
Acquisition Research Program
Department of Defense Management
Naval Postgraduate School

SYM-AM-22-056

Proceedings
of the

Nineteenth Annual
Acquisition Research Symposium

Acquisition Research:
Creating Synergy for Informed Change

May 11–12, 2022

Published: May 2, 2022

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Department of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to
print additional copies of reports, please contact any of the staff listed on the
Acquisition Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Acquisition Research Program
Department of Defense Management - 367 -
Naval Postgraduate School

When is it Feasible (or Desirable) to use the Software
Acquisition Pathway?

David M. Tate—joined the research staff of the Institute for Defense Analyses (IDA) Cost
Analysis and Research Division in 2000. Prior to that, he was an assistant professor of Industrial
Engineering at the University of Pittsburgh, and the Senior Operations Research Analyst
(Telecom) for Decision-Science Applications, Inc. At IDA, he has worked on a wide variety of
resource analysis and quantitative modeling projects related to national security. These include
an independent cost estimate of Future Combat Systems development costs, investigation of
apparent inequities in Veterans’ Disability Benefit adjudications, and modeling and optimization of
resource-constrained acquisition portfolios. Dr. Tate holds bachelor’s degrees in Philosophy and
Mathematical Sciences from the Johns Hopkins University, and MS and PhD degrees in
Operations Research from Cornell University. [dtate@ida.org]

John W. Bailey—has worked for both the former Computer Science Division and the Cost
Analysis and Research Division of the Institute for Defense Analyses (IDA) since the 1980s. Prior
to that, he conducted software programming research for General Electric and co-founded
Software Metrics, Inc. While completing his PhD at the University of Maryland in software reuse
methodology, he helped Rational establish its Ada development environment, which was later
acquired by IBM. Dr. Bailey has overseen numerous cost and schedule analyses for Department
of Defense software programs, as well as root cause analyses of cost and schedule growth..
[jbailey@ida.org]

Abstract
DoD Instruction 5000.87 establishes a Software Acquisition Pathway (SWP) “for the
efficient and effective acquisition, development, integration, and timely delivery of secure
software” (Office of the Under Secretary of Defense for Acquisition and Sustainment,
2020, p. 1). Under SWP, programs are required to deliver a Minimum Viable Capability
Release (MVCR) deployed to an operational environment within 1 year of initial funding.
This MVCR must be secure and suitable for operational deployment and must enhance
warfighting capability. This paper discusses the challenge of determining for a software
development effort whether the minimum capabilities that meet these criteria and enable
ongoing agile development can plausibly be developed, tested, and operationally
deployed in less than a year. We use a standard software cost and schedule model to
derive bounds on the size of software that can be developed and ready to field in 12
months.

The study concludes that many DoD software acquisitions will require too much
development effort for the MVCR to comply with the SWP deadline if SWP is used from
program initiation. We propose some criteria the Under Secretary of Defense for
Acquisition and Sustainment might use to determine whether the SWP is appropriate for
a particular new or existing program or software development project. We also consider
development strategies that might improve the chances of success in using the SWP,
including how non-SWP programs and projects should be architected if the intent is to
later transition to SWP.

Executive Summary
Department of Defense Instruction (DoDI) 5000.87 establishes a new Software

Acquisition Pathway (SWP) to facilitate streamlined acquisition of software-centric
applications. The instruction specifies that programs using the SWP must “demonstrate
the viability and effectiveness of capabilities for operational use not later than 1 year
after the date on which funds are first obligated to develop the new software capability”
(Office of the Under Secretary of Defense for Acquisition and Sustainment
[OUSD(A&S)], 2020b, sec. 1.2(e)). The thesis of this brief study is that this requirement

Acquisition Research Program
Department of Defense Management - 368 -
Naval Postgraduate School

may be significantly more restrictive than the drafters intended, due to basic constraints
on how much operationally adequate software can be designed, developed, tested, and
fielded in a single year. In particular, the need for fielded software to be safe, secure,
and easily upgraded imposes significant up-front requirements on the architecture,
design, verification, and validation of a minimum viable capability release (MVCR) for the
system.

Using calibrated models of past defense software development efforts, we
estimate that a military software project MVCR is unlikely to exceed ~28,000 equivalent
source lines of code (ESLOC) if accomplished in less than 1 year, producing at most
~250,000 physical source lines of code (SLOC).1 For programs using the SWP, this first-
year product would need to include implementation of key non-mission software
features, such as communications architectures and modular design. It would also need
to accomplish verification of the effectiveness and suitability of the MVCR, such as
cybersecurity, system safety, and interoperability. These are best-case estimates, using
optimistic assumptions regarding developer capabilities, application complexity, off-the-
shelf tools, code reuse, automated code generation, and the deployment environment.
The achievable capability may be significantly less for more complex applications, such
as embedded software, software with extensive interoperability requirements, very high
required reliability, software incorporating machine learning, or software for use in
extreme safety environments (e.g., space or undersea). Embedded software is
particularly noteworthy on this list, in that 5000.87 provides an explicit separate path for
embedded software that acknowledges the need to coordinate development of the
software and its hosting platform.

Conversely, existing software programs that have already passed their MVCR
and are now implementing the iterative phase of an agile or DevSecOps process have a
much better chance of meeting the strictures of 5000.87 after transitioning to SWP, both
in terms of initial delivery and ongoing capability drops. Post-MVCR transition might also
help programs resist pressure to take shortcuts with regard to architecture, modularity,
and other non-functional features important to future agility.
Background

As part of the new Adaptable Acquisition Framework (AAF), DoDI 5000.87
establishes a new acquisition pathway for software with the explicit intent of decreasing
development lead times and increasing upgrade frequencies for software-intensive
defense systems. The SWP defines two distinct paths: one for applications programs
operating on commercial hardware, and a second for development of software
embedded in defense systems employing military-unique hardware. The instruction also
provides for existing acquisition programs to transition all or part of their acquisition
strategy to the SWP. In either case, one criterion for entry into the SWP is that the
program must demonstrate viability and effectiveness for operational use within 1 year of
the program’s first software expenditures. This time constraint clearly places limits on the
capabilities that can be implemented using this pathway.

To bound the upper limit of the amount of software that can be developed and
delivered in 1 year, we define two segments of software development that could be
executed in parallel, and we describe the required attributes and qualities that the

1 Equivalent SLOC are defined in terms of how many new lines of code could be produced with the same

effort. Code reuse, adaptation, and auto-generation all increase the ratio of SLOC to ESLOC in a
development effort.

Acquisition Research Program
Department of Defense Management - 369 -
Naval Postgraduate School

delivered software must have, regardless of mission domain. The first segment is the
mission-specific functions that constitute the outward behavior and capabilities of the
application, and the second segment is the core infrastructure software that enables the
mission features to execute on the host computing platform. We refer to these segments
as the mission software and the infrastructure software, and assume that the interface
between these segments can be well-defined so that their developments can be
concurrent. Both of these segments must also satisfy what are often called “non-
functional” requirements that the software (and its host system) have certain attributes,
such as safety, security, reliability, ethics, maintainability, and so forth. These non-
functional requirements are not satisfied by a specific body of code but rather must be
achieved and supported by all mission and infrastructure software. Although these
requirements add to the size of the software being developed (and the effort to develop
it), they cannot be satisfied by adding to or modifying that code after it is written. These
are attributes that the developing code must manifest from its inception.

Under DoDI 5000.87, that first operationally effective and viable increment of
capability is referred to as the “minimum viable capability release,” or MVCR. The
instruction defines this as “the initial set of features suitable to be fielded to an
operational environment that provides value to the warfighter or end user in a rapid
timeline.” Any program whose initial feature set of mission software and all necessary
infrastructure software cannot plausibly be completed within a year while achieving the
mandatory non-functional requirements should not attempt to use the SWP.
Furthermore, any program that would have to trade away future agility in order to meet
the 1-year deadline2 should not attempt to use the SWP, since the lack of future agility
would defeat the purpose of the pathway.

The Under Secretary of Defense for Acquisition and Sustainment (USD[A&S])
has authority to direct acquisition programs to use other acquisition pathways if the SWP
is not appropriate. This research investigates some criteria USD(A&S) might use to
determine whether the SWP is appropriate for a particular new or existing program or
software development project. It also considers acquisition strategies that might improve
the chances of success in using the SWP, including how non-SWP programs and
projects should be architected if the intent is to later transition to SWP after an MVCR
has been fielded, or at the earliest, during the year prior to fielding an MVCR.
What Constitutes a Minimum Viable Product?

Programs executing the SWP are explicitly not subject to the reporting and
review requirements of major defense acquisition programs (MDAPs), regardless of
expected life-cycle cost. This has the potential to enable SWP programs to begin
significantly sooner than if those programs were required to execute the full sequence of
major capability acquisition governance processes, from Mission Needs Statement
through Analysis of Alternatives to Milestone A/B authority. If the goal is to field new
capabilities as quickly as possible, spending less time getting underway is clearly
desirable.

2 An example of this kind of trade would be to opt for a proprietary, monolithic system architecture rather

than an open, modular architecture. Relaxing the requirement for openness and modularity may permit
faster initial release, but would also make subsequent upgrades more difficult and more expensive.

Acquisition Research Program
Department of Defense Management - 370 -
Naval Postgraduate School

While DoDI 5000.87 requires that the MVCR be “viable,” it does not specify
where authority lies to determine the minimum acceptable infrastructure and operational
capabilities (and non-functional requirements) that define the MVCR. The instruction
says, “The PM and the sponsor will … define a minimum viable capability release”
(OUSD[A&S], 2020b, sec. 3.3(b)(5)) without constraining who may or should participate
in that MVCR definition process. According to agile precepts, the specification of the
minimum viable capability should be determined collaboratively by the user community,
senior acquisition executives, the commands that will employ the system, the program
manager, and importantly, the developers. In practice, this level of collaboration may be
hard to achieve.

The instruction further defines the sponsor to be “the individual that holds the
authority and advocates for needed end user capabilities and associated resource
commitments” (OUSD[A&S], 2020b, sec. G.2). The sponsor is also the individual who
approves the Capability Needs Statement (CNS) developed by the operational
community. The DoD Components are directed to create streamlined requirements
processes to develop, coordinate, and approve CNSs, including an expedited joint
validation process if the Joint Staff deems it necessary to protect joint equities.

Instruction 5000.87 explicitly states that assurance of system safety, security,
effectiveness, and suitability are still very much required and should be integrated and
automated to the maximum extent possible. This provides further evidence that the
MVCR will generally have mandatory attributes that cannot be deferred or waived; it
must be safe, secure, suitable, and effective in accordance with the mission capability
priorities established in the CNS. Those priorities might include operational features like
interoperability as well as structural features like modularity or conformance to an
architectural standard.

It is worth noting that, while DevSecOps and agile development offer many
benefits to the overall efficiency and productivity of development projects, some of those
acceleration benefits apply only to the portion of the project that implements non-
mandatory features. In particular, a major efficiency benefit of the agile philosophy is to
have the freedom to defer or eliminate the development of features that turn out to be
low priority. By definition, the MVCR does not contain any low-priority or “optional”
features—if it did, it would not be the minimum viable capability release. On the other
hand, it might include some features that are important in the long run but not yet useful
at the time of initial deployment. Implementation of a modular open system architecture
(MOSA), for example, has no immediate benefits for MVCR operations. The benefits of
MOSA come later, making it easier and faster to add and upgrade capabilities during the
subsequent agile phase of the system life cycle. As a result, the effort to develop the
MVCR may include necessary work that does not correspond to any explicit functions in
MVCR operations. Similarly, the cybersecurity architecture for the full system may be
more complex than required for just MVCR operations, but must still be engineered to
support the eventual full range of system operations. For these reasons, the
infrastructure software for the MVCR including all its non-functional requirements may
constitute a disproportionate fraction, even the majority, of the total code effort.

DoDI 5000.87 describes a workflow in which government developmental and
operational testing are integrated from inception and throughout the life cycle to support
software assurance, cybersecurity, and mission capability (OUSD[A&S], 2020b, sec.
3.2f(2)). This reinforces the point that the system architecture and design implementing
the MVCR must not only be sufficient in terms of infrastructure and mission capabilities
to support the MVCR; they must also implement full safety and security requirements to

Acquisition Research Program
Department of Defense Management - 371 -
Naval Postgraduate School

enable it to be fielded in the operational environment, and must be compatible with agile
development thereafter.
MVCR Is Not a Prototype

As noted above, the MVCR must implement all the necessary security features,
user permissions, encryption, firewalls, etc. to operate safely in the network so as not to
introduce flaws or security back doors into the operational environment. This
differentiates the MVCR from a prototype application. Important non-functional system
attributes are seldom implemented in prototypes. The principal exception is in cases
where the application technologies are immature and the purpose of the prototype is to
verify that a candidate design approach can meet requirements. Any program that is still
verifying the feasibility of technical approaches is a poor candidate to be ready to field in
less than a year.

It is tempting to say that the MVCR could be implemented as a prototype of the
eventual full-up system in order to save time and effort in getting the first release to the
users, but this could be dangerous. It is simply not feasible to change the architecture of
an application that implements only a prototype solution. Also, applications that do not
implement mission-capable cybersecurity would not be granted authority to operate
(ATO). The authors have first-hand experience with the acquisition of a very large
defense application that had to be rewritten from scratch late in the development
process because the program opted to try to save time by enhancing a prototype that
had not been architected to provide cybersecurity. The developers found it impossible to
achieve security assurance after the fact. The necessary design, architecture, and
development processes to ensure the presence of the fundamental qualities must be
incorporated from the beginning.

It would be theoretically possible to develop a disposable MVCR just to meet the
1-year deadline and then replace it with the real code at a later date. However, this
seems inconsistent with the objectives of the pathway. Any disposable MVCR would still
need full cybersecurity and a complete operational test and evaluation, and fielding it
could introduce version control and interoperability issues between the MVCR and the
eventual fully compliant application that would replace it. Further, even if a disposable
MVCR was thought to be cost-effective in order to maintain conformance to the SWP, it
would be antithetical to the DevSecOps philosophy of early testing and integration of the
actual application as it will be delivered.
MVCR Is Not MVP

DoDI 5000.87 also defines a minimum viable product (MVP) in the context of
SWP acquisition. The MVP is defined as an early version of the software that allows
users to evaluate and provide feedback on basic capabilities and design features,
helping to shape scope, requirements, and design. In practice, an MVP could be a
mock-up or storyboard that enables the developers and users, as well as other
stakeholders, to agree on how the final application should look and behave. Agile
developments use such prototypes to make both the application’s requirements and the
proposed solutions visible and understandable to all parties.

Language in 5000.87 suggests that the MVP delivery could not only be a
waypoint along the path to producing an MVCR, it might even be identical to the MVCR
if it is operationally deployable. This suggestion is also dangerous in many respects. The
MVP is meant only to illustrate design and function so that developers can show users

Acquisition Research Program
Department of Defense Management - 372 -
Naval Postgraduate School

different options and ideas.3 The goal of getting the MVP in front of users and
commanders as quickly as possible actually mitigates against trying to make it suitable
for eventual operational use. Building it correctly, with all of the mandatory structural
attributes and security, would take too long, defeating the purpose of eliciting early
feedback. The MVP can (and indeed should) be devoid of most internal functions and
lack many required features but still be useful for generating important requirements
feedback. Requiring the MVP to have a secure and modular architecture would miss the
point of the MVP. At the same time, basing the MVCR on an MVP that was neither
secure nor modular would be an extremely inefficient, and potentially disastrous, way to
code. As valuable as the MVP is, there is little chance (and no need) for that product to
factor into the deployable application. It should be considered little more than an
interactive requirements demonstrator, not production code. Remember also that the
MVP and MVCR necessarily compete for resources during early development. Putting
too much effort into the MVP could shortchange the development of the MVCR. The two
can (and should) be simultaneously developed, but the MVP should be as simple as
possible to achieve its purpose—information collection regarding stakeholder
acceptance and priorities.
Operational Testing and ATO

Before any changes or additions are made in the operational environment,
software must be granted ATO and must pass rigorous operational test and evaluation
(OT&E). Consistent with a DevSecOps development process, the required analysis to
achieve ATO can be performed continuously and iteratively during development, an
approach referred to as continuous ATO (c-ATO). Successful c-ATO can eliminate the
dedicated ATO process that confronts programs that treat ATO as a test to be passed,
rather than as a state to be maintained.

OT&E has customarily been treated as an end-of-development hurdle to be
overcome by an independent team after developers consider a product ready to field,
introducing another sequential activity that must be completed before live deployment
can occur. IDA experts in conducting OT have concurred that, like c-ATO, continuous
OT&E can be integrated into and performed concurrently with development. Although
this integration would not entirely eliminate a final evaluation before deployment, it is
intended to make that final check routine and efficient. Our discussions with OT&E
experts led us to conclude that less than 2 months of OT&E can be sufficient if
continuous verifications have been conducted during development. The ability to run
developmental and operational testing concurrently during development greatly reduces
the late discovery of defects, incompatibilities, and other surprises.
How Much Capability Can You Deliver in a Year?
Some Optimistic Assumptions

To assess how much capability could plausibly be developed in 1 year, we will
start by making some optimistic assumptions. In particular, we assume that:

• The requirements (both functional and non-functional) for the MVCR are well-
defined and fixed.

• A single version of the software is to be fielded.

3 The definition of MVP used in the commercial world is somewhat different from that in DoDI 5000.87.

The commercial usage is more akin to the definition of MVCR in the instruction. This may be a source
of confusion regarding the potential for an MVP to also be an MVCR.

Acquisition Research Program
Department of Defense Management - 373 -
Naval Postgraduate School

• The development process takes advantage of all reasonable measures to allow
as much concurrency of effort (i.e., parallel development) as possible.

• The development team employs best-practice agile and DevSecOps methods,
including continuous testing and early user feedback.

• The development team uses as much automation as possible.
A recent source on software development with agile teams estimates that these
conditions could improve development speed by 15% to 20% relative to traditional
development methods (Elk et al., 2020, p. 76).

The MVCR is required only to be mission-capable and to provide operational
value to users and stakeholders. As noted above, the most efficient way to achieve this
would be to divide the project into two parallel developments that run concurrently but
independently: 1) mission software that can deliver a modest but useful subset of
capabilities, and 2) core application infrastructure providing all the necessary operating
system connections, messaging, user privileges, encryption, external interfaces, and
essentially anything that is not strictly mission-specific from the user’s viewpoint. We
need to make some assumptions regarding the relative effort between implementing
core infrastructure versus implementing functional mission capabilities, and the
implications of non-functional requirements for both infrastructure and mission
development effort.

We assume that such a partition of effort is feasible, so that the time to produce a
deployable MVCR is determined by the longer of 1) the time to implement the mandatory
infrastructure, and 2) the time to implement the mission capabilities. We also assume
that development of the core software can adapt and reuse existing, commercial, and
open-source code to a much larger extent than the mission software. Finally, we assume
that the MVCR must instantiate the full set of non-functional attributes, such as
cybersecurity or modularity. The next section explores the maximum amount of code the
MVCR could conceivably deliver in a 1-year development effort.
Modeling with COCOMO

To understand how much software could be developed and deployed in 1 year,
we turned to the current COCOMO software cost model, now formally named
COCOMO-II.4 This version incorporates updates to the cost-estimating relationships
published in the original 1981 text by Barry Boehm (Boehm, 1981).

The COCOMO cost equations accept software size estimates and yield
estimates of the required number of staff months of effort required to produce that much
software. A second COCOMO equation estimates the schedule over which that amount
of effort can be accomplished. Schedule does not vary linearly with size, since a larger
team can be applied to a larger project, so COCOMO first yields an estimate of total
effort and then uses that to provide an estimate of the schedule. Since our constraint is
the schedule, not the effort or cost, we used the model to reverse-engineer the largest
code size that could be developed and delivered within 1 year under our optimistic
assumptions from the previous section.

4 We will adopt the common practice of simply using COCOMO to refer to the more recent COCOMO-II

version of the model, an update based on 20 additional years of software project data.

Acquisition Research Program
Department of Defense Management - 374 -
Naval Postgraduate School

COCOMO accepts five scaling factors and 17 effort adjustment factors to
accommodate the differences among software development projects that were observed
to have an effect on software development productivity. All 22 factors have nominal
(default) values reflecting typical software projects. Each can be tuned to reflect atypical
aspects of a given project or development environment. The COCOMO models have
been calibrated against historical outcomes to predict the influence of these factors on
project outcomes (Boehm et al., 2000).

Of the 22 factors that can affect productivity and schedule, we left all but four at
their default values. The non-default values we applied were as follows:

1. Required software reliability was set to “high,” one level above nominal, to
reflect the demands of operational defense mission software.

2. Use of software tools was set to its maximum value, reflecting our optimistic
assumption about use of automation by the development team.

3. Required development schedule was set to “maximum compression of
schedule” to maximize the delivered content within the fixed 1-year period.

4. Process maturity was set to its maximum value, CMM Level 5, assuming a
highly capable development team and organization.

 We did not alter the “volatility of requirements” setting because the default is “no
volatility,” which was one of our optimistic assumptions.

The effects of these parameter settings vary. High reliability adds 10% to the
effort and about 3% to the schedule.5 Setting the tool use factor to Very High reduces
effort by 22% and also reduces schedule by about 8%. Tool use is particularly important
for the development of the core software since reuse, code generation, and off-the-shelf
software are all likely to be extremely useful for that portion of the development.

Setting the Required Development Schedule driver to Very Low results in a 25%
reduction in schedule but a 43% increase in effort, trading a 30% drop in productivity for
faster execution. The COCOMO development research determined that no further
schedule compression is possible beyond this since the calibration data did not contain
any programs that successfully completed in less than 75% of a nominal schedule.

In addition to setting these four adjustment factors, we eliminated the earliest
development phase estimated by COCOMO, called the inception phase.6 This choice
reflects our assumption that the requirements for the MVCR are well-defined and have
been finalized before commencement of the SWP. COCOMO also provides a final
operational verification effort and schedule, which the model calls the transition phase
that occurs after development is complete. For developments that complete in close to 1
year, the transition phase in COCOMO is between 1 and 2 months. This phase begins at
IOC and ends with product release, making it analogous to our estimates of ATO and
final OT&E.

5 In COCOMO, schedule estimation involves spreading the estimated effort over a feasible schedule.

Since the relationship between effort and schedule is not linear, it means that the effect on schedule
from a given effort adjustment factor varies depending on the size of the project.

6 Through collaboration with Rational, Inc. in 1999, USC parsed the COCOMO-II effort into four phases:
Inception, Elaboration, Construction, and Transition. The middle two estimate the main software design
and development activity, and the final phase is analogous to the operational deployment, discussed in
Part B.

Acquisition Research Program
Department of Defense Management - 375 -
Naval Postgraduate School

Measuring Size
ESLOC

COCOMO uses “equivalent source lines of code” (ESLOC) to measure the size
of software development efforts. ESLOC is a derived value that considers how many
new lines of code must be written, how many preexisting lines of code are reused
unmodified, how many preexisting lines of code will be modified and adapted for use by
the project, and how many lines will be generated by software tools. For a project that
requires all new code, ESLOC is the same as the number of SLOC. When code is
reused, adapted, or generated by tools, the ESLOC count will be less than the physical
SLOC count. It is a theoretical measure of the number of new lines that could have been
written with the same effort as that required to adapt and integrate the reused or
generated code. This allows the cost and schedule modeling to work with a single,
normalized measure of program size.

For our estimate of the largest MVCR that could be achieved in 1 year, we
assumed that all required mission software would be newly developed. However, we
assumed that the infrastructure software to support this new mission software would
either be highly reused and adapted from preexisting software, or would be generated by
software tools with much less human effort than required to develop those lines of code
from scratch. In other words, the ESLOC measure of the infrastructure software is
expected to be much less than its delivered software size.
Function Points

Function points (FPs) are an alternative measure of code size based on
functionality provided rather than volume of code required. COCOMO allows unadjusted
function points (UFPs) to be estimated as a size input to the effort estimation and the
corresponding schedule projection. This involves prior conversion of UFPs to SLOC and
running the model as before. Conversion tables are provided in the COCOMO
documentation to determine the SLOC that would be comparable to one UFP in various
computer languages. These conversions range from 300 lines of assembly language per
function point to as few as 10 or fewer lines per function point for fourth- and fifth-
generation languages. Third-generation languages, such as C and Ada (and older
languages such as Fortran), range from 70 to 120 source lines per function point.
Object-oriented languages like C++ and Ada95 can implement a function point in about
50 lines.

Although it may be possible to use a single language for all of the mission
software development, this is unlikely to be true for the system and support software due
to the various tools and operating system software that we expect will have to be
integrated to complete the implementation. Thus, any conversion to UFP will be crude
for the non-mission portion of the MVCR development.
COCOMO Calculations
Modeling Results

COCOMO modeling with the settings described above indicates that 28,000
ESLOC could be developed and made ready for deployment in 12 months, including
either the COCOMO estimate for transition or our independently derived estimate of
between 1 and 2 months for OT&E. This estimate assumes that the mission software
and the non-mission infrastructure software can be developed independently and
concurrently. Continuous verification of the compatibility between the two parallel tracks
would be necessary to prevent any incorrect assumptions about their interfaces from

Acquisition Research Program
Department of Defense Management - 376 -
Naval Postgraduate School

delaying their eventual integration. DevSecOps processes would help to achieve the
integration of verification with developmental testing cycles.

We assume that the MVCR mission software will be almost entirely new code,
with little reuse from prior applications. Thus, the maximum delivered size of the mission
code in the MVCR would remain close to 28,000 SLOC.

For the non-mission infrastructure software, we assume significant opportunities
for reuse. The literature suggests various overhead factors to reuse existing software,
based on how much study is required to understand the software, whether it has to be
modified, and whether it has to be tested and verified or can be assumed to function as
specified. For our bounding exercise, we optimistically assume that the infrastructure
software is well-understood and well-supported by tools and existing software. Based on
discussions with software development experts at our company who are familiar with the
development of infrastructure software through the use of tools and reuse, we assume
that the composite of all the reuse effort factors for the infrastructure software could be
as low as 5% to 15% of the cost of new code development.7

Thus, for the infrastructure segment, our modeling estimates that as many as
250,000 physical lines of software could be produced with 28,000 ESLOC of effort. To
arrive at this total code size, we used optimistic estimates for the efficiency of reuse due
to the high tool use adjustment factor and the wide availability of construction tools for
this more general-purpose software.8 If the infrastructure software were unprecedented
(e.g., if it had to be hosted on novel hardware), the availability of tools and reusable code
would be much more limited. As a result, the same amount of effort would not be able to
deliver nearly as much code. A case study we used for other insights into relative sizes
and efforts for mission and infrastructure software is described in the next section titled
“Case Study Data.”
COCOMO Modeling Details

According to COCOMO, after applying the effort adjustment factors of high
reliability, high tool use, and shortest schedule, and adopting the highest process
maturity, 28,000 ESLOC would take 10.8 months to develop. The transition phase
(corresponding to OT&E) is estimated to take an additional 1.4 months, which we
optimistically reduce to 1.2 months due to continuous verification during development.
Since we assume mission software is nearly all new code, this bounds the mission
software that can be delivered as part of the MVCR.

Potentially more infrastructure software (in terms of SLOC) can be included in the
MVCR, due to available tools, reuse, and adaptation of existing software. If we assume
that 28,000 ESLOC of infrastructure software would require only 10% of the resulting
SLOC to be newly developed, and the remainder would require 50% of the integration
effort of new code, it would be possible to deliver about 150,000 SLOC of software. If the

7 A 15% cost relative to new code development was also observed by one of the authors in A Component

Factory for Software Source Code Re-engineering, University of Maryland, 1992. Bailey measured the
rate of near-verbatim mission software reuse at the Software Engineering Laboratory at the University
of Maryland and NASA Goddard. Our expectation is that the general case of reusing operating system
and support software should be even more efficient.

8 Examples from one of our colleagues include COTS RTOS run-time operating system tools, such as
those from VxWorks or QNX, and for appropriate applications, cloud-native functions associated with
platform as a service (PaaS) and software as a service (SaaS). Development with open-source software
(OSS), adoption of middleware, virtualization, or containers were also offered as common approaches.

Acquisition Research Program
Department of Defense Management - 377 -
Naval Postgraduate School

integration effort were only 10% that of new code, COCOMO modeling suggests that
over a half million SLOC could be delivered. As a compromise, we estimate that the
upper limit for delivered infrastructure software from a highly automated 28,000 ESLOC
effort is probably somewhere in the range of 200,000 to 300,000 SLOC under these
highly optimistic assumptions. Figure 1 shows the maximum ESLOC as a function of
available time.

Figure 1. Development schedule vs. software size for typical defense software

Case Study Data
Now that we have estimates of the maximum ESLOC that can be delivered and

deployed in 1 year, the remaining questions are 1) how much mission function can be
delivered with a maximum of 28,000 new lines of software, and 2) would 250,000 lines of
system and support software, including the requisite cybersecurity, be enough to host
the MVCR mission software in the operational environment?

Capers Jones summarized 265 new and enhancement military software projects
prior to 2000 (Jones, 2000). Application sizes were expressed in function points to
eliminate the effect of language in the comparison. To compare this to our COCOMO
modeling, we converted to ESLOC by assuming implementation in a third-generation
language such as Ada, C, or Fortran.

The new projects in Jones average 2,800 function points, implying they probably
average between 200,000 and 300,000 SLOC. Further, a graphic in Jones shows some
much smaller completed projects, on the order of 100 function points. Although many of
these could be enhancement projects, we note that software enhancements can also
qualify for SWP. A 100 UFP development using C would amount to about 12,000 source
lines. In fact, at 120 lines per UFP, up to a 233 UFP project in C could be developed
within the 28,000 ESLOC limit for a 1-year MVCR deployment. This implies that some of
the projects in that data set could have been entirely completed in a 1-year development

0

5000

10000

15000

20000

25000

30000

35000

4 5 6 7 8 9 10 11 12 13 14

ES
LO

C

Development and transition time (months)

ESLOC vs. Schedule
Nominal high-reliability defense software (blue lower line)

Most optimistic schedule (red upper line)

Acquisition Research Program
Department of Defense Management - 378 -
Naval Postgraduate School

effort, according to our modeling. However, most of the projects clearly would have
required several years, even under our optimistic assumptions. Jones does not address
the relative effort needed for infrastructure versus minimally viable mission software for
those systems; it is probable that some of those larger projects could have demonstrated
viable and useful operational capability in just 1 year. The authors are unaware of any
statistics on the typical size of the MVCR for military applications relative to the mature
application after iterative improvements.

As a case study, we examined data on a military software project that involved
the development of multiple radio waveform applications that would run on a core of
hardware-specific infrastructure software. Each waveform corresponded to a legacy
radio family that the new system would be able to communicate with. The infrastructure
software would implement signal processing, cryptography, and other common radio
functions, while the waveform software would enable the radio to communicate with
various legacy radio systems. Although the program office estimated a need for more
than 4 million lines of waveform software in total, the individual waveforms were
estimated to each need anywhere from 2,500 to 200,000 SLOC. Our modeling
confirmed, therefore, that a small but operationally useful number of those waveforms
could have been developed within the 1-year MVCR deployment constraint. (This was
consistent with the outcome of earlier prototyping efforts in a similar application.)
Unfortunately, because of the more limited opportunities for low-cost reuse and available
tools than in our optimistic scenario, the infrastructure software was estimated to require
more than 1 million ESLOC to deliver 2.1 million SLOC, a net gain from reuse and tool-
generated code of only 50% of the cost of new code. This suggests that this program
would not have been a viable SWP candidate from its inception. A more realistic plan
would have been to implement the infrastructure functions under a different pathway—
perhaps Middle Tier Acquisition (OUSD[A&S], 2020a)—and then to transition the
balance of the development to the SWP after or within 1 year of the successful
completion of the infrastructure portion of the MVCR plus an operationally useful subset
of waveforms.

Some projects implementing DevSecOps have reported higher software
development productivity than was observed in the projects used to calibrate COCOMO.
There is some evidence that agile and DevSecOps approaches can improve even our
optimistic MVCR productivity rates through the benefits of early and continuous testing
and user feedback. These improvements, if real, would not be captured in COCOMO-II,
which attempted to be forward-looking with some of its adjustment factors but was last
calibrated in 2001. Similarly, the examples from Jones are also more than 20 years old.
Novel tools and code generators to help build operating systems and infrastructure
software continue to appear in the marketplace. Although these advances generally
show up first in commercial software development, applicable ones eventually appear in
defense acquisitions. It is conceivable that our best-case estimates of productivity should
be bumped up by an additional 10% to 20% to account for this. However, even with that
additional headroom, many defense software projects—and particularly those
associated with major capabilities—still appear unlikely to be executable to MVCR in 1
year of development. A significant impediment to the delivery of operationally deployable
software is the stringent non-functional requirements associated with deployed
operational systems, and the extensive infrastructure effort needed to support
operational viability and long-term maintainability of the applications.

Acquisition Research Program
Department of Defense Management - 379 -
Naval Postgraduate School

Transitioning Into SWP
DoDI 5000.87 provides for programs that are currently being executed under

some other acquisition pathway to transition to the SWP when they can plausibly meet
the specified timelines. Our analysis provides a template for how program managers
could assess whether they are within 1 year of achieving the needed software maturity.
First, separate the remaining development into two segments: the architectural and
infrastructure requirements and the minimum mission capability requirements. Second,
estimate the remaining development time (including OT&E) to complete the MVCR set of
requirements for each of the two segments, including verification of all non-functional
requirements that are mandatory for actual operations. When the larger of those two
estimates is less than 1 year, the program may be ready for transition to SWP.

Since the infrastructure requirements of the application will often require more
development effort than the minimal set of mission capabilities, it is important that
programs not be tempted to skimp on non-functional attributes such as cybersecurity,
reliability, or modular design in an attempt to accelerate delivery of the MVCR. Missing
non-functional attributes at MVCR are very unlikely to be satisfied later, short of a
complete rewrite of the application. Where the complexity of infrastructure requirements
or the non-functional demands of future capability (or both) are high, transitioning to
SWP after implementation of the infrastructure functions may be the more effective
process in the long run.

Our research suggests that programs that cannot expect to deliver a fieldable
capability that provides operational value by the end of the first year of development
should be conducted under a different acquisition strategy, such as Middle Tier
Acquisition, at least until an MVCR can be completed in 1 additional year. At that time,
transitioning to SWP would be feasible as long as continuous ATO and embedded
OT&E verification of required non-functional attributes had been practiced, and care had
been taken in architecting the solution such that annual upgrades could be delivered
after every subsequent year of development. The time prior to transition to SWP could
also be used to develop automated test environments to support rapid capability
upgrades post-transition.

A. Summary
This exploratory study examines the implications of the DoD policy that

acquisition programs using the software acquisition pathway (SWP) must have produced
viable and effective code suitable for operational deployment within 1 year of initial
funding. We estimate the maximum amount of completed code that could be produced
under ideal conditions within that time span, and use those results to bound the feasible
attributes of the minimum viable capability release (MVCR). To do this, we distinguish
three drivers of MVCR effort: implementation of core infrastructure code that mission
capabilities will rely on; implementation of an operationally useful set of mission
capabilities; and assuring the mandatory non-functional attributes that the application
must possess prior to operational use and maintain throughout its life. We note that the
infrastructure code effort typically generates the more binding constraint, especially
when assurance of the non-functional requirements is considered.

Acquisition Research Program
Department of Defense Management - 380 -
Naval Postgraduate School

Using the COCOMO-II software cost estimation model, we estimate that 28,000
equivalent source lines of code (ESLOC) is the most optimistic limit on the size of either
the non-mission infrastructure software or the mission package that could be fielded in 1
year. Comparison against historical DoD software development efforts suggests that
many past systems exceed 28,000 ESLOC of mandatory infrastructure software, and
would thus not have been good candidates for SWP execution under the new pathway.
Even though we find that useful mission software subsets can often be completed in
under a year, many DoD software applications are likely too complex to complete and
field enough of the required infrastructure software to supply that mission subset with the
required core system services, external interfaces, data management, and other non-
mission-specific functions while maintaining required levels of safety, information
assurance, and other non-functional requirements. This is even more true for
applications planning to support future agility by using modular open-systems
architecture (MOSA), or for embedded applications on new or existing defense-specific
platforms.

Since the SWP also allows projects that are already underway to transition to the
SWP development model, that pathway is available to any number of DoD software
projects as long as they are also able to adopt an annual, agile release cycle for
deployment upgrades. This may be a heavy lift for legacy applications that were not
planned from the start to be agile. Programs intending to transition to SWP at some point
should therefore devote early attention to architectures and design choices that will allow
them to achieve and maintain continuous authority to operate and regression testing of
effectiveness and suitability. This attention should also include explicit verification and
tracking of non-functional requirements from very early in the program life cycle.

All of the estimates developed in this study were based on excessively optimistic
estimates of the effectiveness of the development team, the ease of software reuse, and
the benefits of agile and DevSecOps methodologies when implementing a fixed set of
requirements. In the authors’ opinions, it is more likely that two concurrent segments of
10,000 to 15,000 ESLOC is the effective upper limit on a 1-year development of a
nontrivial new-start application to be used in combat or intelligence environments. It is
not clear that the drafters of DoDI 5000.87 intended the 1-year restriction to be this
binding, but as currently promulgated, it would prevent many of the Department’s
highest-profile software efforts from starting on the SWP.

References
Bailey, J. W. (1992). A component factory for software source code re-engineering

[Dissertation, University of Maryland].

Boehm, B. W. (1981). Software engineering economics. Prentice Hall.

Boehm, B. W., Abst, C., Brown, A. W., Chulani, S., Horowitz, E., Madachy, R., et al.
(2000). Software cost estimation with COCOMO-II. Prentice Hall.

Elk, S., Berez, S., & Rigby, D. K. (2020). Doing agile right. Harvard Business Review
Press.

Jones, C. (2000). Software assessments, benchmarks, and best practices. Addison-
Wesley Longman Publishing Co.

Acquisition Research Program
Department of Defense Management - 381 -
Naval Postgraduate School

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2020a,
January 23). Operation of the adaptive acquisition framework (DoDI 5000.02). DoD.

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2020b,
October 2). Operation of the software acquisition pathway (DoDI 5000.87).
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF

https://www.esd.whs.mil/

Acquisition Research Program
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Executive Summary
	Background
	What Constitutes a Minimum Viable Product?
	MVCR Is Not a Prototype
	MVCR Is Not MVP
	Operational Testing and ATO

	How Much Capability Can You Deliver in a Year?
	Some Optimistic Assumptions
	Modeling with COCOMO

	Measuring Size
	ESLOC
	Function Points

	COCOMO Calculations
	Modeling Results
	COCOMO Modeling Details
	Case Study Data

	Transitioning Into SWP
	A. Summary

	References

