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Abstract 
The study of “-ilities” in systems engineering has been fundamentally connected to the evaluation 
of system complexity in recent years. Complexity has been inherent in all defense acquisition 
programs where technology and human organizations interface. Complexity can be inherent in 
design of a defense system/System-of-systems, at the organizational layers of defense systems, 
and in the environment, every now and then imposing its unpredictability or non-linearity to an 
acquisition program. Increased knowledge and understanding of defense systems complexity can 
shed light on some various unknown and emergent behavior of such systems, as well as guiding 
us to better solution sets when facing major decisions or challenges. 

The goal of our research is to identify, formulate, and model complexity in technical segment of 
defense acquisition programs, as the increased level of complexity contributes to increased fragility 
and potential failure of the system. In another word, complexity measure is an indirect measure of 
risk in complex systems. The future direction of our research aims at replacing a large portion of 
subject matter experts’ opinions on technical systems risk assessment, with actual complex risk 
measures and therefore improve the decision-making process more objective. 

Introduction 
Defense acquisition programs are essential and fundamental to the goals of the United 

States in terms of defense and peace-keeping activities. The 2016 report on Performance of the 
Defense Acquisition System states that long-time issues such as large cost growth, heavy 
changes in requirements, and responsiveness in initiating new programs, which have been 
addressed in years of research in acquisition management, are now under control (Kendall, 
2016). The same report warns future leaders to not neglect system “-ilities” when evaluating a 
system, claiming that well-engineered systems are more often effective. Reliability, availability, 
and maintainability are prerequisites to the system performing its function (Kendall, 2016). 

The study of “-ilities” in systems engineering has been fundamentally connected to the 
evaluation of system complexity in recent years (Enos et al., 2019; Fischi et al., 2017; Pugliese 
et al., 2018; Pugliese & Nilchiani, 2017; Salado & Nilchiani, 2013). Complexity has been inherent 
to defense acquisition programs where technology and human organizations interface. 
Complexity can be inherent to design of a defense system/system-of-systems, at the 
organizational layers of defense systems, and in the environment, occasionally imposing its 
unpredictability or non-linearity to an acquisition program. System “-ilities” such as flexibility, 
reliability, modularity, etc. are most successful when they are embedded in large-scale programs 
where a fundamental understanding of the complex structure and behavior of such systems 
exists. Therefore, it is necessary and urgent to better understand, model, measure, and formulate 
such defense programs considering their complex behavior. Increased knowledge and 
understanding of defense systems complexity can shed light on various unknown and emergent 
behavior of such systems, as well as guide us to better solution sets when facing major decisions 
or challenges. 

The goal of our research is to identify, formulate, and model complexity in technical 
segments of defense acquisition programs, as the heightened level of complexity contributes to 
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increased fragility and potential failure of the system. In other words, complexity measure is an 
indirect measure of risk in complex systems. The future direction of our research aims at replacing 
a large portion of subject matter experts’ opinions on technical systems risk assessment with 
actual complex risk measures and therefore improve the decision-making process by enabling it 
to be more objective. 

In software systems, complexity can be defined as “a measure of the resources expended 
by a system while interacting with a piece of software to perform a given task” (Basili, 1980). From 
this general definition many can be derived depending on the choice of the specific system 
interacting with the software under study (Mens, 2016). If the interacting system is a computer, 
we are looking at theoretical complexity, which can be of two types: algorithmic complexity, if the 
focus is on the time and storage space required to execute the computation, or computational 
complexity, if the focus is on the complexity of the problem at hand, regardless of the algorithm 
used to solve it. Efficient algorithms will have an algorithmic complexity that is close to the 
computational complexity of the problem at hand (Mens, 2016). If the interacting system is the 
user of the software system, then the corresponding complexity is complexity of use, usually 
referred to as a common system characteristic: usability (Mens, 2016). If the interacting system 
is a software developer, the type of complexity is structural complexity (Darcy et al., 2005). 

Software structural complexity focuses on the software architecture, defined as the 
organization of the components of the software and how they relate to each other. A structural 
complexity analysis is performed by looking at the source code of the software under study, and 
is therefore dependent on the programming language and on a specific implementation of the 
solution. Depending on the level of granularity at which the software is analyzed, this static 
analysis, as it is also known among computer scientists, can consider as atomic units of the 
system the modules or files, inner constructs, such as classes and functions, or single 
instructions. A finer level of granularity can lead to a more detailed understanding of the 
dependencies, but requires the software to be completed before this analysis can be carried out. 

Literature Review and State of the Research 
When looking at software architecture (SA) in its general form and where the architectural 

aspects originated from, the history shows that the first approaches that are now all combined in 
SA can be traced back all the way to the early 1970s. Especially over the last 30 years, software 
architecture emerged as an important field for both research and practice (Shahin et al., 2014). 
On a general level, SA can be defined as the representation and definition of software and the 
software system. Such a representation includes descriptive elements which cover the 
relationships between elements and sub-elements (Angelov et al., 2009; Avci et al., 2020; Garlan 
& Shaw, 1993). 

Early on in the 1960s and 1970s, research emerged that addressed data and data 
structures, which lead to an accentuation of certain structural elements above the level of the 
software code itself. This accentuation led to an abstraction and organizational understanding, 
and as a result, software architecture emerged in the following decades (Garlan & Shaw, 1993). 
The first appearances and mentions of SA can be found in the publication of Parnas in 1972. In 
this work, the author described the concept behind the module decomposition structure. 
Specifically, Parnas describes criteria that can be used to decompose the structure of systems 
into modules. Throughout the 1970s, Parnas published various other papers that outlined 
additional aspects of structures, and over time, the field of SA progressed and more nuances 
were added to differentiate between various forms of structures (Bass et al., 2012). 

From the aforementioned time till around 1990, architecture in scientific fields was mostly 
related to systems (Kruchten et al., 2006). Yet, SA as a separate discipline in research and 
science emerged in the 1990s (Kruchten et al., 2006; Perry & Wolf, 2000) and has been flourishing 
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since then, also including empirical research approaches (Qureshi et al., 2013). The first book 
about SA was also published during these beginning times in 1994 (Witt et al., 1994). 

Because of the pace increase, numerous approaches were developed in the 1990s in 
academia but also by companies, such as Lockheed Martin and IBM. Kruchten et al. (2006) lists 
various approaches that resulted from these efforts: Software Architecture Analysis Method 
(Kazman et al., 1994), the 4+1 view (Kruchten, 1995), Siemens’s four views (Soni et al., 1995), 
and numerous other patterns that address the design of SA (Buschmann et al., 1996) as well as 
Architecture Description Languages (ADLs; Shaw & Clements, 2006). 

Building upon the momentum, more companies started to participate in SA and its 
methodologies since the beginning of the third millennium. Two notable approaches for general 
architecture were standardized to unify certain efforts: RM-ODP (ISO/IEC, 1995; Linington, 1995; 
Putman, 2000) and IEEE 1471 (IEEE, 2000). Overall, a lot of pre-made platforms and 
architectures ready to use have been developed and are today available. Open-source software 
adds to this abundance. It is thus safe to say that SA has reached what Shaw and Clements 
(2006) describe as “popularization.” Therefore, new trends and explorations also must be 
considered since they are a natural continuation of the described state. 

Looking at the last 5 years, a few trends in SA emerge that are currently being pursued. 
The first of these trends is cloud and service related and addresses the question how SA is 
connected to such fields and how it can be utilized (Amal et al., 2018; Bahsoon et al., 2017; 
Hästbacka et al., 2019; Malavolta & Capilla, 2017). Second, a focus on intelligent architecture can 
be seen, which introduces topics such as machine learning into the field of SA and enables 
phenomena such as emergent architectures that only appear during runtime and are not pre-
managed or set (Woods, 2016). This trend also increases the reliance of SA on data and 
algorithms, which will require rethinking of previously mentioned approaches, such as the 4+1 
View, which did not originally include any views for data or underlying information (Kruchten, 
1995; Woods, 2016). Third, also related to the previous one, the use of SA in agile environments 
has become more and more important and has thus moved into the focus of research as well 
(Dingsøyr et al., 2018; Venters et al., 2018). Agile and SA propose different viewpoints with the 
former advocating for flexible as well as iterative implementation of changes and the latter 
standing for fundamental decisions that might even be deferred until they can be made in the 
most informed manner if they are not already defined up front (Dingsøyr et al., 2018; Hasselbring, 
2018). Hence, the integration of architecture into agile environments has been seen as a trend as 
well (Dingsøyr et al., 2018). Lastly, a focus on sustainability also in relation to longevity and 
scalability can be seen. Since scalability can be an issue with integrated databases due to their 
high coherence (Hasselbring, 2002), the applicability and longevity of SAs can become 
problematic if they are tightly vertically integrated. Thus, approaches such as Microservices 
(Francesco et al., 2017; Newman, 2015; Taibi et al., 2017) and other solutions to these problems 
(Capilla et al., 2017), which then also address sustainability (Cabot et al., 2019; Venters et al., 
2018), are being pursued. 

Lastly, for the research at hand, a categorization approach and characterization within SA 
is critical to allow for a methodological analysis. Thus, the most frequently used and applied 
structures were researched and are described hereinafter. On an overarching level, structures in 
SA can be seen as threefold (Bass et al., 2012): decomposition structure, use structure, and class 
structure. Each of these three categories can again be subdivided into more nuanced categories, 
but such detailed subdivisions can be strongly dependent on the case of application. Thus, for 
the work at hand, three of the subcategories of the module structure shall be outlined as they are 
directly related to the research presented as depicted in Figure 1: decomposition structure, use 
structure, and class structure. 
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Figure 1. Classification of Relevant Architectural Structures for Software Systems 

In this paper we analyze the source code of an open-source Python library, Snorkel. This 
is a static analysis that focuses on the module structure. In particular, the codebase is parsed to 
generate a class structure, which includes details about modules, classes, and methods. A series 
of relationships between these entities allow us to define a particular case of a use structure, 
which will be used as the basis of the static analysis. 

Methodology 
This paper presents a static analysis of the source code of a software package developed 

using the Python 3 programming language. The source code is parsed using the Abstract Syntax 
Tree (AST) module in the Python Standard Library. This module is based on the parser used in 
the native Python compiler and is continuously updated with any grammar change in the 
language. This parsing process leads to the creation of a graph where functions and classes are 
nodes and inheritance and functional calls are edges. 

The resulting graph is known as a module dependency graph and has been a subject of 
a number of graph-theoretical research efforts (MacCormack et al., 2006). The module 
dependency graph is a particular case of a use structure. In this research, the module dependency 
graph will be analyzed with a series of complexity metrics based on the eigenvalues of various 
representations of the graph (Pugliese & Nilchiani, 2019). These metrics are based on other 
metrics, such as graph energy (Gutman, 2001) and natural connectivity (Jun et al., 2010). 

The module dependency graph is built using an ad hoc model of Python objects and 
interdependencies. This version introduces function-level granularity, from file-level of the 
previous one, and is based on the Python AST module instead of simply parsing the code. The 
graph is built using the following rules: 

• A file that imports code from another file is dependent on that file. 
• A class that inherits from another class is dependent on that class. 
• A function that calls another function is dependent on that function. 
• A file that contains a class is dependent on that class. 
• A file that contains a function is dependent on that function. 
• A class that contains a function is dependent on that function. 

Figure 2 shows the types of dependencies among the elements of the graph. 
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Figure 2. Types of Dependencies Among Graph Elements 

 

The analysis of the module dependency graph is carried out using a set of spectral 
complexity metrics developed by our research group and represented using the following formula: 

𝐶𝐶(𝑆𝑆) = 𝑓𝑓 �𝛾𝛾�𝑔𝑔�𝜆𝜆𝑖𝑖(𝑀𝑀) −
𝑡𝑡𝑡𝑡(𝑀𝑀)
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𝑛𝑛

𝑖𝑖=1

� 

where 𝑓𝑓1(𝑥𝑥) = 𝑥𝑥,𝑔𝑔1(𝑦𝑦) = |𝑦𝑦|,𝑓𝑓2(𝑥𝑥) = ln 𝑥𝑥 ,𝑔𝑔2(𝑦𝑦) = 𝑒𝑒𝑦𝑦 are the possible values for the functions 𝑓𝑓 
and 𝑔𝑔, the coefficient 𝛾𝛾 can be 𝛾𝛾1 = 1,𝛾𝛾2 = 𝑛𝑛−1, and the matrix representation of the graph can 
be either 𝑀𝑀1 = 𝐴𝐴,𝑀𝑀2 = 𝐿𝐿,𝑀𝑀3 = ℒ, which have been defined in our previous publication (Nilchiani 
& Pugliese, 2016). 

Table 1 shows the metrics that can be derived from this formula through combinations of 
the described parameters. Two sets of functions, two values for the coefficient 𝛾𝛾, and three 
matrices yield 12 possible metrics. Throughout this paper, the metrics are referred to using 
acronyms: graph energy (GE), Laplacian graph energy (LGE), normalized Laplacian graph energy 
(NLGE), natural connectivity (NC), Laplacian natural connectivity (LNC), normalized Laplacian 
natural connectivity (NLNC). Where the acronym has a trailing n, such as in (GEn), the factor 𝛾𝛾 =
1/𝑛𝑛. 
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Results 
This section presents the results of analysis on the module dependency graph for the 

Snorkel project published on GitHub. The project was selected due to its relatively small size of 
~2,600 commits and less than 300MB of code as of March 2021, which allows us to run our 
analytical programs on a laptop. The number of contributors (50), the history of commits, and the 
prevalence of Python code were other attributes that affected this choice. Future and optimized 
versions of the code will aim at analyzing larger codebases. 

The evolution of the graph at indicated time stamps is depicted in Figure 3. In these plots, 
the nodes are colored according to their type: file (blue), library (black), class (red), and 
function/method (green). These images suggest how even a relatively small project, such as 
Snorkel, can become eminently complex to manage and architect. 
  

Table 1. Twelve Examples of Spectral Structural Complexity Metrics 
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Feb 2016 

 

Jul 2016 

 
Nov 2016 

 

May 2017 

 
May 2018 

 

Mar 2021 

 

Figure 3. Evolution of the Module Dependency Graph at Select Points in Time for the Snorkel Project. 
Snapshots are taken at intervals of approximately 530 commits. 
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Linear Correlation Analysis 
A linear correlation analysis of the metrics is described hereinafter. Using the Pearson 

correlation coefficient (r), it is possible to see if any of the metrics evaluated for the dependency 
graph are linearly co-dependent. These dependencies can provide insights regarding 
characteristics of the Snorkel code base. 
As shown in Figure 4, the following group of metrics show 𝑡𝑡 > .99 in all pairwise comparisons: 
GE, LGE, NLGE, n, m. 

 
Figure 4. Comparison of GE, LGE, NLGE, Number of Nodes, and Number of Edges 

 

The linearity between number of nodes (𝑛𝑛) and number of edges (𝑚𝑚) can be seen as a 
symptom of localized development. The addition of a module to the source code is followed by 
the connection of this module to one or more others. If for each additional module a low number 
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of connections are made, it means that the module is only being used in that specific part of the 
code. While a percentage of additions are justifiably of this type, most modules might also be 
reused in other locations and therefore should create more additional connections. A long-lasting 
linear relationship between 𝑛𝑛 and 𝑚𝑚 suggests a need for refactoring. 

The linear relationship between GE and LGE is common in graphs with a close to uniform 
distribution of node degrees. In star graphs, GE would grow superlinearly with the number of 
nodes while LGE’s behavior would converge to linear. The dissimilarity between the current 
dependency graphs and graphs with highly skewed distribution of node degrees is also seen in 
NLGE, which would be zero for star graphs. 

Figure 5 shows a linear relationship (𝑡𝑡 > .99) in three pairwise comparisons between LNC, 
LNCn, and the maximum node degree. A linearity between LNC and LNCn is a characteristic of 
star graphs and wheel graphs. For graphs with more uniform degree distribution, the value of 
LNCn plateaus quickly with the number of nodes, while LNC’s growth slows down more gently. 
This result is in contrast with the insights found in Figure 4, and adds a new research question 
regarding the relationship between these metrics and fundamental graph characteristics. 

 
Figure 5. Comparison of LNC, LNCn, and Maximum Node Degree 

The linear relationships of LNC and LNCn with the maximum node degree of the graph 
indicate that these metrics are connected to the size of the largest hub in the graph. This linearity 
is also found in star graphs, while in complete graphs, where there are no hubs by definition, and 
each node is equivalent to all the others, LNC would grow with a descending rate, and LNCn 
would plateau asymptotically towards 1. 
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Figure 6. Comparison of Uncorrelated Metrics 

Figure 6 shows the pairwise comparisons of all the metrics that do not present a clear 
linear correlation in the Snorkel code base. Some of these relationships are planned to be 
analyzed in subsequent research efforts, but an effort in narrowing the pool of metrics and towards 
a more purposeful metric design will be necessary to measure meaningful characteristics of 
software architectures. 
Trends Over Time 

The linear correlation analysis allows the connection of different metrics, in an effort to 
characterize the topology of the dependency graph. The actual development and creation of the 
codebase over the 5-year period can be analyzed by plotting some of these metrics over time. 
The evolution of the dependency graph presented in Figure 3 is depicted by the values of four of 
the metrics shown in Figure 7: GE, NC, GEn, and NCn. 
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Figure 7. Trends for GE, NC, GEn, and NCn Over 6 Years of Project Development 

Figure 7 presents a series of time plots for this select subset of metrics. For each metric, 
the green shaded area represents the frequency of commits in the project at a specific point in 
time. This frequency is not connected to the values on the y-axis. The plots show that the 
development of the project was very active in 2016 and 2017, with a smaller spike of activity in 
2019, when, according to the commits, the project underwent a small overhaul, with frequent 
additions and removals of code. This allows us to better contextualize the changes in each metric 
and see how they react when the codebase is changed. 

Graph energy (GE) quickly rises during the initial development, and fluctuates significantly 
during the overhaul, only to settle at essentially the same level afterwards. Natural connectivity 
(NC), on the other hand, rises also after the overhaul, suggesting that the changes made to the 
codebase in 2019 increased the cohesion of the whole project, without unnecessarily increasing 
coupling. 

The comparison between GE and GEn shows the effect of the normalization factor 𝛾𝛾 = 1
𝑛𝑛
, 

which was introduced to allow a comparison of graphs of different size (number of nodes). In this 
case, this normalization affects GEn to the point that the metric only seems to capture the 
frequency of the commits, and not the growth of the graph (as expected). This behavior is not the 
case when this normalization is applied to NC, as NCn still seems to be affected by the graph 
growth. 
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Conclusion 
This paper presented a methodology to study the behavior of complex software systems 

in terms of their structural complexity with a focus on the modifiability of the code base. This 
approach is based on the parsing of the code and the creation of a dependency graph, a particular 
case of architectural structure that focuses on the dependency between software modules and 
the various ways they can call each other. 

The dependency graph has been analyzed through the evaluation of a series of spectral 
metrics, which have shed light on some characteristics of the graph and given insights on the 
quality of the development effort. It is important to note that this approach forgoes the analysis of 
the actual lines of code and the dynamic effects that they will have at runtime and is therefore to 
be considered limited in scope and applicability. 

In parallel to this analysis being carried out, the behavior of each metric is also being 
discovered, thus bootstrapping their applicability to the metrics. Behind the scenes, the metrics 
have been applied to conventional graphs, but the use case of a real software project is necessary 
to gauge the limitations of this approach. 

Future research will continue the effort of connecting these and other metrics to important 
attributes of software code bases. Improvements to our own software tools will allow for analysis 
of projects with larger repositories, and with a longer development time frame, where the effects 
of technical debt might be more pronounced. Additional improvements are also planned for the 
visual representation of modifiability in software systems. 
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