
Test Reduction in Open Architecture via
Dependency Analysis

Valdis Berzins,
Peter Lim and Mohsen Ben Kahia

Naval Postgraduate School

1

Naval Postgraduate School

U.S. Navy Open Architecture

• A multi-faceted strategy for developing joint
interoperable systems that adapt and exploitinteroperable systems that adapt and exploit
open system design principles and architectures

• OA Principles, processes, and best practices:
– Provide more opportunities for completion and innovation
– Rapidly field affordable, interoperable systems
– Minimize total ownership cost

Maximize total system performance– Maximize total system performance
– Field systems that are easily developed and upgradable
– Achieve component software reuse

2

Problem and Proposed Solution

• Traditional U S Navy Software T&E practices• Traditional U.S. Navy Software T&E practices
will limit many benefits of OA
– It will be virtually impossible to field frequent and rapid

configuration changes

• New Testing Technologies Processes &• New Testing Technologies, Processes &
Policies are Needed
– Safely Reduce Amount of Testing Required
– Transition from Manual Testing to Profile-Based

Automated Statistical Testing (Berzins, 2010)

3

Test Avoidance Approach

4

Program Slicing

• Program slicing is a kind of automated
d d l idependency analysis
– Same slice implies same behavior
– Can be computed for large programs– Can be computed for large programs
– Depends on the source code, language specific

• Slicing tools must handle the full programming
language correctly

5

Test Reduction Process
• Check that the slice of each service is the same in

both versions (automated)
Ch k th t th i t d kl d f h• Check that the requirements and workload of each
service are the same in both versions

• Must recheck timing and resource constraintsMust recheck timing and resource constraints
• Must certify absence of memory corrupting bugs

– Tools exist: Valgrind, Insure++, Coverity, etc.
• Must ensure absence of runtime code modifications

due to cyber attacks
Cannot be detected by testing because modifications– Cannot be detected by testing because modifications
are not present in test loads

– Need runtime checking, can be done using
t hi i t (B i 2009)cryptographic signatures (Berzins, 2009)

6

The Current Problem

T E l t th S it bilit fTo Evaluate the Suitability of
COTS Slicing Toolsg

for Supporting Safe Test Reduction

7

Current Research Objectives

1. To provide criteria for evaluating and applying
program slicing tools to safely reduce re-testing
of SW components in the new SW releases.

2. To conduct experimental assessments and
compare the suitability of the available COTScompare the suitability of the available COTS
program slicing tools for safe reduction of
testing effort.g

3. To identify the most adequate slicing tools
among the evaluated ones.

4. To determine the suitability of available COTS
program slicing tools for practical SW test
reduction

8

reduction.

Requirements for Slicing Tools

1. Must satisfy the behavior invariance property:
• If the original program terminates cleanly• If the original program terminates cleanly,

the slices must terminate cleanly and
produce the same result as the originalp g
program for all observable values specified
by the slicing criterion.

2 All li t b t bl if th i i l2. All slices must be executable if the original
program is.
• Programs that fail to terminate or terminatePrograms that fail to terminate or terminate

abnormally are considered to be executable
in our context.

9

Language features that present Slicing
Challengesg

• Object Oriented programs
- Classes and their instances
- Objects
- Inheritance
- Polymorphism- Polymorphism
- Dynamic binding

• Pointers
Aliasing safe approximations are necessary

• Concurrent programs
- Inter-process synchronization among multiple control flows
- Inter-process communication among multiple data flows

10

• External Calls

Dependencies Relevant to Slicing

• Data Dependencies
• Control DependenciesControl Dependencies
• Parallel Dependencies

– Selection Dependenciesp
– Synchronization Dependencies
– Internal-Communication Dependencies

• External Dependencies
– System calls

External Libraries– External Libraries
– Databases
– External application level servicespp

11

Examples of Dependencies

1 int bar(int k) {
2 int v;

1 int foo(int k) {
2 Pointer v, u;

3 if (k == 0)
4 v = 1;
5 else
6 2

3 v = new Pointer();
4 u = v;
5 if (k == 0)
6 16 v = 2;

7 return v;
8 }

6 v.o = 1;
7 else
8 v.o = 2;
9 u o = 4;9 u.o 4;
10 return v.o;
11 }Legend

Control Dependencyp y
Data Dependency
Pointer Aliasing Dependency

12

1 class Account {
2 i t fl t t 0

Examples of Parallel dependencies
28

2 private float amount = 0;
3
4 public synchronized float withdraw(float x) {
5 while (amount − x < 0) {
6 try {wait ();} catch (Exception e) { }

29 class Spouse implements Runnable {
30 private Account save;
31 private float amount;
32 public Spouse(Account account, float a) {
33 save = account;

7 }
8 amount = amount − x;
9 return amount;
10 }
11 public synchronized float deposit(float x) {

;
34 amount = a;}
35 public void run() {
36 save.withdraw(amount);
37 (new Account()).deposit(10);
38 }

12 amount = amount + x;
13 notifyAll ();
14 return amount;
15 }
16 }

38 }
39 }

40
41 class Home {

17
18 class Worker implements Runnable {
19 private Account save;
20 private float amount;
21 public Worker(Account account, float a) {

41 class Home {
42 public static void main(String[] s) {
43 Account savings = new Account();
44 Runnable worker = new Worker(savings, 90);
45 Runnable spouse = new Spouse(savings, 10);
46 new Thread(worker) start();p (,) {

22 save = account;
23 amount = a;}
24 public void run() {
25 save.deposit(amount);
26 }

46 new Thread(worker).start();
47 new Thread(spouse).start();
48 }
49 }

26 }
27 }

13

External dependencies

System
Safety and Soundness

y
under

analysis

Other
systems orsystems or
subsystems

Disregarding External dependencies may violate the
behavior invariance property of the slice

14

behavior invariance property of the slice

External dependencies cont.

System
under Efficiency and Cost Reduction

analysis

Other systems y
or subsystems

The inaccuracy of evaluating external dependencies may
result in overestimated slicesresult in overestimated slices.

15

Adequacy Criteria For Slicing Tools

• Programming languages handled
• Behavior of the computed slices
• Size of the computed slicesSize of the computed slices
• Pointers and parameter passing
• Capability for slicer output or slice• Capability for slicer output or slice

comparison
• Capability for modeling external• Capability for modeling external

components

16

Slicing Example
Resolution of slices computed by Kaveri
1 public class Test {
2 bli t ti id i (St i []) {

1 public class Test {
2 bli t ti id i (St i []) {2 public static void main(String[] args) {

3 point p1 = new point();
4 point p2 = new point();
5 p1.a = 1;
6 p2.a = 2; //should not be relevant
7 System.out.println("irrelevant1");

2 public static void main(String[] args) {
3 point p1 = new point();
4 point p2 = p1;
5 p1.a = 1;
6 p2.a = 2; //should be relevant
7 System.out.println("irrelevant1");

Difference

8 System.out.println("P1: a= "+p1.a);
9 System.out.println("irrelevant2");
10 System.out.println("P2: a= "+p2.a);
11 }
12 }

8 System.out.println("P1: a= "+p1.a);
9 System.out.println("irrelevant2");
10 System.out.println("P2: a= "+p2.a);
11 }
12 }

Legend

Using slicing criterion {8, p1.a} for both (a) and (b)

(a) (b)

Legend

Partial Relevant Slice

Relevant Slice

17

Relevant Slice

Assessment Scope

• Plan to use the following slicing tools in our
evaluation:evaluation:

a) Indus’s static slicing tool for Java, developed by
Kansas State University and delivered as an Eclipse
l i d h d K iplug-in under the product name Kaveri.

b) GrammaTech’s CodeSurfer static slicing tool for
C/C++, formerly developed by Wisconsin Slicing, y p y g
Project.

c) Jslice static and dynamic slicing tool for Java,
developed by the National University of Singaporedeveloped by the National University of Singapore.

18

Assessment Scope

• Academic slicing tools developed for
research purposes that lack documentationresearch purposes that lack documentation
and support may not be evaluated:

a) Unravel static slicing tool for C, a prototype tool) g , p yp
contracted to the NIST by the US Nuclear Regulatory
Commission and the National Communications
System. (dated documentation)y ()

b) Oberon Slicing Tool (OST) for Oberon system,
developed by the Johannes Kepler University.
(Oberon is a modern version of Pascal and not widely(Oberon is a modern version of Pascal and not widely
use in the defense industry)

19

Project Status

• The team is currently testing some of the
tools and will provide a comprehensive testtools and will provide a comprehensive test
driven adequacy criteria and test cases in a
later publication.p

• Experimental assessment is currently in
progress and is not yet complete.

20

Conclusion
• For systems with long lifetimes, regression

testing is a major cost component in each
new release including periodic technologynew release, including periodic technology
upgrades.

• Program Slicing has the potential to reduceProgram Slicing has the potential to reduce
the time and cost of the regression testing
that is necessary to ensure the safety andy y
effectiveness of each new release.

• Preliminary evaluation criteria for slicing
ftools in the context of their ability to achieve

safe reduction of regression testing have
been developed

21

been developed.

Next Steps

• If the result from the tool assessment is
positive:
a) Use the chosen slicing tools to identify possible

reductions in regression testing for part of a real
system.y

b) Conduct a pilot study to check the safety and
effectiveness of the theoretically proposed
approachapproach.

• If the result from the tool assessment is not
positive:p
a) Identify the candidate tools that are closest to meet

the requirements for supporting safe regression test
reduction and their current shortcomings

22

reduction and their current shortcomings.

Thank youThank you

