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Abstract 
The research team adapted a previously developed system-of-systems analytic workbench to 
address Integrated Acquisition Portfolio reviews via mission engineering analysis. The team 
illustrated the findings to date in developing decision-support tools tailored to the needs of 
these reviews and the insights they produce for improved acquisition outcomes. The essence 
of the prototype acquisition decision-support tools we are developing is a combination of 
portfolio optimization and mission engineering. We explore the interactions between candidate 
systems to acquire and existing systems to identify capability gaps and features of portfolios 
that optimally cover a family of mission threads. Moreover, we investigate the role of digital 
engineering in facilitating this process to shift the stakeholders’ mindset from the traditional 
forms of acquisition decision-making to a predominantly model-based approach, from data 
preparation, analysis, and visualization of the decision spaces. Preliminary findings indicate 
that these approaches indeed do provide the stakeholders with a broader range of more 
accessible information, such as resource tradeoffs and cost sensitivity analysis. Longer-term 
goals include a more comprehensive model-based acquisition decision-support system, with 
consistent data definitions extracted from “authoritative sources of truth,” thereby connecting 
all models with common data definitions.  

Introduction 
The research team developed a pilot/prototype capability to enhance data-driven 

decision-making regarding acquisition and sustainment programs, motivated by the context 
of the Department of Defense’s (DoD) Integrated Acquisition Portfolio Review (IAPR) 
process. As the DoD transforms its acquisition paradigm from centralized oversight of 
Acquisition Category (ACAT) 1D programs to decentralized oversight delegated across 
Components, the Office of the Under Secretary of Defense for Acquisition & Sustainment 
(OUSD(A&S)) must likewise shift its focus from traditional program oversight to enabling 
acquisition innovation and managing a portfolio of capabilities. OUSD(A&S) has made 
significant strides in acquisition innovation through the rollout of the Adaptive Acquisition 
Framework and Capability Portfolio Management. However, it has not fully realized the 
analytic capability necessary to underpin acquisition investment decisions with clear 
traceability to warfighter requirements. 

The research team focuses on a portfolio-centric approach, which we implemented 
by enhancing and adapting an existing research product called the System-of-Systems 
Analytic Workbench (AWB). The AWB consists of several SoS tools, the primary of which 
are Robust Portfolio Optimization (RPO), Systems Operational Dependency Analysis 
(SODA), and Systems Developmental Dependency Analysis (SDDA). A significant part of 
the research effort described herein included enhancements to the AWB elements. More 
specifically, we upgraded the scripts and functions representing the various AWB elements 
to a set of qualified Python packages. These upgrades enabled ease of continued 
development of the packages and their capabilities. The upgrades also made the 
components of AWB more friendly for both developers and users while also easing any 
future burden of transitioning the tools to the sponsor and their designees. 
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The research team also explored the enablement of portfolio management from a 
mission engineering perspective. The two guiding principles for this research are 1) the 
demonstration of the viability of the Mission Engineering (ME) approach to support Joint 
acquisition decision-making and 2) the initiative for the development of a reusable Digital 
Engineering environment and methodology to support future Mission Engineering pilots, 
studies, and acquisition analyses. Furthermore, the research explored the transition from a 
paper-based (PowerPoint modality) review of various portfolios (e.g., EW Portfolio, NC3 
Portfolio, or ASuW Portfolio) to a more model-based review of the portfolios, addressing 
questions such as: What form should this take? What information is key from a leadership 
perspective? How do we ensure a holistic review without being overwhelmed with 
complexity and information? The research included engagement with selected mission 
portfolio managers to understand their priorities and challenges to enable evidence/data-
based portfolio management. 

This paper starts with an explanation of the AWB development, wherein we describe 
the overall description of the AWB tools, followed by a discussion on the development of the 
AWB tools. The paper also demonstrates the enhanced AWB using a notional anti-surface 
warfare (ASuW) application to illustrate its application to a non-trivial domain. 

Analytic Workbench Development 
The AWB is a collection of methods and techniques developed by researchers at 

Purdue University within SERC projects starting in 2011. Due to the complex and 
multifaceted nature of SoS modeling and analysis, the most effective approach is to develop 
different methodologies, each addressing one specific aspect of SoS, for example, 
emergence due to interactions or portfolio-wide considerations. The AWB implements this 
approach by providing a set of tools developed on purpose for modeling and analysis of 
SoS. 

The AWB addresses complexities associated with interconnections that exist across 
physical, functional, and developmental SoS hierarchies. The idea is to support the “top-
down integration, bottom-up implementation” paradigm at the SoS level. The analytical tools 
in the workbench account for the complex and highly interconnected nature of the systems 
that constitute the overall SoS. The analytical tools allow the user to: 

• Quantify performance and risk for individual systems, links, and of overall SoS; 
• Assess the impact that changes to SoS architecture (add/remove links and/or nodes) 

will have; and 
• Quantitatively identify optimal sets of architectural solutions given constraints on 

cost, performance, and risk.  
When building tools to support decision-making in an SoS environment, the 

challenge is that such tools must address the technical and programmatic complexities of 
SoS, yet remain domain-agnostic. It is up to researchers to find the appropriate balance 
between the need for tools that can be used on a broad spectrum of applications in various 
fields and the need for tools that can be easily tailored to specific applications and user 
requirements. 

This project focused on three tools from the AWB: Robust Portfolio Optimization 
(RPO), Systems Operational Dependency Analysis (SODA), and Systems Developmental 
Dependency Analysis (SDDA). Figure 1 shows the inputs and outputs of tools in the AWB 
and in the Decision Support Framework (DSF), the framework that used RPO and SODA 
sequentially. 
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Figure 1. Inputs to AWB and DSF 

 

Robust Portfolio Optimization (RPO) 
The SoS modeling and analysis problem can sometimes be described as a 

combinatorial problem to determine the most promising portfolio of individual systems in 
which to invest to achieve a certain capability. For instance, in space systems architecture, 
mission designers need to find the best combination of spacecraft, launch systems, launch 
windows, commodities to be transported, existing space systems such as the International 
Space Station (ISS), and other capabilities to achieve the goal of a long journey and 
possible settlement on other space bodies. The process of selecting the optimal portfolio 
considers the Life Cycle Cost (LCC) and the capability of individual systems. The process 
keeps both cost and certain types of risk (e.g., developmental cost) within an acceptable 
level while accounting for the impact of various forms of data uncertainty. Implementation 
and solution of RPO for a particular SoS design problem yields a set of Pareto optimal 
solutions (each solution is a portfolio of systems) corresponding to a user-defined risk 
aversion factor. RPO analysis allows an SoS manager to explore the design space of 
available options when designing a mission. Additionally, for a chosen portfolio, further 
desired analysis can be carried out using other AWB tools. 

The risk can be characterized into three types: developmental, operational, and 
simulated. Based on these three types of risks, three flavors of RPO have been developed: 
(1) Robust Mean Variance Optimization (RMVO) includes developmental risks 
( Davendralingam & Delaurentis, 2015; Rubinstein, 2002), (2) the Bertsimas-Sim method 
involves operational risks (Bertsimas & Sim, 2004; Davendralingam & DeLaurentis, 2013), 
and (3) Conditional Value at Risk (CVaR) addresses simulated risks (Davendralingam & 
DeLaurentis, 2014; Shah et al., 2015). Based on the problem at hand, the stakeholder 
needs to select a specific flavor of RPO. 

Systems Operational Dependency Analysis (SODA) 
SODA methodology addresses the operational domain of an SoS by providing an 

analysis of the impact of dependencies between constituent systems on the propagation of 
the effect of disruptions (Guariniello et al., 2019). In SODA, a parametric model of system 
behavior is combined with a network representation for the system architecture. A small set 
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of parameters is used to simplify the dependencies between each system. These 
parameters were chosen to represent aspects of the dependency of the operability of a 
system on the operability of another system. The Strength of Dependency (SOD) represents 
a linearized operational dependency between systems in the case of minor disruptions. The 
Criticality of Dependency (COD) represents the loss of operability due to major disruptions. 
The Impact of Dependency (IOD) models the boundary between the small disruption regime 
and the major disruption regime. 

Based on the parameters of the model, SODA can quantify the cascading effect of 
disruptions in the architecture and constitutes a quantitative method of risk analysis that can 
be used to expand the traditional risk matrix. The algorithm can also model partial failures, 
both deterministic and stochastic, and multiple paths of propagation within the model. SODA 
thus provides early-stage feedback for the architecture’s design, reducing the amount of 
simulation and other verification methods required to ensure mission feasibility and to 
identify criticalities and areas of potential emergent behavior (Guariniello et al., 2019). 

Systems Developmental Dependency Analysis (SDDA) 
SDDA is the counterpart of SODA in the developmental domain. It is a parametric 

model of developmental dependencies and constitutes an extension of PERT/CPM 
techniques which adds partial parallel development and partial dependencies. 

The outcome of SDDA modeling and analysis is a quantitative assessment of the 
beginning and completion time of activities in a project (e.g., development of technologies, 
systems, or SoS capabilities), accounting for the combined effect of multiple developmental 
dependencies and of possible delays in the development of predecessors. The lead time 
(i.e., the amount of time by which a system can begin to be developed before a predecessor 
is fully developed) is calculated based on the dependencies and the performance of 
predecessors. 

SDDA allows for deterministic or stochastic analysis. In deterministic analysis, an 
amount of delay is assigned to each system, and SDDA evaluates the resulting schedule. In 
stochastic analysis, the amount of delay in each system follows a probability density function 
with the resulting beginning and completion time of each system also as a distribution. 
SDDA identifies the most critical nodes and dependencies with respect to overall 
development time and delay propagation, important decision support for both system 
managers and the SoS architect. Results from the analysis are used to compare different 
architectures in terms of development time, risk, and capability of absorbing delays. 

AWB Interoperability, Extensibility, and Usability Upgrades 
A significant part of this research effort included upgrades to the AWB. The original 

scripts and functions representing the various elements of AWB were upgraded to a set of 
qualified Python packages. This process included the implementation of industry-standard 
software control and revision processes and standards (GitHub Resources, 2022). These 
upgrades enable ease of continued development of the packages and their capabilities 
across academic, industry, and government teams. The upgrades also make the 
components of AWB more friendly for developers and users and ease any future burden of 
delivery. 

A summary of the upgrades for the different components is outlined here: 
• Robust Portfolio Optimization (RPO): RPO was upgraded to a fully Python-based 

application, removing the need for a MATLAB license. A set of input and output data 



Acquisition Research Program 
department of Defense Management - 12 - 
Naval Postgraduate School 

control and validation methods was provided for interaction with RPO. RPO was also 
integrated into a controlled Python product with available pip and Anaconda packages. 
This process included the addition of unit and integration testing, static code analysis, 
and implementation of CI/CD. The input for RPO was converted into a compact text-
based file format called JavaScript Object Notation (JSON) from a Microsoft Excel 
datasheet. Furthermore, Jupyter Notebooks (Jupyter, n.d.) were used for adding the 
input data, running the Python-based code, and analyzing the results on a webpage in 
an interactive manner. 

• Systems Operational Dependency Analysis (SODA): SODA was integrated into a 
controlled Python product with available pip and Anaconda packages. This process 
included the addition of unit and integration testing, static code analysis, and 
implementation of CI/CD. 

• Systems Developmental Dependency Analysis (SDDA): SDDA was integrated into a 
controlled Python product with available pip and Anaconda packages. This process 
included the addition of unit and integration testing, static code analysis, and 
implementation of CI/CD. 

• AWB: AWB was integrated into a controlled Python product with available pip and 
Anaconda packages. Applicable automation was developed for AWB to ease the control 
and installation of necessary dependencies (i.e., RPO, SODA, and SDDA) across 
platforms. This process included the addition of unit and integration testing, static code 
analysis, and implementation of CI/CD. 

Several other specific upgrades were implemented to make it easier for users to 
develop appropriate data to define the problems AWB is meant to address. These upgrades 
also support the ongoing work to develop an appropriate user interface (UI) for building 
AWB problem data. In particular, the team also improved the RPO package by 
reimplementing the code surrounding the data and optimizer handling logic. This included 
changes to the interface used to connect to RPO. The team made RPO features functional 
again within a UI in Python so that users can pass parameters to RPO, and RPO output 
plots and results can be displayed. The whole AWB UI allows the selection of tools such as 
RPO, SODA, SDDA, etc. Custom images or logos are displayed based on the tool selected. 
Input to the tool can be a built-in example, custom-build scenario (TBD), or file import. The 
RPO tool has tabs for setup and output tabs which allows for input selection, input setup, 
and display analysis output. SODA and SDDA have an Interactive tab with functionality that 
will be implemented in the future. 

For all AWB tools, a Links widget will allow dependencies between nodes to be 
defined. A directed graph is used to show the dependencies between systems. More options 
for SODA and SDDA can be selected. 

The RPO Output tab plots Pareto frontiers for cost vs. SoS performance index. There 
is also a table of allocations that shows the numbers of individual assets at each cost point. 
The SODA Output tab can show either repair impact or failure impact plots. SDDA output 
shows the resulting schedule of development based on SDDA analysis. 

A side effect of the new RPO updates was the breaking of a convenience feature 
within the tool suite which allowed for quickly using RPO results as input into SODA. Here, a 
user-selected RPO allocation is “automatically” fed into SODA without parameter adjustment 
by the user. Therefore, further work was done to reconnect RPO output to SODA analysis. 
This enables SODA output plots to appear in addition to RPO output within the new UI. 
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RPO Data Validation Overview 
The RPO software requires users to create instances of code classes (e.g., System, 

Capability) that have unique data requirements. Validating data is a common challenge in 
software development. The GTRI team has approached this problem by using JSON-based 
schema to capture information about data requirements so that only valid inputs are used to 
run scenarios within the RPO tooling. JSON Schema (a standard for developing these 
validations; JSON Schema, n.d.) is used. Generating the JSON Schema for all classes in 
the RPO library would require significant manual effort to create an additional effort to 
update each time the class definitions (i.e., data models) are modified. To alleviate this, all 
RPO data models are defined using a Python standard library (data classes), which can be 
used to automate the creation of JSON Schema for each class. This allows continuous 
updating of the schema for validating instances of objects against the expected 
representation without requiring a manual definition of the schema. 

Schema Generation Script 
While the schema for class instances is not expected to change frequently, RPO 

needs a method to automate the process. To aid developers, a “generate_schema” script is 
included in the RPO scripts folder. Schema is checked into the repo to ensure that any 
changes undergo review by SERC developers. Once the script is called, users can commit 
changes, and all validation changes will propagate to the RPO tests. Invocation 
documentation can be found in the RPO README. 

Automation of SODA/SDDA Data from RPO Problem 
A previous algorithm existed for converting the inputs used in RPO into those used in 

SODA and SDDA. Namely, the three dependency characteristic matrices of Strength of 
Dependency (SOD), Criticality of Dependency (COD), and Impact of Dependency (IOD). 
This pipeline utilizes the system support requirements and outputs to identify potential 
relationships among systems. For example, if System A produces Resource R, and System 
B requires resource R, then B is assumed to depend on A. Similarly, we also capture 
relationships among systems and capabilities. Namely, if System A has Capability C, then C 
is said to depend on A. In reality, it is also possible for a system to require a capability as 
well as a capability to require another capability, but this information is not possible to 
deduce from the inputs of RPO alone. Furthermore, while the algorithm is designed to 
provide sensible values for each relationship’s strength, criticality, and impact, it is generally 
accepted that expert opinion is necessary to achieve reliable results from SODA and SDDA 
analysis. 

An expansion of this algorithm to approximate the inputs to SODA/SDDA has been 
designed as a proof-of-concept. The desire is to display approximated parameters to the 
user via an interactive data entry widget which will also provide the ability to correct them as 
needed. This project included the final stages of automating the algorithm and integrating it 
with the data structures used to run the Python implementation of RPO. An initial 
implementation of the data entry widget is being developed in parallel. 

Anti-Surface Warfare (ASuW) Problem 
Problem Formulation 

The Anti-Surface Warfare (ASuW) problem selected is intended to be notional while 
remaining illustrative of an ASuW problem that may be relevant to the U.S. Navy ( Broadfoot 
et al., 2018; Kaymal, 2013; Neumann, 2021). The basic model has two surface threats 
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traversing a body of water, (1) a Surface Action Group (SAG) and a Fast Attack Craft (FAC) 
group. The SAG is composed of surface combatants (e.g., frigates, destroyers, and 
cruisers). The FAC group is composed of small and fast (40+ kts) vessels. The blue force 
must complete the Find, Fix, Track, Target, Engage, Assess (F2T2EA) kill chain against 
these threats. Therefore, the blue force must include sensors, shooters, and a command 
and control element that coordinates and decides how to task the other elements. The 
sensors can be space, airborne, and surface. 

For this problem, the blue architecture does not include subsurface elements (e.g., 
submarines and underwater arrays). The ASuW problem selected is intended to be notional 
while remaining illustrative of an ASuW problem that may be relevant to the U.S. Navy. This 
is a realistic warfighting problem and one that is addressed by a complex portfolio of assets 
from across multiple platforms and weapons. The basic model has two surface threats 
traversing a body of water: a Surface Action Group (SAG) and a Fast Attack Craft (FAC) 
group. The SAG is composed of surface combatants (e.g., frigates, destroyers, and 
cruisers). The FAC group is composed of small and fast (40+ kts) vessels. The blue force 
must complete the Find, Fix, Track, Target, Engage, Assess (F2T2EA) kill chain against 
these threats. Therefore, the blue force must include sensors, shooters, and a command 
and control (C2) element that coordinates and decides how to task the other elements. The 
sensors can be space, airborne, and surface. For this example of the problem space, the 
blue force architecture does not include subsurface elements (e.g., submarines, underwater 
arrays). Subsurface elements could be added to this analysis at a later date without a 
change in the methodology. A simple basic architecture is depicted in Figure 2. 
 

 
Figure 2. OV-1 of the Simple Notional Anti-Surface Warfare Scenario 

A more comprehensive construct based on a richer kill web is depicted in Figure 3. 
This construct increases multidomain effects and interdependencies as it includes additional 
sensors (i.e., Maritime Patrol Aircraft [MPA], Helicopter, Radar from Surface Combatants) 
and shooters (i.e., MPA, Attack Aircraft, Helo). Sensors are categorized into two sets: 
Electro-Optical/Infra-Red (EO/IR) sensors and Radio Frequency (RF) sensors. In this 
scenario, EO/IR sensors are primarily used for target identification, while RF sensors are 
used for target detection and potentially for cueing other sensors. All data and concepts 
illustrated in this notional example are derived from open-source data, primarily wikidata.org. 

All the data for the assets and weapons described below was obtained or derived 
from wikidata.org. The roles/responsibilities and the specific values are not intended to be 
overly accurate or complete but capture coarse-level capabilities that illustrate the potential 
tradeoffs that the Analytical Workbench can assess. 
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Figure 3. OV-1 of a More Comprehensive Anti-Surface Warfare Scenario 

The blue force ASuW kill chain is based on the Find, Fix, Track, Target, Engage, 
Assess (F2T2EA) kill chain, with some simplifications to ensure the example remains 
unclassified. 
• Find: This is the task of doing the initial detection of the red surface vessels. The result 

is a cue to other sensors to do the additional assessment of the potential target. 
• Fix: In this formulation, the fix is primarily concerned with identifying the potential target. 

It requires distinguishing a target from its surroundings and is doctrinally described as 
“identifying an emerging target as worthy of engagement and determining its position 
and other data with sufficient fidelity to permit engagement.” This requires a cue from 
another sensor. 

• Track: In this formulation, the process of formulating tracks for targets is highly 
abstracted. In reality, this task can require complex processes to fuse different sources 
of data and assess the error, maintaining custody of a target across one or multiple 
assets until a target solution is determined. Adding to the complexity, most systems 
today that can fix can also track. In reality, this task can require complex processes to 
fuse different sources of data and assess the error. 

• Target: This step involves defining/selecting a capability to take action against an 
identified target, inclusive of the weapons, platforms with those weapons, other 
resources, and authorities. In the formulation defined for this effort, the targeting phase 
is highly simplified and presumed to be done with a high degree of certainty. In this 
formulation, the targeting phase is highly simplified and is presumed to be done with a 
high degree of certainty. 

• Engage: For the purposes of this model, the engage phase primarily consists in 
launching a weapon against the target and evaluating a random chance of the weapon 
finding the target and killing it. This makes the problem tractable and able to produce 
outcomes measurable by the integrated set of methods. In reality, however, increased 
standoff ranges in contested environments inject time into the F2T2EA, something not 
accounted for in traditional kill chain analyses in general. 

• Assess: the assessment phase of the F2T2EA kill chain is critical. However, for the 
purposes of this simulation, the process is highly simplified. Any surviving targets remain 
alive in the simulation and can be picked up by other sensors. 

The assets required to complete the kill chain are listed in Table 1. The potential 
assets considered in the architecture are grouped by their domain. Weapons and personnel 
are the two other categories of elements considered in the architecture mix analysis. For 
ease of understanding, the real names of assets are used, but all the properties and tactics, 
techniques, and procedures (TTPs) used for the assets are notional and unclassified. 
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Table 1. Potential Assets for the ASuW Scenario 

Domain Asset Description 

Space 

Legacy Synthetic Aperture 
Radar (SAR) Satellite 

Larger Space-based Remote Sensor that uses Synthetic Aperture Radar to detect surface 
vessels from their wake. Primary function: cueing. 

Small SAR Satellite Smaller, more affordable, and less capable Space-based Remote Sensor that uses 
Synthetic Aperture Radar to detect surface vessels from their wake. Primary function: 
cueing. 

Electro-Optical/Infra-red 
(EO/IR) Imaging Satellite 

EO/IR space-based remote sensing capability that may be able to identify surface vessels. 
Primary function: target identification. It may provide cueing but not the primary function. 

Communications Satellite Space-based communications relay provides over-the-horizon communications. 

Air 

MQ-4C Unmanned reconnaissance aircraft. Primary function: target identification, secondary 
function: target detection. 

P-8A A Maritime Patrol Aircraft (MPA) can detect and identify surface targets. 
EA-18G A Standoff Electronic Attack Aircraft that can passively detect surface targets. 
F/A-18E/F An attack/fighter fixed-wing aircraft that can launch anti-ship weapons. Requires a CVN to 

launch from. 
MH-60S A rotary wing aircraft that can detect, identify targets at close range, and launch short-range 

anti-ship weapons with limited lethality. 
F-35B Short Take-off and Vertical Landing (STOVL) stealth aircraft can be operated from 

amphibious assault ships (e.g., LHA, LHD). 
F-35C Carrier-capable fixed-wing stealth aircraft can only be launched from CVNs. 

Surface 

FREEDOM (LCS-1) Mono-hull Littoral Combat Ship (LCS), a small, more affordable, but less capable surface 
combatant. 

INDEPENDENCE (LCS-2) Multi-hull Littoral Combat Ship (LCS), a small, more affordable, but less capable surface 
combatant. 

ARLEIGH BURKE (DDG-51) First generation (Flight I) of a modern missile-guided destroyer, no capability to support 
helo operations. 

MAHAN (DDG-72) Second generation (Flight II) of a modern missile-guided destroyer, limited capability to 
support helo operations. 

OSCAR AUSTIN (DDG-79) Third generation (Flight IIA) of a modern missile-guided destroyer, full capability to support 
helo operations. 

JACK LUCAS (DDG-125) Future generation (Flight III) of a modern missile-guided destroyer, full capability to support 
helo operations and improved sensing/weapon systems. 

ZUMWALT (DDG-1000) Best-in-class guided missile destroyer with improved sensors and weapon systems, 
signature management capabilities, but limited quantities of anti-ship weapons. 

TICONDEROGA (CG-47) Legacy cruiser with moderate sensing capability but large missile capacity. 
BUNKER HILL (CG-52) Modern cruiser with modern sensing capabilities and large missile capacity. 
WASP (LHD-1) A small aircraft carrier that can support STOVL aircraft operations. 
AMERICA (LHA-6) A small aircraft carrier that can support STOVL aircraft operations. 
FORD (CVN-78) A large aircraft carrier that can support carrier-based aircraft operations. 

Resource: (wikidata.org, n.d.) 

As with the assets, the weapons are notional, with numbers obtained from 
unclassified sources. However, real weapon names are used to facilitate the understanding 
of the scenario and the results produced by the framework. The goal of the Anti-Ship Missile 
(ASM) weapon mix (Table 2) was to illustrate that a notional capability/cost tradeoff could be 
captured by the AWB and the discrete event simulation. 

The conduct of the operations and employment of the different assets in the ASuW 
scenario model are dependent on a wide range of factors. This includes the physical 
deployment of the different assets, the operation rules of engagement, and the actions of 
the red force actors (there may be more than one working at some level of coordination). For 
this analysis, we are assuming that the SAG and the FAC group are one red-force actor and 
are working in full coordination. 
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Operationally, for the blue force to be successful in the kill chain, their actions must 
result in the red force losing mission capability and/or deterring the red force from future 
engagement. Set-based methods containing tactical and intelligence input and assessment 
results will be required to evaluate the amount of reduction of red force capability needed for 
blue force success. Within the ASuW mission area, metrics of success are primarily the 
reduction of red force capability, weapons expended, and blue force casualties. 

Table 2. Anti-Ship Weapons 

Designation Name Launcher 
Domain 

Range 
(nmi) 

Speed 
(kts) 

Cost (k$) 

AGM-114L Hellfire Air 6 864 150 
AGM-119 Penguin Air 100 633 800 
AGM-158C LRASM Air 300 633 3,960 
AGM-158D JASSM-XR Air 970 1026 1,500 
AGM-84D Harpoon Air 50 461 500 
AGM-84F Harpoon Air 170 461 600 
AGM-84H/K SLAM-ER Air 150 461 3,300 
BGM-109 Blk V Maritime Strike Tomahawk Surface 1350 493 1,409 
RGM-184A Naval Strike Missile Surface 100 600 2,194 
RGM-84F Harpoon Surface 150 461 600 

RIM-174 Standard Extended Range Active 
Missile Surface 130 2315 4,318 

Resource: (wikidata.org, n.d.) 

Measuring SoS Capability 
A relatively simple set of system capabilities was developed to measure how the 

various systems contribute to the overall ASuW scenario (Table 3). These are utilized by 
RPO and can be passed to supporting analysis (e.g., the Discrete Event Simulation 
developed using UPSTAGE; Arruda, 2018) for more detailed analysis. The better a system 
performs for each of these capabilities, the more likely it is to be allocated when it is SoS 
capability. These capabilities are intended to be notional and illustrative of the types of 
characteristics that may be used to assess how well an ASuW System-of-Systems performs. 
RPO performs optimization of system allocation against SoS performance. To facilitate this, 
five System of System Capabilities were defined for the overall scenario (Table 4). These 
SoS Capabilities are groupings of the individual system capabilities. 
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Table 3. System Capabilities 

System 
Capability 

Name Measurement Measurement Units 

SC 1 Maritime Surveillance Notional Area Surveillance Capability 1/3/9: Low/Med/High 
SC 2 Identify Surface Contacts Notional ID Capability 1/3/9: Low/Med/High 
SC 3 Jam Ship Radars Notional Jamming Capability 1/3/9: Low/Med/High 
SC 4 Standoff Range Weapon Range (nm) nmi 
SC 5 Disable Surface Combatant Phit SC % 
SC 6 Damage Surface Combatant Pkill|hit SC % 
SC 7 Disable Fast Attack Craft Phit FAC % 
SC 8 Damage Fast Attack Craft Pkill|hit FAC % 
SC 9 Quickness Airspeed kts 
SC 10 Coverage Flight Range nmi 
SC 11 Power Projection Capacity # 

 

Table 4. SoS Capabilities Defined for the Overall Scenario 
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ASuW Offensive X X X X X X X X X   

ASuW Defensive X  X X X X X X X X X 

ASuW Near Peer X X X X X X   X X X 

ASuW Non-State Actor X X     X X X X  

Maritime Awareness X X          
 

ASuW-Specific Mission Analysis of Optimized Portfolios with UPSTAGE 
For this effort, the GTRI team utilized UPSTAGE to develop a more complex network 

for an ASuW mission, one incorporating both blue and red platforms and capabilities, to 
produce an analysis that would inform the AWB framework with improved mission fidelity. 
This will offer a much more complex representation than the tools without these dynamics 
being considered. Even so, the models for this effort are intended to demonstrate the 
general capability but will still fall short of real-world dynamic complexity. This unclassified 
implementation of UPSTAGE to the ASuW problem simulates a notional scenario where 
Red (Florida) is set to carry out a strike mission against Blue (Texas) launch assets 
deployed along the coast (Figure 4). A Red Surface Action Group (SAG) and Fast Attack 
Craft (FAC) group move from their ports through northern and southern routes, respectively, 
to reach Blue’s home shore. 
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Figure 4. Red (Florida) vs. Blue (Texas) 

Blue forces are arranged to provide a layered defense of their shore. Unmanned 
Aircraft Systems (UAS) fly patrol routes in the eastern portion of the Blue sea, while 
Maritime Patrol Aircraft (MPA) fly a patrol route to the west of the UAS. Further west, Blue 
naval assets such as DDGs and CVNs conduct patrols. The exact makeup of the Blue 
patrols and of the patrolling system’s attributes are input into the UPSTAGE simulation. As 
Red forces move through Blue waters, Blue satellites may detect them in the dotted region 
in Figure 4. The satellites’ detection capabilities are also inputs to the simulation, and it is 
possible that false targets can be found and reported to the Blue command. 

Difficulty in analyzing parameterized force structures is parameterizing command 
and control (C2). UPSTAGE mitigates this difficulty through entity grouping and rehearsal 
features to support C2’s selection of friendly assets based on user-defined capabilities. 

The F2T2EA kill chain is abstracted in the ASuW simulation to follow this general 
flow (Figure 5). The Blue C2 will receive information from the systems given to it—based on 
a portfolio—and that information can have a variable certainty as a function of the system 
that performed the detection. Low certainty information will cause Blue C2 to follow up with 
UAS or MPA tasking to provide higher-quality track information. If the track quality is high 
enough, Blue C2 will initiate a fires mission from one of the available fires systems. 

 
Figure 5. F2T2EA Kill-Chain 
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A fires mission will generally involve a flyout to a known or best-predicted position of 
a Red system using a platform with enough of a weapon class to ensure success. If only 
surface assets are available, they will be selected, but they are not preferred. Individual 
fires-capable systems are allowed to detect and fire on Red systems of their own volition. 
These include any land-based batteries or surface ships. The simulation will run until Red 
systems are destroyed, or they reach Blue shores. The time it takes to complete the 
scenario and the success/failure are the primary outputs. Secondary outputs can include 
resource usage, such as fuel and munitions, comms requirements, and other interactions. 

Initial ASuW Results 
While the process of setting up the full ASuW problem formation is well in progress, 

initial results show some interesting trades. Running the problem through RPO and 
examining the results show a continuous improvement of the SoS performance score as the 
cost constraint is raised, as expected. On closer inspection of the allocations, more 
interesting results are seen. The parameters used for the initial results are listed in Table 5. 

The results of the RPO run can be viewed in Figure 6, where SoS Performance 
Index is a non-dimensional measure indicating performance across all selected SoS 
Capabilities. For this initial example, all five of the SoS Capability measures were analyzed 
simultaneously. In the future, more nuanced results could be achieved by optimizing the 
SoS Capabilities individually. 

The increase in overall SoS capability, as more money is spent, is a fairly obvious 
and expected result. The most noticeable trend in this chart is the divergence of 
performance at higher costs when more risk (lower conservatism) is allowed in the solution. 
More interesting results can be observed in the full allocation table, however. Table 6 shows 
how many of each system were purchased for the points plotted in Figure 6, a run of RPO 
on the ASuW scenario. 

 
Table 5. Initial Results Run Parameters 

 Minimum Maximum Steps 

Cost ($MUSD) 50.0 800.0 15 

Risk (n.d) 0.2 1.2 3 

 

From Table 6, it is apparent that the preferred low-cost solution (allocations 0–2) 
involves an investment in LCS ships carrying the Hellfire Longbow (AGM-114L), a currently 
experimental solution, with limited allocations of aircraft, DDGs, or dedicated anti-surface 
missiles like the AGM-84. However, as the cost constraint is relaxed and the optimizer can 
afford more expensive systems, it quickly shifts to a solution based largely on amphibious 
assault ships, F-35Bs, and JASSM-XRs. In this middle range, RPO also demonstrates that 
Fix, Tracking, and Targeting can be largely based on unmanned assets. 

As more money is allowed to be invested, the strategy again shifts to provide more 
SoS performance. This time once a full carrier is affordable, the investment strategy quickly 
switches to carriers, F/A-18E/Fs and AGM-84Ds. F-35Cs and JASSM-XRs are preferred if 
they can be afforded and mixed in with the F-18s as more money is allocated and if more 
risk is allowed. At that point, if more money is allocated, the same strategy is repeated, 
mixing in some Arleigh Burke destroyers until another carrier can be afforded. 
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This initial trend will be further analyzed as the team is able to integrate more tools 
(SODA, SDDA) with the ASuW scenario. As space domain-specific technology injection is 
integrated, the effects of satellite technologies on the allocations and analysis will be 
explored. Higher fidelity will also be executed via UPSTAGE to future predict how these 
different investment strategies might play out in a simulation. The team expects to include 
these results in the final report. 

Even though the data used for this analysis is notional, some other interesting trends 
in the mix include the use of the Tomahawk Maritime Strike (MST) missile (i.e., BGM-109 
Blk V). More conservative portfolios tend to use fewer MSTs as they have higher uncertainty 
in their ability to hit targets than the other missile options. AGM-84Ds tend to be preferred 
because of their cost-effectiveness and because the risk to the launching asset is not 
captured by the analysis. 

 
Figure 6. Initial Results: Cost vs. SoS Performance 
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Table 6. Initial Results Allocations 

 

Conclusions 
The research team adapted a previously developed SoS-AWB to inform decisions in 

IAPRs. The AWB we developed and enhanced supports OUSD(A&S) for the rollout of the 
Adaptive Acquisition Framework and Capability Portfolio Management since our software 
suite can provide the analytic capability that is necessary to provide a solid foundation for 
acquisition investment decisions with clear traceability. These advanced prototypes provide 
broader insights (e.g., resource tradeoffs, cost-sensitivity analysis, and the most robust 
ASuW systems to be acquired in specific portfolios) for the stakeholder’s decision-making 
process. Future work could improve the tools to identify the following: how risk aversion 
affects portfolio optimization; technical dependencies among systems; developmental 
dependencies; and portfolio performance effects from stakeholder decisions. As a result, 
future work could assist in the activities for the new Acquisition Integration and 
Interoperability Office within OUSD(A&S). 
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