of the guide (Roedler et al., 2010), with five new leading indicators and several 
appendices added. Additional studies and papers have also been published by various authors 
(Elm et al., 2008; Elm & Goldenson, 2013; Gerst & Rhodes, 2010; Gilbert et al., 2014; Knorr, 
2012; Montgomery & Carlson, 2010; Orlowski, 2017; Orlowski et al., 2015; Rhodes et al., 2009; 
Shirley, 2016; Zheng et al., 2017; and Zheng et al., 2019).  

Prior work on leading indicators was done under the assumption of traditional, 
document-based engineering practice. This paper shares interim findings of a continuing 
research effort to investigate adaptation of the systems engineering leading indicators for digital 
engineering and use in model-centric programs.  
Motivation and Research Approach 

The broad motivation for the work is to enable more timely and informed decisions on 
systems engineering activities and resources. The transformation to digital engineering has 
prompted a need to re-examine the systems engineering leading indicators for this new context. 
The investigation aims to provide findings for model-centric programs seeking to use the leading 
indicators, as well as contribute recommendations to inform the larger effort of the systems 
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engineering community to establish the next generation of digital engineering effectiveness 
measurement.  

Since each of the indicators requires some additional considerations under digital 
engineering, the first year in this research focused on identifying potential modifications and 
interpretation guidance (Rhodes, 2020). The digital engineering environment and newer 
technologies open new possibilities for providing program leaders with leading insights into the 
effectiveness of systems engineering efforts. Accordingly, in the second year of the research the 
focus has been on defining specific model-based implications for the 18 leading indicators, and 
possible enhancements through three areas of inquiry. First, the research explores how metrics 
data can be obtained from digital system models that are produced by the systems engineering 
team. Second, it explores how information from descriptive system models can be extracted and 
composed as composite leading indicators that give overall indication of effectiveness versus a 
set of separate indicators. An illustrative case is used to show how measurement data can be 
extracted directly from descriptive system models and composed as enhanced leading 
indicators that can provide insight into effectiveness of engineering on a model-centric program. 
(Note: Integrated model-based tools were used in investigations during this research project. 
The selection of tools in the examples is not intended as an endorsement; the software used by 
the research team was selected based on pre-existing availability and case examples). Third, 
the research seeks to understand how interactive dashboards can be used to extract and more 
effectively display measurement information to positively impact program reviews and decisions.  

The justification for pursing this research approach extends from the DoD Digital 
Engineering Strategy (DoD, 2018), which discusses five goals. Goal 3, Incorporate 
Technological Innovation to Improve Engineering Practice, has a Subgoal 3.2 that discusses the 
use of technological innovations to improve digital engineering practice. There are many 
technological innovations of interest; some are specifically relevant to both the measures of 
digital engineering effectiveness on a program and the enabling technologies to support 
collection, analysis, and display of leading indicators of engineering effectiveness. As noted in 
the strategy, “data analytics can help gain great insights from existing model data” (DoD, 2018, 
p. 14). The strategy recommends that stakeholders use technological innovations to improve 
decision-making and performance of computationally intensive engineering activities.  

The collection and analysis of systems engineering measurement data falls under that 
category of activities. Digital engineering tools are recognized as a means to increase 
engineering efficiency (DoD, 2018, p. 17) and to provide access to vast data. Leading indicators 
are especially important to monitoring effectiveness on a continuous basis, and also to ensure 
that effectiveness is not compromised for sake of efficiency. The strategy calls for leadership to 
“establish accountability to measure, foster, demonstrate, and improve tangible results across 
programs and the enterprise” (DoD, 2018, p. 22). Common enabling technologies used in digital 
environments to generate, analyze, and display measurement data will encourage a common 
foundation for cross-program comparison and learning.  

Knowledge gathering from subject matter experts through technical exchanges and 
workshops provided insights regarding adaptation of leading indicators and potential new 
indicators of interest. This includes investigation of publications, studies, workshop reports and 
interim research findings from academic research groups, professional and industry societies, 
and cross-industry initiatives. Literature review is used to explore newer leading-edge 
techniques and approaches for collection and synthesis of measurement data, as enabled by 
digital engineering practices and environments.  
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Measurement Specifications 
Standardizing leading indicators of engineering effectiveness across programs is 

facilitated through measurement specifications. The systems engineering community has been 
using measurement specifications for many years, based on foundational work of PSM in 
software and systems measurement (PSM, 2020). The systems engineering leading indicators 
initiative adopted the PSM measurement specification format. Accordingly, each of the systems 
engineering indicators is characterized using a measurement specification with detailed 
description, insights provided, interpretation guidance, and usage guidance. Detailed contents 
of the measurement specifications for leading indicators is described in Roedler et al. (2010) 
and summarized in Table 1.  
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Table 1. Systems Engineering Leading Indicator Specification Fields (Roedler et al., 2010, adapted by 
Zheng et al., 2019) 

 
In the near term, the existing measurements specifications can be augmented with 

model-based implications. In the future, modified and new measurement specifications are 
envisioned in a new release of the leading indicators guide. Developing the next version of the 
guide necessitates a community effort extending from implications identified in this research, 
insights from practitioners, and results of ongoing investigations and initiatives on digital 
engineering metrics.  



 
 

Acquisition Research Program 
Graduate School of Defense Management - 66 - 
Naval Postgraduate School 

Model-Based Implications for Leading Indicator Implementation  
The existing 18 leading indicators, as investigated through semi-structured interviews 

and technical exchange workshops, were shown to have varying implications related to model-
based systems engineering. The implementation of a leading indicators in context of digital 
engineering will be based on many factors, such as nature of the program, processes used by 
the enterprise, model-based toolset selection and implementation, engineering culture of the 
enterprise, and maturity of digital engineering in the enterprise, as well as external influences 
(e.g., customer preferences, etc.).  

Based on research findings, the leading indicators are grouped into three subsets: (1) 
leading indicators most likely to be implemented with direct use of a model-based toolset; (2) 
leading indicators most likely to be partially implemented with use of a model-based toolset; and 
(3) leading indicators less likely to be implemented with use of a model-based toolset. The three 
groups of leading indicators are then summarized in Tables 2, 3, and 4 to highlight model-based 
implications. Prior to the summary tables, two indicators, requirements trends and facility and 
equipment trends, are discussed in greater detail.  
Requirements Trends Leading Indicator 

The Requirements Trends leading indicator is used to evaluate the stability and 
adequacy of the requirements to understand the risks to other activities toward providing 
required capability, on time and within budget. This is done through an evaluation of trends in 
the growth, change, completeness, and correctness of the system requirements definition, as 
well as the quality of and consensus around the system operations concept. This indicator 
provides insight into rate of maturity of the system definition against the plan, and whether the 
system definition is maturing as expected. Additionally, it characterizes the stability and 
completeness of system requirements that could potentially impact design, production, 
operational utility, or support.  

Requirements growth, changes, or impacts that exceed expectations or exhibit a lower 
closure rate of TBDs/TBRs than planned may indicate insufficient quality of architecture, design, 
implementation, verification, and validation efforts. This in turn could result in elevated schedule 
and cost risks, and/or a future need for different levels or types of resources/skills.  

Near Term: The use of requirements management tools and databases is a mature 
practice in systems engineering. Tracking the growth trends and volatility of requirements is 
therefore a relatively straightforward matter of the compilation of data on the requirements within 
the database and the development of processes for regular review and action where implied. 
These functions could be incorporated into or added to existing requirements management tools 
within the MBSE environment to assist program decision-makers in assessing progress during 
the system development.  

Longer Term: MBSE tools and methods introduce a number of new ways to assess and 
understand the quality of requirements and the degree to which they are being met over the 
course of the system development life cycle. A transition to primary use of an MBSE approach 
in system development could enable a broader range of analysis and model checking. 

The expression of requirements as executable models has been demonstrated to 
improve the quality of requirements and decrease errors relating to poorly-defined requirements 
(Micoun et al., 2018). Model-based requirements provide the ability to validate that the system 
model is logically consistent, and the ability to answer questions such as the impact of a 
requirement or design change, or the assessment of how a failure could propagate through a 
system. Using this approach, it is possible to verify design models using a simulation-based 
verification process in order to detect and remove design errors. Model-based requirements 
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may be included in a curated database for reuse in other development efforts, with the potential 
for savings in time and resources. 

Model-based requirements may be used in early system analysis to assess 
requirements completeness and correctness through the identification of gaps, conflicts, or 
redundancies in the existing requirements set, prior to the development of more detailed 
engineering models and analysis. MBSE analysis using model-based requirements could 
validate the requirements themselves and ensure they don’t contribute to undesirable emergent 
behaviors at the system level. A potential indicator of requirements quality in the MBSE 
environment might include the percentage of requirements that are formatted and expressed as 
models and the rate and total proportion of requirements validation through modeling and 
simulation at both the component and system level. 

Model-based requirements may be archived and reused across multiple development 
projects. Any issues that are identified with the requirements in one project could potentially be 
traced to other projects that use the same models. The traceability inherent in using these 
archived requirements models enables enhanced root cause analysis and system refinement, 
triggering actions to correct and validate the originating requirement to prevent continuing 
propagation of errors. An indicator of requirements maturity in an MBSE environment might 
include the proportion of requirements models that include a validation pedigree. The presence 
of requirements models without a validation pedigree (at least to a specific standard defined by 
the enterprise) could indicate greater risk of potential future requirements changes and 
instability in the system baseline. 
Facilities and Equipment Trends Leading Indicator  

The Facility and Equipment Availability Trends leading indicator is used to determine the 
availability of critical facilities and equipment needed for systems engineering activities over the 
project life cycle. The indicator is composed of two metrics, measuring facility availability and 
equipment availability. The intent of this indicator is to provide a view of facility and equipment 
availability on the project over time. Facilities and equipment are of different types and may 
provide key capabilities to the program. The facility availability measurement provides insight 
into the difference between the planned need for a facility type and the existing inventory of 
available facilities that meets the need for the desired capability. Insufficient facilities—labs, test 
ranges, floor space, etc.—of various types may cause a project to be unable to meet its 
customer needs, create costly overruns, and inability to meet schedule targets. Similarly, a 
project requires various types of equipment that also may provide key capabilities for the 
program. Equipment availability measurement provides insight into the difference between the 
planned need for an equipment type and the existing inventory of available inventory that meets 
the need for the desired capability. Insufficient equipment (fabrication equipment, measurement 
equipment, cleanroom equipment, test equipment, software and systems applications, etc.) may 
cause a project to be unable to meet its customer needs, create costly overruns, and inability to 
meet schedule targets. Facility Availability and Equipment Availability as measurable concepts 
assess whether adequate facilities and equipment can be allocated to the project to meet life 
cycle milestones. This reveals differences between systems engineering needs on the project 
and available facilities and equipment based on projected needs. The leading insights provided 
to the project are potential shortfalls of systems engineering related facilities and equipment, 
and potential problems with the project’s ability to meet desired milestones (Roedler et al., 
2010).  

Near Term: As an initial step in adapting the existing systems engineering (SE) leading 
indicators, the measurement specification can be augmented by adding model-based systems 
engineering implications to the Implementation Considerations within the Additional Information 
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section of the measurement specification. Model-based programs necessitate personnel have 
(or have access to) computing “equipment,” including desktop/laptop computers or workstations 
with adequate performance, access to networks and/or intranet, data and model repositories, 
model libraries, computer services support, data/cloud storage, etc. Facilities may include the 
individual engineer’s workspace, as well as collaborative spaces. There is also a need to have 
access to the selected version of model-based toolset that is maintained. The facilities and 
equipment need to support any required upgrades of versions, which may have implications for 
the existing computing facilities. Another implication consideration is that facilities and 
equipment must accommodate any necessary collaboration with other internal groups and/or 
external organizations (such as a supplier or customer) as needed. The facilities and equipment 
must be adequate to support this. This includes necessary facilities and equipment to support 
tool interoperability, data/model exchange, version compatibility control, model sharing, model 
security, etc. Model-based programs need to have adequate budget allocated, as insufficient 
availability of the necessary facilities and equipment will have major impact on systems 
engineering effectiveness. 

Longer Term: As we look to the future of digital engineering, the issue with using the 
existing Facilities and Equipment Availability leading indicator is that it takes a somewhat 
decoupled approach at these rather than as highly interconnected, as is the case for MBSE. In 
fact, with the transformation of traditional engineering to digital engineering, there is a need to 
look at this in context of the larger digital ecosystem. This includes interconnected digital 
environments that extend beyond the boundaries of the engineering organization. In the existing 
SE leading indicator guide published in 2010, the Facilities and Equipment Leading Indicator 
has relatively less substance than the other indicators given that it was not a major focus of the 
team. With digital engineering transformation, taking the perspective of the overall digital 
engineering ecosystems is necessary. The success of systems engineering on a program will 
be fully dependent upon the environment and infrastructure available to participate as part of the 
larger ecosystem. The supporting infrastructure required for digital engineering (Bone et al., 
2018) necessitates that a new leading indicator be developed respective to the importance it 
has to system success and the dimensions and complexity of that infrastructure.  
 Leading Indicators Most Likely to Be Implemented with Direct Use of a Model-Based 
Toolset  

The first subset of leading indicators, as shown in Table 2, are those that are most likely 
to be implemented with the direct use of the program’s MBSE toolset. In this case, the base 
measures as shown in the respective measurement specifications in the leading indicator guide 
(Roedler et al., 2010) are likely to be obtainable from the system model and composed into a 
leading indicator. Assuming an effective user interface and any required trend data, this 
provides the ability to obtain real-time leading indicator information to better inform and 
accelerate decisions based on this information.  
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Table 2. Leading Indicators Most Likely to Be Implemented With Direct Use of Model-Based Toolset 
(Roedler et al., 2010) 

 

Leading 
Indicator 

Insight Provided  Model-Based Implications 

Requirements 
Trends 

Rate of maturity of the system definition 
against the plan. Additionally, 
characterizes the stability and 
completeness of the system 
requirements that could potentially 
impact design, production, operational 
utility, or support. 

• See the section Requirements 
Trends Leading Indicator for a 
detailed discussion. 

System 
Definition 
Change Backlog 
Trend 

Change request backlog which, when 
excessive, could have adverse impact 
on the technical, cost, and schedule 
baselines.  

• Model-based tools will enable 
collection and analysis of data 

• MBSE enables fixing defects earlier 
in time, where less effort is typically 
required. Accordingly, historical 
trends will vary from model-centric 
programs. 

Interface Trends Interface specification closure against 
plan. Lack of timely closure could pose 
adverse impact to system architecture, 
design, implementation, and/or V&V, 
any of which could pose technical, cost, 
and schedule impact. 

• Similar to requirements trends; see 
the section Requirements Trends 
Leading Indicator for a detailed 
discussion. 

Requirements 
Validation 
Trends 

Progress against plan in assuring 
customer requirements are valid and 
properly understood. Adverse trends 
would pose impacts to system design 
activity with corresponding impacts to 
technical, cost, & schedule baselines 
and customer satisfaction.  

• Similar to requirements trends; see 
the section Requirements Trends 
Leading Indicator for a detailed 
discussion. 

• Model-based tools may accelerate 
the pace of validation so historical 
data trend data may not be as 
useful. 

Requirements 
Verification 
Trends 

Progress against plan in verifying 
design meets the specified 
requirements. Adverse trends would 
indicate inadequate design and rework 
that could impact technical, cost, and 
schedule baselines. Also, potential 
adverse operational effectiveness of the 
system. 

• Similar to requirements trends; see 
the section Requirements Trends 
Leading Indicator for a detailed 
discussion. 

• Model-based tools may accelerate 
the pace of verification so historical 
data trend data may not be as 
useful. 

 
Leading Indicators Most Likely to Be Partially Implemented with Use of a Model-Based 
Toolset  

The second subset of leading indicators, as shown in Table 3, are those that are most 
likely to be partially implemented with the use of the program’s model-based toolset. For 
example, technical performance risk information might be associated with the system model, but 
there may be other programmatic risk information that is tracked elsewhere. The extent to which 
the five leading indicators in this table are able to be generated from a model is dependent on 
what types of models the program uses, and how model-based toolsets are customized and 
extended. 
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Table 3. Leading Indicators Most Likely to Be Partially Implemented With Use of Model-Based Toolset 
(Roedler et al., 2010) 

 

Leading 
Indicator 

Insight Provided   Model-Based Implications 

Risk 
Exposure 
Trends 

Effectiveness of risk management process 
in managing/mitigating technical, cost, & 
schedule risks. An effective risk handing 
process will lower risk exposure trends.  

• Model-based tool sets provide 
opportunity to have risk associated 
with or directly included within 
models.  

Risk 
Treatment 
Trends 

Effectiveness of the SE organization in 
implementing risk mitigation activities. If SE 
is not retiring risk in a timely manner, 
additional resources can be allocated 
before additional problems are created. 

• Model-based tool sets provide 
opportunity to have risk associated 
with or directly included within 
models.  

 
Technical 
Measurement 
Trends 

Progress towards meeting the Measures of 
Effectiveness (MOEs)/Performance 
(MOPs)/Key Performance Parameters 
(KPPs) and Technical Performance 
Measures (TPMs). Lack of timely closure is 
an indicator of performance deficiencies in 
the product design and/or project team’s 
performance.  

• Model-based approaches, 
methods, and tools will enhance 
technical performance 
measurement.  

• Ability to project planned value and 
predict variances may be improved, 
so tolerance bands may vary from 
traditional engineering. 

Defect/Error 
Trends 

Progress towards the creation of a product 
or the delivery of a service that meets the 
quality expectations of its recipient. 
Understanding the proportion of defects 
being found and opportunities for finding 
defects at each stage of the development 
process of a product or the execution of a 
service. 

• With model-based approach errors 
and defects may be found earlier in 
time; software can automate finding 
and fixing some defects. 

• Necessitates defining an alternative 
to “defects per page.”  

• Historical defect discovery profiles 
from traditional engineering will 
likely not be suitable; defects 
models and discovery profiles will 
need to be developed as 
experience grows 

Work 
Product 
Approval 
Trends 

Adequacy of internal processes for the 
work being performed and also the 
adequacy of the document review process, 
both internal and external to the 
organization. High reject count would 
suggest poor quality work or a poor 
document review process each of which 
could have adverse cost, schedule, and 
customer satisfaction impact. 

• Models may become tracked work 
products in model-centric 
programs; criteria would need to be 
developed. 

• Models may influence the approval 
rate of system work products. 

 Leading Indicators Less Likely to Be Implemented with Use of Model-Based Toolset  
The third subset of leading indicators, as shown in Table 4, are those that are less likely 

to be implemented with the use of a program’s model-based toolset. Presently, these leading 
indicators would likely be tracked in a separate technical management tool or tracking system. 
Model toolset experts view it as possible to extend model-based toolsets to include any 
programmatic and process models in a model-centric environment. So, while at present there 
are likely to be few programs that have implemented this, the likelihood will increase over time 
as model-based environments evolve.  
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Table 4. Leading Indicators Less Likely to Be Implemented with Use of Model-Based Toolset 
(Roedler et al., 2010) 

 

Leading 
Indicator 

Insight Provided  Model-Based Implications 

Technology 
Maturity 
Trends 

Risk associated with incorporation of 
new technology or failure to refresh 
dated technology. Adoption of 
immature technology could introduce 
significant risk during development 
while failure to refresh dates 
technology could have operational 
effectiveness/ customer satisfaction 
impact. 

• Increased use of models may enhance 
ability to assess potential impacts. 

Review Action 
Closure Trends 

Responsiveness of the organization in 
closing post-review actions. Adverse 
trends could forecast potential 
technical, cost, and schedule baseline 
issues. 
 

• Model-centric programs are likely to have 
more continuous action item review than 
traditional. 

• Technical-related action items may be 
directly linked to models. 

Systems 
Engineering 
Staffing & 
Skills Trends 

Quantity and quality of SE personnel 
assigned, the skill and seniority mix, 
and the time phasing of their 
application throughout the project life 
cycle.  

• Model-based approaches, methods, and 
tools require additional staffing and skills, 
possibly at different points in program. 

• Insufficient model-based staffing/skills 
have impact on cost, schedule, and quality. 

Process 
Compliance 
Trends 

Quality and consistency of the project 
defined SE process as documented in 
SEP/SEMP. Poor/inconsistent SE 
processes and/or failure to adhere to 
SEP/SEMP, increase project risk. 

• Model-based programs will be using newer 
and/or developing processes integrated 
with toolsets. 

• Compliance deviations and comments 
recorded within the model enable 
automated compliance measurement.  

• Process compliance measurement needs 
to accommodate modifications to process 
given learning on program and/or other 
programs. 

Facility and 
Equipment 
Availability 
Trends 

Availability of non-personnel resources 
(infrastructure, capital assets, etc.) 
needed throughout the project life 
cycle. 

• See the section Facilities and Equipment 
Trend Leading Indicators for a detailed 
discussion. 

System 
Affordability 
Trends 

Progress toward a system that is 
affordable for the stakeholders. 
Understanding the balance between 
performance, cost, and schedule and 
the associated confidence or risk. 

• Assessing affordability under the digital 
engineering paradigm is likely to require 
different approach. 

• Lacking historical data, model-based 
programs need to develop, approach, and 
adjust measurement of this. 

Architecture 
Trends 

Maturity of an organization with 
regards to implementation and 
deployment of an architecture process 
that is based on an accepted set of 
industry standards and guidelines. 

• Model-based approaches/tools will have 
influence on assessing maturity. 

• Programs should tailor base measures as 
needed to reflect advantages of model-
based approaches/tools. 

Schedule and 
Cost Pressure  

Impact of schedule and cost 
challenges on carrying out a project. 

• Minimal historical data available for the 
digital engineering situation, and setting 
notional values for thresholds may be 
challenging. 
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Composability of Leading Indictor Measurement Data 
Leading indicators are most useful when applied for predictive purpose to facilitate 

programmatic decisions and/or corrective actions. Requirements Trend indicators, for instance, 
are used to evaluate trends in the growth, change, completeness, and correctness of the 
definition of system requirements. Traditionally, this indicator provides insight into the rate of 
maturity of system definition against the plan. It also characterizes stability and completeness of 
system requirements which could potentially impact design, production, operational utility, or 
support. In traditional document-based engineering practice, requirements are central objects 
that can be used for assessing maturity of system definition. In model-based engineering, 
however, there are many other constructs and digital artifacts. With modeling languages (e.g., 
SysML, LML) there are requirements diagrams, use case diagrams, activity diagrams, state 
machine diagrams, parametric diagrams, and others. With the advantages of model-based 
approaches, a leading indicator used to assess progress of system definition that uses only 
requirements would be a limited indicator. In this case, one would want to consider progress of 
systems definition to include composition of measurement information from system diagrams of 
all relevant types. 

Composability concerns selection of elements that can logically and reasonably be 
assembled. In context of this research, the focus is on composability of base measures 
extracted from a digital system model or digital process model used to produce a leading 
indicator. An initial step is to consider the existing 18 leading indicators. Future research is 
needed to explore new leading indicators (e.g., model volatility) that are made tractable through 
model-based toolsets. Automation and augmented intelligence offer opportunities to explore the 
future of leading indicators for digital engineering program decision-making.  

Illustrative Case Discussion  
An illustrative case has been used in the research to explore how digital engineering is 

expected to modify and/or enable the leading indicators most likely to be implemented with 
direct use of model-based toolsets. These five leading indicators (see Table 2) all relate to 
aspects of requirements management. In the current state of practice, requirements are typically 
collected and stored in a specialized requirements database, often using software (e.g., 
DOORS® or other similar packages suited to needs of the project/enterprise). These types of 
packages are generally interoperable with and/or loosely coupled to other systems engineering 
model-based toolsets.  

It is the assumption of this research team that the specific details of this will vary based 
on the chosen model-based tools used. For the purposes of this illustrative case, Innoslate® was 
used to conduct a number of small scale exercises. Innoslate® is an integrated MBSE software 
package that implements the open source LML ontology, which is compact but comprehensive 
(Dam, 2019, p. 5). LML provides an organized and structured terminology for systems 
engineering, enterprise-defined extensions, and includes features that support the earliest 
concept stage throughout the life cycle to disposal (Dam, 2019, pp. 6, 10). Innoslate enforces 
the important principal of concordance, which facilitates single source of truth by requiring that a 
given piece of information in the systems engineering knowledge base will have the same 
meaning when viewed through different language or visualization lenses. 

The Action entity in the LML ontology is the primary building block for functional models. 
Similarly, the Asset entity is the primary building block for physical models. Every entity has a 
“type” property, which allows many variants of Actions and Assets to be represented. For 
example, Actions may be described as Activity, Capability, Event, Function, Process, or Task. 
Assets may be described as Component, Entity, Service, Sub-system, or System as needed in 
a particular modeling context.  
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The other key basic concept in functional models is Input/Output, which represents the 
flow of information in or out of an Action, including Item, Trigger, Information, Data, and Energy. 
The corresponding basic concept in a physical model is the Conduit, which might be 
implemented as a Data Bus, Interface, or Pipe.  

Relationships are used to make connections among entities. Decomposition is denoted 
with the decomposed by/decomposes relationships. A functional model Action can be allocated 
to a physical model Asset using the “performed by/performs” relationship. A functional model 
Input/Output entity may be allocated to a physical model Conduit via the “transferred 
by/transfers” relationship where the functional flow thereby becomes constrained by the 
properties of the physical device implementing the Conduit. Standard entity attributes are 
defined in the LML ontology along with standard relationships and the entity types they connect 
(LML Steering Committee, 2015).  

Tracking the trends needed for the leading indicators (Table 2) requires taking 
snapshots of metrics values at intervals over time as the program proceeds. If integrated into an 
LML model, this program management data would be stored as objects in the database to 
facilitate integrative analysis with other program data.  

Requirements Trends and Interface Trends  
The metrics required for Requirements Trends and Interface Trends can be composed 

by counting explicit and implicit requirements identified in the Innoslate database. Explicit 
requirements are found in Requirements entities that contain natural language statements, 
which are (1) sourced from documents loaded into the system; (2) entered directly into the 
database by engineers; or (3) computed from other data and stored in the database.  

Implicit requirements are derived from the functional and physical models developed by 
engineers during requirements analysis. Functional Requirements may be defined by Action 
entities and the flows, relationships, and properties that describe them. Innoslate also has a tool 
that converts Actions in a functional model into implied Assets and Conduits in a physical 
model.  

Interface Requirements can be inferred from Conduit entities that connect Assets in the 
physical model. The technical characteristics of the endpoint Assets and the Conduit combine to 
specify the interface requirements. Performance Requirements often come from data related to 
Asset entities and connections. External interfaces would be represented by connecting a 
Conduit to an Asset that is outside the system boundary. 

As requirements analysis progresses, the model and the requirements will grow deeper 
and broader. In traditional practice, the requirements are frozen in text and isolated from the 
models that engineers use for analysis. Whether explicit or implicit, a requirement in Innoslate is 
linked by relationships to other elements of the model, giving greater context to understanding 
the meaning of a requirement. For example, by running simulations on executable models, the 
engineer can identify whether a set of requirements has face validity or meets expectations. 
Spider charts and hierarchy charts can be used to visualize the structure of the model and the 
requirements.  

As systems understanding develops, some information will be less refined than other 
information. For example, the value for a parameter in a requirement may be unknown (TBD) or 
estimated (TBR). LML Decision entities can be attached to the model to represent the both the 
uncertainty and the process for finding the missing information as well as defining assumptions. 
When the TBD/TBR is resolved, the updated Decision entities provide a record of how the value 
was obtained.  
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Requirements Validation Trends and Requirements Verification Trends  
Systems engineering practice involves beginning requirements validation and verification 

early in the project as requirements are found and entered into the database. At the early stage, 
Innoslate and some other toolsets offer a natural language tool for checking the quality of 
requirements statements against six of the eight standard criteria (clear, complete, consistent, 
design, traceable, verifiable but not correct and feasible). Another tool applies heuristics to 
evaluate models and requirements in more depth. A roll-up of these quality metrics could 
provide leaders with early insight on how well the requirements are progressing and whether 
problems are being left to later in the life cycle where they will be more difficult to resolve. 
Innoslate also includes a Test Center where test plans and scenarios can be built for early or 
later use and VCRM Reports generated. The leading indicators for requirements verification and 
requirements validation could be improved by adding a measure for progress on developing test 
plans to complement the metric for successful completion of validation and verification testing. 
Product validation and verification also needs to be considered holistically as well as individually 
by requirement. The model can be used with simulation tools to predict the behavior of the 
whole system or subsystems. 

Visualization and Interactivity 
More complex leading indicators are likely in the digital engineering context, resulting 

from increased information, synthesis, and composability of measurement data. Accordingly, 
decision-makers will face challenges in comprehending the information, including a need to 
understand the underlying assumptions and uncertainties in the constituent data elements. 
Investigating the approach to display such leading indicators is an important area of inquiry. 
Measurement dashboards have been used extensively for decades, typically providing static 
display of information. Visual analytics and interactive technologies provide the opportunity to 
create dynamic dashboards that would enable a decision-maker to be able to interact with the 
data. This provides more transparency to underlying data, as well as enabling the development 
of understanding and trust in the information.  
Visual Analytics  

Visual analytics is fundamentally about collaboration between a human and a computer 
using visualization, data analytics, and human-in-the-loop interaction. More than just 
visualization tools, visual analytics aims to take advantage of a human’s ability to discover 
patterns and drive inquiry to make sense of data. Thomas (2007) defined visual analytics as 
“the science of analytical reasoning facilitated by interactive visual interfaces” that “provides the 
last 12 inches between the masses of information and the human mind to make decisions.” As 
engineering becomes increasingly model-based, the available information to draw on to 
generate measures of effectiveness is vast and complex. It is foreseeable that decision-makers 
could be presented with large amounts of data that would be cognitively challenging to 
comprehend and find patterns that could be used to judge the effectiveness of the engineering 
on an ongoing program. For this reason, the knowledge and recent advancements in visual 
analytics may offer significant support in processing and displaying measurement data.  

Vitiello and Kalawsky (2012) state the “guiding process in visual analytics is a synergy 
between interactive visualization and automated analysis of the data.” They discuss an 
approach that integrates a visual analytic-based workflow to the notion of sensemaking. The 
authors describe using visual analytics to support systems thinking to make sense of complex 
systems interactions and interrelationships, enabling rapid modeling of the systems of interest 
for systems engineering design and analysis processes. The visual analytic-based sensemaking 
framework they describe aims toward providing the means to rapidly gain valuable insights into 
the data. 
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Interactive Dashboards 
Systems engineers, managers, and government sponsors all rely on creative work 

products of systems engineering and all need to glean an appropriate level of understanding of 
the work as it progresses. The mean time for a warfighting system to move from well-defined 
concept to initial operating capability can be substantial, regularly averaging 6–7 years (Dwyer, 
2020). Leading indicators can help stakeholders see how a project or program is progressing 
throughout the life cycle and whether it is on target to deliver what is needed when it is needed 
at an affordable cost.  

The complexity of understanding the status and trajectory of a program is high and 
larger than any one person can hold in one’s head. Systems engineering methods, languages, 
and models are intended to leverage visualizations, structure, and compuational representations 
to make the task manageable for all the humans who must be involved. Model-based systems 
engineering incorporates all of those features. Sindiy et al. (2013) demonstrates how clean 
visual representations can help in making MBSE models accessible. Dam (2019) argues that in 
addition to visualizations, modeling language and ontology matters, since a representation that 
is inherently fragmented and lacks a well-structured ontology will be less cognitively accessible 
to users. Dashboards are often created as views into program data that has been extracted and 
loaded into a data warehouse. Dam (2020) proposes that stakeholders should be given 
controlled direct access to MBSE models to improve the speed and depth of understanding in 
system reviews. He also argues that prime contractors and subcontractors can achieve better 
coordination by using MBSE models as a vehicle for communication about the system that is 
being created, program progress, and how organizations with different roles and incentives will 
fit together to deliver the capability needed to meet customer objectives.  

Selby (2009) argues that interactive dashboards facilitate effective management. 
Leading indicator project data can be presented in a compact form with tools for organizing 
data, drilling into the underlying data, and connecting data to analytic tools and models. 
Orlowski (2017) and Orlowski et al. (2015) extend Selby and propose a framework for guiding 
leading indicator development and usage. Recent work by Thiruvathukal et al. (2018) shows the 
potential for using open source software repositories in the development of software metrics 
dashboards. Nadj (2020) addresses how interactive dashboards help managers in gaining and 
maintaining situational awareness to understand the context of metrics.  

Discussion and Future Directions 
Potential impact of adapted and extended leading indicators is twofold: (1) to continue to 

provide visibility into the future state through use of leading indicators in model-centric 
programs; and (2) to enhance insights provided by the leading indicators related to digital 
models and artifacts that enrich the systems development practice. The current set of leading 
indicators is predicated on use of document-driven processes and major milestone reviews. The 
transformation to digital-model based engineering will result in the use of digital artifacts, with 
more frequent review of the expected system performance (Parrot & Weiland, 2017). One of the 
expected outcomes of digital engineering is to move away from milestone design reviews to 
more continuous reviews given access to the maturing system model. Leading indicators can be 
very supportive of this goal (Orlowski, 2017; Orlowski et al., 2015). An open question is how 
trend information for models and digital artifacts (e.g., SysML diagrams) could be used in a 
similar manner to predict when the model is in a state where a review activity is most useful.  
 Interim Research Findings  

Interim outcomes of the research include knowledge for augmenting measurement 
specifications of existing systems engineering leading indicators to describe model-based 
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implications, and illustrating what is possible for enhanced measurement through direct use of 
model-based toolsets. Another interim outcome is initial investigation of how visual analytics and 
interactive dashboards may be used to provide leading indicator information that provides a 
deeper understanding for program leaders. This research has identified considerations and 
additional interpretation guidance to augment existing systems engineering leading indicator 
measurement specifications. The results are aimed at assisting systems engineering 
organizations that have been using leading indicators as they transition to model-based systems 
engineering.  

This research has also included initial investigation for how model-based toolsets 
enable the collection and composability of base measures to generate leading indicators. An 
initial investigation of interactive dashboards suggests that program leaders will be able to make 
improved and accelerated decisions using leading indicators if these are integrated with model-
based environments to provide on-demand trend information. Implications identified in this 
research, including potential new leading indicators, can inform ongoing efforts in the systems 
community to define new or revised metrics for digital engineering programs and enterprises.  

Related Research and Initiatives 
Interim and final research outcomes are shared with several working groups as input to 

future research on digital engineering metrics and revision of the leading indicators guide. The 
DoD Systems Engineering Research Center (SERC) performed a research activity in 2020 that 
investigated digital engineering transformation metrics (McDermott et al., 2020). Metrics 
categories were derived as a general categorization, including adoption, user experience, 
velocity/agility, quality, and knowledge transfer. Literature review and a survey were performed, 
resulting in a set of top metrics categories related to the benefit of digital engineering. Although 
the focus of the leading indicators and digital engineering metrics are somewhat different, their 
relationship is worth considering as potential additional leading indicators are developed.  

The outcomes of the SERC investigation, other ongoing measurement related efforts, 
and foundational work by PSM are employed in a broader Aerospace & Defense Digital 
Engineering Metrics Initiative. This initiative brings together a diverse team including industry 
associations, government agencies, FFRDCs, UARCs, academia, and industry (including AIA, 
NDIA, INCOSE, OUSD R&E, SEI, SERC, the Aerospace Corporation, PSM, MIT, and several 
companies). The effort aims to define an industry consensus measurement framework and 
candidate performance indicators for digital engineering, and to align measures with business 
information needs for project execution and organizational performance improvement.  

Limitations and Future Research  
The research largely draws from the defense systems engineering community and 

literature from that sector. Future research can investigate additional sectors, as well as related 
disciplines. Expert knowledge was gathered though available workshops and from prior leading 
indicator project participants in the early phases. The limitations imposed by the COVID-19 
pandemic, especially on workshops and conference events other than virtual, resulted in 
reduced opportunities for access to the community of interest. Planned group discussions were 
replaced with individual interviews and discussions, which resulted in reduced iteration and 
feedback opportunities.  

This research has included some experimentation with extraction of metric data based 
on a single systems engineering toolset (selection of toolset was based on ease of use and 
availability to research team). Future research is needed to investigate extraction and 
composition of measurement information across the available model-based toolsets. 
Additionally variation in implementing digital engineering practice need to be examined in regard 
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to this objective. For example, some of the existing leading indicators depend on disciplined 
management processes for approval of key program artifacts (e.g., requirements, change 
orders, interfaces, and test plans). While these processes are not part of the system being 
developed, they can be modeled and/or tracked through model-based toolsets. This would 
enable measuring aspects of process compliance. Dam (2019) gives examples of how software 
could be used in support of measuring management processes.  

Model-centric programs have the opportunity to leverage leading-edge technologies in 
the collection, composition and display of measurement data, as well as enable better decisions 
to be made throughout the program life span. Two aspects for future investigation are 
techniques emerging from visual analytics and data science. Model-based acquisition programs 
will be faced with dealing with four cited challenges of big data: volume: the magnitude of digital 
engineering information; variety: existence of digitized assets (e.g., drawings, etc.) that are not 
in themselves models; velocity: rapid information flow (e.g., operational digital twins sending 
information back to the digital system model); and veracity: uncertainty inherent in model data 
(e.g., artificial data from simulations, incomplete data, subjectivity in models).  

Future research is needed to further elicit ideas from the systems community on 
program level indicators and enterprise-level indicators. Desirable research is to conduct 
industry case studies to learn from digital engineering early adopters concerning what metrics 
and leading indicators they have implemented, as well as novel approaches that have been 
developed. This includes extraction and composition of leading indicators, the implementation of 
measurement dashboards, and the specific practices used in making decisions with 
measurement information.  
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