

EXCERPT FROM THE PROCEEDINGS

of the Eighteenth Annual Acquisition Research Symposium

A Framework to Categorize the Benefits and Value of Digital Engineering

May 11-13, 2021

Published: May 10, 2021

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of the Navy, the Department of Defense, or the federal government.

The research presented in this report was supported by the Acquisition Research Program of the Graduate School of Defense Management at the Naval Postgraduate School. To request defense acquisition research, to become a research sponsor, or to print additional copies of reports, please contact any of the staff listed on the Acquisition Research Program website (www.acquisitionresearch.net).

ACQUISITION RESEARCH PROGRAM

NAVAL POSTGRADUATE SCHOOL

GRADUATE SCHOOL OF DEFENSE MANAGEMENT

A Framework to Categorize the Benefits and Value of Digital Engineering

Tom McDermott—Stevens Institute of Technology [tmcdermo@stevens.edu]

Additional authors: Alejandro Salado, Eileen Van Aken, Kaitlin Henderson: Virginia Tech

Abstract

The Department of Defense (DoD) envisions that digital engineering information exchange, system modeling, and data driven system engineering processes will become core to product and process development. As this transformation occurs, it will change the way Systems Engineering (SE) is measured and valued. Over the past 3 years, the Systems Engineering Research Center (SERC) has studied the Digital Engineering (DE) transformation processes and progress. This work has focused on DoD acquisition and program office activities but is applicable to all enterprises undergoing DE and Model-Based Systems Engineering (MBSE) transformations. A previous SERC research task created an Enterprise System-of-Systems Model for DE-enabled acquisition, conceptually modeling the potential future DoD acquisition enterprise. This research helped to understand the structure of future DoD/contractor program enterprises when the five goals of the DoD DE strategy were achieved, and the expected outcomes of that transition. That research cited the need for the community to standardize and implement measures that reflect success at the enterprise level. A second research task was completed to define metrics that represent value, benefits, and change progress in enterprise DE transformation. A third task is currently underway to design and implement measures that quantify DE benefits.

Introduction

DE is defined as "an integrated digital approach that uses authoritative sources of systems' data and models as a continuum across disciplines to support life cycle activities from concept through disposal" (DAU, 2020). A DE ecosystem is an interconnected infrastructure, environment, and methodology that enables the exchange of digital artifacts from an authoritative source of truth. MBSE is a subset of DE, defined as "the formalized application of modeling to support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases" (OMG, 2020).

MBSE has been a popular topic in the SE community for over a decade, but the level of movement toward broad implementation has not always been clear. With the release of the DoD DE strategy, a clear set of high-level goals are defined for the DoD acquisition community and its industry base.

Digital transformation is a change process heavily rooted in "how we train and shape the workforce to use those processes," as noted by Goal 5 of the DoD Digital Engineering Strategy (DoD, 2018). Each of the DoD's goals implies that an enterprise, organizational unit, or multi-organizational program has a means to define the outcomes of a DE strategy, performance metrics, measurement approaches, and leading indicators of change in the transformation process.

This research sought to define a comprehensive framework for DE benefits and expected value linked to the ongoing development of DE enterprise capabilities and experienced transformation "pain points," enablers, obstacles, and change strategies. Using a combination of literature review, broad surveys, and government program office visits, we found that the DE and MBSE communities, across government, industry, and academia, are not sufficiently mature at this point in their DE transformations to standardize on best practices and formal success metrics. Pockets of excellence exist, but experience and maturity vary widely.

We also found that government lags industry in maturity and should look to both their industry partners and the broader swath of commercial industry for best practices. The differing levels of DE capability across a government acquisition enterprise, prime contractors, and support contractors will be an obstacle to successful DE transformation. Programs, particularly legacy programs that have established non-digital processes, must invest effort in program-wide development and maturation of DE.

In addition, MBSE and an Authoritative Source of Truth (ASOT), as the core DE strategies for managing the complexity of large complex systems and systems-of-systems (SoS), lag in maturity to other DE strategies, such as Agile software development, product line engineering/product life-cycle management (PLM/PLE), and integrated supply chain management (ICSM). Pilot efforts that integrate MBSE and the ASOT across other more established disciplinary DE areas are necessary, but they should be executed broadly across all of these areas (many current pilots focus only on selected disciplinary areas or life cycle stages). Lessons learned from these efforts should inform best practices and success metrics for the full DE transformation.

In this research to date, we have only been able to document two instances where actual measurement approaches for DE processes had been developed and used (McDermott et al., 2020a). Based on this research, we were able to create a framework that categorizes DE benefits and adoption metrics. Efforts are now underway to pilot the most frequently cited DE benefits and build measurement models for them. This guidance is still being sought after by government agencies. The long-term goal of this research is to advance the practice of DE and MBSE through definition of enterprise value.

Research Results

A DE transformation process needs to assess both adoption of the methods and tools into the workforce in terms of number of users, resources, etc., and also the drivers of adoption that are linked to user experience with the methods and tools. To understand productivity indicators and areas of new value, the previous SERC study, "Enterprise System-of-Systems Model for Digital Thread Enabled Acquisition," was used as the base digital enterprise transformation model (SERC, 2018). This study linked digital enterprise transformation to outcomes related to improved quality, improved velocity/agility, and better knowledge transfer. Knowledge transfer is a unique value of DE/MBSE that can be distinguished from other digital enterprise transformation metrics. A primary goal of MBSE and the associated data collected in an Authoritative Source of Truth is communication, sharing, and management of data, information, and knowledge.

Based upon this background research, we created a general categorization of DE/MBSE organizational change metrics linked to quality, velocity/agility, user experience, knowledge transfer, and adoption. Using literature reviews and a broad survey of DE/MBSE benefits, obstacles, and enablers, as well as government and industry discussions, the research produced an initial "top 10" list of metrics. A key result of the research is the development and definition of two frameworks that categorize DE benefits and adoption strategies that can be universally applied to a formal enterprise change strategy and associated performance measurement activities. The first framework is linked to the benefits of DE and categorizes 48 benefit areas linked to four digital transformation outcome areas: quality, velocity/agility, user experience, and knowledge transfer. The second framework addresses enterprise adoption of DE and provides a categorization of 37 success factors linked to organizational management subsystems encompassing leadership, communication, strategy and vision, resources, workforce, change strategy and processes, customers, measurement and data, workforce, organization DE processes relate to DE, and the organizational and external environments. The

study conducted background research on literature discussing the benefits and values of DE/MBSE, a benchmark survey to assess the current state of maturity across enterprises currently implementing DE/MBSE, and interviews and discussions with government and industry.

The study found the systems engineering community perceives significant benefit from DE and MBSE transformation, but specific benefits have not yet been translated to organizational value drivers and success measures. Organizations appear to be searching for guidance on measuring the value and benefits of DE/MBSE usage. The study documented 10 top-cited metrics categories from literature and survey data. Seven of these were classed as benefits: increased traceability of requirements, design, and testing; reduced errors/defects in program phases; reduced activity times in development processes; improved consistency from phase to phase and project to project; increased capacity for reuse of data and models; higher support for automation; and better communication and information sharing. Three were classed as adoption measures: maturity of DE/MBSE methods and processes; training; and people willing to use DE/MBSE tools. Current efforts are underway to build causal models and data collection and analysis approaches to address the seven benefit measures.

Enterprise Metrics Categorization

Digital engineering is a subset of the larger aspects of enterprise digital transformation. Gartner (2019) reported four common characteristics for good enterprise-level digital transformation metrics: *adoption*, *usability*, *productivity*, and *new value*. This research developed five metrics areas relevant to DE: **adoption**, **user experience** (*usability*), **velocity/agility** (*productivity*), **quality** and **knowledge transfer** (*both new value*). These are shown in Figure 1.

A DE transformation process needs to assess both adoption of the methods and tools into the workforce in terms of number of users, resources, etc., and also the drivers of adoption that are linked to user experience with the methods and tools. To understand productivity indicators and areas of new value, the previous SERC study, "Enterprise System-of-Systems Model for Digital Thread Enabled Acquisition," was used as the base digital enterprise transformation model (SERC, 2018). This study linked digital enterprise transformation to outcomes related to improved quality, improved velocity/agility, and better knowledge transfer. Knowledge transfer is a unique value of DE/MBSE that can be distinguished from other digital enterprise transformation metrics. A primary goal of MBSE and the associated data collected in an Authoritative Source of Truth (ASOT) is communication, sharing, and management of data, information, and knowledge. Based upon this background research, we created a general categorization of DE/MBSE organizational change metrics linked to quality, velocity/agility, user experience, knowledge transfer, and adoption. Using literature reviews and a broad survey of DE/MBSE benefits, obstacles, and enablers, as well as government and industry discussions, the research produced an initial "top 10" list of metrics described in Table 1.

Quality:

- Reduce Errors/Defects
- Improve System Quality
- Improve Traceability
- Reduce Cost

Knowledge Transfer:

- Better access to information
- Better communication/ info sharing
- Collaboration

Velocity/Agility:

- More Reuse
- Improve Consistency
- Increase Efficiency
- Support Integration
- Reduce Time

User Experience:

- Manage Complexity
- Improved System Understanding
- Automation

Adoption:

- Methods/Processes
- Roles/Skills
- Training/Tools
- · Leadership support
- Change Mgmt Process
- Resources

Figure 1. Top-Level Metrics Framework

It is important to note that measurement of DE/MBSE is a complex process that must be integrated with the entirety of enterprise measurement strategies across all enterprise functions. DE/MBSE cannot be isolated to a small group or limited set of programs if the goal is to understand and track enterprise value. Generally pilot efforts are recommended to start the adoption process, but maturity in DE/MBSE must become enterprise strategy and a component of enterprise performance measurement. This list is a starting point; a full list of 55 metrics categories derived from the research is provided later in Table 2.

Table 1. Top 10 Collected Enterprise Metric Definitions (McDermott et al., 2020a)

Metric Area	Metrics Category	Inputs	Ex. Processes	Ex. Outputs	Outcomes
Quality	Increased traceability	User needs and system requirements are in a modeling tool and linked to truth data & models	MBSE: reqs., structure, use cases, traceability tools ASOT: all reqs. at each level are linked with data	 Decreasing number of reqs. changes Improving requirement volatility trends 	Fully digital traceability of reqs., design, test, and information Available from one source of truth
Quality	Reduced defects/errors	Data, models, reqs., design artifacts	Peer review and technical review in models Design automation Test automation	Defects/errors discovered and corrected earlier in development phases Less total defects/errors Error-free deployments	Reduced total errors/defects in each program phase Reduced errors/defects that escape from one phase to the next Increased number of saves in each phase
Velocity/ Agility	Reduced time	Historical estimated effort, planned effort, resourced schedules, milestone schedules	Estimation processes: COCOMO, COSYSMO, etc. Schedule tracking or EVMS	Program schedule durations trending toward reduced total or activity times	Time reduction trend data: • total project schedule • average across projects • total and average per activity • response time to need • delays from plan

Metric Area	Metrics Category	Inputs	Ex. Processes	Ex. Outputs	Outcomes
	Improved consistency	Planning schedules and resource loading, prioritization of needs, development and delivery processes, and stable resources	More regular and frequent development and implementation planning periods	More predictable scope and cycle time for capability releases More consistent content and schedule for production deployments	Processes produce consistent results from project to project Data or models have consistent use from project to project Practitioners apply consistent work processes and instructions
	Increased capacity for reuse	Standards, data, models, search tools, CM tools, certifications, data/model managers	Data and functional modeling Patterns Standards CM Compliance testing	Pay once for data = reuse everywhere Standard reusable capabilities or sub-functions Compliance	Models/dataset s reused project to project Percent direct use/modification /change Related cost/schedule estimation and actuals
User Experienc e	Higher level support for automation	Investment resources for automation, data collection, and automation tools	Automated: • document generation • test • data search, etc.	New processes Reduced labor hours Reduced time	Automated v. manual activities Investment in automation Automation strategy
Knowledg e Transfer	Better communicatio n/ info sharing	Investment resources for collaboration and communication tools, IT infrastructure, and data and libraries	Teams interact around shared data Participation in model-based reviews Data/model desktop availability	Number of employees and disciplines communicating and sharing information Number of events held in the toolsets	Processes and tools to share and jointly assess information Opportunities to share knowledge and learn in process around common tools and representations

Metric Area	Metrics Category	Inputs	Ex. Processes	Ex. Outputs	Outcomes			
	DE/MBSE methods and processes	Enterprise strategy and investment, experience with DE/MBSE	Periodic assessment via survey and scoring	Attainment of "level 4" capabilities	Availability and maturity of MBSE capabilities (refer to the INCOSE MBSE Capabilities Matrix (INCOSE, 2020) for a full assessment)			
	Training class ment	Curricula	training	Availability of training Investment in	Appropriately			
Adoption		Curricula, classes, mentoring, assessment			trained and experienced workforce and customer			
				Effectiveness of training				
				Number of:				
	Increased	Vision/mission, leadership support,	leadership	leadership	• Change	hip	• people actively using the tools	Models and tools produce communication
	use DE/MBSE incentives,	incentives, tools,	management strategy	tool experts	media to all general users in			
	tools	methods/proces ses, training		• people actively working with tool artifacts	an accessible form			

Descriptive Summary of Top-Cited Metrics Areas

Table 2 provides a full descriptive summary of 55 candidate metrics derived from the benefit and adoption categories. These are grouped into the five metrics areas of Table 1 and ranked by number of literature or survey citations in each area. The table includes example descriptive phrases of each metrics category developed in textual analysis of the literature and survey data. The table also lists examples of potential outcome metrics for each metrics category.

Table 2. Descriptive Summary of Top-Cited Metrics Areas (McDermott et al., 2020a)

Metrics Category	Example descriptive phrases	Example outcome metrics		
Metric Area: Quality				
Increased traceability	requirements, design, information traceability	Full digital traceability of requirements, design, test, and information		
		Availability from one source of truth		
Reduce cost	cost effective, cost savings, save money, optimize cost	Lower total cost compared to similar previous work		
Improve system quality	higher quality, quality of design, increased system quality, first time quality, improve SE quality, improve specification quality	Improved: total quality (roll-up of quality measures); first time quality (deployment success)		
Reduce risk	reduce development risk, reduce project risk, lower risk, reduce technology risk, reduced programmatic risk, mitigate risk, reduce design risk, reduce schedule risk, reduce risk in early	Risks identified and risk mitigations executed via DE enterprise processes		
	design decisions	New risks uncovered by system modeling		
Reduce defects/ errors	reduce error rate, earlier error detection, reduction of failure corrections, limit human errors, early detection of issues, detect defects earlier, early detection of errors and omissions, reduced specification defects, reduce defects, remove human sources of errors, reduce	Reduced: total errors/defects in each program phase; errors/defects that escape from one phase to the next		
	requirements defects	Increased number of saves in each phase		
Improved system design	improved design completeness, design process, design integrity, design accuracy, streamline design process, system design maturity, design performance, better design outcomes, clarity of design	Design outcomes show improvement and the design process is more effective compared to similar programs (rollup measure)		
Better requirements generation	requirements definition, streamlining process of requirements generation, requirements elicitation, well-defined set of requirements, multiple methods for requirements characterization, more explicit requirements, improved requirements	Measurement of requirements quality factors in the DE process: correctness, completeness, clarity, non-ambiguity, testability, etc.		

Metrics Category	Example descriptive phrases	Example outcome metrics
Improved deliverable quality	improve product quality, better engineering	Reduced deliverable defects
Improved deliverable quality	products	Improved deliverables acceptance rate
Increased effectiveness	effectively perform SE work, improved representation effectiveness, increased effectiveness of model, more effective processes	Effectiveness of a process is how relevant the output is to the desired objective
Improved risk analysis	earlier/ improved risk identification, identify risk	Risks identified by phase
Potter englysis canobility	better analysis of system, tradespace analytics,	Decisions balance cost, schedule, risk, performance, & capabilities
Better analysis capability	perform trade-offs and comparisons between alternative designs, simulation	Improved affordability, efficiency & effectiveness of tradespace processes
Strengthened testing	model based test and evaluation, increased testability, improved developmental testing	Improved: test coverage; automated tests; number of errors found by automation versus manual means; efficiency & effectiveness of test process
		Reduced number of defects/errors in each phase
Increased rigor/ Improved	rigorous model, rigorous formalisms, more rigorous data, better predict behavior of system,	Increased: level of difficulty/complexity of project; number of alternatives analyzed; subject matter experts involved
predictive ability	predict dynamic behavior, predictive analytics	Improved: exhaustiveness of data collection; consistency of analysis processes; predictive links between design & capabilities

Metrics Category	Example descriptive phrases	Example outcome metrics
More stakeholder involvement	1 ,	
Metric Area: Velocity/Agility		
Improved consistency	consistency of info, consistency of model, mitigate inconsistencies, consistent documentation, project activities consistent, data consistency, consistent between system artifacts	Processes produce consistency from project to project in: results; data; models used; work processes & instructions applied by practitioners
Reduce time	shorter design cycles, time savings, faster time to market, ability to meet schedule, reduce development time, time to search for info reduced, reduce product cycle time, delays reduced	Time reduction trend data: total project schedule; average across projects; total & average per activity; response time to need; delays from plan
Increased capacity for reuse	city for reuse reusability of models, reuse of info/designs	
Increased efficiency	efficient system development, higher design efficiency, more efficient product development process	
Increased productivity	gains in productivity	Effort per unit of production
Reduce rework	reduce rework	Reduced: number of rework cycles; percent rework; errors causing rework; size of rework effort; technical debt
Early V&V	early verification and/or validation	Formal testing: credited in earlier phases; done in models and simulation vs. system

Metrics Category	Example descriptive phrases	Example outcome metrics
Reduce ambiguity	less ambiguous system representation, clarity, streamline content, unambiguous	Higher levels of specificity; decisions based on data; application of uncertainty quantification methods
Increased uniformity	uniformity	Application of standards: technical, process, work & effort, etc.
Easy to make changes	easier to make design changes, increased agility in making changes, changes automatically across all items, increased changeability	Improved ability to: implement changes; change management process automation
Reduce waste	reduce waste, save resources	Lean processes: waste removal and flow (pull)
Better requirements management	better meet requirements, provide insight into requirements, requirements explicitly associated with components, coordinate changes to requirements	Process effectiveness demonstrated by how relevant output is to desired objective: # requirements, requirements volatility, requirements satisfaction, etc.
Higher level of support for integration	integration of information, providing a foundation to integrate diverse models, system design integration, support for virtual enterprise/supply chain integration, integration as you go	Developmental testing credited in earlier phases; testing done in models and simulation vs. system; reuse of data & models in integration activities
Increased precision	design precision, more precise data, correctness, mitigate redundancies, accuracy	Six Sigma processes Reduced standard deviation
Increased flexibility	flexibility in design changes, increase flexibility in which design architectures are considered	Time- and cost- effective incorporation of: new requirements; sensitivity analysis to change vs. a reference
Metric Area: User Experience	e	

Metrics Category	Example descriptive phrases	Example outcome metrics
Improved system understanding	reduce misunderstanding, common understanding of system, increased understanding between stakeholders, understanding of domain/behavior/system design/requirements, early model understanding, increased readability, better insight of the problem, coherent	Assessments from activities such as technical reviews and change processes, standard models or patterns of SE and domain, common understanding of architecture/abstractions (architectural quality/risk assessment), etc.
Better manage complexity	simplify/reduce complexity, understand/specify complex systems, manage complex information/ design	Improved: data/model integration & management; distribute control; empowerment across data/between disciplines; ability to iterate/experiment
Higher level support for automation	automation of design process, automatic generation of system documents, automated model configuration management	Increased: automated vs. manual activities; investment in automation; automation strategy
Better data management/ capture	representation of data, enhanced ability to capture system design data, manage data	Improved data management architecture, automation Reduced technical debt
Better decision making	make early decisions, enables effective decision making, make better informed decisions	Visualizing different levels of specificity; more decisions based on data and analysis, access to and visualization of data
Reduce burden of SE tasks	reduce complexity of engineering process	Reduce time spent on or waiting for SE artifacts
Reduce effort	reduce cognitive load, reduction in engineering effort, reduce formal analysis effort, streamline effort of system architecture, reduce work effort, reduce amount of human input in test scoping	Process efficiency demonstrated by relevancy of output to desired objective: effort per unit of production; total effort vs. similar programs; effort vs. plan
Metric Area: Knowledge Tra	l nsfer	

Metrics Category	Example descriptive phrases	Example outcome metrics
Better communication/info sharing	communication with stakeholders/team/designers/developers/different engineering disciplines, information sharing, knowledge sharing, exchange of information, knowledge transfer	Improved: processes and tools to share and jointly assess information; opportunities to share knowledge and learn in process around common tools & representations
Better accessibility of info	Ease of info availability, single source of truth, centralized/unique/single source of info, simpler access to info, synthesize info, unified coherent model, one complete model	Develop: tools that support access to and viewing of data/models; widely shared models; executable models
Improved collaboration	simplify collaboration within team	Develop: tools that support human collaboration around shared data & models
Better knowledge management/capture knowledge capture of process, better information capture, early knowledge capture, more effective knowledge management		Develop: tools that support wide diversity of information; integration across domains; methods to build and enter knowledge
Improved architecture/Multiple viewpoints of model	architecture/Multiple maturity, accurate architecture design; snared	
Metric Area: Adoption (Rank	ed separately from the other four metrics areas)	
Leadershin	Demonstrating commitment and general support	Demonstrate messaging, awareness of DE/MBSE
Leadership support/Commitment	for MBSE implementation by senior leaders through communication, actions, and priorities	Participation in reviews, performance management incentives, succession planning
Workforce knowledge/skills Developing a workforce with the knowledge, skills, and competencies needed to support MBSE adoption		Availability and maturity of MBSE competencies (refer to the INCOSE MBSE Capabilities Matrix in the complete report for a full assessment)

Metrics Category	Example descriptive phrases	Example outcome metrics
DE/MBSE methods and processes	Developing and deploying consistent, systematic, and documented processes for MBSE throughout the relevant parts of the organization, including steps/phases, outputs, and roles/responsibilities	Availability and maturity of MBSE capabilities (refer to the INCOSE MBSE Capabilities Matrix in the complete report for a full assessment)
Training	Investing in and providing the education/training required to develop the workforce knowledge/skills needed to support MBSE implementation	Appropriately trained & experienced workforce, and customer
DE/MBSE Tools	Ensuring MBSE tools have sufficient quality, have sufficient maturity, are available, and are common	Tools: availability, investment in, experience with, and stability
Demonstrating benefits/results	Creating "quick wins" to demonstrate results (benefits and outcomes) from applying MBSE	Develop DE/MBSE growth strategy, pilot efforts, publications, lessons learned
Change management process design	Defining and implementing a systematic change approach to implement MBSE, with clear actions, timeline, roles, resources needed, staged deployment steps/phases for experimentation (where relevant), and outcomes expected	Revised and relevant vision, mission, change strategy, engagement plan, feedback plan, etc.
General resources for DE/MBSE implementation	Ensuring financial and other resources are available to support MBSE implementation	Funding, IT support, training support, Internal R&D, etc.
People willing to use DE/MBSE tools	Willingness and motivation of people in SE roles across organization to use MBSE tools	Communicate models and modeling tools output to all of the general users in an accessible form
Alignment with customer requirements	Identifying how MBSE adoption supports meeting customer needs and requirements	Implement: customer engagement plan; customer requirements elicitation; involvement of customer; participation with customer
MBSE terminology/ontology/libraries	Clearly identifying a common terminology, ontology, and libraries to support MBSE adoption	Investment in enterprise data development and management, shared libraries, stability of data definition and stores

Metrics Category	Example descriptive phrases	Example outcome metrics
Champions	Defining and creating the role of champion to use expertise to advocate for and encourage others'	Create evangelist role, and enlist number of evangelists
	use of MBSE	Demonstrated leadership support
		Defined SE role
People in SE roles	roles Quality of and support from people holding SE roles across the organization	
Communities of Practice	Creating a community of practice within the organization to provide guidance, expertise, and other resources as MBSE is deployed	Investment in CoP Established number of participants

Figure 2 provides a full summary of the top DE benefit areas from the literature review and survey conducted in the research on DE benefits. The figure depicts the percentage of literature review papers or survey respondents citing each benefit area. This was used to define the top metric categories related to benefits of DE. Figure 3 provides a summary of the top enablers, obstacles, and areas of change based on survey data. This was used to derive the top metrics categories related to DE adoption.

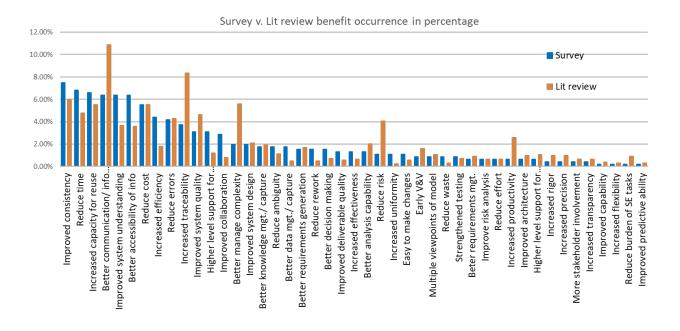


Figure 2. Top Cited DE Benefits Areas from Literature and Survey Results (McDermott et al., 2020b)

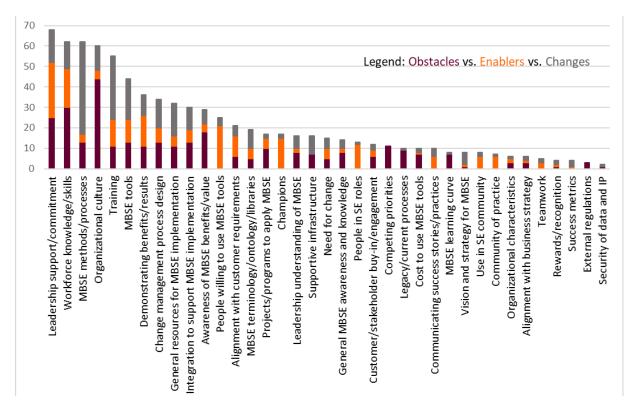


Figure 3. Obstacles, Enablers, and Changes for DE Adoption, ranked by Frequency of Mention (McDermott et al., 2020b)

Findings

This research task used the following four guiding questions:

- 1. What would a "Program Office Guide to Successful DE Transition" look like?
- 2. How can the value and effectiveness of DE be described and measured?
- 3. Are there game-changing methods and/or technologies that would make a difference?
- 4. Can an organizational performance model for DE transformation be described?

At the start of the research effort, the hope was to identify and document best practices across the DoD, defense industry, and other industries related to measurement of the DE enterprise transformation, metrics for success, and standard success guidance. It quickly became clear that best practices do not yet exist in the DE and MBSE community, and the transformation process is not yet mature enough across the community to standardize best practices and success metrics. Given the state of the practice, the research shifted to a set of efforts to define a comprehensive framework for DE benefits and expected value linked to the ongoing development of DE enterprise capabilities and experienced transformation "pain points," enablers, obstacles, and change strategies.

A key result of this research is the development and definition of two frameworks that categorize DE benefits and adoption strategies that can be universally applied to a formal enterprise change strategy and associated performance measurement activities. The first framework is linked to the benefits of DE and categorizes 48 benefit areas linked to four digital transformation outcome areas: quality, velocity/agility, user experience, and knowledge transfer. This framework identifies a number of candidate success metrics. A test application to an ongoing DoD pilot project was completed and is documented in this report. The second

framework addresses enterprise adoption of DE and provides a categorization of 37 success factors linked to organizational management subsystems encompassing leadership, communication, strategy and vision, resources, workforce, change strategy and processes, customers, measurement and data, workforce, organization DE processes relate to DE, and the organizational and external environments. The following summarizes the findings based on the four research questions:

What would a program office successful DE transition look like?

- 1) The DE and MBSE communities, across government, industry, and academia, are not sufficiently mature at this point in their DE transformations to standardize on best practices and formal success metrics. Pockets of excellence exist, but experience and maturity vary widely.
- 2) Government lags industry in maturity and should look to both their industry partners and the broader swath of commercial industry for best practices. The differing levels of DE capability across a government acquisition enterprise, prime contractors, and support contractors will be an obstacle to successful DE transformation. Programs, particularly legacy programs that have established non-digital processes, must invest effort in program-wide development and maturation of DE.
- 3) MBSE and the ASOT, as the core DE strategies for managing the complexity of large complex systems and systems-of-systems (SoS), lag in maturity to other DE strategies, such as Agile software development, product line engineering/product life-cycle management (PLM/PLE), and integrated supply chain management (ICSM). Pilot efforts that integrate MBSE and the ASOT across other more established disciplinary DE areas are necessary. Lessons learned from these efforts should inform best practices and success metrics for the full DE transformation.
- 4) Organizations should continue to share lessons learned from their pilot efforts.
- 5) The community should share their implementation and measurement strategies, and future surveys should assess maturity and best practices.
- 6) More effort is necessary to pilot draft guidance and to test and validate results. The next phase of this research is working with a government/industry/academia effort to standardize key practices and metrics.

How can the value and effectiveness of DE be described and measured?

7) The community perceives significant benefit from DE and MBSE transformation, but specific benefits have not yet been translated to organizational value drivers and success metrics. In fact, organizations appear to be searching for guidance on measuring the value and benefits of DE/MBSE usage. Based on extensive literature review and survey data, this research presents a guiding framework for benefits and metrics. Based on this work, the DoD should provide common guidance to program offices on data collection and should track several top-level measures that are consistently used across those offices. Table 1 of this report makes recommendations based on categories of metrics most frequently reported in literature and from survey data, but further work is needed to evaluate these metrics in practice—few examples exist today.

Are there game-changing methods and/or technologies that would make a difference?

8) Technology in the DE and MBSE ecosystem is evolving rapidly. Tools and infrastructure, based on survey data, are becoming more mature and less of an obstacle to DE success. However, enterprises must continue to focus on their unique DE innovation strategies to build successful infrastructure and practices, focus resources and people on the unique aspects of

the DE infrastructure as part of the DE transformation team (not general IT), and create programs to invest in and evaluate evolving technologies and standards.

9) The transformative aspect of DE/MBSE will succeed based on how technology enables automation of SE tasks and human collaboration across all disciplines across a full model-centric engineering process. The DoD should fund research and incentivize tool vendors to introduce more automation into the DE/MBSE processes.

Can an organizational performance model for DE transformation be described?

- 10) Successful DE and MBSE are inseparable from good systems engineering. DE/MBSE is just an extension of existing systems engineering roles and skills. DE presents newer roles related to the data science aspects of MBSE, particularly data management, data integration, and data analysis. Also, there is more emphasis on tool experts: roles focused exclusively on the use and maintenance of tools to support DE/MBSE. Workforce development is a critical component of DE/MBSE adoption, and this research provides an initial survey-based framework for DE roles and skills. The results of the MBSE Maturity Survey conducted with this effort capture this framework (McDermott et al., 2020b).
- 11) In a transformation program, one would start with a high-level description of program adoption practices linked to the benefits of DE/MBSE, then use these to design a set of organizational capabilities for doing DE/MBSE, measure the performance of the organization within each of these capabilities, and use this to produce results that enable new value to the organization. This starts with leadership and strategy; is implemented across enterprise operations and workforce capabilities; and should produce customer value and enterprise-wide results. This is the core of the Baldrige Criteria for Performance Excellence (NIST, 2019). Although this research was not able to produce a "cookbook" for program office success, it does provide a set of frameworks for a program office or enterprise to evolve that guide.
- 11) Finally, there appears to be a strong top-to-bottom leadership commitment to DE transformation at this point in time, but the perception of progress and success differs greatly between leadership and the workforce using the methods, processes, and tools. In terms of the Gartner Hype Cycle (Gartner, 2020), the community is just starting up the "Slope of Enlightenment" where benefits start to crystallize and become widely understood. A strong understanding of adoption obstacles and enablers must exist and be tracked at all enterprise levels.

Figure 4 suggests an overall program leadership and measurement model presented as a concept map.

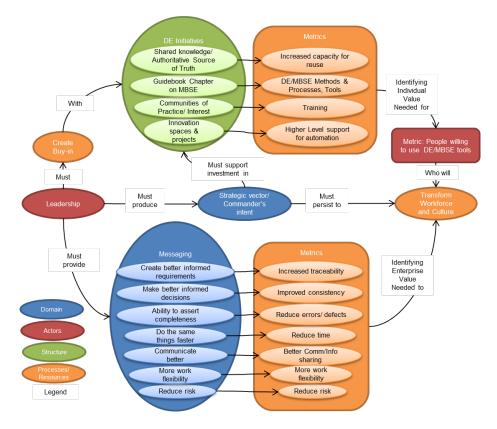


Figure 4. Top Level Organizational Performance Model (McDermott et al., 2020a)

Summary

A key result of this research is the development and definition of two frameworks: a DE benefits framework and an enterprise adoption framework, which can be universally applied to a formal enterprise change strategy and associated performance measurement activities. From these, we derived an additional metrics framework and captured, at this point, 10 primary categories of metrics around which to start a measurement program. The primary value of this research is in these comprehensive frameworks.

References

Defense Acquisition University. (2020). DAU glossary.

https://www.dau.edu/glossary/Pages/GlossaryContent.aspx?itemid=27345#:~:text=An% 20integrated%20digital%20approach%20that,activities%20from%20concept%20through %20disposal

DoD. (2018). Digital engineering strategy.

Gartner. (2019). How to measure digital transformation progress.

https://www.gartner.com/smarterwithgartner/how-to-measure-digital-transformation-progress/

Gartner. (2020). Gartner hype cycle.

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle

INCOSE. (2020). Model-based enterprise capability matrix and user's guide, version 1.0.

- McDermott, T., Van Aken, E., Hutchison, N., Salado, A., Henderson, K., & Clifford, M. (2020a). Digital engineering metrics (Technical Report SERC-2020-TR-002). Stevens Institute of Technology. https://sercuarc.org/wp-content/uploads/2020/06/SERC-TR-2020-002-DE-Metrics-6-8-2020.pdf
- McDermott, T., Van Aken, E., Hutchison, N., Salado, A., Henderson, K., & Clifford, M. (2020b). Benchmarking the benefits and current maturity of model-based systems engineering across the enterprise: Results of the MBSE maturity survey (Technical Report SERC-2020-SR-001). Stevens Institute of Technology. https://sercuarc.org/wp-content/uploads/2020/03/SERC-SR-2020-001-Benchmarking-the-Benefits-and-Current-Maturity-of-MBSE-3-2020.pdf
- NIST. (2019). Baldrige excellence framework: Proven leadership and management practices for high performance. Department of Commerce, National Institute of Standards and Technology. https://www.nist.gov/baldrige/publications/baldrige-excellence-framework
- Object Management Group. (2020). MBSE Wiki. https://www.omgwiki.org/MBSE/doku.php
- Systems Engineering Research Center. (2018). Enterprise system-of-systems model for digital thread enabled acquisition (Technical report SERC-2018-TR-109). Stevens Institute of Technology. https://sercuarc.org/publication/?id=197&pub-type=Technical-Report&publication=SERC-2018-TR-109-Enterprise+System-of-Systems+Model+for+Digital-Thread+Enabled+Acquisition

ACQUISITION RESEARCH PROGRAM
GRADUATE SCHOOL OF DEFENSE MANAGEMENT
NAVAL POSTGRADUATE SCHOOL
555 DYER ROAD, INGERSOLL HALL
MONTEREY, CA 93943