
Acquisition Research Program
Department of defense management
Naval Postgraduate School

SYM-AM-23-087

Excerpt from the
Proceedings

of the
Twentieth Annual

Acquisition Research Symposium

Acquisition Research:
Creating Synergy for Informed Change

May 10–11, 2023

Published: April 30, 2023

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Department of defense management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Acquisition Research Program
department of Defense Management - 90 -
Naval Postgraduate School

Software Acquisition and the Color of Money

Jeff Dunlap, CAPT USN (Ret.)—–is a Faculty Member at the Department of Defense Management at the
Naval Postgraduate School (NPS). Dunlap has over 25 years of experience in the Department of Defense
(DoD) as an acquisition professional and has led several software-intensive programs.

As part of his service to NPS, Dunlap provides mentorship and thesis advice to military and civilian
students researching software changes needed within the DoD to increase timeliness and value to the
warfighter.

Dunlap has a BS from Virginia Tech at Blacksburg. He received an MS in engineering from NPS and
Defense Acquisition University ACAT I PM certifications. [jeffrey.dunlap@nps.edu]

Abstract
The current Department of Defense (DoD) acquisition budgeting process provides funding
visibility to Congress for hardware-intensive systems from requirement generation to ultimate
disposal. Unfortunately, a square peg in a round hole quandary has occurred with a funding
mismatch as modern software-intensive systems are required to comply with traditional funding
appropriation breakout categories (aka colors of money). The 2019 Defense Innovation Board
(DIB) Software and Acquisition Practices (SWAP) report identified the funding challenges of
continuous software development and stated, “Colors of money doom software projects.”

In the fiscal year (FY) 2020 National Defense Authorization Act, Congress created a pilot program
with a new appropriation category for software-intensive DoD programs (BA-8). The challenge to
the DoD is to prove via quantifiable metrics that a single appropriation of funds enables speed-to-
capability deliveries in the software pilots. Other contributing factors made it difficult to discern
the effects of BA-8, as revealed by the pilot program metrics, which highlighted potential future
study areas. Regulations and policies regarding funding that do not consider the continuous
delivery of software capability to the user after the fielding event milestone can lead to confusion
about the appropriate appropriations to use and their timing.

Executive Summary
Software acquisition, development, and support practices within the Department of

Defense (DoD) had not fundamentally changed since the implementation of the “waterfall”
model in the 1975 DoD Directive 5000.29. In 1987, The Defense Science Board Task Force on
Military Software recommended a shift away from waterfall software practices (more common in
hardware- intensive programs) to an iterative prototype (agile) lifecycle model. The seminal
report of 2019 from the Defense Innovation Board (Software and Acquisition and Practices
[SWAP]) was fundamental in describing a tailored, software-specific pathway that guided
acquisition change. The end goal of the software change recommendations from the SWAP
report was to empower acquisition professionals to deliver relevant and secure capabilities at
the “speed to need” using modern software practices found in the commercial sector.

The acquisition and sustainment process for fielding and supporting software-intensive
systems changed with the software pathway of the 2020 DoD Instruction (DoDI) 5000.02
(Operation of the Adaptive Acquisition Framework). Although simplifying acquisition policy has
eliminated numerous obstacles, the budgeting system (PPBES) categories do not effectively
apply to software development that follows iterative and continuous approaches. In contrast,
acquisition strategies for incremental waterfall software development programs aligned closely
to the budget appropriations spending categories of development, production, and operations &
sustainment phases.

Acquisition Research Program
department of Defense Management - 91 -
Naval Postgraduate School

Included in the 2019 SWAP report was the recommendation to create a new
appropriation category that would allow software-intensive programs to be funded as a single
budget appropriation item since “software is never done.” The model for a modern continuous
software acquisition is that there is no separation between development, production, and
operations & sustainment. In 2021, the “bleached” or “colorless” appropriation pilot (Budget
Activity 8 [BA-8] for software and digital technology pilot programs) began with nine DoD
software-intensive programs. The BA-8 pilot provided a single appropriation that could be
utilized for any legitimate expenditure.

Intuitively, it makes sense that programs developing continuous capability in an agile
fashion would need money that has no restrictions (such as development, testing, or
maintenance). Metrics to validate and assess the effectiveness of these pilots would allow the
DoD to understand the impact of BA-8 on delivering capabilities “at the speed of relevance.”
Since BA-8 is not limited to programs using the Software Pathway, understanding the
secondary and tertiary impacts on capability delivery became important in determining what
effect PPBES had on software-intensive programs. Data collection and metrics for the BA-8
pilots were required quarterly by Congress. An early assessment by the Under Secretary of
Defense for Acquisition and Sustainment (USD A&S) for the effectiveness of BA-8 occurred in
the 18th month of implementation. The results indicated that the pilot programs could not
demonstrate the singular value of “colorless money.” Other factors were discovered to have as
much influence on software acquisition as BA-8. The absence of measurable criteria to exhibit
to Congress the worth of a solitary appropriation could hinder the establishment of a sustainable
budget classification for software-intensive programs.

Delivery Speed is not a Characteristic of the Deterministic Waterfall Approach
The waterfall development method’s primary utilization was in software engineering for

decades. This approach follows a linear sequential path, where each phase of the software
development process must be completed before moving to the next phase. The method begins
with requirement gathering, followed by design, implementation, testing, deployment, and
maintenance. Its rigid structure ensures that each phase must be finished before the next phase
can begin, making it difficult to make changes later in the process. Despite its limitations, the
waterfall method is still used in some projects where requirements are well-defined, and
flexibility is unnecessary. Software acquisition, development, and support practices within the
DoD have not fundamentally changed since implementing the “waterfall” model in the 1975 DoD
Directive 5000.29. The waterfall process is not inherently good or bad, as its effectiveness
depends on a clear understanding of the requirements in advance, which must be known and
remain unchanged. Waterfall methodology is very deterministic, where all the software’s
functions or features are understood in advance, and the entire software is either accepted or
rejected at verification (Figure 1).

Acquisition Research Program
department of Defense Management - 92 -
Naval Postgraduate School

Figure 1. Deterministic Software Development

Deterministic programs often lack the flexibility and agility to deliver capabilities quickly.
Software programs that follow the deterministic waterfall approach cannot deliver capabilities
quickly for several reasons. Some of the most common causes include

1. Outdated technology: Software developers often build software using outdated
technology. As a result, integrating new features and functionalities becomes difficult
and time-consuming.

2. Complexity: Software programs themselves often exhibit a high level of complexity and
are hard to modify. The reason for this is that numerous developers with their preferred
programming languages, tools, and methodologies may have contributed to the
development of the program over time.

3. Lack of documentation or code: DoD software programs may have little or no
documentation or software code due to intellectual property or data rights missing in the
contract deliverable. Even if the code is available, it is difficult for other developers to
understand how the software works and how to modify it without the original developer’s
documentation.

4. Limited resources: software programs may not have the resources or budget to invest in
modern software development practices. The delivery of new capabilities can be slowed
down due to this.

5. Technical debt: Over time, software programs may accumulate technical debt, which
refers to the cost of maintaining and updating software that was not properly designed or
developed in the first place. Technical debt can slow development and make adding new
functionality difficult without introducing new bugs or issues.
Before 2020, the DoD’s acquisition framework did not encourage a modern software

development methodology, whereby contracts with the Defense Industrial Base are awarded
without complete visibility of the requirements. Currently, the DoD’s budgeting process (PPBES)
still mandates deterministic knowledge of the total acquisition requirements, as well as its timing
and cost, regardless of its development approach.

Modern Software Development Enables Speed
In the early 2000s, the private sector shifted away from traditional heavyweight methods

of developing software-intensive systems, such as the waterfall approach. The need to meet

Acquisition Research Program
department of Defense Management - 93 -
Naval Postgraduate School

market demands for speed and capture customers by delivering working software drove this
pivot. The rise of lightweight software development methods such as Agile and the automation
software tools needed to build, integrate, test, and deploy continuously began the
DevOps/software factory concept. The DoD began to question whether it could take a page
from the private sector and refactor how software is developed and deployed to the customer
(warfighter) to meet the “speed to capability” demand signals to maintain the warfighter
advantage. The Defense Science Board has stated over the years that shifting to a modern
software process is not a technology issue but a process and culture question.

A self-evaluation of the software acquisition process in 2019 by the Under Secretary of
Defense for Acquisition and Sustainment (USD A&S) reinforced that the DoD is a performance-
based bureaucracy that focuses on time, schedule, and budget to evaluate the performance of
its programs. The DoD’s acquisition strategy was guided by the capability-based assessment
process, also known as JCIDS, to counter future threats to the national security mission. This
requirements-based process provided justification inputs into the budgeting process (PPBES),
which produces a current and future year budget forecast (5 years into the future). When
comparing the commercial marketplace and decisions that the private sector often makes on
software development capability investments to dominate competitors, it becomes evident that
there is a great divide between the two processes.

DoD Acquisition Guidance underwent a significant process change in 2020: the Adaptive
Acquisition Framework (AAF; DoDI 5000.02). The objective of this modification was to provide
the end user with prompt and cost-effective solutions that are efficient, appropriate, durable, and
environmentally sustainable. Following this release, the Software Acquisition Pathway (SWP;
DoDI 5000.87) further defined the purpose to facilitate rapid and iterative delivery of software
capability (e.g., software-intensive systems or software-intensive components or sub-systems)
to the user (Figure 2). The SWP Characteristics were similar to the commercial marketplace
where the user became the focus.

This pathway integrates modern software development practices such as Agile Software
Development, Development, Security, Operations, and Lean Practices. Small cross-functional
teams that include operational users, developmental and operational testers, software
developers, and cybersecurity experts leverage enterprise services to deliver software rapidly
and iteratively to meet the highest priority user needs. These mission-focused, government-
industry teams leverage automated tools for iterative development, builds, integration, testing,
production, certification, and deployment of capabilities to the operational environment. (Office
of the Under Secretary of Defense for Acquisition and Sustainment [OUSD(A&S)], 2020a)

The DoD defined this shift in software acquisition procedures as a rapid, iterative
approach to software development that reduces costs, technological obsolescence, and
acquisition risk. However, because many software acquisition programs involve either
applications or embedded software, there are differences in planning and execution timing. In
addition, to expedite speed to capability execution and get to quick wins, several steps required
by traditional capability acquisition programs were relaxed or eliminated. Unfortunately, the
PPBE funding process was unaffected by this acquisition initiative and still follows the cold war
era processes with little ability to flex based on emerging threats. The DoD’s move towards a
non-deterministic software architecture is rapidly growing in practice.

Acquisition Research Program
department of Defense Management - 94 -
Naval Postgraduate School

Figure 2. The Software Acquisition Pathway: Iterative Development of Application Software

Monolithic Architectures Have Inertia to Change
Most of our weapon systems’ offensive and defensive capabilities are software-

controlled, and the ability to respond to opportunities and threats requires software updates at
the tactical edge. The DoD built most of its warfighting software using a Monolithic Architecture.
Monolithic Architecture is a traditional software design approach that involves developing an
application as a single, self-contained unit. This architecture is characterized by tightly coupled
program components or functions, meaning they are highly dependent on each other and tightly
integrated into the overall application. This design approach makes developing, deploying, and
maintaining the software more manageable, as everything is contained within a single
codebase. It’s like building a large, complex building with all the rooms and floors
interconnected and dependent on each other.

The downside of this approach is that it can limit scalability and flexibility, as changes to
one component may affect the entire application, and it can be challenging to add new features
or scale the system as it grows in complexity. Monolithic Architecture requires all associated
components to be present for code execution or compilation and for the software to run.
Moreover, modifying a single program component may necessitate modifying other software
elements, leading to the entire application requiring recompilation and testing. Such a process
can consume a significant amount of time and hinder the agility and swiftness of software
development teams. An example of this problem is the delay in enhancements/updates to the
shipboard combat systems software (AEGIS/SSDS), which typically exceeds 6 years to get to
the warfighter and, by administrative procedure, never updated while deployed operationally
(PEO IWS X).

Modern Software Architecture Brings Speed to Delivery
The DevSecOps process (software factory) is the big buzzword in DoD software

acquisition. Looking at Figure 3, there is a continuous process of engagement with the
development team (software coders), security experts (helping the coders learn and verify best
practices), and the users (operators of the system). The development and operational
environments are closely related and connected through telemetry, enabling health and status
reporting with user feedback. Agile software coding principles and culture within the software
factory remain fundamental to the team’s success.

Acquisition Research Program
department of Defense Management - 95 -
Naval Postgraduate School

Figure 3. DevSecOps Distinct Lifecycle Phases and Philosophies

Most people can intuitively grasp the conceptual value of connecting software coders to
the system’s users, as this enables feedback and integrates security experts into the
DevSecOps process. However, the concepts of modern software architecture go far beyond the
figure of connecting rings. Understanding how a software factory can continuously deliver cyber-
secure software to the tactical edge is also connected to the “colors of money” discussion. The
DoD Chief Information Officer (CIO; 2021) has provided a DevSecOps Strategy Guide as a
starting reference to what the advantages of a software factory may bring.

The software factory is the “Dev” component of DevSecOps (Figure 4). It pertains to the
processes where software developers continuously integrate and test their code in a secure
cloud environment. The “pipelines” produce software applications of self-contained functionality,
also known as “containers.” Container applications are lightweight (<10 megabytes) and
bundled in a release package. Under the traditional acquisition approach, the software is
compiled into machine language and provided as a single monolithic package containing
multiple features, typically exceeding 10 gigabytes in size. Every time a change is made or
added to the software, the entire monolithic package has to be recompiled and re-installed. The
software factory differs substantially from the monolithic waterfall method because it does not
compile functionality into a single software package. Instead, each container application
executes specific functions upon receiving a request from an orchestrator and terminates
afterward.

Figure 4. Software Factory Construct

Acquisition Research Program
department of Defense Management - 96 -
Naval Postgraduate School

The software factory achieves modern architecture by breaking the traditional monolithic
into discrete domains and orchestrating containers to perform these domain services.
Microservice architecture is an architectural style that structures an application as a collection of
container services. In a rapidly changing environment where maintaining warfighting dominance
is crucial, the microservice architecture enables organizations to deliver large, complex
applications quickly, frequently, reliably, and sustainably. Figure 5 shows the conceptual
difference between a monolithic and microservice architecture. The key advantage of the
microservice architecture is the speed at which users can add/modify capability. Development
teams can rapidly deploy individual software components without redeploying the entire
application. The DevSecOps Software Factory follows a pipeline process to develop new
containerized software, which involves testing, integration, and release into the repository. The
size of the software matters, as bandwidth is often a limiting factor at the tactical edge or in a
contested spectral environment.

Figure 5. The Conceptual Difference Between Software Architectures

Acquisition Categories of Money Doom Software Factories?
Traditionally, acquisition programs have followed the same development pattern over the

last 40 years. Although there has been encouragement to tailor the acquisition pattern to reduce
wasted effort, pathways did not exhibit variances based on the product being developed until
the implementation of DoDI 5000.02 in 2020. The Major Capability Acquisition pathway is typical
of how appropriation categories of money are programmed into the budget. As the product
progresses through the milestones (MS A/B/C), funding is primarily for Research, Development,
Test, and Evaluation (RDT&E). Procurement funds are the dominating category spent after MS
C, and once fielded, the category shifts to Operations and Sustainment (Figure 6).
Unfortunately, the budgeting process (PPBES) sees all acquisition pathways progressing
through these funding categories.

Acquisition Research Program
department of Defense Management - 97 -
Naval Postgraduate School

Figure 6. Principle Acquisition Categories of Funding for MCA

The Software Acquisition Pathway is detailed in DoDI 5000.87 and illustrates what is
occurring during the two phases: planning and execution (Figure 7).

Figure 7. The Software Acquisition Pathway

Gone are the funding triggers for product procurement, operations and sustainment from the
software acquisition pathway, and in their place, an iterative capability development that is
never done. Executing a program following this pathway presents a PPBES dilemma on what
category of money is needed and when. The operational funds in the MCA pathway are
triggered upon capability deployment to users with specific task guidelines:

Types of expenses funded by O&M appropriations generally include DoD
civilian salaries, supplies and materials, maintenance of equipment, certain

Acquisition Research Program
department of Defense Management - 98 -
Naval Postgraduate School

equipment items, real property maintenance, rental of equipment and
facilities, food, clothing, and fuel. (Defense Acquisition University, 2023)

Funding category and timing decisions are usually based on performance improvement
or testing requirements, as illustrated in Figure 9. This flowchart is valuable for the MCA
pathway but has little relevance when executing continuous delivery in the Software Pathway. If
a new software container is developed that increases the fielded software system’s
performance, RDT&E is required using this flowchart. Procurement dollars are needed if a
software correction is made to a container and the system is in production. The challenge with
“colors of money” in software development lies in determining whether the release of the
minimum viable product marks the start of production or the point at which the system is in
service. Trying to fit the concept of “colors of money” into software projects is akin to fitting a
square peg in a round hole, which can lead to project delays. The reasons for specific
congressional guidance on how money is spent make sense only from an accountability
perspective. But because software is in continuous development (it is never “done”), colors of
money (besides RDT&E) tend to reduce the agility to obligate funds when reprogramming is
required. We need to create pathways for “bleaching” funds to smooth this process for long-term
programs (DIB, 2019).

Figure 9. Funds Management Platinum Card Decision Tree

Metrics on BA-8 Show Other Influencers
Congress established a pilot program in FY2021 to provide a single appropriation BA-8

(colorless money) to several software-intensive programs. This new appropriation category for
software capability delivery has no separation between RDT&E, production, and sustainment.
This initiative was a multi-year pilot to collect and analyze metrics to inform a final
recommendation to make this an enduring appropriation.

Congress required quarterly BA-8 metrics from the USD A&S. Their FY2021 report to
Congress stated that they did not consider BA-8 a silver bullet. Although BA-8 is expected to
address some critical challenges faced by programs adopting commercial software
development practices, it is not a comprehensive solution to all their problems. Metrics assist
leadership in comprehending the effectiveness of pilot programs implementing BA-8. The
metrics that OSD picked for the pilot programs in FY2021 are shown in Table 1. These metrics
are adapted from the Google DevOps Research and Assessment (DORA) team and are used
by DevOps teams to measure their performance and find out whether they are “low performers”
to “elite performers.”

Acquisition Research Program
department of Defense Management - 99 -
Naval Postgraduate School

Table 1. BA-8 Pilot Metrics Collected

The USD A&S acknowledged in the fourth quarterly report to Congress for FY2022 that

while there is compelling evidence of improvements provided by BA-8 for the pilot program, it is
primarily qualitative. Quantitative measures were utilized to measure the influence of BA-8
based on traditional commercial software factory metrics.

Product Delivery Lead time in a software factory (DevSecOps) measures how much time
has elapsed between committing code and deploying it to production, tracking the time spent on
implementing, testing, and delivering changes to the codebase. BA-8 positively influenced
product delivery lead time, indicating the ability to move quickly through the process. Product
delivery lead time, for example, has other high-influence items: total funding, developer staffing,
developer skill, development environment, test facilities, developmental and operational test
support, and system complexity, as seen in Table 2.

The USD A&S report for FY2022 states that numerous factors, not just BA-8, have an
equivalent or more significant impact on metric outcomes. Therefore, it was difficult to quantify
the effect of BA-8 in isolation precisely. Table 2 provides a comprehensive analysis of the
factors influencing software program activities by considering these additional variables.

Table 2. Software Factory “Other” Quantitative Factors Having Influence

Metrics, such as product development lead time and deployment frequency into

production, help teams understand their overall engineering performance. In addition, they

Acquisition Research Program
department of Defense Management - 100 -
Naval Postgraduate School

provide the software program with an objective way to measure and improve software delivery.
Metrics help DevSecOps teams quickly identify bottlenecks and inefficient processes in their
development pipeline and create a plan to improve their daily work (Software.com, 2023).
Several quantitative factors identified in the BA-8 Pilot play a crucial role in delivering high-
quality software to the user within the deadline and are of significant value beyond the BA-8
efforts.

Software Metrics That Add Value
Commercial Software teams use modern iterative software methods to emphasize

development using fixed cost and time, with flexible requirement estimates. Defining all of the
software requirements at the program’s start is impractical, as this is counter to agile software
non-deterministic development methodology. Current software cost estimation and reporting
processes and procedures in the DoD have proven to be time-consuming, highly inaccurate,
and time late. Metrics of Earned Value Management for software development cannot match the
continuous capability delivery and maintenance velocity of DevSecOps. Metrics that align with
the DevSecOps approach and offer continuous visibility into program progress are necessary.

The SWAP report recommends that projects develop metrics that measure value to the
user (or customer satisfaction), which involves close, ongoing communication with users. How
this metric of “user value” is calculated is undefined in the BA-8 Pilot. In the commercial sector,
many agile software teams use broader business indicators to gauge overall performance and
product quality. The software factory doesn’t directly own or collect data for these metrics since
they represent customer satisfaction, value delivery, and flexibility.

The measurement of cost and performance for software factories are automated within
the infrastructure tools and report continuous speed and cycle time, cybersecurity
vulnerabilities, code quality, and functionality to assess, manage, and justify terminating a
software program (if needed). In addition, software code performance metrics address issues
such as deployment rate and speed of delivery, response, and recovery from outages, and can
be automatically generated continuously.

Future Funding of Software Programs Uncertain
Congress did not authorize additional BA-8 pilots in FY2023 due to the perceived lack of

quantitative metrics from the USD A&S. All of the Senior Department Software Acquisition
Executives provided qualitative inputs for the BA-8 Pilot, Fourth FY2022 Quarterly Report to
Congress, and the Army’s comment on the value of BA-8 funding (OUSD A&S, 2022) was
particularly relevant to this paper.

Given the modern and ever-changing software environment, the legacy
funding model of RDT&E, procurement, and O&M makes it difficult to
effectively and efficiently acquire and develop software. With the Army’s
need to remain competitive and defeat near-peer adversaries, the Army
must be able to rapidly secure, enhance, and maintain software. Legacy
software development practices cannot keep up with the pace of change
required to address the ever-changing threat landscape. They also
establish clear lines between software development (new capabilities) and
software maintenance (cyber and software fixes) activities. This division of
activities aligned well with current funding models; development = RDT&E
and maintenance = O&M.
With the advancements of cloud computing, Agile software development,
and Development, Security, and Operations (DevSecOps), everything is

Acquisition Research Program
department of Defense Management - 101 -
Naval Postgraduate School

integrated and must operate at a rapid pace. These modern software
practices do not distinguish between software development and software
maintenance. The software is viewed as a product that is continuously
evolving. These practices involve adding capability, fixing software
problems, and cyber-securing software with a single team as part of a
single software delivery. This cultural and technological change removes
the line between software development and software sustainment, making
it challenging to fund those activities separately with different
appropriations. Without the use of BA-8, it will require a very cumbersome
and difficult process to identify exactly the number of hours each team
member spends on adding capability (RDT&E) and fixing problems
(sustainment – O&M).

From a qualitative perspective, the services agreed with the SWAP report view of the value of
colorless money. The understanding that software is no longer a monolithic delivery and that
capability can be delivered to the warfighter at the tactical edge in lightweight application
containers is a quantum jump forward. However, the genuine concern ultimately resides with the
funding needed for the software factory itself.

Maybe Treat Software Factories as an Enduring Service?
The DoD’s issues with various appropriation categories could be addressed by adopting

existing best practices in the private sector by establishing software factories as an enduring
service. Software Factories established per the DoD software modernization strategy of 2021
should combine Cloud-based computing and use an assembled set of software tools enabling
developers, users, and management to work together on a daily tempo to achieve delivery of a
minimum viable product. The software development continues until a minimum viable capability
is released into the user community. Funding for the software factory becomes either a time of
material or a level of effort contract expense for labor that ebbs and flows as the software
factory continues to add user-desired capabilities during the execution phase. In addition, the
software factory itself has expenses such as software tool licenses and government salaries. As
the number of features to be coded and delivered decreases over time, the software factory can
either start new tasking from another pillar program or reduce the workforce to keep a core
capability while the software is in user operation. Whether it is a new capability, fixing a
deficiency, or cyber vulnerability, it is colorless money.

Software factories provide significant value as an enduring service for software
development. By providing a consistent, standardized approach to software development,
software factories can help to increase productivity, improve collaboration and quality, reduce
risk, and provide ongoing support and maintenance for software applications. Additionally,
software factories can benefit individual developers, enabling them to work with new
technologies and tools and improve their skills over time. As software development becomes
increasingly complex and demanding, software factories may play an essential role in enabling
teams to work more efficiently and effectively and deliver high-quality software applications.

Concluding Thoughts
Pilot results are essential in confirming study assertions and making necessary

adjustments to achieve desired results. Congress and the DoD have been aware since the
Defense Science Board study of 1987 that monolithic waterfall acquisition of software takes too
long, is too expensive, and exposes warfighters to an unacceptable risk by delaying their access
to the software needed to ensure mission success. Software is responsible for most of the
capabilities in our weapon systems and applications that provide command, control, and

Acquisition Research Program
department of Defense Management - 102 -
Naval Postgraduate School

communications. The DoD realized a different “adaptive” acquisition process was needed to
speed technology and capability delivered to the warfighter. The USD A&S in 2020 provided the
framework leadership needs to drive change in software acquisition. By leveraging commercial
practices, experience, and tools, the DoD implemented the DevSecOps (Software Factory)
initiative to support software as an enduring and evolving capability that is continuously
improved throughout its lifecycle. Modifying statutes, regulations, and processes will not
accomplish the enduring result needed to prioritize speed and continuous capability delivery to
the warfighter. The color of money pilot (BA-8) and the measures of effectiveness have revealed
that other software factory influences, if addressed proactively, may have a positive synergistic
effect on delivery velocity.

The BA-8 Pilot Software-intensive programs picked all had one thing in common; none
were in receiving funding other than RDT&E appropriations. The ability of a software program to
estimate years in advance in PPBES exactly how much RDT&E, Procurement, and O&M dollars
are needed to support the software is an inexact art. Reprograming funding between
appropriations is non-trivial and highly time-consuming. A new threat that emerges to a fielded
system or an opportunity to exploit an enemy’s weakness may be lost in the bureaucracy of
money exchange. Bleached or colorless money in the hands of the software factory would allow
enhanced containerized applications to be developed, tested, and sent to the tactical edge in
days, if not hours.

Software is an enduring and evolving capability that must be supported and
continuously improved throughout its lifecycle. DoD’s acquisition process and
culture need to be streamlined for effective delivery and oversight of multiple types
of software-enabled systems, at scale, and at the speed of relevance. Optimizing
for software is the path forward. (DIB, 2019)

References
Defense Acquisition University. (2023, March). Operations and maintenance (O&M) funds.

https://www.dau.edu/acquipedia/pages/ArticleContent.aspx?itemid=339
Defense Innovation Board. (2019, May). Software is never done: Refactoring the acquisition code for

competitive advantage. Department of Defense.
https://media.defense.gov/2019/Mar/14/2002101480/-1/-1/0/DIB-SWAP_STUDY_REPORT.PDF

Department of Defense Chief Information Officer. (2021, March). Department of Defense enterprise
DevSecOps strategy guide. https://dl.dod.cyber.mil/wp-
content/uploads/devsecops/pdf/DoDEnterpriseDevSecOpsStrategyGuide.pdf

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2020a, January 23).
Operation of the adaptive acquisition framework (DoD Instruction 5000.02). Department of
Defense.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002p.pdf?ver=2020-01-
23-144114-093

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2020b, October 2). Operation
of the software adaptive acquisition pathway (DoD Instruction 5000.87). Department of Defense.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj4v_
LgN1JxpB_dpA%3D%3D

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2022, November). BA-8 pilot,
fourth FY22 quarterly report to Congress.

Program Executive Office Integrated Warfare Systems X. (2022, July 28). ICS overview brief.
Software.com. (2023, March). Key engineering metrics in software delivery.

https://www.software.com/devops-guides/engineering-metrics

https://www.dau.edu/acquipedia/pages/ArticleContent.aspx?itemid=339
https://media.defense.gov/2019/Mar/14/2002101480/-1/-1/0/DIB-SWAP_STUDY_REPORT.PDF
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/DoDEnterpriseDevSecOpsStrategyGuide.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/DoDEnterpriseDevSecOpsStrategyGuide.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002p.pdf?ver=2020-01-23-144114-093
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002p.pdf?ver=2020-01-23-144114-093
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj4v_LgN1JxpB_dpA%3D%3D
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj4v_LgN1JxpB_dpA%3D%3D
https://www.software.com/devops-guides/engineering-metrics

Acquisition Research Program
Department of Defense Management
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Executive Summary
	Delivery Speed is not a Characteristic of the Deterministic Waterfall Approach
	Modern Software Development Enables Speed
	Monolithic Architectures Have Inertia to Change
	Modern Software Architecture Brings Speed to Delivery
	Acquisition Categories of Money Doom Software Factories?
	Metrics on BA-8 Show Other Influencers
	Software Metrics That Add Value
	Future Funding of Software Programs Uncertain
	Maybe Treat Software Factories as an Enduring Service?
	Concluding Thoughts
	References

