

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

SYM-AM-21-071

Excerpt from the
Proceedings

of the
Eighteenth Annual

Acquisition Research Symposium

Structural Complexity Analysis to Evaluate Technical
Risk in Defense Acquisition

May 11–13, 2021

Published: May 10, 2021

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Defense Management at the Naval Postgraduate
School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Acquisition Research Program
Graduate School of Defense Management - 78 -
Naval Postgraduate School

Structural Complexity Analysis to Evaluate Technical Risk in
Defense Acquisition

Dr. Antonio Pugliese—Cornell University [pugliese@cornell.edu]

Dr. Roshanak Nilchiani—Stevens Institute of Technology [rnilchia@stevens.edu

Maximilian Vierlboeck—Stevens Institute of Technology [mvierlbo@stevens.edu]

Abstract
The study of “-ilities” in systems engineering has been fundamentally connected to the evaluation
of system complexity in recent years. Complexity has been inherent in all defense acquisition
programs where technology and human organizations interface. Complexity can be inherent in
design of a defense system/System-of-systems, at the organizational layers of defense systems,
and in the environment, every now and then imposing its unpredictability or non-linearity to an
acquisition program. Increased knowledge and understanding of defense systems complexity can
shed light on some various unknown and emergent behavior of such systems, as well as guiding
us to better solution sets when facing major decisions or challenges.

The goal of our research is to identify, formulate, and model complexity in technical segment of
defense acquisition programs, as the increased level of complexity contributes to increased fragility
and potential failure of the system. In another word, complexity measure is an indirect measure of
risk in complex systems. The future direction of our research aims at replacing a large portion of
subject matter experts’ opinions on technical systems risk assessment, with actual complex risk
measures and therefore improve the decision-making process more objective.

Introduction
Defense acquisition programs are essential and fundamental to the goals of the United

States in terms of defense and peace-keeping activities. The 2016 report on Performance of the
Defense Acquisition System states that long-time issues such as large cost growth, heavy
changes in requirements, and responsiveness in initiating new programs, which have been
addressed in years of research in acquisition management, are now under control (Kendall,
2016). The same report warns future leaders to not neglect system “-ilities” when evaluating a
system, claiming that well-engineered systems are more often effective. Reliability, availability,
and maintainability are prerequisites to the system performing its function (Kendall, 2016).

The study of “-ilities” in systems engineering has been fundamentally connected to the
evaluation of system complexity in recent years (Enos et al., 2019; Fischi et al., 2017; Pugliese
et al., 2018; Pugliese & Nilchiani, 2017; Salado & Nilchiani, 2013). Complexity has been inherent
to defense acquisition programs where technology and human organizations interface.
Complexity can be inherent to design of a defense system/system-of-systems, at the
organizational layers of defense systems, and in the environment, occasionally imposing its
unpredictability or non-linearity to an acquisition program. System “-ilities” such as flexibility,
reliability, modularity, etc. are most successful when they are embedded in large-scale programs
where a fundamental understanding of the complex structure and behavior of such systems
exists. Therefore, it is necessary and urgent to better understand, model, measure, and formulate
such defense programs considering their complex behavior. Increased knowledge and
understanding of defense systems complexity can shed light on various unknown and emergent
behavior of such systems, as well as guide us to better solution sets when facing major decisions
or challenges.

The goal of our research is to identify, formulate, and model complexity in technical
segments of defense acquisition programs, as the heightened level of complexity contributes to

Acquisition Research Program
Graduate School of Defense Management - 79 -
Naval Postgraduate School

increased fragility and potential failure of the system. In other words, complexity measure is an
indirect measure of risk in complex systems. The future direction of our research aims at replacing
a large portion of subject matter experts’ opinions on technical systems risk assessment with
actual complex risk measures and therefore improve the decision-making process by enabling it
to be more objective.

In software systems, complexity can be defined as “a measure of the resources expended
by a system while interacting with a piece of software to perform a given task” (Basili, 1980). From
this general definition many can be derived depending on the choice of the specific system
interacting with the software under study (Mens, 2016). If the interacting system is a computer,
we are looking at theoretical complexity, which can be of two types: algorithmic complexity, if the
focus is on the time and storage space required to execute the computation, or computational
complexity, if the focus is on the complexity of the problem at hand, regardless of the algorithm
used to solve it. Efficient algorithms will have an algorithmic complexity that is close to the
computational complexity of the problem at hand (Mens, 2016). If the interacting system is the
user of the software system, then the corresponding complexity is complexity of use, usually
referred to as a common system characteristic: usability (Mens, 2016). If the interacting system
is a software developer, the type of complexity is structural complexity (Darcy et al., 2005).

Software structural complexity focuses on the software architecture, defined as the
organization of the components of the software and how they relate to each other. A structural
complexity analysis is performed by looking at the source code of the software under study, and
is therefore dependent on the programming language and on a specific implementation of the
solution. Depending on the level of granularity at which the software is analyzed, this static
analysis, as it is also known among computer scientists, can consider as atomic units of the
system the modules or files, inner constructs, such as classes and functions, or single
instructions. A finer level of granularity can lead to a more detailed understanding of the
dependencies, but requires the software to be completed before this analysis can be carried out.

Literature Review and State of the Research
When looking at software architecture (SA) in its general form and where the architectural

aspects originated from, the history shows that the first approaches that are now all combined in
SA can be traced back all the way to the early 1970s. Especially over the last 30 years, software
architecture emerged as an important field for both research and practice (Shahin et al., 2014).
On a general level, SA can be defined as the representation and definition of software and the
software system. Such a representation includes descriptive elements which cover the
relationships between elements and sub-elements (Angelov et al., 2009; Avci et al., 2020; Garlan
& Shaw, 1993).

Early on in the 1960s and 1970s, research emerged that addressed data and data
structures, which lead to an accentuation of certain structural elements above the level of the
software code itself. This accentuation led to an abstraction and organizational understanding,
and as a result, software architecture emerged in the following decades (Garlan & Shaw, 1993).
The first appearances and mentions of SA can be found in the publication of Parnas in 1972. In
this work, the author described the concept behind the module decomposition structure.
Specifically, Parnas describes criteria that can be used to decompose the structure of systems
into modules. Throughout the 1970s, Parnas published various other papers that outlined
additional aspects of structures, and over time, the field of SA progressed and more nuances
were added to differentiate between various forms of structures (Bass et al., 2012).

From the aforementioned time till around 1990, architecture in scientific fields was mostly
related to systems (Kruchten et al., 2006). Yet, SA as a separate discipline in research and
science emerged in the 1990s (Kruchten et al., 2006; Perry & Wolf, 2000) and has been flourishing

Acquisition Research Program
Graduate School of Defense Management - 80 -
Naval Postgraduate School

since then, also including empirical research approaches (Qureshi et al., 2013). The first book
about SA was also published during these beginning times in 1994 (Witt et al., 1994).

Because of the pace increase, numerous approaches were developed in the 1990s in
academia but also by companies, such as Lockheed Martin and IBM. Kruchten et al. (2006) lists
various approaches that resulted from these efforts: Software Architecture Analysis Method
(Kazman et al., 1994), the 4+1 view (Kruchten, 1995), Siemens’s four views (Soni et al., 1995),
and numerous other patterns that address the design of SA (Buschmann et al., 1996) as well as
Architecture Description Languages (ADLs; Shaw & Clements, 2006).

Building upon the momentum, more companies started to participate in SA and its
methodologies since the beginning of the third millennium. Two notable approaches for general
architecture were standardized to unify certain efforts: RM-ODP (ISO/IEC, 1995; Linington, 1995;
Putman, 2000) and IEEE 1471 (IEEE, 2000). Overall, a lot of pre-made platforms and
architectures ready to use have been developed and are today available. Open-source software
adds to this abundance. It is thus safe to say that SA has reached what Shaw and Clements
(2006) describe as “popularization.” Therefore, new trends and explorations also must be
considered since they are a natural continuation of the described state.

Looking at the last 5 years, a few trends in SA emerge that are currently being pursued.
The first of these trends is cloud and service related and addresses the question how SA is
connected to such fields and how it can be utilized (Amal et al., 2018; Bahsoon et al., 2017;
Hästbacka et al., 2019; Malavolta & Capilla, 2017). Second, a focus on intelligent architecture can
be seen, which introduces topics such as machine learning into the field of SA and enables
phenomena such as emergent architectures that only appear during runtime and are not pre-
managed or set (Woods, 2016). This trend also increases the reliance of SA on data and
algorithms, which will require rethinking of previously mentioned approaches, such as the 4+1
View, which did not originally include any views for data or underlying information (Kruchten,
1995; Woods, 2016). Third, also related to the previous one, the use of SA in agile environments
has become more and more important and has thus moved into the focus of research as well
(Dingsøyr et al., 2018; Venters et al., 2018). Agile and SA propose different viewpoints with the
former advocating for flexible as well as iterative implementation of changes and the latter
standing for fundamental decisions that might even be deferred until they can be made in the
most informed manner if they are not already defined up front (Dingsøyr et al., 2018; Hasselbring,
2018). Hence, the integration of architecture into agile environments has been seen as a trend as
well (Dingsøyr et al., 2018). Lastly, a focus on sustainability also in relation to longevity and
scalability can be seen. Since scalability can be an issue with integrated databases due to their
high coherence (Hasselbring, 2002), the applicability and longevity of SAs can become
problematic if they are tightly vertically integrated. Thus, approaches such as Microservices
(Francesco et al., 2017; Newman, 2015; Taibi et al., 2017) and other solutions to these problems
(Capilla et al., 2017), which then also address sustainability (Cabot et al., 2019; Venters et al.,
2018), are being pursued.

Lastly, for the research at hand, a categorization approach and characterization within SA
is critical to allow for a methodological analysis. Thus, the most frequently used and applied
structures were researched and are described hereinafter. On an overarching level, structures in
SA can be seen as threefold (Bass et al., 2012): decomposition structure, use structure, and class
structure. Each of these three categories can again be subdivided into more nuanced categories,
but such detailed subdivisions can be strongly dependent on the case of application. Thus, for
the work at hand, three of the subcategories of the module structure shall be outlined as they are
directly related to the research presented as depicted in Figure 1: decomposition structure, use
structure, and class structure.

Acquisition Research Program
Graduate School of Defense Management - 81 -
Naval Postgraduate School

Figure 1. Classification of Relevant Architectural Structures for Software Systems

In this paper we analyze the source code of an open-source Python library, Snorkel. This
is a static analysis that focuses on the module structure. In particular, the codebase is parsed to
generate a class structure, which includes details about modules, classes, and methods. A series
of relationships between these entities allow us to define a particular case of a use structure,
which will be used as the basis of the static analysis.

Methodology
This paper presents a static analysis of the source code of a software package developed

using the Python 3 programming language. The source code is parsed using the Abstract Syntax
Tree (AST) module in the Python Standard Library. This module is based on the parser used in
the native Python compiler and is continuously updated with any grammar change in the
language. This parsing process leads to the creation of a graph where functions and classes are
nodes and inheritance and functional calls are edges.

The resulting graph is known as a module dependency graph and has been a subject of
a number of graph-theoretical research efforts (MacCormack et al., 2006). The module
dependency graph is a particular case of a use structure. In this research, the module dependency
graph will be analyzed with a series of complexity metrics based on the eigenvalues of various
representations of the graph (Pugliese & Nilchiani, 2019). These metrics are based on other
metrics, such as graph energy (Gutman, 2001) and natural connectivity (Jun et al., 2010).

The module dependency graph is built using an ad hoc model of Python objects and
interdependencies. This version introduces function-level granularity, from file-level of the
previous one, and is based on the Python AST module instead of simply parsing the code. The
graph is built using the following rules:

• A file that imports code from another file is dependent on that file.
• A class that inherits from another class is dependent on that class.
• A function that calls another function is dependent on that function.
• A file that contains a class is dependent on that class.
• A file that contains a function is dependent on that function.
• A class that contains a function is dependent on that function.

Figure 2 shows the types of dependencies among the elements of the graph.

Acquisition Research Program
Graduate School of Defense Management - 82 -
Naval Postgraduate School

Figure 2. Types of Dependencies Among Graph Elements

The analysis of the module dependency graph is carried out using a set of spectral
complexity metrics developed by our research group and represented using the following formula:

𝐶𝐶(𝑆𝑆) = 𝑓𝑓 �𝛾𝛾�𝑔𝑔�𝜆𝜆𝑖𝑖(𝑀𝑀) −
𝑡𝑡𝑡𝑡(𝑀𝑀)
𝑛𝑛 �

𝑛𝑛

𝑖𝑖=1

�

where 𝑓𝑓1(𝑥𝑥) = 𝑥𝑥,𝑔𝑔1(𝑦𝑦) = |𝑦𝑦|,𝑓𝑓2(𝑥𝑥) = ln 𝑥𝑥 ,𝑔𝑔2(𝑦𝑦) = 𝑒𝑒𝑦𝑦 are the possible values for the functions 𝑓𝑓
and 𝑔𝑔, the coefficient 𝛾𝛾 can be 𝛾𝛾1 = 1,𝛾𝛾2 = 𝑛𝑛−1, and the matrix representation of the graph can
be either 𝑀𝑀1 = 𝐴𝐴,𝑀𝑀2 = 𝐿𝐿,𝑀𝑀3 = ℒ, which have been defined in our previous publication (Nilchiani
& Pugliese, 2016).

Table 1 shows the metrics that can be derived from this formula through combinations of
the described parameters. Two sets of functions, two values for the coefficient 𝛾𝛾, and three
matrices yield 12 possible metrics. Throughout this paper, the metrics are referred to using
acronyms: graph energy (GE), Laplacian graph energy (LGE), normalized Laplacian graph energy
(NLGE), natural connectivity (NC), Laplacian natural connectivity (LNC), normalized Laplacian
natural connectivity (NLNC). Where the acronym has a trailing n, such as in (GEn), the factor 𝛾𝛾 =
1/𝑛𝑛.

Acquisition Research Program
Graduate School of Defense Management - 83 -
Naval Postgraduate School

Results
This section presents the results of analysis on the module dependency graph for the

Snorkel project published on GitHub. The project was selected due to its relatively small size of
~2,600 commits and less than 300MB of code as of March 2021, which allows us to run our
analytical programs on a laptop. The number of contributors (50), the history of commits, and the
prevalence of Python code were other attributes that affected this choice. Future and optimized
versions of the code will aim at analyzing larger codebases.

The evolution of the graph at indicated time stamps is depicted in Figure 3. In these plots,
the nodes are colored according to their type: file (blue), library (black), class (red), and
function/method (green). These images suggest how even a relatively small project, such as
Snorkel, can become eminently complex to manage and architect.

Table 1. Twelve Examples of Spectral Structural Complexity Metrics

Adjacency Matrix Laplacian Matrix Normalized Laplacian Matrix

𝜸𝜸 = 𝟏𝟏
𝐺𝐺𝐺𝐺 = �|𝜆𝜆𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 𝐿𝐿𝐺𝐺𝐺𝐺 = ��𝜇𝜇𝑖𝑖 −
2𝑚𝑚
𝑛𝑛
�

𝑛𝑛

𝑖𝑖=1

 𝑁𝑁𝐿𝐿𝐺𝐺𝐺𝐺 = �|𝜈𝜈𝑖𝑖 − 1|
𝑛𝑛

𝑖𝑖=1

𝑁𝑁𝐶𝐶 = ln��𝑒𝑒𝜆𝜆𝑖𝑖
𝑛𝑛

𝑖𝑖=1

� 𝐿𝐿𝑁𝑁𝐶𝐶 = ln��𝑒𝑒𝜇𝜇𝑖𝑖−
2𝑚𝑚
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

� 𝑁𝑁𝐿𝐿𝑁𝑁𝐶𝐶 = ln��𝑒𝑒𝜈𝜈𝑖𝑖−1
𝑛𝑛

𝑖𝑖=1

�

𝜸𝜸 =
𝟏𝟏
𝒏𝒏

 𝐺𝐺𝐺𝐺𝑛𝑛 =
1
𝑛𝑛
�|𝜆𝜆𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 𝐿𝐿𝐺𝐺𝐺𝐺𝑛𝑛 =
1
𝑛𝑛
��𝜇𝜇𝑖𝑖 −

2𝑚𝑚
𝑛𝑛
�

𝑛𝑛

𝑖𝑖=1

 𝑁𝑁𝐿𝐿𝐺𝐺𝐺𝐺𝑛𝑛 =
1
𝑛𝑛
�|𝜈𝜈𝑖𝑖 − 1|
𝑛𝑛

𝑖𝑖=1

𝑁𝑁𝐶𝐶𝑛𝑛 = ln�
1
𝑛𝑛
�𝑒𝑒𝜆𝜆𝑖𝑖
𝑛𝑛

� 𝐿𝐿𝑁𝑁𝐶𝐶𝑛𝑛 = ln�
1
𝑛𝑛
�𝑒𝑒𝜇𝜇𝑖𝑖−

2𝑚𝑚
𝑛𝑛

𝑛𝑛

� 𝑁𝑁𝐿𝐿𝐺𝐺𝐺𝐺𝑛𝑛 = ln�
1
𝑛𝑛
�𝑒𝑒𝜈𝜈𝑖𝑖−1
𝑛𝑛

�

Acquisition Research Program
Graduate School of Defense Management - 84 -
Naval Postgraduate School

Feb 2016

Jul 2016

Nov 2016

May 2017

May 2018

Mar 2021

Figure 3. Evolution of the Module Dependency Graph at Select Points in Time for the Snorkel Project.
Snapshots are taken at intervals of approximately 530 commits.

Acquisition Research Program
Graduate School of Defense Management - 85 -
Naval Postgraduate School

Linear Correlation Analysis
A linear correlation analysis of the metrics is described hereinafter. Using the Pearson

correlation coefficient (r), it is possible to see if any of the metrics evaluated for the dependency
graph are linearly co-dependent. These dependencies can provide insights regarding
characteristics of the Snorkel code base.
As shown in Figure 4, the following group of metrics show 𝑡𝑡 > .99 in all pairwise comparisons:
GE, LGE, NLGE, n, m.

Figure 4. Comparison of GE, LGE, NLGE, Number of Nodes, and Number of Edges

The linearity between number of nodes (𝑛𝑛) and number of edges (𝑚𝑚) can be seen as a
symptom of localized development. The addition of a module to the source code is followed by
the connection of this module to one or more others. If for each additional module a low number

Acquisition Research Program
Graduate School of Defense Management - 86 -
Naval Postgraduate School

of connections are made, it means that the module is only being used in that specific part of the
code. While a percentage of additions are justifiably of this type, most modules might also be
reused in other locations and therefore should create more additional connections. A long-lasting
linear relationship between 𝑛𝑛 and 𝑚𝑚 suggests a need for refactoring.

The linear relationship between GE and LGE is common in graphs with a close to uniform
distribution of node degrees. In star graphs, GE would grow superlinearly with the number of
nodes while LGE’s behavior would converge to linear. The dissimilarity between the current
dependency graphs and graphs with highly skewed distribution of node degrees is also seen in
NLGE, which would be zero for star graphs.

Figure 5 shows a linear relationship (𝑡𝑡 > .99) in three pairwise comparisons between LNC,
LNCn, and the maximum node degree. A linearity between LNC and LNCn is a characteristic of
star graphs and wheel graphs. For graphs with more uniform degree distribution, the value of
LNCn plateaus quickly with the number of nodes, while LNC’s growth slows down more gently.
This result is in contrast with the insights found in Figure 4, and adds a new research question
regarding the relationship between these metrics and fundamental graph characteristics.

Figure 5. Comparison of LNC, LNCn, and Maximum Node Degree

The linear relationships of LNC and LNCn with the maximum node degree of the graph
indicate that these metrics are connected to the size of the largest hub in the graph. This linearity
is also found in star graphs, while in complete graphs, where there are no hubs by definition, and
each node is equivalent to all the others, LNC would grow with a descending rate, and LNCn
would plateau asymptotically towards 1.

Acquisition Research Program
Graduate School of Defense Management - 87 -
Naval Postgraduate School

Figure 6. Comparison of Uncorrelated Metrics

Figure 6 shows the pairwise comparisons of all the metrics that do not present a clear
linear correlation in the Snorkel code base. Some of these relationships are planned to be
analyzed in subsequent research efforts, but an effort in narrowing the pool of metrics and towards
a more purposeful metric design will be necessary to measure meaningful characteristics of
software architectures.
Trends Over Time

The linear correlation analysis allows the connection of different metrics, in an effort to
characterize the topology of the dependency graph. The actual development and creation of the
codebase over the 5-year period can be analyzed by plotting some of these metrics over time.
The evolution of the dependency graph presented in Figure 3 is depicted by the values of four of
the metrics shown in Figure 7: GE, NC, GEn, and NCn.

Acquisition Research Program
Graduate School of Defense Management - 88 -
Naval Postgraduate School

Figure 7. Trends for GE, NC, GEn, and NCn Over 6 Years of Project Development

Figure 7 presents a series of time plots for this select subset of metrics. For each metric,
the green shaded area represents the frequency of commits in the project at a specific point in
time. This frequency is not connected to the values on the y-axis. The plots show that the
development of the project was very active in 2016 and 2017, with a smaller spike of activity in
2019, when, according to the commits, the project underwent a small overhaul, with frequent
additions and removals of code. This allows us to better contextualize the changes in each metric
and see how they react when the codebase is changed.

Graph energy (GE) quickly rises during the initial development, and fluctuates significantly
during the overhaul, only to settle at essentially the same level afterwards. Natural connectivity
(NC), on the other hand, rises also after the overhaul, suggesting that the changes made to the
codebase in 2019 increased the cohesion of the whole project, without unnecessarily increasing
coupling.

The comparison between GE and GEn shows the effect of the normalization factor 𝛾𝛾 = 1
𝑛𝑛
,

which was introduced to allow a comparison of graphs of different size (number of nodes). In this
case, this normalization affects GEn to the point that the metric only seems to capture the
frequency of the commits, and not the growth of the graph (as expected). This behavior is not the
case when this normalization is applied to NC, as NCn still seems to be affected by the graph
growth.

Acquisition Research Program
Graduate School of Defense Management - 89 -
Naval Postgraduate School

Conclusion
This paper presented a methodology to study the behavior of complex software systems

in terms of their structural complexity with a focus on the modifiability of the code base. This
approach is based on the parsing of the code and the creation of a dependency graph, a particular
case of architectural structure that focuses on the dependency between software modules and
the various ways they can call each other.

The dependency graph has been analyzed through the evaluation of a series of spectral
metrics, which have shed light on some characteristics of the graph and given insights on the
quality of the development effort. It is important to note that this approach forgoes the analysis of
the actual lines of code and the dynamic effects that they will have at runtime and is therefore to
be considered limited in scope and applicability.

In parallel to this analysis being carried out, the behavior of each metric is also being
discovered, thus bootstrapping their applicability to the metrics. Behind the scenes, the metrics
have been applied to conventional graphs, but the use case of a real software project is necessary
to gauge the limitations of this approach.

Future research will continue the effort of connecting these and other metrics to important
attributes of software code bases. Improvements to our own software tools will allow for analysis
of projects with larger repositories, and with a longer development time frame, where the effects
of technical debt might be more pronounced. Additional improvements are also planned for the
visual representation of modifiability in software systems.

References
Amal, A., Sliman, L., Kmimech, M., Bhiri, M. T., & Raddaoui, B. (2018, September 26–28). Towards a formal

verification approach for cloud software architecture [Paper presentation]. New Trends in Intelligent
Software Methodologies, Tools and Techniques: Proceedings of the 17th International Conference
on New Trends in Intelligent Software Methodology, Tools and Techniques (SoMeT18), Granada,
Spain.

Angelov, S., Grefen, P. W. P. J., & Greefhorst, D. (2009). A classification of software reference
architectures: Analyzing their success and effectiveness. 2009 Joint Working IEEE/IFIP
Conference on Software Architecture & European Conference on Software Architecture, 141–150.
https://doi.org/10.1109/WICSA.2009.5290800

Avci, C., Tekinerdogan, B., & Athanasiadis, I. N. (2020). Software architectures for big data: A systematic
literature review. Big Data Analytics, 5(1), 5. https://doi.org/10.1186/s41044-020-00045-1

Bahsoon, R., Ali, N., Heisel, M., Maxim, B., & Mistrik, I. (2017). Software architecture for cloud and big data.
In I. Mistrik, R. Bahsoon, N. Ali, M. Heisel, & B. Maxim (Eds.), Software architecture for big data
and the cloud. Morgan Kaufmann.

Basili, V. R. (1980). Qualitative software complexity models: A summary. Tutorial on models and methods
for software management and engineering.

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice (3rd ed.). Addison-Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-oriented software
architecture. John Wiley & Sons.

Cabot, J., Capilla, R., Carrillo, C., Muccini, H., & Penzenstadler, B. (2019). Measuring systems and
architectures: A sustainability perspective. IEEE Software, 36(3), 98–100.
https://doi.org/10.1109/MS.2019.2897833

Capilla, R., Nakagawa, E. Y., Zdun, U., & Carrillo, C. (2017). Toward architecture knowledge sustainability:
Extending system longevity. IEEE Software, 34(2), 108–111. https://doi.org/10.1109/MS.2017.54

https://doi.org/10.1109/WICSA.2009.5290800
https://doi.org/10.1186/s41044-020-00045-1
https://doi.org/10.1109/MS.2019.2897833
https://doi.org/10.1109/MS.2017.54

Acquisition Research Program
Graduate School of Defense Management - 90 -
Naval Postgraduate School

Darcy, D. P., Kemerer, C. F., Slaughter, S. A., & Tomayko, J. E. (2005). The structural complexity of
software an experimental test. IEEE Transactions on Software Engineering, 31(11), 982–995.
https://doi.org/10.1109/TSE.2005.130

Dingsøyr, T., Moe, N. B., Fægri, T. E., & Seim, E. A. (2018). Exploring software development at the very
large-scale: A revelatory case study and research agenda for agile method adaptation. Empirical
Software Engineering, 23(1), 490–520. https://doi.org/10.1007/s10664-017-9524-2

Enos, J. R., Farr, J. V., & Nilchiani, R. R. (2019). Identifying and quantifying criticalilities in the acquisition
of DoD system. Defense Acquisition Research Journal, 26(1), 18–43.
https://doi.org/10.22594/dau.18-799.26.01

Fischi, J., Nilchiani, R., & Wade, J. (2017). Dynamic complexity measures for use in complexity-based
system design. IEEE Systems Journal, 11(4), 2018–2027.
https://doi.org/10.1109/JSYST.2015.2468601

Francesco, P. D., Malavolta, I., & Lago, P. (2017, April 3–7). Research on architecting microservices:
Trends, focus, and potential for industrial adoption [Paper presentation]. 2017 IEEE International
Conference on Software Architecture.

Garlan, D., & Shaw, M. (1993). An introduction to software architecture. Advances in software engineering
and knowledge engineering (pp. 1–39).

Gutman, I. (2001). The energy of a graph: Old and new results. Berlin, Heidelberg.

Hasselbring, W. (2002). Web data integration for e-commerce applications. IEEE MultiMedia, 9(1), 16–25.
https://doi.org/10.1109/93.978351

Hasselbring, W. (2018). Software architecture: Past, present, future. In V. Gruhn & R. Striemer (Eds.), The
essence of software engineering (pp. 169–184). Springer Open.

Hästbacka, D., Halme, J., Larrañaga, M., More, R., Mesiä, H., Björkbom, M., ... Hoikka, H. (2019, October
27–30). Dynamic and flexible data acquisition and data analytics system software architecture
[Paper presentation]. 2019 IEEE SENSORS.

IEEE. (2000). Recommended practice for architectural description of software-intensive systems. In IEEE
1471:2000.

ISO/IEC. (1995). Reference model of open distributed processing (RM-ODP). In ISO/IEC 10746:1995.

Jun, W., Barahona, M., Yue-Jin, T., & Hong-Zhong, D. (2010). Natural connectivity of complex networks.
Chinese Physics Letters, 27(7), 078902. https://doi.org/10.1088/0256-307x/27/7/078902

Kazman, R., Bass, L., Webb, M., & Abowd, G. (1994). SAAM: A method for analyzing the properties of
software architectures [Paper presentation]. Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy.

Kendall, F. (2016). Performance of the defense acquisition system. DoD.

Kruchten, P. (1995). The 4+1 view model of architecture. IEEE Software, 12, 45–50.

Kruchten, P., Obbink, H., & Stafford, J. (2006). The past, present, and future for software architecture.
Software, IEEE, 23, 22–30. https://doi.org/10.1109/MS.2006.59

Linington, P. F. (1995). RM-ODP: The architecture. In K. Raymond & L. Armstrong (Eds.), Open distributed
processing: Experiences with distributed environments. Proceedings of the third IFIP TC 6/WG 6.1
international conference on open distributed processing, 1994 (pp. 15–33). Springer U.S.

MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of complex software designs:
An empirical study of open source and proprietary code. Management Science, 52(7), 1015–1030.
https://doi.org/10.1287/mnsc.1060.0552

Malavolta, I., & Capilla, R. (2017, April 5–7). Current research topics and trends in the software architecture
community: ICSA 2017 workshops summary [Paper presentation]. 2017 IEEE International
Conference on Software Architecture Workshops.

https://doi.org/10.1109/TSE.2005.130
https://doi.org/10.1007/s10664-017-9524-2
https://doi.org/10.22594/dau.18-799.26.01
https://doi.org/10.1109/JSYST.2015.2468601
https://doi.org/10.1109/93.978351
https://doi.org/10.1088/0256-307x/27/7/078902
https://doi.org/10.1109/MS.2006.59
https://doi.org/10.1287/mnsc.1060.0552

Acquisition Research Program
Graduate School of Defense Management - 91 -
Naval Postgraduate School

Mens, T. (2016). Research trends in structural software complexity. https://arxiv.org/abs/1608.01533

Newman, S. (2015). Building microservices. O’Reilly.

Nilchiani, R. R., & Pugliese, A. (2016). A complex systems perspective of risk mitigation and modeling in
development and acquisition programs. Stevens Institute of Technology.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Commun. ACM,
15(12), 1053–1058. https://doi.org/10.1145/361598.361623

Perry, D., & Wolf, A. (2000). Foundations for the study of software architecture. ACM SIGSOFT Software
Engineering Notes, 17. https://doi.org/10.1145/141874.141884

Pugliese, A., Enos, J., & Nilchiani, R. (2018). Acquisition and development programs through the lens of
system complexity. Naval Postgraduate School.

Pugliese, A., & Nilchiani, R. (2017). A systems complexity-based assessment of risk in acquisition and
development programs.

Pugliese, A., & Nilchiani, R. (2019). Developing spectral structural complexity metrics. IEEE Systems
Journal, 13(4), 3619–3626. https://doi.org10.1109/JSYST.2019.2912368

Putman, J. (2000). Architecting with RM-ODP. Prentice Hall.

Qureshi, N., Usman, M., & Ikram, N. (2013). Evidence in software architecture, a systematic literature
review. Paper presented at the Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering, Porto de Galinhas, Brazil.

Salado, A., & Nilchiani, R. (2013). Using requirements-induced complexity to anticipate development and
integration problems: Analysis of past missions [Paper presentation]. AIAA SPACE 2013
Conference and Exposition.

Shahin, M., Liang, P., & Babar, M. A. (2014). A systematic review of software architecture visualization
techniques. Journal of Systems and Software, 94, 161–185.
https://doi.org/10.1016/j.jss.2014.03.071

Shaw, M., & Clements, P. (2006). The golden age of software architecture. IEEE Software, 23(2), 31–39.

Soni, D., Nord, R., & Hofmeister, C. (1995). Software architecture in industrial applications. 17th
International Conference on Software Engineering, 196–196.

Taibi, D., Lenarduzzi, V., Pahl, C., & Janes, A. (2017). Microservices in agile software development: A
workshop-based study into issues, advantages, and disadvantages [Paper presentation].
Proceedings of the XP2017 Scientific Workshops, Cologne, Germany.

Venters, C. C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T., Crouch, S., ... Carrillo, C. (2018). Software
sustainability: Research and practice from a software architecture viewpoint. Journal of Systems
and Software, 138, 174–188. https://doi.org/10.1016/j.jss.2017.12.026

Witt, B., Baker, T., & Merritt, E. (1994). Software architecture and design: Principles, models, and methods.
Van Nostrand Reinhold.

Woods, E. (2016). Software architecture in a changing world. IEEE Software, 33(6), 94–97.
https://doi.org/10.1109/MS.2016.149

https://arxiv.org/abs/1608.01533
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/141874.141884
https://doi.org10.1109/JSYST.2019.2912368
https://doi.org/10.1016/j.jss.2014.03.071
https://doi.org/10.1016/j.jss.2017.12.026
https://doi.org/10.1109/MS.2016.149

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Abstract
	Introduction
	Literature Review and State of the Research
	Methodology
	Results
	Linear Correlation Analysis
	Trends Over Time

	Conclusion
	References

