

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

SYM-AM-21-076

Excerpt from the
Proceedings

of the
Eighteenth Annual

Acquisition Research Symposium

Factors Limiting the Speed of Software Acquisition

May 11–13, 2021

Published: May 10, 2021

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Defense Management at the Naval Postgraduate
School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Acquisition Research Program
Graduate School of Defense Management - 152 -
Naval Postgraduate School

Factors Limiting the Speed of Software Acquisition

David Tate—joined the research staff of the Institute for Defense Analyses’ (IDA) Cost Analysis
and Research Division in 2000. Prior to that, he was an Assistant Professor of Industrial
Engineering at the University of Pittsburgh, and the Senior Operations Research Analyst
(Telecom) for Decision-Science Applications, Inc. At IDA, he has worked on a wide variety of
resource analysis and quantitative modeling projects related to national security. These include
an independent cost estimate of Future Combat Systems development costs, investigation of
apparent inequities in Veterans’ Disability Benefit adjudications, and modeling and optimization of
resource-constrained acquisition portfolios. Tate holds bachelor’s degrees in philosophy and
mathematical sciences from the Johns Hopkins University, and MS and PhD degrees in
operations research from Cornell University. [dtate@ida.org]

John Bailey—has worked for both the former Computer Science Division and the Cost Analysis
and Research Division of IDA since the 1980s. Prior to that, he conducted software programming
research for General Electric and co-founded Software Metrics, Inc. While completing his PhD in
software reuse methodology, he helped Rational establish its Ada development environment,
which was later acquired by IBM. In addition to his software technology research, Bailey has
recently been adapting computer science best practices to livestock farming in northern Virginia.
[jbailey@ida.org]

Abstract
The time required to complete a software development or upgrade, like any other project,
depends on the content of the project, how it is managed, and its preexisting conditions.
The factors limiting the speed of software acquisition and enhancement fall into these
principal categories, in rough order of importance:

1. Required functionality—what you need the software to do (and not do)
2. Architecture—the organizing structure of the software and its operating

environment
3. Technology maturity—to what extent the intended design uses novel

solutions
4. Resources—the people, skills, funds, data, and infrastructure needed to do

the work
5. Testing strategy—acquiring the information to fix defects early in

development
6. Contract structure—the alignment of contractor incentives with DoD

satisfaction
7. Change management—the processes for trading off performance, schedule,

cost, and sustainability

This paper considers this taxonomy and examines how each category affects the pace of
development.

Introduction
Improving the agility of defense acquisition is a high priority goal for both the

Office of the Secretary of Defense (OSD) and the military departments. Improving the
speed at which the Department of Defense (DoD) can develop, deploy, and update
software-enabled capabilities would enable more general acquisition agility, given
modern defense systems’ critical dependence on software. This point was emphasized
in both a 2018 Defense Science Board report and in the 2019 Defense Innovation Board
(DIB) Software Acquisition and Practices (SWAP) study.

Acquisition Research Program
Graduate School of Defense Management - 153 -
Naval Postgraduate School

There is now widespread consensus that software development is the pacing
activity not only in traditional information systems acquisition, but in all major defense
systems acquisition. As early as 20 years ago, the Naval Postgraduate School was
already teaching students that “software is now acknowledged as sitting on the critical
path of most major weapon systems and is widely regarded as the highest-risk element
in an acquisition” (Nissen, 2019). Other recent research has confirmed this insight (Tate,
2016). If we want our acquisition enterprise to deliver capabilities more quickly and
upgrade them more frequently, we need to speed up defense software development.

Given this universal interest in accelerating software acquisition and sustainment,
it is important to understand the fundamental factors that limit how quickly software can
be developed, deployed, and upgraded. These factors fall into seven principal
categories; in rough order of importance, they are:

1. Required functionality—what you need the software to do (and not do)
2. Architecture—the organizing structure of the software and its operating
environment
3. Technology maturity—to what extent the intended design uses novel solutions
4. Resources—the people, skills, funds, data, and infrastructure needed to do the
work
5. Testing strategy—acquiring the information to fix defects early in development
6. Contract structure—the alignment of contractor incentives with DoD satisfaction
7. Change management—the processes for trading off performance, schedule,

cost, and sustainability
This paper considers each category in this taxonomy in turn and examines how each
affects the pace of both initial development and future upgrades.

Required Functionality
The time to develop and field a software-enabled capability is primarily

determined by what the software needs to do and in what context—the content of the
software. This seems obvious and has been common knowledge with regard to the cost
of systems for decades, but it is still common for schedules to be imposed on software
development efforts independent of their content.

Although content is often thought of in terms of requirements, it is important to
note that, historically, not all mandatory performance attributes have been managed in
the same way. In particular, “negative requirements” that describe outcomes the system
should avoid are often handled outside the primary requirements management process
once development begins. They are thus at risk of being neglected as the design
evolves or of being waived or relaxed when programs face time pressure. Negative
requirements include cybersecurity specifications, safety standards,
reliability/availability/maintainability (RAM) thresholds, interoperability requirements, and
other aspects of system suitability.

Current software development best practices (notably agile and DevOps) specify
successive releases of a software product to implement an increasingly complete
solution. The first mission-capable release of the software is called the minimum viable
capability release (MVCR). DoD Instruction 5000.87 “Operation of the Software
Acquisition Pathway” says defining the MVCR is the responsibility of the PM and the
sponsor and is the earliest release that will meet the “initial warfighting capabilities to
enhance mission outcomes” (DoD, 2020). It further says the MVCR “must be deployed
to an operational environment within 1 year after the date on which funds are first

Acquisition Research Program
Graduate School of Defense Management - 154 -
Naval Postgraduate School

obligated to acquire or develop new software capability including appropriate operational
test.” As will be discussed under Architecture, this may be a tall order for major defense
systems that must be structured to withstand decades of sustainment and enhancement.
We may learn whether large, long-lived systems can be granted an exception to this
rule.

The minimum time to operationally deploy the first version of a new software-
enabled system is therefore driven by the content of the MVCR. What counts as “initial
warfighting capability” is a stakeholder decision that involves trade-offs between lead
time and capability—discussed further in the “Change Management” section. Minimum
standards for the negative requirements must also be included in the definition of the
MVCR. Note that a system that is not secure or cannot work with real data cannot be the
MVCR—it is not yet useful for any actual operational mission.

The MVCR is the first build that can be released to operations, but earlier builds
are also important. In particular, the minimum viable product (MVP) plays a key role in
development. DoDI 5000.87 defines the MVP as “an early version of the software to
deliver or field basic capabilities to users to evaluate and provide feedback on. Insights
from MVPs help shape scope, requirements, and design” (DoD, 2020). It is possible that
the MVP may also serve as the MVCR, although an iterative development would likely
first release an MVP to achieve consensus among users, sponsor, and developers to
ensure that the product is on track to supply the expected capabilities. As will be
discussed under Architecture, it may not always be sensible to enhance an MVP to
obtain an MVCR. An MVP may be a prototype for demonstration or user involvement
purposes only and might ignore important design decisions about security,
maintainability, or other qualities that are essential aspects of the underlying architecture
of a system. If this is the case, project cost and schedule estimates should account for
any technical debt incurred by the choice of an MVP that is not a subset of the MVCR.

For any software increment, there is a theoretically ideal staffing profile that
would achieve the most efficient compromise between maximizing work rate and
incurring unnecessary technical debt. Trying to go faster than this ideal schedule often
leads to significant redesign, rework, and delay. Going slower than the ideal schedule
(e.g., due to resource constraints or overly conservative limits on technical debt) also
leads to unnecessary delay and inefficient use of labor resources.

The length of the ideal schedule depends on how tightly coupled the software
subsystems (modules) are. Software designs that do not explicitly enforce independence
of subtasks1 can lead to systems that are not modular enough to support full
parallelization of development efforts, resulting in longer development schedules for
future increments.

It should be noted that agile/lean methods (where feasible) are (at best) modestly
faster than traditional waterfall development for a software increment with fixed
requirements. The time savings realized by agile development come mostly from not
implementing functions that turn out not to be critical—the savings are due to work
avoided, not higher productivity. Thus, the effort to complete the MVP and MVCR will be
roughly the same as for a traditional waterfall development approach to that much code.

1 Architectural enforcement of subtask independence is sometimes referred to as “separation of concerns”

in the computer science literature.

Acquisition Research Program
Graduate School of Defense Management - 155 -
Naval Postgraduate School

Architecture
As noted previously, software and hardware architectures for platforms and

systems strongly influence how rapidly and effectively new capabilities can be added.
Therefore, the selection of an architecture for a new defense system has important
consequences throughout the acquisition process. For major defense systems,
achieving an MVCR that is structured to support decades of ongoing agile improvements
can require years of initial architecture, design, and development effort.
Every software-enabled system requires some architecture and design prior to the
beginning of coding. The amount of effort needed for an architecture depends on a
number of factors:

• How important is it for the system to be upgradeable in the future?
• How fast/cheap/frequent/extensive do those upgrades need to be?
• What is the intended lifespan of the platform or system and its upgrades?
• How portable/reusable does the software need to be?
• What other systems will the new system need to interoperate with?
• What are the cybersecurity needs of the system?
• How much is the cyber threat environment expected to change over time?
• How close to the cutting edge of current technical capabilities is the system
intended to operate?

The answers to these questions help determine the appropriate software
architecture for the new system, which (combined with hardware architecture) in turn is a
determinant of the required cost and schedule to implement the MVCR. Systems that
must be easy and cheap to modify over a long-life cycle require more architecture effort
(and thus more content in the MVCR and a longer initial development increment). In
particular, the more you want to use agile/lean/DevSecOps methods for ongoing parallel
system improvement of large systems, or to complete upgrades among multiple
vendors, the more you need a modular architecture.

Thus, the architecture is part of the MVCR content. An early increment (such as
the MVP) with an architecture that does not support MVCR (and future) requirements is
just a prototype but may be useful to demonstrate intended functions and elicit user
feedback. In particular, systems with significant cybersecurity concerns must address
those concerns in the MVCR architecture and design requirements. Adding security later
does not work. For some mission needs, a quick-and-dirty architecture that supports
current (but not future) requirements might be appropriate, providing some needed
capability quickly at the expense of future sustainment and upgrades. This choice to field
an MVCR that has limited ability to support future upgrades should be a conscious
decision at design time, with its implications understood by stakeholders.

Similarly, when adding new capabilities to a legacy system whose architecture
was not originally designed to support ongoing upgrades, stakeholders need to decide
whether it is more important to implement specific new capabilities quickly or to make
the system more rapidly upgradeable in the future. In some cases, it may be preferable
to accept cost and delay today to re-architect and re-write the legacy code to enable a
longer and more agile future upgrade path.

Acquisition Research Program
Graduate School of Defense Management - 156 -
Naval Postgraduate School

Technology Maturity
Whenever system designs involve technologies that are less than fully mature,

the software and hardware design processes contain an element of experimentation and
exploration. This can lead to a redesign that changes the nature of the software required
or one that shifts functions originally envisioned as being performed by hardware into
software. This adds both new development and regression testing burdens to the
software project and lies on the critical path for the program. As a result, technologies
with a current Technology Readiness Level (TRL) lower than 6 (as defined in Title 10
U.S. Code, § 2366b(a)(3)(D)) can contribute to software delays.

At the same time, critical software technologies tend to be overlooked in
Independent Technology Readiness Assessments. Past examples where this has led to
major program delays include sensor fusion algorithms, ad hoc network management,
and automated traction control for off-road vehicles.2

The DoD has recently stated in multiple venues that several new software
technologies, including machine learning, artificial intelligence, and autonomous
systems, will be key enablers of future U.S. military capabilities. These are immature
technologies that impose novel burdens throughout the acquisition life cycle, including
learning how to specify requirements that are testable, how to validate and maintain
training data sets for machine learning, and how to assess the effectiveness and
suitability of machine cognition and human-machine teaming concepts (Tate & Sparrow,
2018).

It is important to remember that, for TRLs greater than 4, technology maturity is
always measured relative to a specific set of requirements and intended operational
environments.3 A technology can be mature (i.e., TRL 6 or higher) for certain operational
uses or environments, yet immature for others, as demonstrated by the traction control
example. This is just as true of software technologies as it is for lasers, engines, or
sensors. Failure to recognize that a given software technology is critical to success, or
that it has not yet been successfully demonstrated in the intended operational role and
environment, can lead to costly delays in development down the road. (For an annotated
list of TRL definitions, see DoD, n.d.)

Resources
Software development is about sufficient skilled labor, appropriate infrastructure,

and (increasingly) adequate data. As a result, the most important potential resource
issues that software projects can face are a shortage of appropriately skilled personnel
(either through insufficient funding to purchase their labor or lack of access to the right
talent), or insufficient access to platforms or data sets needed to implement the desired
capabilities. These challenges are time-phased—you need to simultaneously have
enough of each of these things at the right times to support the ideal schedule of the
project. Valid input data is often needed early in development. For machine learning,

2 Traction control algorithms used in commercial vehicles assume that the vehicle is driving on a hard

surface. They do not perform well in off-road situations where the loss of traction is due to surface
failure (e.g., mud or sand) rather than being due to low friction with the road.

3 TRL 4 requires “Component and/or breadboard validation in a laboratory environment,” which is
independent of requirements or intended operational environments. TRL 5 requires “Component and/or
breadboard validation in a relevant environment,” which explicitly compares the environments where
the technology has already been demonstrated against some intended environment.

Acquisition Research Program
Graduate School of Defense Management - 157 -
Naval Postgraduate School

obtaining a sufficient quantity of accurately labeled training data can be a bottleneck in
capability development.

An adequate supply of appropriately skilled developers is not a given. The supply
of cleared software professionals is not keeping up with the demand for national security
software (Tate, 2017). As a result, programs often have trouble hiring and retaining the
required quality and quantity of software talent. Staffing shortfalls cause delays, and
project staff turnover and loss of institutional knowledge cause additional delays.
Mergers and acquisitions, common in defense industries, sometimes exacerbate this
problem. Either not having enough people or not having sufficiently talented people as
part of an experienced team can cause program delays.

Similarly, funding instability or mismatches between planned spending profiles
and actual workloads can lead to inefficient use of labor resources and subsequent
schedule delays. This is particularly true for projects with significant experimentation and
discovery during the development of the MVCR, as the duration and cost of the
experimentation cannot be predicted with accuracy. Such projects should ideally be
identified in advance and provided with significant levels of contingency funding, but this
is politically difficult in many cases.

For many software-enabled defense systems, the direct costs of software
development are a relatively small fraction of total program costs. However, as noted
previously, software delays tend to be on the critical path, resulting in delays that add
cost at a roughly constant burn rate. For major programs, this represents not merely a
delay in achieving the desired capabilities, but also a large opportunity cost, wasting
funds that could have been used elsewhere.

It is important to note that the majority of software development effort (and
cost)—often as much as 80% of total effort—occurs after the system has initially been
fielded. Software deployment generates an ongoing future workload that lasts as long as
the system is in use. The resources needed to perform future upgrades and integration
are generally the same resources needed for initial development. This means that future
enhancements compete with new systems for people, as well as for dollars.

In addition to people, many advanced software capabilities also require
specialized infrastructure and data. These can include supercomputing resources,
labeled training data sets, modeling and simulation support, and test ranges with
specialized instrumentation. Shortfalls in any of these areas can also lead to significant
fielding delays.

Testing Strategy
Although it is theoretically possible to do “too much testing” in a software-

intensive development program, this is nearly unknown in practice. Finding and fixing
defects can be the most expensive identifiable software cost driver, and high defect
levels are the primary reason for software schedule and cost overruns (Jones &
Bonsignour, 2012). Software development success is strongly correlated with a
commitment to continuous, rigorous testing from day one, identifying defects early—
while they are still relatively easy to isolate and correct.

While it is hard to do too much testing, it is easy to do testing wrong. In order to
realize the benefits of continuous testing and early defect elimination, the test strategy
for the program must ensure that the right information is collected at the right times and
fed back into the development process efficiently. Unaddressed defects have cascading

Acquisition Research Program
Graduate School of Defense Management - 158 -
Naval Postgraduate School

effects—they interfere with development of additional capabilities, mask other defects,
and complicate the required fixes. Past research has found that the average cost to
remedy a defect grows by an order of magnitude between the design phase and the
implementation phase and grows by another order of magnitude between
implementation and post-deployment maintenance (Kan, 2003). Bear in mind here that
“defects” can include flaws in requirements, inaccurate documentation, adherence to
inappropriate architectural specifications or standards, or other issues that are not
necessarily “bugs” in the code.

The most common (and costly) testing error by far is not testing early enough.
For example, the Warfighter Information Network–Tactical (WIN-T) underwent an initial
operational test and evaluation (IOT&E) in May 2012, with planned full-rate production
(FRP) scheduled for September 2012. IOT&E revealed numerous problems that should
have been caught much earlier in testing, including poor network stability, poor
performance, and poor reliability. FRP was deferred until after a follow-on operational
test and evaluation (FOT&E) could be conducted. That FOT&E revealed continuing
problems, leading to another schedule slip. The system finally entered FRP in June
2015.

When testing is done right, test activities make the project cheaper and faster
than it otherwise would have been. Delays “due to testing” are almost always actually
delays due to not testing—that is, extra time required to fix defects that were discovered
late in development (when testing is expensive) or after fielding (when testing is very
expensive) because of insufficient early testing. Defects discovered after fielding are
often due to incorrect or misunderstood requirements. Finding ways to incentivize
contractors (and program offices) to perform adequate testing is challenging.

For new systems, or for modifications of legacy systems that are intended to
transition to agile development for future increments, it is important to develop the
associated agile test strategies and automated testing infrastructure during MVCR
development. This should involve all stakeholders and be done in parallel with (and be
informed by) MVCR design and implementation.

Contract Structure
Typically, a small percentage of the overall profit on a major defense system

comes from software development. At the same time, the future upgrade and
maintenance contracts for a software-intensive system can provide an open-ended
source of future revenue. This is analogous to losing money on each laser printer sold,
but making big profits on the toner cartridges. This gives contractors a strong incentive
to erect barriers to sustainment competition that all too often also function as barriers to
efficient upgrades and modernization.

The DoD would prefer that all software be modular, reusable, and open to
enhancement by third-party vendors. It is very difficult to write a contract that requires, or
even incentivizes, the prime contractor to make that happen. Modular design makes it
easy for competitors to break the prime’s monopoly on sustainment; reusable code
makes it possible for competitors to benefit from the prime’s work and potentially to gain
access to their proprietary technologies. For these reasons, contractors prefer to restrict
government data rights as much as they can. As Van Atta (2017) notes, “There is a vast
legacy of defense systems, amounting to billions of dollars in sustainment costs, for
which the necessary [intellectual property] data and rights for organic depot or
competitive sustainment were not acquired.”

Acquisition Research Program
Graduate School of Defense Management - 159 -
Naval Postgraduate School

The services are sometimes complicit here—for example, by waiving statutory
requirements for modular open systems architecture (MOSA) on the grounds that
requiring MOSA would delay initial fielding and cost too much. Even if this were true, it is
a false economy—the delays and costs of fielding subsequent upgraded capabilities for
a major system will easily outweigh the original savings. As an example, the AWACS
Block 40/45 upgrade program, intended to migrate the hardware and software
architectures and applications on the E-3 AWACS aircraft from legacy proprietary
systems to new open architecture hardware and software, has now been struggling for
nearly 20 years to match the existing operational capabilities of the legacy Block 30/35
aircraft.

Admittedly, it is hard to write requirements for modularity, openness, and data
rights that are verifiable at the time of system delivery and that actually make it likely that
future upgrades will be easier and cheaper. This is similar to the problem of writing
software quality requirements that are enforceable. Although quality requirements can
sometimes be enforced through user participation in agile development teams, during
development it is hard for users and other stakeholders to tell whether the choices being
made will actually facilitate future upgrades as desired. Furthermore, current law
prohibits making access to intellectual property rights a condition of contract award
(although access to data rights can be an evaluation factor).

The DoD often struggles with aligning contractor incentives with service interests,
so that the contractor profits more only when the service gets more of what it really
needs (including agility). There is no free lunch—firms will require more compensation
up front for initial system development if they cannot count on monopoly profits during
sustainment. If the services are serious about wanting to speed up deployment of future
capabilities, they must accept this and plan for it by developing contracting strategies
that will allow them to realize the benefits of open system architectures.

Change Management
There is a widening disconnect in the defense acquisition world between the

people who control system requirements and the people who actually develop and field
systems. This is true of all requirements, but especially true of software requirements
(and system requirements that end up being implemented in software). In theory, the
process looks something like this:

1. Characterize the future fight and define mission needs.
2. Identify capability gaps and alternative ways to mitigate them.
3. Analyze the alternatives and select a preferred alternative.
4. Set threshold requirements.
5. Develop and field a system that meets those requirements.

In practice, there are problems with how this is realized. Translating future
warfighting concepts into specific mission needs is hard, and translating mission needs
into threshold performance requirements for individual systems is even harder.
Thresholds are often set at aspirational levels, rather than at genuine threshold levels
below which there would be no military utility. Changes during development concerning
what to implement in hardware versus what to implement in software can lead to
changes in system architecture that break other parts of the development or hinder
future maintainability. Seemingly minor changes in the intended use of machine learning
subsystems can require retraining from scratch or even development of entirely new
training data sets.

Acquisition Research Program
Graduate School of Defense Management - 160 -
Naval Postgraduate School

As a result, some programs are unexecutable as envisioned. Faced with
unexecutable programs, program managers must make trades. The realities of annual
funding make it easy to accept future costs and operational shortfalls (e.g., due to poor
reliability or architecture violations) in order to save money and minimize delays in initial
deployment. Similarly, deferring important testing is a common way to save time and
money in the short run but at the expense of greater delays and costs later.

Worse yet, program managers generally do not have the authority to relax key
requirements. They must appeal to a variety of senior stakeholders and achieve a
consensus that relaxing a requirement is the best way forward for the program. This
need for consensus also adds friction and delay to the process. Furthermore, once a
program has funding authority, the services seldom step back and reconsider whether
the system being developed is still the preferred alternative, given what they now know
about costs and capabilities.

Agile software development methods depend on empowering a coalition of
developers and users to decide what functionality is most useful on an iterative and
ongoing basis. As noted previously, the services have historically been unwilling to
confer that level of decision authority to development teams or to ensure embedded
stakeholder support (including actual users) in program offices. This is especially true for
systems that are not “pure” software systems—it is much easier to devolve authority for
user interface design and database transactions than it is to devolve authority to change
the operational specifications of weapon systems. Nevertheless, to realize the benefits
of agile development, programs will need to have significantly more authority to prioritize
and trade requirements, to enforce architectures, and to deny external change requests
than is typically delegated to them.

Summary
Software development takes time. As with any other kind of project, how much time it
takes depends on the content of the project, how it is managed, and the preexisting
conditions:

• How much software is needed?
• How complicated or novel is the software to be developed?
• What is the software expected to do (today and tomorrow)?
• What resources are available for the work?
• What are the contractor’s incentives?
• What change management authorities does the development team have?
• Is this an initial development, or an upgrade to an existing system?
• If it’s an initial development,

– How easy to upgrade does it need to be?
– What is the minimum viable capability release?
– Have testable MVCR requirements been clearly specified?
– Does the test strategy support early discovery and correction of defects?

• If it’s an upgrade,
– How well does the legacy architecture support insertion of new capability?
– What data rights does the government own?
– What institutional knowledge from the original development still exists?
– Are agile development processes and tools in place?

Acquisition Research Program
Graduate School of Defense Management - 161 -
Naval Postgraduate School

For programs to field new software-enabled capabilities quickly, someone must
have spent the time and money in the past to create an environment that supports rapid
capability insertion. Ideally, this environment would include a modular (and preferably
open) software architecture, adequate data rights, platforms with excess space and
power available, and an industrial base that can provide enough people with the right
skills, curated input and training data, and developmental test infrastructure (including
modeling and simulation resources where appropriate). For agile development, this
environment must also include localized change management authority within the
developer/stakeholder team.

Putting these enabling environmental features into place will often require
accepting delays and up-front expense, as well as reduced capability in the initial
increments of those platforms. Unless service leadership accepts this reality and
empowers new system developers to preserve these features even when faced with cost
overruns, schedule delays, and demands for greater capability up front, they will not be
implemented. Absent this kind of empowerment, software capability insertion will
continue to be as slow, expensive, and unreliable as it is today.

References
10 U.S. Code. § 2366b(a)(3)(D). Major defense acquisition programs: Certification

required before Milestone B approval.
Defense Innovation Board. (2019). Software is never done: Refactoring the acquisition

code for competitive advantage.
https://media.defense.gov/2019/Mar/26/2002105909/-1/-
1/0/SWAP.REPORT_MAIN.BODY.3.21.19.PDF

Defense Science Board. (2018). Design and acquisition of software for defense systems.
https://apps.dtic.mil/dtic/tr/fulltext/u2/1048883.pdf

DoD. (n.d.). Technology readiness levels and their definitions (DoD Deskbook 5000.2-R;
Appendix 6).

DoD. (2020, October). Operation of the software acquisition pathway (DoD Instruction
5000.87).
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF

Jones, C., & Bonsignour, O. (2012). The economics of software quality. Addison-
Wesley.

Kan, S. H. (2003). Metrics and models in software quality engineering. Addison-Wesley.
Nissen, M. E. (1997). JSOW alpha contracting case study. https://fas.org/man/dod-

101/sys/smart/docs/jsowcase.htm
Tate, D. M. (2016). Acquisition cycle time: Defining the problem (IDA Document NS D-

5762). IDA. https://www.ida.org/research-and-
publications/publications/all/a/ac/acquisition-cycle-time-defining-the-problem-
revised

Tate, D. M. (2017). Software productivity trends and issues (IDA Document NS D-8367).
IDA. https://www.ida.org/research-and-publications/publications/all/s/so/software-
productivity-trends-and-issues-conference-paper

Tate, D. M., & Sparrow, D. A. (2018). Acquisition challenges of autonomous systems
(IDA Document NS D-8982). IDA. https://www.ida.org/research-and-
publications/publications/all/a/ac/acquisition-challenges-of-autonomous-systems-
conference-paper

Van Atta, R., Kneece, R., Lippitz, M., & Patterson, C. (2017). Department of Defense
access to intellectual property for weapon systems sustainment (IDA Paper
P-8266). IDA.

https://media.defense.gov/2019/Mar/26/2002105909/-1/-1/0/SWAP.REPORT_MAIN.BODY.3.21.19.PDF
https://media.defense.gov/2019/Mar/26/2002105909/-1/-1/0/SWAP.REPORT_MAIN.BODY.3.21.19.PDF
https://apps.dtic.mil/dtic/tr/fulltext/u2/1048883.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF
https://fas.org/man/dod-101/sys/smart/docs/jsowcase.htm
https://fas.org/man/dod-101/sys/smart/docs/jsowcase.htm
https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-cycle-time-defining-the-problem-revised
https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-cycle-time-defining-the-problem-revised
https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-cycle-time-defining-the-problem-revised
https://www.ida.org/research-and-publications/publications/all/s/so/software-productivity-trends-and-issues-conference-paper
https://www.ida.org/research-and-publications/publications/all/s/so/software-productivity-trends-and-issues-conference-paper
https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-challenges-of-autonomous-systems-conference-paper
https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-challenges-of-autonomous-systems-conference-paper
https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-challenges-of-autonomous-systems-conference-paper

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Introduction
	Required Functionality
	Architecture
	Technology Maturity
	Resources
	Testing Strategy
	Contract Structure
	Change Management
	Summary
	References

