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Abstract 
A great deal is known about the movement of personnel population within large organizations 
(manpower). On the other hand, far less is known about how individual careers unfold through the 
structure of such organizations, with no established methods to forecast the positions individuals 
will take in so-called internal labor markets. In this paper, based on methods from network 
science, probability, and data analysis, we provide a new, empirically calibrated modeling 
framework for forecasting careers in large organizations. We show that, without the use of 
information that goes beyond the memoryless framework provided by Markov models, it is not 
possible to understand and forecast career moves in an organization. When memory effects are 
included, models improve significantly and begin to provide both useful predictions as well as 
information about the limits of predictability in career forecasting. Our method is applied to the 
Army acquisition workforce. 

Introduction and Background 
An effective way to summarize how organizations assign personnel to their tasks is 

offered by Bidwell (2017), who stated, “Perhaps the most basic challenge in talent management 
is ensuring that a company has the right people in the right places when it needs them.” This 
succinct description contains a great deal of information. The places that Bidwell mentions 
represent positions in the organization responsible for certain tasks. Furthermore, the people 
that perform these tasks must possess the appropriate skills, training, experience, and social 
capital to be able to successfully complete these responsibilities. Seen from the lens of a 
mathematical description, both job positions and individuals are each represented by collections 
of attributes designed to capture the respective tasks, skills, experiences, and other important 
characteristics that can describe this system.  

Mathematical descriptions of systems of this type have been studied in the past from the 
standpoint of the organization (De Feyter & Guerry, 2011; Wang, 2005) or the individuals 
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embedded in it (see, for example, Stewman & Konda, 1983; Stewman & Yeh, 1991). This 
division reflects the multiscale perspective of the problem. The first literature, focused on 
manpower at the organizational scale, conceived the organization as made up of a set of fixed 
position types (similar to classifications or ranks) and personnel moves (also called stock 
moves) among these types. On the other hand, the individual perspective is connected to the 
literature in career studies (Gunz et al., 2020), sometimes also referred to as internal labor 
markets (Stewman, 1986), and is highly influenced by the idea that each employee inside the 
organization sporadically moves between vacancies that become available, effectively 
establishing two dynamic populations of vacancies and workers that interact with each other. 
The descriptions at either scale share many characteristics. First, they are predominantly 
stochastic in nature, almost always reliant on Markov models (or generalizations such as semi-
Markov models; see, for example, Ginsberg, 1971). Second, they conceptualize the 
organization as static, which means that any temporal behavior is limited to the micro-dynamics 
of individual vacancies or individuals. Third, mostly due to lack of detailed micro-level 
information, they abstract much of the multidimensional information about the system such as 
the internal administrative structure of organizations (its subunits), the details of each job 
position, the social networks, the work teams, or other local behavior. The overall performance 
of these modeling approaches has been mixed: while the organizational level manpower 
literature has been able to offer rather reliable forecasts of personnel stocks in the system, the 
individual level literature has been less successful in predicting how people will move through 
the organization as they progress in their careers. 

Much has changed over the past two and a half decades during which modeling 
questions took a back seat to other theoretical considerations that have occupied the research 
community studying careers in and out of organizations (for a discussion, see, for example, 
Bidwell, 2017). First, computational power and the availability of extensive data have 
transformed the way in which we view human-centric problems, where it is now feasible to 
consider modeling approaches that used to be found only in the physical sciences and 
engineering. Second, a new conceptual framework for highly complex and heterogeneous 
systems emerged in the form of the discipline of Complex Networks (see, for example, 
Barabási, 2014, for a popular presentation, and Newman, 2018, for a formal presentation), 
which provides a precise mathematical description of large interacting and heterogeneous 
systems such as human organizations. Both of these factors have played an important role in 
the development of a new theoretical view of job mobility, the concept of Labor Flow Networks 
(LFN), introduced for the purposes of modeling job changes with a simultaneous high-resolution 
and large system visibility (Guerrero & Axtell, 2013; Axtell et al., 2019; López et al., 2020). 

An important consideration emerging from the LFN literature and other lines that have 
sprouted from it (see, for example, Mealy et al., 2018) refers to what is tracked in such career 
sequences. The traditional choice in career studies has been rank or some equivalent of it (see 
Rosenbaum, 1979; Stewman, 1986). The recent LFN literature focuses on firms (Guerrero & 
Axtell, 2013) due to their critical role in the economy and the fact that most approaches to the 
problem of job search have unfortunately ignored the firm scale. As will be shown, when enough 
information is available, there are multiple choices one has to track careers. 

In this paper, by combining the LFN notion and stochastic processes with memory 
(Rosvall et al., 2014), we present a framework for tracking and modeling the movement of 
personnel through a large organization and apply the method to the Army acquisition workforce 
(AAW). The method seeks a clearer understanding of the formation of career sequences in an 
organization and how probable each sequence is. This information can be used to forecast 
future careers of interest to individual employees as well as the organization as a whole. We 
find that the introduction of memory dramatically increases the performance of a forecasting 
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model, eliminating most of the unrealistic career sequences predicted by the current state of the 
art, while simultaneously generating better probability estimates of the number of employees 
actually choosing a sequence. Longer career sequences are generally less well predicted, 
although performance is still quite good. Our method also identifies career sequences that are 
unlikely to occur from the standpoint of what is known in the theory careers, and thus provides 
an opportunity to add new understanding to this field. Our results benefit greatly from the 
development of complex network techniques in recent decades.  

We study two different definitions of career stops within the organization, operational 
units and occupational series (as defined by the U.S. Office of Personnel Management [OPM]). 
The study of the first type of stop (operational units) is an important addition that we bring to the 
literature, extending the notion of career sequences to the operating units/departments. This 
result follows a similar line of thinking as in the LFN literature. The relevance of this notion is 
that, while understanding a career in terms of the occupations says a great deal about skills, it 
says very little about social capital. On the other hand, career sequences tracked at operational 
units can carry social information in the form of personal contacts that are generated by directly 
working with others.  

The first step in our framework involves an empirical analysis of personnel movements in 
the organization. This analysis yields a set of transition probabilities that can be used in either a 
memoryless form, the common approach in most personnel modeling, or by drawing on 
information about prior personnel movements in order to inform future ones. The second step in 
the framework involves a stochastic process that simulates how personnel would move inside 
the organization. To understand the impact of memory, our stochastic processes are chosen to 
be either first- or second-order Markov chains; first order chains are memoryless, whereas 
second order chains remember the most recent transitions before picking among subsequent 
choices. Although in some simple cases, these models could be solved mathematically, for 
almost any realistic data set, numerical approaches are needed to measure the statistics of 
outcomes. The third step in the framework corresponds to its evaluation, along with the tracking 
of any behaviour that deviates considerably from the predictions of the stochastic process. This 
evaluation is performed through the use of tools from information theory (Cover & Thomas, 
2006) and statistics.  

Our work creates a renewed opportunity to understand and forecast careers in 
organizations. In particular, by modifying the scale at which careers are studied, moving away 
from stocks of individuals progressing through ranks to looking at them in a more granular way, 
it makes it possible to bring into the picture other literatures such as that of quantitative career 
clustering, initiated by the work of Abbott and Hrycak (1990) and further perfected in subsequent 
decades (Aisenbrey & Fasang, 2010). Another line of this literature is the one initiated by 
Rosenbaum (1979), which provided the first empirical evidence from administrative records of 
history playing a role in the speed and attainment of career progression through a mechanism of 
tournaments (in a sense, highlighting the weakness inherent in memoryless models).  

Materials and Methods 
Data 

The data we study is for the AAW and has two parts, one associated with individuals and 
the other with the structure of the AAW. The data sets cover the period between 2012 and 2020. 
All employee records are anonymized by associating to each individual a hashed key. Each 
employee record contains the position occupied on every month when the employee is part of 
the AAW. This information includes the operational unit of the individual as well as his/her 
occupational series (from the OPM classification). Over the period of the data, the AAW has 
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ranged in size between under 35,000 to close to 42,000 individuals. There are around 1,000 
operational units in the AAW, and employees span close to 100 occupational codes. 
Methods 

Our approach to career sequences in organizations deals with ordered chains. This 
literature emerged with White (1970), who realized their role in careers, paying special 
emphasis to the notion of vacancy chains. A vacancy chain emerges when a person leaves the 
post they are occupying to take a new job inside or outside an organization, leading to another 
person eventually occupying the vacancy but creating a new one, and so on. The successive 
vacancies created are called vacancy chains. Subsequently, a broader notion of social 
sequences has emerged that spans well beyond careers (see Cornwell, 2015) and has gained 
traction in the mathematical sociology literature.  

The quantities we use in this paper are formal, and their detailed definitions are given in 
the Appendix. Here we merely introduce the notation and explain the spirit of these quantities. 
The application of these quantities in evaluating our models is done in the Results section. 

As mentioned in the Introduction, career modeling is based on stochastic processes. Our 
approach is to use the data from observed job transitions to create information about future 
transitions, specifically, probabilities for such transitions. The spirit behind this idea is supported 
by the work of Collet and Hedström (2013) and López et al. (2020), which shows that once a job 
transition is observed between two firms in an open economy, the chance that any new random 
occurs between those two firms is about 1,000 times larger than between two firms without any 
previous transitions. This notion led Guerrero and Axtell (2013) to define the LFN. 

Therefore, to capture the probabilities of transitions an individual may have of performing 
a particular job change in the AAW, we define two versions of transition probabilities, one for the 
model that ignores memory, and another for the model with memory of the most recent job 
change. These two quantities are, respectively, pl,g and p(l,g),(g,h), where l, g, and h all represent 
stopping points along a career sequence. Note that such transition probabilities are the result of 
an aggregation of the actions by many people going through job changes in the AAW over a 
period of time. Hence, this captures a notion of popular moves. 

Note that, as in the LFN literature, we think of an organization as structured into such 
stops, connected if there have been job transitions between those stops. The stops can 
represent, for example, the occupational series a person has while in a job, and the career 
sequence is a sequence of occupations. Another stop could be the operational unit to which the 
employee is attached while having a post, and in this case the career sequence is a sequence 
of operational units. The stops can be other concepts as well. Critically, those stops are 
equivalent to nodes in a network, while the connections between the nodes represent observed 
job changes.  

The models we apply make use of the transition probabilities stated above when an 
employee decides to change jobs, either recalling or ignoring the previous job change it 
performed.  

Another quantity we rely on is l, which are the chances that somebody at stop/node l 
separates (decides to leave or is told to do so) from their current position in any given interval of 
time. Individuals will not have to decide on where to go unless they separate from their current 
position. In our model, each time interval is of 1 month. 

Models then generate in silico careers (simulated in the computer). One can generate as 
many as desired and, in fact, this is needed since job changes all have an element of 
randomness. With careers starting at a node l, we track all the career sequences observed from 
that starting node; some are performed by multiple people, some by just one. This allows us to 
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create probabilities F(S|s1=l) of observing a specific career sequence S that started at stop s1 = 
l. In a similar way, the careers we simulate have probabilities captured in (S|s1=l). Both 
F(S|s1=l) and (S|s1=l) are examples of so-called probability distributions. The quality of a 
model is assessed by the similarity that F(S|s1=l) and (S|s1=l) may have.  

Because these probabilities have multiple parameters, we check for their similarity in 
multiple ways. We check if they produce exactly the same sequences. This is done by a 
quantity called the Jaccard index. We also check if the probabilities assigned to the careers that 
are both simulated and observed are similar, independent of whether all observed careers are 
generated in our models. This is done in two ways. One is based on a concept from information 
theory called the Jensen–Shannon Divergence (JSD; Lin, 1991), which measures the number of 
bits (in terms of information in a computer) that separate the two probability distributions 
(observed and simulated). The other is based on a comparison of career sequence by career 
sequence, that is, (S|s1=l)/F(S|s1=l) for every S in starting from every l. The closer these ratios 
are to 1, the better the model. To assess this proximity to 1, we introduce a final set of variables, 
the most important of which is called Var(l), capturing the cumulative deviations from one of 
the logarithms of the ratio of probabilities. Basically, the bigger this number is, the worse the 
model is doing.  

As an important technical point, the use of random simulations means that we do not 
typically generate the same (S|s1=l) in every simulation. This means that comparisons 
between (S|s1=l) and F(S|s1=l) are actually done between the latter and a whole set of 
samples of the former (for which we use a labelling index r). In particular, we calculate JSD 
between pairs of distinct simulations of (S|s1=l), with each result being labelled tr,r’. We also 
calculate JSD between (S|s1=l) and F(S|s1=l), with each result being labelled mr. 

With or without memory, this network construction based on previous job transitions 
does a good job of modeling the career sequences of the system, although memory makes the 
results considerably better in some key ways. On the other hand, the probability ratios allow us 
to spot career sequences that are inherently difficult to model, which we briefly discuss.  

Results 
We divide the presentation of our results into two career sequences defined on 

occupation nodes or on operational units. As the results show, there is great consistency 
between the two. 
Occupational Model Results 

We first focus on the application of the model to occupational series. In this case, each 
stop corresponds to the occupational series an employee has upon being first observed in the 
data. The working unit of this employee is not considered in this analysis.  

In Figure 1, we present results for the JSD distributions (mr(l) and tr,r’(l)) for two different 
starting occupations l. The two occupations are 0346 (Logistics Management Series) and 0802 
(Engineering Technical Series). The values of JSD generated from the models are considerably 
small, indicating their general quality. Moreover, comparing the memoryless and the one-step 
memory models, in both examples we see how the latter model performs better than the former. 
This is not a feature of these two occupations as comprehensive exploration of all occupational 
series leads to the same result. 

An interesting effect to explain is the fact that the values mr(l) are typically larger than the 
values tr,r’(l). This is due to the fact that while the samples r(S|s1=l) from any of the models are 
self-consistent (one value of r is similar to another one r’), the consistency between each 
r(S|s1=l) and F(S|s1=l) is generally less. In other words, the models are good but not perfect. In 
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our analysis, we do find some occupations where the simulations match the data well, but this is 
not guaranteed.  
 

  
Note. Each panel is associated with an initial occupation (in this case 0346 on the left and 0802 on the right). In each panel, four distributions 
are displayed, differentiated by color (blue corresponds to tr,r’(l) for the model with memory, green corresponds to tr,r’(l) with no memory, orange 
corresponds to mr(l) with memory, and red corresponds to mr(l) with no memory). In all cases, the distribution of mr(l) peaks at smaller values 
(of JSD) for the model with memory. 

Figure 1. Probability Distributions of mr(l) and tr,r’(l) for Two Different l, and Models 
 

As explained in the Methods section, JSD captures an aggregate measurement of the 
discrepancy between F(S|s1=l) and the models. However, other differences between model and 
F(S|s1=l) can remain unseen in this analysis. The most critical of those features is the possibility 
that a model generates career sequences that do not always reflect well the collection of 
observed careers. These possible differences can be assessed by the Jaccard index (see 
Figure 2). The results of this analysis clearly show the considerable improvement brought on by 
the introduction of memory: while the values of the index for the memoryless cases remain 
bounded from above by a value near 0.1, the one-step memory leads to indices with values 
ranging from about 0.2 to 1.0. If there were a strong correlation between the Jaccard indices of 
the models for the same starting occupations, the points would lie near the reference line along 
the diagonal, but this is not the case. The main reason why the Jaccard index improves so 
dramatically is because the number of careers generated in the one-step memory model is 
considerably smaller than in the memoryless model. Furthermore, the generated careers 
generally capture the observed careers, making it possible for the index to reach values that 
tend to 1.  
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Note. Each point corresponds to a starting occupation and has as its horizontal coordinate the value of the Jaccard index for the one-step 
memory model, and as its vertical coordinate the value of the Jaccard index for the memoryless model. The modeled careers correspond to the 
union of all careers created in the nw n total number of walks across all n realizations. While the values of Jaccard indices for the one-step 
memory span the range between approximately 0.2 to 1.0, the Jaccard indices of the memoryless model remain quite low, usually no larger 
than 0.1. The orange line runs along the diagonal as a visual reference. If the two models provided similar values of Jaccard indices, one would 
expect to see the cloud of points near that line. 

Figure 2. Scatter Plot of the Jaccard Indices Between the Memoryless and One-Step Memory Models, 
Calculated Between the Careers Generated From Simulations and From Observation 

 
Both JSD and Jaccard indices produce a summary statistic about the details of the 

relationship between F(S|s1=l) and the model outputs captured in the realizations r(S|s1=l). As 
defined in the Methods section, a more direct analysis of each career sequence S that belongs 
to these distributions can be achieved through d(Si). For a given l, we plot (i, d(Si)) for the two 
models. This is shown in Figure 3. The blue and red curves present, respectively, the 
memoryless and one-step memory models. Generally, for any career Si, d(Si) is closer to 1 for 
the one-step memory model, which is desired.  

 

  
Note. The blue curve represents the memoryless model, whilst the red curve represents the one-step memory model. Both plots also show a 
horizontal line of height 100 (i.e., 1), which is the target achieved for an “ideal” model that reproduces careers perfectly. The red curve is 
generally closer to the horizontal line = 1 for both starting occupations.  

Figure 3. Profiles of Models in Terms of Their Relation to Observed Careers, Captured in (i,d(Si)), for 
Starting Occupations 0346 and 0802 

 
The results offered by the analysis of d(Si) are limited in that they require l by l analysis. 

However, it is desirable to quantify all l in a systematic way, which was the reason for the 
introduction of l and its variance Var(l). This last quantity can be studied for the entire system 
through its histogram (see Figure 4). 
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Note. The histogram clearly shows the larger values corresponding to the memoryless model.  

Figure 4. Histogram of Var(l) for Both the Memoryless and One-Step Memory Models for Occupations 
 

A final analysis comes from a careful study of Figure 3, which illustrates examples of 
careers that, while simulated by the random models, appear with frequencies far different than 
observed. This is reflected in the values of d(Si), which, due to the clarity of its interpretation, we 
analyse as |log d(Si)|. When one of these values exceeds some arbitrarily chosen threshold, 
career sequence Si is taken to be significantly outside the model. To first develop a notion of the 
possible values that log d(Si) can take, we present Figure 5 for the two models and across all 
careers in the system. It is clear that the majority of the career sequences have values of log 
d(Si) in the vicinity of 0 and < 1. On the other hand, both models have a relatively long tail of 
values below 0, which means particular career sequences observed in the data are not 
simulated as often in the models. The memoryless model shows even more careers that 
significantly deviate from their observed frequencies than the model with memory. In addition, 
the one-step memory model shows multi-modality (although we do not present this analysis, we 
have traced this result to career sequence length, i.e., longer careers are harder to model 
accurately).  

 

  
Note. The model with memory concentrates more of its probability mass between −1 and 1 than the memoryless model.  

Figure 5. Histogram of Values of log d(Si) for the Memoryless and One-Step Memory Models for 
Occupational Career Sequences 

 
On the basis of the results in Figure 5, we see that considerable interesting behaviour 

occurs when log d(Si) ≤ −1. Are there common features to careers that cross this threshold? 
One feature, mentioned above, involves the length of paths. Longer career sequences are 
harder to forecast and lead to values of (S|s1=l) that deviate from F(S|s1=l) more. Beyond this 
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length effect, other details of career sequences may be responsible for leading to poor forecasts 
from models. 

A comprehensive exploration of career sequences in order to identify all possible 
reasons behind poor predictions of those sequences is not likely to be very informative, as any 
single sequence can have its own reasons for being hard to predict. A more productive 
approach may be to identify temporal features shared by many poorly forecasted careers so 
that especial approaches can be applied to improve those forecasts. The concept of a temporal 
pattern in a network is known as a temporal motif (Holme & Saramäki), and our method for 
understanding poorly forecasted careers is basically a search for such temporal motifs.  

Our analysis has yielded an interesting and unexpected result. One of the key temporal 
motifs contributing to poor prediction is one characterized by employees going back to positions 
they previously held. This is a surprising result. In the observed paths, 24.5% contain this motif. 
Without memory, the model was able to produce 79.6% of those motif paths while memory 
improved this to 88.2%. 

In summary, the results for the analysis of careers sequences defined on occupations 
shows that the models we have constructed are certainly useful and, furthermore, that the one-
step memory model performs better.  
Units Model Results 

The approach deployed for the study of occupations can also be applied to the study of 
careers occurring along operational units of the organization. Methodologically speaking, there 
is no difference in the calculation of the quantities presented above, but interpretation of the 
results has to take into account the nature of the nodes. Qualitatively speaking, we find the 
same behavior in career sequences tracked on the basis of operational units as we observe for 
sequences over occupational series.  

As an illustration of the similarity between modeling by occupational series or operational 
units, we present Figure 6, which shows the JSD measurements of careers starting from two 
such units. The observed features of these plots do not differ from those in Figure 1, that is, 
better performance for the one-step memory, as well as the observation that both models still 
have room for improvement.  

 

  
Note. Each panel is associated with an operational unit (kept undisclosed). In each panel, four distributions are displayed, differentiated by 
color (blue corresponds to tr,r’(l) for the model with memory, green corresponds to tr,r’(l) with no memory, orange corresponds to mr(l) with 
memory, and red corresponds to mr(l) with no memory). In all cases, the distribution of mr(l) peaks at smaller values (of JSD) for the model with 
memory. 

Figure 5. Probability Distributions of mr(l) and tr,r’(l) for Two Different l, and Models 
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Next, we discuss the Jaccard over operational units. In contrast to the case of 
occupational series, there are a very distinct few units for which the memoryless model leads to 
good Jaccard indices (Figure 7). However, this is the exception rather than the rule. 
Overwhelmingly, the one-step memory model performs much better. 

 

 
Note. Each point corresponds to a starting operational unit and has as its horizontal coordinate the value of the Jaccard index for the one-step 
memory model, and as its vertical coordinate the value of the Jaccard index for the memoryless model. The modeled careers correspond to the 
union of all careers created in the nw n total number of walks across all n realizations. While the values of Jaccard indices for the one-step 
memory span the range between approximately 0.2 to 1.0, the Jaccard indices of the memoryless model remain quite low, usually no larger 
than 0.1. The orange line runs along the diagonal as a visual reference. If the two models provided similar values of Jaccard indices, one would 
expect to see the cloud of points near that line. 

Figure 7. Scatter Plot of the Jaccard Indices Between the Memoryless and One-Step Memory Models, 
Calculated Between the Careers Generated from Simulations and from Observation 

 
Results connected to d(Si), Var(l), and log d(Si) also have the same qualitative features 

for units as they do for occupations. For d(Si), we present Figure 8, which is constructed with 
the same units as in Figure 6. As for occupations, the match of the one-step memory model and 
observation is quite reasonable.  

 

  
Note. The blue curve represents the memoryless model, whilst the red curve represents the one-step memory model. Both plots also show a 
horizontal line of height 100 (i.e., 1), which is the target achieved for an “ideal” model that reproduces careers perfectly. The red curve is 
generally closer to the horizontal line = 1 for both starting occupations. 

Figure 8. Profiles of Models in Terms of Their Relation to Observed Careers, Captured in (i,d(Si)), for Two 
Starting Undisclosed Operational Units 
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The values of Var(l) are shown in Figure 9. 

 

 
Note. The histogram clearly shows the larger values corresponding to the memoryless model. 

Figure 9. Histogram of Var(l) for Both the Memoryless and One-Step Memory Models for Operational 
Units 

Finally, we present results for the collection of all log d(Si) in Figure 10. 

 

 
Note. The model with memory concentrates more of its probability mass between −1 and 1 than the memoryless model. 

Figure 10. Histogram of Values of log d(Si) for the Memoryless and One-Step Memory Models for 
Operational Units Career Sequences 

As in the occupational series model, the motif of employees leaving one state for 
another and then returning to it is present in the units implementation. Here, 10.8% of the 
observed paths exhibit this motif. The model without memory is able to produce 88.2% of paths 
containing the motif. However, with memory, the model captures 98.1% of such paths. 

Discussion and Conclusions 
The modeling approach we have taken in this work has been highly driven by statistical 

analysis. The network structure implicit in the transition probabilities specified above (either for 
memoryless or one-step memory models) creates a network substrate that allows us to 
generate forecasts of the workforce job changes at a microscopic level, that is, for any career 
sequence. 

The introduction of a notion of career sequences occurring on a network of operational 
units is new in the study of careers, and we expect that as we focus more on its details, 
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numerous relevant features of the system will start to emerge, such as the value of work or 
friendship ties in people’s careers.  

An important limitation of our current methodology is that it is calibrated against 
observed job transitions rather than possible job transitions. This is an important issue because 
the finite nature of the system does not make it possible to observe enough job transitions that a 
probability for any arbitrarily chosen pair of transitions to occur can be extracted from the data. 
In order to overcome this, study of the characteristics of each job (say, occupational series, 
location, career field) offers a new direction to pursue in order to create a more flexible model 
that may be able to predict what could happen even if it has never been observed. 

From the standpoint of the contribution that this work may bring to the acquisition 
workforce, we note that the Department of Defense requires the ability to understand high 
volumes of behavioral and environmental data, in an institutionally informed framework, to 
produce reliable forecasts of workforce behaviors across an extended planning horizon. This 
goal is consistent with the fact that one of the three priorities in the 2019 National Defense 
Strategy is to reform the department’s business practices for performance and affordability 
(Mattis, 2018). Further, The Army People Strategy calls for the implementation of 21st century 
talent management, enabled by leading-edge research and leveraging technology and “data-
driven organizational research to continuously improve Army people programs and policies” 
(Secretary of the Army, 2019). 

Improving understanding about the way the government workforce moves within and 
across different organizations in detail, how to plan for it, and how to optimally manage it are 
clearly relevant strategic resource usage and institutional effectiveness concerns. Mission 
completion across the board is impacted directly by government organizations’ ability to ensure 
capable people are in the right place, at the right time to perform critical tasks. In addition, 
findings from our ongoing research offer the promise of expanding the body of knowledge and 
theory of processes, systems, and policies both inside and outside the government. 

In conclusion, our method allows us to create reliable forecasts of career sequences, 
especially as the memory of the model is increased. We expect this method to become useful in 
the near future as a forecasting tool for career moves inside the AAW. Longer term, we expect 
to develop a more extensive characterization of the forecasting power and limitations of this 
model. 

Appendix: Formal Definitions 
In order to provide some concrete definitions and notation, let us consider one 

hypothetical career sequence S = (s1,s2,…sn). Each transition between two stops si and si+1 
provides information that the second of these stops can be reached by individuals in the first. 
Each stop si for all i of any career sequence takes its value from a set of allowed stops L, where 
the elements of L correspond to the kind of stop we are interested in modeling. For example, if 
we want to model movement of individuals through the units/departments of the organization, 
the elements of L will be the distinct organizational units; if we care about individuals moving 
through occupations, the elements of L will be occupational series codes and so forth.  

To model careers, we define a stochastic process following the logic in López et al. 
(2020). An individual currently located in stop l has a decision to make: either remain in l with 
probability 1 − l, or depart with probability l, where l ∈ L. Each element of an individual career 
si corresponds to a stop such as l. Another possible action that an individual can take is to exit 
the organization. In our approach, this is predetermined at the outset of an individual’s career by 
assigning it a total time in the organization. Once the time assigned to the individual has 
elapsed, or the stipulated duration of the model is reached, the individual disappears. 
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Transitions between stops occur with some probability. In order to calibrate our model, 
we use information from observed careers. Using Q to denote the total number of sequences 
observed in our data, we can create a set of transition probabilities for our model by counting 
the number of individuals performing a given transition. As explained in the Introduction, we 
employ two different rules. First, in the case where prior transitions by an individual are 
considered irrelevant, we use the transition probability 

pl,g = nl,g/g nl,g [memoryless case], 

where l,g ∈ L. In other words, the likelihood that an individual currently in l will transition to g as 
its next stop is given by the proportion of individuals in the past that, upon leaving l, decide to 
move to g. 

The second type of transition probability we employ keeps track of the last transition 
made by an individual (if the individual indeed has a career sequence spanning at least one 
transition up to that point). In this case, we define the transition probability as 

p(l,g),(g,h) = n(l,g),(g,h)/(g,h) n(l,g),(g,h) [one-step memory case], 

where l,g,h ∈ L and (l,g) and (g,h) are transitions. The denominator sums over all possible 
destinations h ∈ L that an individual that has arrived at stop g from stop l has been seen to 
reach. This case allows for the possibility that g = h, that is, that g is a terminal node for an 
individual that has reached g from l. 

Two other rules apply to the model with memory. An individual for which l is their first 
stop, if they decides to change jobs, they does so under the rules of the memoryless model on 
this first change. This is because at that point, such individual does not have any prior history in 
the system to draw from. The second rule, already hinted at in the previous paragraph, is that 
memory can lead an individual to remain in a location due to their history. This is the case in 
which p(l,g),(g,h) = 1 when g = h, because it means that in the data all those that arrived at g from l 
never moved away from g. 

In both cases above, the process is Markovian in nature, as they abandon the memory 
of more remote events in the past. Extending memory is, in principle, straightforward, although 
computationally costly. However, as we shall see, single memory is sufficient to provide a strong 
predictive value to the model. 

Both the memory and one-step memory processes described above can be encoded in 
a complex network, that is, an object in which every stop l, g, h, … can be thought of as a node 
of the network, and every transition between two stops (nodes) can be considered a link 
between the nodes. Thus, both pl,g and p(l,g),(g,h) lead to sets of nodes and links that represent the 
entire organization and its job transitions in the form of a network. When the nodes correspond 
to occupational series, the network is one of occupations and transitions between those 
occupations; when the nodes correspond to operational units, the network represents those 
operational units and the job transitions that occur across them. Given this interpretation of the 
model, in what follows, we interchangeably use nodes or stops to refer to either an occupation 
or unit of the organization. 

In order to evaluate our models, we must compare their behavior to that of observed 
career sequences. Since the entry point of a career may play a role in its subsequent 
progression, we define a probability distribution F(S|s1=l) for all observed career sequences that 
share the same initial stop l. Thus, F(S|s1=l) is the probability that an individual that begins a 
career at l indeed performs the career sequence S. Our models also generate career 
sequences with some probability. We denote the probability distribution of simulated career 
sequences by (S|s1=l). Note that, in contrast to F(S|s1=l), (S|s1=l) is not fixed in our model. 
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This is because every time we construct a set of paths through a random process using a 
stochastic (Monte Carlo) computer simulation, the specific set of sequences and their relative 
proportions can be different. By the Law of Large Numbers, the larger the simulation in terms of 
the number of samples created, the less difference one expects between two separate Monte 
Carlo simulations, but it is very unlikely that for even a moderately large system one will obtain 
the same (S|s1=l) twice. The detailed way in which examples (also called realizations) of 
(S|s1=l) are constructed is explained in the Results section. 

A model that is both perfect and can be simulated an infinite number of times would lead 
to F(S|s1=l) = (S|s1=l) for any starting l, where both probability distributions would be defined 
over the same set of sequences. However, no model is perfect nor can it be simulated an 
infinite number of times. In order to measure the discrepancy between F and , we employ 
three complementary methods. The first of these tracks how different the sets of sequences 
from each of the models are in comparison to the actually observed sequences. For this we 
introduce the notation Gl ={S|s1 =l, S observed} to represent the set of all observed career 
sequences that being at l (i.e., where the first stop s1 is l). Similarly, we use Hl ={S|s1 =l, S 
simulated} to represent the set of simulated sequences. Then, we define the so-called Jaccard 
index 

J = | Gl ∩ Hl | / | Gl ∪ Hl |, 

where Gl ∩ Hl corresponds to the set intersection of Gl and Hl, and Gl ∪ Hl represents their 
union. Furthermore, the symbol | | measures the number of elements of a set. Thus, J measures 
the ratio of the number of common elements between Gl and Hl versus the total number of 
distinct elements contained in Gl and Hl. If Gl =Hl, J = 1, and if the two sets have no common 
elements, J = 0. Therefore, with the Jaccard index, we seek to determine if a model produces 
similar career paths, regardless of the rate (i.e., probability) at which they may be produced. 

The second measure we employ in evaluating our models is the JSD (Lin, 1991), based 
on ideas from information theory. Whereas the Jaccard index captures the unweighted similarity 
between collections of sequences, the JSD measures “distance” between distributions. The 
units of JSD are basically those of information (i.e., bits). To interpret JSD results, it is useful to 
recall that a bit measures the information needed to describe something; more bits means more 
information needed. Now, since JSD is a distance between distributions, one expects that two 
identical distributions would have a JSD with a value of 0; distributions that are not equal will 
have a JSD > 0. The concrete definition of JSD requires the use of the concept of information 
entropy, that is, Shannon entropy H, which measures the number of bits needed to describe a 
probability distribution. Symbolically, it is given by Cover and Thomas (2006) 

H(P) = - r P(r) log2 P(r), 
where P(r) is a probability distribution of some random variable r. A large value of H(P) means 
that the distribution P(r) requires a large amount of information to be described.  

For the definition of H, we can now introduce the JSD we use. In particular, the JSD 
between F(S|s1=l) and an example of (S|s1=l) is defined as 

JSD(F,) = H[(F+] – [H(F)+H()]/2. 
As explained above, JSD acts as a distance in bits between probability distributions. In 

this specific case, the distance is measured between each distribution and the average 
distribution (F+. Ultimately, the intuition of how the value of JSD changes is clear: the 
more the difference between F and the larger JSD becomes. Its lower bound is 0, but there 
is no upper bound in principle, although for any finite system, an upper bound could be found.  
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Note that because JSD is based on entropy, which, in turn, is calculated from probability 
distributions, the relative differences in likelihoods of career sequences are captured in this 
measure. However, because entropy is a sum, it does not keep track of which career 
sequences are the ones responsible for the most important contributions to H or JSD. For this 
reason, we need another measure. 

In order to simultaneously address differences in probabilities between observed and 
simulated career sequences one sequence at a time, we introduce a graphical method that 
allows us to study discrepancies between F(S|s1=l) and examples of (S|s1=l). However, before 
we can deploy this approach, we require a prior step. 

The career sequences generated by our models are not always the same as those 
observed. This occurs due to model stochasticity. Furthermore, the less accurate the model is, 
the more likely it is that observed and simulated careers differ. For the method we will present 
next, which focuses on the comparison of observed and simulated probabilities of career 
sequences, it is useful to correct (S|s1=l) so that it is conditioned on only those careers that are 
also observed. Therefore, we define 

(S|s1=l,S observed) = (S|s1=l) / S’ observed (S’|s1=l). 
This expression creates a conditional probability of the simulated careers that are also 

observed careers. 
We are now ready for the next analytical approach, which we first apply as a graphical 

method and then define from it a quantity that tracks difference so that we can systematically 
evaluate each modeling method over the entire set of sequences departing from any l. To be 
concrete, we define an ordered set of values d(S1),d(S2),…,d(Sbl) where each Si for i between 1 
and bl is taken to be an observed career sequence, and bl is the number of them that have been 
observed starting at l. Then, any d(Si) is defined by 

d(Si) = (Si|s1=l) / F(Si|s1=l) [F(S1|s1=l) ≥ F(S2|s1=l) )…≥ F(Sbl|s1=l)], 
where the square brackets stipulate that the career sequences are indexed with i so that the 
sequence with the largest probability to be observed in the data is S1, the sequence with the 
second largest probability to be observed is S2, and so forth. Note that, if (Si|s1=l) = F(Si|s1=l), 
for career Si then (Si|s1=l) / F(Si|s1=l) = 1. Thus, we will be trying to evaluate the quality of each 
model by measuring how close to 1 the values d(Si) are. 

The collection of d(Si) have another use: they are helpful in determining career 
sequences that substantially deviate from their observed probabilities. Thus, as part of our 
analysis, we track sequences that exceed some arbitrarily chosen threshold of deviation 
(specifically, we do this through log[d(Si)], as explained later). 

A given ordered set d(S1), d(S2), …, d(Sbl) can be plotted as a set of points (i, d(Si)). This 
produces for each starting location l a profile plot that indicates how well each of the career 
sequences out of l have been captured by a model. This is a visual method to evaluate the 
models, one l at a time. However, to explore the entire set of all possible l, we cannot rely on 
visual inspection always, especially if careers are being studied using stops that are quite 
numerous in an organization (e.g., each job post). To address this, we introduce  

li log[d(Si)] / bl , 
Var(l) = i (log[d(Si)] - l)2 / bl , 

which compute a measure of deviation between F(S|s1=l) and examples of (S|s1=l) combining 
the effect of all Si. The use of the logarithm has a nice property from the standpoint of 
interpretation: when (Si|s1=l) = F(Si|s1=l), log[(Si|s1=l) / F(Si|s1=l)] = log(1) = 0. The second of 
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the two quantities, Var(l), captures a deviation from 0, and can only be positive, whereas l 
may have cancelations included (due to positive and negative values of d(Si)). Therefore, we 
see Var(l) as a more robust quantification of deviation.  

As indicated in the Methods section, each (S|s1=l) is generated through computer 
simulation in which in silico employees remain at a stop si with a probability 1 − si , move to 
another stop based on a probability si multiplied by a transition rate p that may depend on si 
only in the memoryless case or in the latest transition (si-1, si) in the one-step memory, and will 
exit the network after a number of predetermined steps the latter being drawn from a 
distribution for the entire workforce. These rules will not always produce the exact same career 
sequences emerging from an initial stop l. Therefore, in order to generate a realization of 
(S|s1=l) that is representative of transitions observed, we create a number nw of career walks. 
Usually, we employ 5,000 such career walks for a single (S|s1=l).  

This, however, is not entirely sufficient to perform our analysis. If we consider the 
process of determining JSD, a single example of (S|s1=l) produces a single value of JSD. To 
provide us with enough statistics to understand the possible values of JSD, we generate n 
such simulations. We label the different realizations of (S|s1=l) emerging from this approach 
through the index r, that is, r(S|s1=l), where r =1, …, n. We then compute JSD in two different 
ways. To determine the similarity between model outputs and F(S|s1=l), we create n samples 
of JSD and label them mr(l), each given by 

mr(l) = JSD[F(S|s1=l),r(S|s1=l)]. 
This generates a histogram of n values, each providing a JSD value between observed 

and simulated career sequences. The histograms are shown below in the subsections 
concerned with whether stops are defined as occupational codes or operational units.  

Our second use of the nrealizations is to create a notion baseline value of JSD 
between simulations. This is done through the variable 

tr,r’(l) = JSD[r(S|s1=l)],r’(S|s1=l)] [r, r' = 1,…, n, r ≠ r']. 
These pairwise combinations of the outputs of simulations r and r' lead to a total of n 

(n - 1)/2 values tr,r’. We study these values using probability distributions as well (see Figure 1 
and Figure 6). Usually, we employ n = 100, with n (n − 1)/2 = 100 × 99/2 = 4,950. This 
generates per l a total of 100 samples of mr(l) and 4,950 samples of tr,r’(l). 

Why do we need to create samples for mr(l) and tr,r’(l)? The overall reason is that they 
create ways of comparing the performance of the models against each other, and also as a way 
to determine if any of these models is actually achieving the ultimate objective of predicting the 
system. To explain the logic, consider the ideal case that a model essentially captures the 
behavior of the system. In this case, (S|s1=l) would approach F(S|s1=l) as nw becomes very 
large. This would lead to JSD[F(S|s1=l),(S|s1=l)] tending to 0. The key difficulty with this 
statement is that nw cannot really be made to approach infinity, which is likely to be necessary to 
fully confirm a possible equality between F(S|s1=l) and(S|s1=l). Instead, a realistic optimal 
level of agreement between F(S|s1=l) and(S|s1=l), given that we can only do a finite number 
of walks nw to create a (S|s1=l), would be signalled by the fact that F(S|s1=l) would be 
indistinguishable from any one of the n realizations r(S|s1=l). In this case, the probability 
distributions of mr(l) and tr,r’(l) should be indistinguishable (i.e., should overlap). This implies that 
the samples of tr,r’(l) act as a baseline check, to see how far the model is from the “ideal” 
modeling of the system. Figure 1 and Figure 6 show these results for two sample units and 
occupational series. For most l in the system, the results show that the models are not a perfect 
match with the system, but the very small values of JSD indicate that they are also not that far 
off.  
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The use of the mr(l) samples, as briefly indicated above, allows performance comparison 
between the models. This is done simply by determining which model leads to a distribution of 
mr(l) with smaller values. As we see in Figure 1 and Figure 6, the model with memory indeed 
performs better. 
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