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ABSTRACT

Accurately determining end strength is important to be able to plan future
accessions in a manpower system. Predicting separations is vital to end-strength
modelling. Predicting separation rates within the Australian Amy is an identified area of
required research to ascertain the best models for aiding reporting and as a decision
support tool. In support of the Australian Regular Army end-strength model, this thesis
examines the use of time series analysis on enlisted and officer separations over an
eleven-year period. This thesis develops multiple time series models using ten of the
eleven years of data to forecast Australian Regular Army separation numbers for the
eleventh year. The observed separation numbers of the eleventh year are used to compare
the accuracy of each of the models developed. Models developed include moving
average, autoregressive, exponential smoothing, Winter’s method additive, and
autoregressive moving average. This thesis finds that autoregressive integrated moving
averages models are the most accurate time series models in predicting separation rates,

outperforming the seasonal exponential smoothing and Holtz-Winter models.
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EXECUTIVE SUMMARY

The Defence People Group (DPG) has the responsibility to the Australian
Government of “delivering integrated people systems and building a capable workforce”
(Australian Government Department of Defence, 2022). As such, they are the primary
stakeholder with respect to recruitment and separation within the Australian military
services. The accurate prediction of Australian Regular Army (ARA) separations is a
problem that has been recently identified because of the COVID-19 pandemic. This thesis

looks to explore the use of time series analysis in estimating ARA separations.

The Australian Regular Army observed an unusual reduction in separation numbers
for March, April, and May in 2020, correlated with increasing COVID-19 restrictions
introduced by the Australian Federal and State governments. This subsequently led to an
increase in scrutiny over workforce modeling, in particular the current Monte Carlo
simulation method of forecasting separation rates. Combined with the limited academic

writing on organizational separation modeling, the idea of this thesis was born.

As described by Ragsdale (2019), a “time series is a set of observations on a
quantitative variable collected over time” (p. 566) and “time series analysis involves trying
several modeling techniques on a given data set and evaluating how well they explain the
past behavior of the time series variable (pp. 567-568). In the context of this thesis, the

times series variable is the monthly separation rate of ARA full-time personnel.

At the commencement of the financial year of 2020-2021, the Monte Carlo
simulation model used by DPG predicted 2,885 full-time ARA separations, 624 less than
the 3,509 realized. Results of this thesis find that using Autoregressive Integrated Moving
Average (ARIMA) models a prediction of 3,196 separations would have been forecasted.
This represents a greater than 50% increase in accuracy of using time series analysis against

the status quo Monte Carlo simulation.

Improving the accuracy of predicting attrition within the Australian Regular Army
helps manpower planners direct their priorities. Attrition inevitably drives recruitment, and

inaccurate predictions of separations will lead to inefficiencies in the respective recruitment
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targets set. Using time series modeling at the commencement of FY2020-2021 could have
potentially assisted DPG by increasing their recruitment targets by the difference of 311

personnel.

The data used to conduct time series analysis was personnel movement records
from 1 July 2010 to 1 July 2021 obtained from the Defence People Group. This data was
aggregated and examined and developed into time series data. Seasonal Exponential
Smoothing, Holtz-Winter’s Additive and ARIMA models were developed from a training
set consisting of observations from 1 July 2010 to 30 June 2020. These models were then
used to provide separation predictions on the test set spanning 1 July 2020 to 30 June 2021.
ARIMA models outperformed the Seasonal Exponential Smoothing and Holtz-Winter’s

models by providing a prediction of separation numbers closer to those observed.

Due to the uniqueness of FY20-21, which was impacted by the COVID-19
pandemic, the same methodology was applied to construct and validate models on prior

FYs. Conducting time series on the subsequent years further reinforced the predictive

power of ARIMA models for the Australian Regular Army.

References

Australian Government Department of Defence. (2022). Defence people group.
https://www.defence.gov.au/about/people-group

Ragsdale, C. (2019). Spreadsheet modeling and decision analysis: A practical
introduction to business analytics (8th edition). Cengage India.
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I. INTRODUCTION

A. BACKGROUND

The Australian Government’s Department of Defence (2020a, 2020b) outlines in
the Defence Strategic Update and Force Structure Plan the requirement to increase the size
of the Australian Regular Army personnel to be able to meet future capability requirements.
In particular, the Defence Force Structure plan (p. 103) seeks to see “an initial increase in
Australian Defence Force (ADF) and Australian Public Service (APS) personnel over the
next four years, and longer-term growth across the next two decades.” The Australian
Defence Force and the Australian Regular Army conduct manpower planning and analysis
to meet the requirements set out in these documents. In meeting end strength, the Australian

Regular Army is allowed +/- 1% of the government mandated number.

The Force Structure Plan 2020 was released during the COVID-19 pandemic. The
COVID-19 pandemic has seen an increase in uncertainty around employment and
economic conditions across the globe. The legacy Monte Carlo simulation model used by
workforce planners previously was unable to provide the necessary accuracy in predicting

separations and this was further exacerbated by the “shocks” to the manpower system.

The purpose of this thesis is to develop a model to assist military manpower
planners in predicting Australian Regular Army separation and meeting end-strength

requirements.

B. THE END STRENGTH MODEL

Manpower planning is an important organizational function. Having the right
people, at the right place, at the right time is essential to being able to achieve an
organization’s mission. Militaries across the globe are directed by governments to provide
capability in the projection of combat power. Failure to meet manpower requirements adds
to the risk of not achieving capability. On the other hand, surpassing personnel
requirements results in resources being used inefficiently and money being redirected from

other sources to pay for other employment within organizations. Since accurately
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predicting end-strength directly effects the efficient allocation of resources, militaries have

an inherent interest in developing and using accurate models.

The number of personnel within the force at a given time is defined as the end
strength. For example, if there are 30,000 personnel employed within the ARA on 30 June
2021, we say that the end strength for Financial Year 2020-2021 (FY20-21) is 30,000.
End strength for the purposes of this thesis is the number of full-time personnel in the ARA

at the end of a given financial year. The end-strength formula is given by:
Current End — Strength + E [Accessions]— E [Losses] =F [End —Strength] (1)

For the purposes of predicting end strength, the assumption is made that accessions
are relatively reliable and that the most important component of meeting end strength in
any given year is being able to accurately forecast the number of losses. This assumption
is made because of the organizational size of the Australian Regular Army and that “quit
rates tend to decline as firm sizes increase” (Ehrenberg & Smith, 2017, p. 409).
Furthermore, combining the size of the organization with economic cyclical effects studies
in time series data show that “quit rates tend to rise when the labor market is tight and fall
when it is loose” (Ehrenberg & Smith, 2017, p. 411). This time series relationship can be

seen in Figure 1.
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Figure 1. The Quit Rate and Labor Market Tightness.
Source: Ehrenberg and Smith (2017).

In the context of end-strength planning, we assume that accessions are relatively
reliable, in that recruitment efforts and targets can be determined by organizations after
human resource planning has occurred. In meeting end strength, the Australian Regular
Army can implement talent management and retention policies to reduce separations.
Alternatively, accession targets can be increased. The latter in this case is likely to be more

cost-effective.

C. THESIS OBJECTIVE

This section outlines the object of this thesis and well as its organization.

1. Objective

The objective of this thesis is to examine the use of time series analysis of historical
Australian Regular Army separations to identify the most accurate and appropriate model
for forecasting expected losses. It aims to analyze potential time series models that the

Australian Regular Army can use in predicting future end strength and thus adding value
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by assisting in meeting capability and reducing resource waste. The following tasks were

performed:

a. Individual accession and loss event records data was provided by DPG and
monthly historical loss rates were constructed,

b. Defence Workforce Reports, ADF Permanent and Reserve Strength
Summaries, and the ADF AFS were used to validate the data as well as
provide the predictions from the current forecasting technique, Monte Carlo
Simulation;

c. Time series models were constructed;

d. The models were evaluated using various measures of accuracy;

e. Analysis was conducted across the various models to identify the most
accurate; and

f. Data splitting was conducted to test the accuracy of the predictions.

2. Organization

This current chapter, Chapter I, provides a background of ARA personnel
requirements, end strength planning, and the objective of this thesis, including its

organization.

Chapter II contains a review of the literature on end strength and attrition research.
It looks at distinguishing between quantitative and qualitative approaches to predicting and

investigating attrition.

Chapter III is the methodology. It describes how time series models were
developed. Firstly, it describes the data used. Secondly, it describes the time series models

developed and their respective forecast of separations.

Chapter IV provides an analysis of the results. It goes into further detail of the
models and compares them in a table format. The best candidate modes are then compared

using data splitting methods to demonstrate their forecasting potential.
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Chapter V provides the recommendations and conclusion on the results and the
implications to end-strength planning. Alternative methods and potential future areas for

research are recommended in this chapter.
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II. LITERATURE REVIEW

Studies into end strength and attrition can be divided into two categories. The first
category is qualitative approaches, those that look to answer questions of causation. The

second is quantitative approaches, those that look to answer questions of predictions.

A. QUALITATIVE APPROACHES

Qualitative approaches look to address the characteristics, qualities and causes of
attrition. Qualitative approaches may look to questions such as those mentioned in Mathis
and Jackson (2010, p. 64) if “expenditures in employee leadership development training
can be linked to lower employee turnover.” Approaches such as multivariate linear
regression analysis, logistic and probit regression, and cox proportional hazards regression

were investigated in the literature.

Qualitative studies on attrition within the Australian Regular Army are limited. One
that was reviewed was Hoglin’s (2012, p. viii) research question to “identify those
characteristics which can be used to predict the first-term completion of ab initio sailors,
soldiers, airmen and airwomen in the ADF.” This paper looks at first-term attrition, in other
words, attrition amongst new recruits and trainees. Through logit and probit models, the
paper finds that the strongest predictors of first-term attrition among Australian Regular
Army enlistees are the level of education, general aptitude score, psychologist interview

score, country of birth, and their previous occupation (p. ix).

Dodds’s (2018, p. 41) primary research question was “What are the length of
service/survival profiles for RAN Officers and Sailors?” Apart from an analysis into a
separate service and specific rank group within that service, Dodds’s research differs from
my proposed topic in its methodology. Dodds uses Kaplan-Meier and Cox proportional
hazards (p. v), with his most relevant conclusion with respect to my proposed topic being
that an “economic conditions effect” was observed in their study and that those personnel

who joined during the Global Financial Crisis were less likely to separate (p. 128).

Dodds’s (2018) and Hoglin’s (2012) papers look at separation from an Australian

Defence Force perspective and both look at causal factors that can be examined to provide
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probabilities that a given individual will attrite. Whilst both these studies are important to
decision makers contributing to manpower polices, they do not develop models that predict

separation numbers that can be used in providing end-strength forecasts.

B. QUANTITATIVE APPROACHES

Quantitative approaches look to answers questions of “how many” or “what” is
being attrited. Time series analysis is the predominate quantitative approach investigated

by the literature.

With respect to the use of time series analysis to forecast losses, Sparling’s (2005)
research ascertained that there was no universal best fit forecasting technique. Sparling
developed several time series models to forecast Captain and Major losses within the U.S.
Army, and determined that a seasonal exponential smoothing model and a Winter’s

method-additive model were the best at forecasting for the U.S. Army.

DeWald’s (1996) study conducted a time series analysis of U.S. Army enlisted loss
rates. This research used four methods: arithmetic mean, exponential smoothing, seasonal
exponential smoothing and an autoregressive moving average model. By examining the
loss rates due to a “stop loss” policy being implemented as a result of Desert Storm, he
concluded that “only the ARMA model could analytically incorporate such external factors
into the prediction of loss rates” (p. 42). This finding is particularly relevant to the work of
this thesis, given the context of the COVID-19 pandemic and the shocks observed to

separation rates that have been observed by manpower planners.

DeWald’s research is probably the most pertinent relating to this thesis. In the
backdrop of the COVID-19 pandemic, this thesis will look to determine if an ARMA model
will provide better forecasts than the seasonal exponential smoothing and Winter’s method

additive models that were determined to be most accurate by Sparling.
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III. DATA AND METHODOLOGY

The purpose of this chapter is to provide an overview of the data used in the forecast

model and the methodology used to forecast ARA separations.

A. DATA

Data was provided by the sponsoring organization, the Directorate of Strategic
Workforce Planning and Analysis (DSWPA). The data set is comprised of transactional
data from ADF Human Resources systems from July 2010 to June 2021. The data had been
stripped of Personally Identifiable Information (PII) by DSWPA prior to analysis. Each
observation in the data represents an enlistment or separation event for an individual, along

with employment and demographical variables.

B. INITIAL DATA PREPARATION AND VALIDATION

Before the data set could be analyzed using time series methods, it had to be
prepared and validated. To do this, the data set was cleaned to only include separations of
full-time ARA personnel. Once the data set was cleaned, monthly separation numbers
starting from July 2010 to June 2021 were formulated into an Excel document. Total
separation numbers were validated against the ADF Strength Summary reports produced
by DSWPA. Once the cleaned data set had been validated, it was separated into an “officer”
and an “enlisted” component. Each of these time series has 132 observations representing

individual months, commencing in July 2010 and concluding in June 2021.

C. INITIAL DATA OBSERVATIONS

JMP (pronounced Jump) was the statistical software used to conduct time series
analysis for this thesis. JMP’s utility of hiding observations from analysis was used in the

approach for this research. This in effect creates a training and a test set for the data.

By inputting the time series into JMP and hiding the last 12 observations, we get

Figure 2 and Figure 3 for soldier and enlisted separations respectively.
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Figure 2. Time Series Enlisted Separations
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Figure 3. Time Series Officer Separations

Initially inspecting the time series plots, we observe peaks and troughs representing

months with high separations and low separations respectively. The correlograms of both
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series are then examined to determine if the time series were stationary. The correlograms

can be found in Figures 4 and 5.

A Time Series Basic Diagnostics
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Figure 4. Correlogram of Enlisted Separations Time Series
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A Time Series Basic Diagnostics
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Figure 5. Correlogram of Officer Separations Time Series

The correlograms are inspected visually to determine statistically significant
relationships between observations in the time series. Looking at the autocorrelation
function (the left-hand side of the correlograms), significant autocorrelation can be found
where the bars exceed the blue bands. On the enlisted time series, we see autocorrelation
at lags 6, 12, and 24—our time series is not stationary. Bi-annual separation behavior is
being observed in this time series. Similarly, the correlogram for officer separations shows
peaks at 3, 6,9, 12, 15, and 24, meaning that this time series is also not stationary due to
seasonality. In the case of officers, we observe a quarter annual relationship between

separations.

D. MODEL SELECTION

From observing the time series plots and the correlograms, there are two methods

by which we can construct a model. Firstly, we can use a model that accounts for
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seasonality and trends, such as a seasonal smoothing or Holtz-Winter’s additive model.
Alternatively, we can remove the seasonality component from the series, thereby creating
an officer and an enlisted time series with the seasonality removed. Removing seasonality
from the time series, we render it stationary, and thus able to be analyzed using ARIMA

models.

E. RENDERING THE TIME SERIES STATIONARY

Both the enlisted and the officer time series were rendered stationary using Excel.
This was done by calculating the average of the separations by month for the 10 years of

data within the training set. The resulting seasonal component can be found in Table 1.

Table 1.  Seasonal Component of Separation Time Series

Enlisted Seasonal Officer Seasonal Total Seasonal
Month
Component Component Component

July 256 46 302
August 233 39 271
September 203 29 232
October 205 26 231
November 212 26 237
December 169 32 201
January 350 83 433
February 258 48 306
March 227 46 272
April 202 32 234
May 246 29 275
June 216 28 244

To interpret this table, we can see that the month with the highest average enlisted
separation is January, with 350. Removing the above seasonal component from the time
series, we now form two additional time series—a seasonally adjusted enlisted separations
time series, and a seasonally adjusted officer separations time series. Figures 6 and 7 depict
the resultant time series with the seasonality component removed. We observe on the y-
axis that the range of numbers has reduced as a result of removing the seasonal component

shown in Table 1; what we are left with now is the signal from our data set.
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Figure 6. Seasonal Adjusted Enlisted Separations Time Series
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Figure 7. Seasonal Adjusted Officer Separations Time Series

Figures 8 and 9 depict the resulting correlograms from the seasonally adjusted
enlisted and officer time series respectively. We note that the significant autocorrelations

have been removed from the previous correlograms.
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4 Time Series Basic Diagnostics
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Figure 8.  Seasonal Adjusted Enlisted Time Series Correlogram
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4 Time Series Basic Diagnostics
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Figure 9. Seasonal Adjusted Officer Time Series Correlogram

With our newly created seasonally adjusted time series, we are now able to develop

ARIMA models for analysis.

F. STATUS QUO FORECAST

An additional forecast was created for both the enlisted and officer time series using
the separations from the previous 12 months and using that as a prediction for the next 12
months. This is useful because it provides a baseline for comparison on the time series

methods used above.
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G. CONSIDERED MODELS

There are an extensive number of time series models that can be selected using JMP

analysis. The eight models examined by this thesis include:
1. Enlisted Seasonally Adjusted ARMA(1,1): Appendix A
2. Enlisted Seasonally Adjusted MA1: Appendix B
3. Enlisted Seasonally Adjusted AR1: Appendix C
4. Enlisted Winter’s (Additive): Appendix D
5. Enlisted Seasonal Exponential Smoothing: Appendix E
6. Officer Seasonally Adjusted ARMA(1,1): Appendix F
7. Officer Winter’s Method (Additive): Appendix G

8. Officer Seasonal Exponential Smoothing: Appendix H

H. MODEL VALIDATION

To validate a model, there are a number of requirements. For all models, the
residuals are required to be uncorrelated, normally distributed and have constant variance.
Additionally, the ARIMA models. being the Enlisted ARMA(1,1), MA1, ARI1 and the
Officer ARMA(1,1). are required to have statistically significant parameter coefficients.
Model summaries, model forecasts and the required residual tests can be seen in the
respective appendices. Upon inspection of the residual graphs, we can see that the ARIMA
models tend to pass validation more easily, as their residuals demonstrate constant

variance.

1. ENLISTED MODELS EVALUATION
1. Mean Absolute Percent Error

The Mean absolute percent error (MAPE) is useful in that it provides us with an
average of the difference between the models’ forecasted separation and actual separation.

A MAPE of 10%, for example, means that on average our model forecasts within 10% of
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the actual separation rate. The MAPE can be used to determine the best models to use. The

MAPE for the enlisted model training sets can be found below in Table 2.

Table 2.  Enlisted Time Series Models MAPE

Enlisted Model MAPE (Seasoni:;[i?ypzf djusted)
Enlisted Seasonally Adjusted ARMA(1,1) 201.67 11.06
Enlisted Seasonally Adjusted MA1 116.87 11.71
Enlisted Seasonally Adjusted AR1 146.88 11.4
Enlisted Winter’s Method (Additive) 12.12
Enlisted Seasonal Exponential Smoothing 12.44

We can observe in Table 2 that the most accurate enlisted model for the training set

was the seasonally adjusted ARMA(1,1) with a MAPE of 11.06%.

2. Prediction Intervals

Models developed in JMP provide a prediction interval that can be used to assess
the accuracy and precision of the model. Precision is assessed by looking at the magnitude
of the range between the lower and upper prediction interval. Accuracy can be determined
by examining the percentage of actual separation numbers that falls within the prediction

intervals. The performance of each enlisted model can be seen in Table 3.
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Table 3.  Enlisted Models Prediction Intervals

Range of Number of Within
Enlisted Model ang Prediction Percentage
Prediction Interval Intervals
Interval
Enlisted Seasonally o
Adiusted ARMA(1.1) 125 120 112 93.33%
Enlisted Seasonally o
Adjusted MA 134 120 114 95.00%
Enlisted Seasonally o
Adjusted AR1 129 120 111 92.50%
Enlisted Winter’s Method o
(Additive) 140 109 105 96.33%
Enlisted Seasonal 0
Exponential Smoothing 140 107 100 93.46%

From Table 3 we can see that the Enlisted Winter’s Method (Additive) has the
highest number of observations contained within its prediction interval spanning a range
of 140 numbers. However the ARMA(1,1) contains the tightest prediction interval range,
and with 93.33% of observations falling into this range, this might be considered more
useful at providing monthly figures than the other models. A trade-off between having a
smaller range of numbers and accuracy needs to be taken into account when deciding which

model to use.

3. Akaike Information Criteria

The Akaike information criteria (AIC) is another method that can be used in
determining the best models to use for predictions. The lower the AIC, generally, the better
the model. Table 4 shows the performance of the enlisted models with respect to their

degrees of freedom (DF) and AIC.

Table 4. DF and AIC of Enlisted Models

Enlisted Model DF AIC
Enlisted Seasonally Adjusted ARMA(1,1) 117 1175.76
Enlisted Seasonally Adjusted MA1 118 1176.17
Enlisted Seasonally Adjusted AR1 118 1182.89
Enlisted Winter’s Method (Additive) 104 1078.68
Enlisted Seasonal Exponential Smoothing 105 1078.91
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Here we observe that the Winter’s method and the Seasonal Exponential Smoothing

model are considered the best models with respect to AIC.

J. OFFICER MODELS EVALUATION

1. Mean Absolute Percent Error

Table 5 displays the results of the officer models with respect to their MAPE. From

the table we can see that the Seasonally Adjusted ARMA(1,1) is considered the most

accurate model with a MAPE of 16.85%.

Table 5.  Officer Model MAPE
MAPE
N MAPE (Seasonality Adjusted)
Officer Seasonally Adjusted ARMA(1,1) 259.77 16.85
Officer Winter’s Method (Additive) 21.73
Officer Seasonal Exponential Smoothing 21.73

2. Prediction Intervals

Prediction intervals for the officer models on the training set can be seen in

Table 6.
Table 6.  Officer Models Prediction Intervals
Range of Number of Within
Officer Model Prediction Prediction Percentage
Intervals
Intervals Interval
Officer Seasonally Adjusted o
ARMA(L,1) 27 120 113 94.17%
Officer Winter’s Method o
(Additive) 31 107 98 91.59%
Officer Seasonal .Exponentlal 31 107 08 91.59%
Smoothing
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We observe in Table 6 that the Seasonally Adjusted ARMA(1,1) model has both

the tightest prediction interval range and the highest percentage of observations contained

within.

3. Akaike Information Criteria

The AIC for the Officer Models on the training set can be seen in Table 7.

Table 7.  Officer Model DF and AIC

Officer Model

DF AIC
Officers’ Seasonally Adjusted ARMA(1,1) 117 814.08
Officers’ Winter’s Method (Additive) 104 772.48
Officers’ Seasonal Exponential Smoothing 105 770.48

Using the AIC, we observe that the Officer Seasonal Exponential Smoothing Model

performs the best.
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IV. ANALYSIS OF RESULTS

This chapter gives the results obtained from the JMP Time series forecasting
system. Specifically, it looks to compare the results of the models obtained in the
methodology section of this paper against the test set. Looking at the results of the time
series models with respect to the actual values will give us the ability to discuss managerial
expectations.

To examine the performance of the models created against the test set, we can use
the mean absolute percent error (MAPE) and the prediction interval. Additionally, we can
compare our yearly forecast for each of the time series and compare these to the actual
separation numbers. In this respect, the null hypothesis is that the time series models
developed are equal to or less accurate in estimating separation numbers than the current
Monte Carlo simulation method employed by DPG. This hypothesis is tested by taking the

percent error of the models with respect to realized separation numbers.

A. ENLISTED MODELS RESULTS
1. Mean Absolute Percent Error

Table 8 displays the MAPE for the Enlisted Models on the test set.

Table 8.  Enlisted Models Test Set MAPE

Test Set Performance MAPE (SeasonaI:;[i?fo djusted)
Enlisted Seasonally Adjusted ARMA(1,1) 248.59% 23.52%
Enlisted Seasonally Adjusted MA1 100.14% 17.61%
Enlisted Seasonally Adjusted AR1 130.85% 17.77%
Enlisted Winter’s Method (Additive) 35.06%
Enlisted Seasonal Exponential Smoothing 27.91%

From Table 8 we observe that the best performing models are the MA1 and the
AR1 with a MAPE of 17.61% and 17.77% respectively. As expected, the MAPE for the
test set is larger than the MAPE from the training set. We also observe a substantial increase

in the MAPE for the Winter’s Method and the Seasonal Exponential Smoothing model on
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the magnitude of 23 and 15 percentage points respectively, compared to the increase in the
MAPE of 6% to 125 for the ARIMA models. This is evidence of the fact that the ARIMA

models can more accurately forecast separation into the future.

2. Enlisted Models Prediction Intervals

Table 9 displays the prediction intervals for the models on the test set. We note for
all models an increase in the range is a result in the decreasing confidence of the model to
predict values further into the future. Even with the larger range of values, Winter’s Method
and the Seasonal Exponential Smoothing model perform poorly, with only 41.67% and
58.33% of the observed separation rates falling within the prediction interval. Combining
these results with those in Appendix D and E, we see that this performance is likely a result
of an overfitting of the models on the training set. The ARIMA models did substantially
better with the AR1 and MA1, containing 83.33% of the observations within the model’s

prediction intervals.

Table 9.  Enlisted Models Test Set Prediction Intervals

Range Number of Within
Enlisted Model g " Prediction Percentage
(Average) Intervals
Interval
Enlisted Seasonally Adjusted o
ARMA(L,1) 143 12 9 75.00%
Enlisted Seasonally Adjusted MA1 144 12 10 83.33%
Enlisted Seasonally Adjusted AR1 148 12 10 83.33%
Enlisted Winter’s Method (Additive) 164 12 5 41.67%
Enlisted SeasonalOExponentlal 157 12 7 58339%
Smoothing

B. OFFICER MODELS RESULTS
1. Officer Models Test Set MAPE

Table 10 shows the performance of the Officer models MAPE on the test set. Here
we can see that the Seasonally Adjusted ARMA(1,1) is the model with the smallest MAPE
at 20.29%.
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Table 10. Officer Models Test Set MAPE

Officer Model MAPE (Seasonzli\;[ingf djusted)
Officers’ Seasonally Adjusted ARMA(1,1) 255.58% 20.29%
Officers’ Winter’s Method (Additive) 24.73%
Officers’ Seasonal Exponential Smoothing 24.70%

2. Officer Models Test Set Prediction Intervals

Table 11 displays the performance of the prediction intervals of Officer models on
the test set. We see on all three models that the prediction intervals contain 91.67% of the
observations. The average range for the ARMA(1,1) of 28 gives additional precision when

using this model.

Table 11. Officer Models Test Set Prediction Intervals

Range Number of Within
Officer Model g " Prediction | Percentage
(Average) Intervals
Interval
Officers’ Seasonally Adjusted o
ARMA(L1) 28 12 11 91.67%
Officers’ Winter’s Method (Additive) 34 12 11 91.67%
5 .
Officers Seasonal. Exponential 34 12 1 91.67%
Smoothing

C. END STRENGTH SEPARATION PREDICTION COMPARISON
1. Soldier Models Prediction

Table 12 displays the yearly predictions for each of the models selected. Looking
at the percent error of the financial year separations, the best prediction of separation for
FY20-21 was using the yearly separation numbers for FY19-20. The MA1 was the time

series model that provided the best prediction of total separations with an error of 9.91%.
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Table 12. Soldier Model Prediction

] Predicted Difference Percent Percent Error of
Enlisted Model . Actual .
Separations Srom e Error total Population
Legacy Model 2464 -595 19.45% 2.51%
e Ay eted | 2410 640 20.92% 2.70%
Enlisted Sea;/«l)zz;lly Adjusted 2756 303 9.91% 1.28%
Enlisted Seals&olrzulilly Adjusted 2689 370 12.10% 1.56%
Enlisted Winter’s Method o o
(Additive) 2160 -899 29.39% 3.79%
Enlisted SeasonalOExponentlal 2413 -646 21.12% 2.73%
Smoothing
Using Previous Years 2786 273 8.92% 1.15%
Separation Numbers
Actual Separations 3059
Total Enlisted Population 23691

2. Officer Models Prediction

Table 13 displays the yearly predictions for each of the models selected. For the
officer models the ARMA(1,1) provided the most accurate number of predicted separations
for FY20-21 with an error of 2.22%. The time series model in this instance out-performed

the prediction of using FY'19-20 separations, which had an error of 2.67%.

Table 13. Officer Model Predictions

Predicted Difference Actual | Percent Percent Error of
Officer Model . ] :
Separations Separations Error total Population
Legacy Model 421 -29 6.44% 0.45%
Officers’ Seasonally o o
Adjusted ARMA(L,1) 440 -10 2.22% 0.15%
Officers’ Winter’s N o
Method (Additive) 388 -62 13.78% 0.96%
Officers’ Seasonal o 0
Exponential Smoothing 388 -62 13.78% 0.96%
Using Previous Years 438 12 2.67% 0.19%
Separation Numbers
Actual Separations 450
Total Officer Population 6480
26

ACQUISITION RESEARCH PROGRAM
w/ DEPARTMENT OF DEFENSE MANAGEMENT
NAVAL POSTGRADUATE SCHOOL



V. SUMMARY AND RECOMMENDATIONS

A. SUMMARY

This thesis addressed a requirement by DPG to develop models to assist in
estimating separation within the ARA. As a result of the recent performance of the current
Monte Carlo simulation method employed by workforce modelers, further research was
requested into looking at time series analysis as an alternative to improve the accuracy of
separation forecasts. This thesis has found that time series can provide more accurate

estimations and consequently improve the inputs into human resource planning.

This thesis developed multiple manpower models to forecast separations from the
Australian Regular Army. The transactional human resources data provided by DSWPA
was transformed into time series models, with the results compared to historically reported

strength states to ascertain the accuracy of the results.

The seasonally adjusted MA1 model for enlisted personnel and the seasonally
adjusted ARMA(1,1) model provided the most accurate prediction of separation rates.
Additionally, both these models provided the most managerially useful result, by having

the smallest prediction intervals that performed best on the test set.

The ARIMA models performed better with respect to the residuals being

uncorrelated, normally distributed and with constant variance.

B. RECOMMENDATIONS

I recommend that that the Australian Regular Army uses ARIMA models to
forecast separation rates. When used to predict the next 12 months of separation rates, the
ARIMA models outperformed the Seasonal Exponential Smoothing and Holtz-Winter’s
models both in the FY20-21 and in previous FYs.

The improved accuracy of estimations will assist DPG in setting recruitment targets
to compensate for attrition. It is not within the scope of this thesis to calculate the cost

savings to the ARA. However, by using time series models, the improvement in
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organizational turnover planning will assist the ARA in achieving its capability

requirements.

The use of this method is also preferred over the current method of using the Crystal
Ball Excel add-in. The Crystal Ball add-in is an additional expense for the ARA whilst
ARIMA modeling can be done in open-source software such as The R Project for Statistical
Computing. This effectively provides the ARA with small cost savings in software

expenses.

C. RECOMMENDATIONS FOR FURTHER STUDY
1. Cost-Benefit Analysis of Separations

Noting the limited accuracy of predictions, I recommend that a cost-benefit analysis
(CBA) is conducted to determine the costs of overpredicting separations against
underpredicting separations. Given the assumption that separation numbers drive future
enlistment targets, it would be beneficial if the cost was determined for surpassing funded
strength as opposed falling short of funded strength. Such a study would allow
consideration of the applicable model, whether it be one that provides a prediction of a

larger or lesser magnitude.

2. Machine Learning

It would be beneficial to use an expanded data set to include additional variables
such as demographics, service history, trade description, marital status, number of
dependents, etc. I recommended that a machine learning approached is tested against

current methods and the time series analyses conducted by this research.

3. Time Series by Rank and Specialization

Not all separations are equal to an organization. I recommend that time series
methods be applied to specific ranks and specializations to be able to determine the utility

of this method in predicting separations of critical trades and occupations.
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4. Correlation of Enlistments with Separations

Transforming the enlistment data set into time series offers the potential to identify
a correlation between enlistments and separations. Research into this would be beneficial

to decision makers, by allowing them to see the lag between enlistments and separations.
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APPENDIX A. ENLISTED SEASONALLY ADJUSTED ARMA(1,1)

= Model: ARMA(1, 1)
4 Model Summary

DF 117 Stable Yes
Sum of Squared Innovations 119505.1871 Invertible Yes
Sum of Squared Residuals 123428154
Variance Estimate 1021.41181
Standard Deviation 31.9595339
Akaike’s ‘A’ Information Criterion 1175.76182
Schwarz's Bayesian Criterion 1184.12429
RSquare 027037904
RSquare Adj 0.25790688
MAPE 201.669157
MAE 25.072918
-2Loglikelihood 1169.76182
A Parameter Estimates
Constant

Term Lag  Estimate 5td Error tRatic Prob=|t|] Estimate Mu
AR1 1 0.93837 0.05158 18.19 -0.6587821 -10.689789
MAT 1 0.65356 009976 6.59
Intercept 0 -1068979 1649180 -065 05181

Figure 10. Enlisted Seasonally Adjusted ARMA(1,1) Model Summary and

Parameter Estimates
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Figure 12. Enlisted Seasonally Adjusted ARMA(1,1) Correlogram—Test for

Uncorrelated Residuals
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Figure 13. Enlisted Seasonally Adjusted ARMA(1,1)—Test for Normally
Distributed Residuals
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= Graph Builder
Residual OR Seasonal Adjusted vs. Predicted OR Seasonal Adjusted
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Figure 14. Enlisted Seasonally Adjusted ARMA (1,1)—Test for Constant
Variance of Residuals
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APPENDIX B. ENLISTED SEASONALLY ADJUSTED MA1

= Model: MA(1)
4 Model Summary

DF 118 Stable Yes

Sum of Squared Innovations 138788.330 Invertible Yes

Sum of Squared Residuals 140482.569

Variance Estimate 1176.17234

Standard Deviation 34295369

Akaike’s 'A’ Information Criterion  1191.11296

Schwarz's Bayesian Criterion 1196.68795

RSquare 0.16956526

R5quare Adj 0.16252768

MAPE 116871232

MAE 26.1534792

-2Loglikelihood 1187.11296

4 Parameter Estimates
Constant

Term Lag Estimate Std Error tRatio Prob=|t| Estimate Mu
MA1 1 -0.4080152 0076619 -533 1" 04434644 -04434644

Intercept 0 -04434644 4418246 -010 09202

Figure 16. Enlisted Seasonally Adjusted MA1 Model Summary and

Parameter Estimates
Forecast
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Figure 17. Enlisted Seasonally Adjusted MA1 Forecast
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Figure 18. Enlisted Seasonally Adjusted MA1 Correlogram—Test for
Uncorrelated Residuals
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= Residual OR Seasonal Adjusted
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Figure 19. Enlisted Seasonally Adjusted MA1—Test for Normally
Distributed Residuals
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= Graph Builder
Residual OR Seasonal Adjusted vs. Predicted OR Seasonal Adjusted
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Figure 20. Enlisted Seasonally Adjusted MA1—Test for Constant Variance of
Residuals
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APPENDIX C. ENLISTED SEASONALLY ADJUSTED AR1

= Model: AR(1)
4 Model Summary

DF 118 Stable Yes

Sum of Squared Innovations 1294716271 Invertible Yes

Sum of Squared Residuals 132409.266

Variance Estimate 1097.21713

Standard Deviation 33.124268

Akaike's ‘A’ Information Criterion 1182.88738

Schwarz's Bayesian Criterion 118846237

RSquare 021728898

RSquare Adj 021065584

MAPE 146.884739

MAE 25.8425464

-2logLikelihood 1178.88738

A Parameter Estimates
Constant

Term Lag  Estimate StdError tRatio Prob=|t|] Estimate Mu
AR1 1 0.505516  0.083458 6.06 -0.7331437 -1.4B26427

Intercept 0 -1482643 5973222 -0.25 0.8044

Figure 21. Enlisted Seasonally Adjusted AR1 Model Summary and Parameter

Estimates
Forecast
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Figure 22. Enlisted Seasonally Adjusted AR 1 Forecast
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Figure 23. Enlisted Seasonally Adjusted AR1—Test for Uncorrelated
Residuals
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Figure 24. Enlisted Seasonally Adjusted AR1—Test for Normally Distributed
Residuals
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* Graph Builder
Residual OR Seasonal Adjusted vs. Predicted OR Seasonal Adjusted
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Figure 25. Enlisted Seasonally Adjusted AR1—Test for Constant Variance of
Residuals
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APPENDIX D. ENLISTED WINTER’S METHOD (ADDITIVE)

= Model: Winters Method (Additive)
4 Model Summary

DF 104 Stable Yes
Sum of Squared Innovations 1342154 Invertible Yes
Sum of Squared Residuals 140234.117

Variance Estimate 1290.53269

Standard Deviation 35.9239849

Akaike’s ‘A’ Information Criterion 1078.67826

Schwarz's Bayesian Criterion 1086.69675

RSquare 0.58491486

RSquare Adj 0.57693246

MAPE 12.1239409

MAE 27.7045359
-2Loglikelihood 1072.67826

4 Parameter Estimates
Term Estimate Std Error tRatic Prob=|t|

Level Smoothing Weight 0.16564038 0.0617956 2.68
Trend Smoothing Weight 0.12576426 0.0773828 1.63 0107
Seasonal Smoothing Weight 045284063 0.1117639 4.05

Figure 26. Enlisted Winter’s Method (Additive) Model Summary and
Parameter Estimates
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Figure 27. Enlisted Winter’s Method (Additive) Forecast
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Figure 28. Enlisted Winter’s Method (Additive)—Test for Uncorrelated

Residuals
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Figure 29. Enlisted Winter’s Method (Additive)—Test for Normally
Distributed Residuals
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Figure 30. Enlisted Winter’s Method (Additive)—Test for Constant Variance
of Residuals
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APPENDIX E. ENLISTED SEASONAL EXPONENTIAL
SMOOTHING

= Model: Seasonal Exponential Smoothing( 12, Zero to One )

4 Model Summary
DF 105 Stable  Yes
Sum of Squared Innovations 134608.802 Invertible No
Sum of Squared Residuals 143252336
Variance Estimate 1281.98859
Standard Deviation 35.8048683
Akaike's ‘A" Information Criterion 107890515
Schwarz's Bayesian Criterion 1084.25081
RSquare 0.5759811
RSquare Adj 0.57194283
MAPE 124449064
MAE 28.1919621
-2Loglikelihood 1074.90515

4 Parameter Estimates
Term Estimate Std Error tRatio Prob=|t|
Level Smoothing Weight 021943450 0.0561704 39
Seasonal Smoothing Weight 051633227 0.1162797 4.44

Figure 31. Enlisted Seasonal Exponential Smoothing Model Summary and
Parameter Estimates
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Figure 32. Enlisted Seasonal Exponential Smoothing Model Forecast
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Figure 34. Enlisted Seasonal Exponential Smoothing Model—Test for
Normally Distributed Residuals
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APPENDIX F. OFFICERS’ SEASONALLY ADJUSTED ARMA(1,1)

| = Model: ARMA(1, 1)
4 Model Summary

DF 117 Stable Yes

Sum of Squared Innovations 5899.26133 Invertible Yes

Sum of Squared Residuals 5902.78076

Variance Estimate 50421037

Standard Deviation 710077721

Akaike’s ‘A’ Information Criterion 814.076344

Schwarz's Bayesian Criterion 82243882

RSquare 0.0605006

RSgquare Adj 0.04444078

MAPE :

MAE 549946579

-2LogLikelihood 80B.076344

A Parameter Estimates
Constant

Term Lag  Estimate Std Error tRatio Prob=|t| Estimate Mu
AR1 1 08164862 0139417 5.86 I* -0.0462347 -0251941

MA1 1 06617732 0174340 3.80
Intercept 0 -02519410 1.157949 -0.22 08281

Figure 36. Officers’ Seasonally Adjusted ARMA(1,1) Model Summary and

Parameter Estimates
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Figure 37. Officers’ Seasonally Adjusted ARMA(1,1) Forecast
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Figure 38. Officer’s Seasonally Adjusted ARMA(1,1)—Test for Uncorrelated
Residuals
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Figure 39. Officers’ Seasonally Adjusted ARMA(1,1)—Test for Normally
Distributed Residuals
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~ Graph Builder
Residual Officer Seasonal Adjusted vs. Predicted Officer Seasonal Adjusted
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Figure 40. Officers’ Seasonally Adjusted ARMA(1,1)—Test for Constant
Variance of Residuals
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APPENDIX G. OFFICERS’ WINTER’S METHOD (ADDITIVE)

= Model: Winters Method (Additive)

4 Model Summary
DF 104 Stable Yes
Sum of Squared Innovations 6608.10637 Invertible Yes
Sum of Squared Residuals 8267.56818
Variance Estimate 63.5394844
Standard Deviation 797116581
Akaike's ‘A’ Information Criterion 772.484085
Schwarz's Bayesian Criterion 780.502572
RSquare 0.72866947
RSquare Adj 0.72345157
MAPE 217278477
MAE 7.00295224
-2LoglLikelihood 766484085
A Parameter Estimates
Term Estimate Std Error tRatio Prob=|t|
Level Smoothing Weight 020336958 0.0653267 2.93 }
Trend Smoothing Weight 0.00181345 0.0266359 0.07 09459
Seasonal Smoothing Weight 0.09074212 0.1661155 055 0.5861

Figure 41. Officer’s Winter’s Method (Additive) Model Summary and
Parameter Estimates
Forecast
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Figure 42. Officers’ Winter’s Method (Additive) Model Summary and
Parameter Estimates
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Figure 43. Officer’s Winter’s Method (Additive)—Test for Uncorrelated

10000 |
-00384 | dBEERE
-0.0050 |
00218 |
'0.‘214! -
00578/ | i
-0.1191|
0.0329 |
0.0891
0.2170
0.0428 |
0.0343 |
0.0309 |
-0.2025 |
0.0053 |
00326
00985 |
0.0098 |
0.0179 |
0.0244
U.EHZE|
-0.0079 |
-0.1476 | 1
01508 | i
: 1
(]

e

, N

e

==
PP PP P——

-0.0748 i

-0.0751

S -V ] S-S

0.1621
0.1649
0.2181
1.8867
2.2685
3.9056
40320
4.9666
10.5684
10.7886
10,9313
11.0486
16.1346
16.1381
16.2726
17.5154
17.5279
17.5699
17.6485
17.8919
17.9004
20.8910
24.0496
248362
25.6383

p-Value Lag

: 0
0.6872 1
09208 2
09746 3
0.7566 -
08109 5
0.6895 6
0.7761 T
0.7611 8
0.3065 9
03742 10
0.4490 11
05248 12
02419 13
0.3050 14
0.3642 15
0.3530 16
04192 17
04843 18
0.5460 19
0.5945 20
06553 21
05275 22
04011 23
04147 24
04271 25

Residuals

ACQUISITION RESEARCH PROGRAM

56

DEPARTMENT OF DEFENSE MANAGEMENT

NAVAL POSTGRADUATE SCHOOL

Partial
1.0000
-0.0384
-0.0065
00214
-0,1200
0.0499
-0.1195
0.0329
00733
0.2489
0.0306
0.0687
0.0255
-0.1627
-0.0191
0.0104
-0.1161
-0.0839
-0.0225
-0.0501
0.0086
00279
-0.0953
-0.1771
-0.0552
-0.0363

8642

0.246.8

[0 |

i |

-

S - U



= Residual Officer Separations
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Figure 44. Officers’ Winters’ Method (Additive)—Test for Normally
Distributed Residuals
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* Graph Builder
Residual Officer Separations vs. Predicted Officer Separations

20 -
. '4' .
- ™
L]
5 -
10 2 . = & .
. - *
E S g ’
o .
% 0 > ﬁ * S L]
i
E ..- I‘-" . '-
= . ® = .
o - - . ™ 2
] A . . :
2 e :
& - . .
= .10 L - -
] . -
L] = .
. #
-20 ”
L ]
20 40 60 80 100

Predicted Officer Separations

Figure 45. Officer’s Winter’s Method (Additive)—Test for Constant Variance
of Residuals
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APPENDIX H. OFFICERS’ SEASONAL EXPONENTIAL
SMOOTHING

= Model: Seasonal Exponential Smoothing( 12, Zero to One )
4 Model Summary

DF 105 Stable Yes
Sum of Squared Innovations 6594.62526 Invertible No
Sum of Squared Residuals B8267.7377
Variance Estimate 62.8059549
Standard Dewviation 7.92502081
Akaike’s "A’ Information Criterion 770.486051
Schwarz's Bayesian Criterion 775831709
RSquare 0.7286639
RSquare Adj 0.72607975
MAPE 21.7270781
MAE 7.00273517
-2Loglikelihood 766.486051

A Parameter Estimates
Term Estimate Std Error tRatio Prob=>|t|
Level Smoothing Weight 020206227 0.0668207 302
Seasonal Smoothing Weight 0.09007308 0.1676620 054 05922

Figure 46. Officers’ Seasonal Exponential Smoothing Model Summary and

Parameter Estimates
Forecast
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Figure 47. Officers’ Seasonal Exponential Smoothing Model Forecast
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Figure 48. Officers’ Seasonal Exponential Smoothing Model—Test for
Uncorrelated Residuals
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Officers’ Seasonal Exponential Smoothing Model—Test for
Normally Distributed Residuals
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* Graph Builder
Residual Officer Separations vs. Predicted Officer Separations
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Figure 50. Officers’ Seasonal Exponential Smoothing Model—Test for
Constant Variance of Residuals
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