
Acquisition Research Program
Department of defense management
Naval Postgraduate School

NPS-AM-24-193

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Software Improvement Options for the H-1 Program

June 2024

Maj Joshua M. Westlund, USMC
Thesis Advisors: Jeffrey R. Dunlap, Lecturer
 Dr. Robert F. Mortlock, Professor

Department of Defense Management

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943

 Disclaimer: The views expressed are those of the author(s) and do not reflect the official policy or
position of the Naval Postgraduate School, US Navy, Department of Defense, or the US government.

Acquisition Research Program
Department of defense management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program of the Department of Defense Management at the Naval Postgraduate
School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact the Acquisition Research Program (ARP)
via email, arp@nps.edu or at 831-656-3793.

Acquisition Research Program
department of Defense Management - i -
Naval Postgraduate School

ABSTRACT

The AH-1Z and UH-1Y helicopters’ software has long been called “spaghetti

code” by those in the program office and developmental test squadron. For the first 15

years of the current models’ service, years would go by between software updates due to

the time required to code and test the software. Recent years have seen an improvement

in software delivery timelines, but errors, rework, and delays still occur. A major factor in

this issue is the software architecture: it is a large, unstructured monolith. Two types of

upgrade options, modular monolith and microservices, are analyzed to determine a

suitable alternative to the current software. The modular monolith architecture proves to

be the most suitable based on its lower cost, higher performance, and faster delivery

capabilities.

Acquisition Research Program
department of Defense Management - ii -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - iii -
Naval Postgraduate School

ABOUT THE AUTHOR

Maj Joshua “Chucky” Westlund graduated from the U.S. Naval Academy in

2011 with a degree in Oceanography. After The Basic School and earning his wings of

gold at flight school, Maj Westlund served as a UH-1Y pilot with HMLA-167 in New

River, NC, and HMLAT-303 at Camp Pendleton, CA. He is currently serving as the

Assistant Program Manager for Systems Engineering at PMA-276 at Patuxent River,

MD. He is married and has one child.

Acquisition Research Program
department of Defense Management - iv -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - v -
Naval Postgraduate School

ACKNOWLEDGMENTS

A huge thanks to my wife, Meghan, for all the support during this program. I

would not have started this academic journey without her nudging me to apply, and I

certainly wouldn’t have finished without her support.

Many thanks to all those that helped me find the pubs and other data: Jen, Trent,

John, Ben, Dennis, Beka, Jeremy, “Rizzo,” “Hodor,” “Beaker,” “Buzz,” and “Chief.”

Thanks to my advisors, other professors, and classmates for an interesting and

challenging two years.

Acquisition Research Program
department of Defense Management - vi -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - vii -
Naval Postgraduate School

NPS-AM-24-193

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Software Improvement Options for the H-1 Program

June 2024

Maj Joshua M. Westlund, USMC
Thesis Advisors: Jeffrey R. Dunlap, Lecturer
 Dr. Robert F. Mortlock, Professor

Department of Defense Management

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943

 Disclaimer: The views expressed are those of the author(s) and do not reflect the official policy or
position of the Naval Postgraduate School, US Navy, Department of Defense, or the US government.

Acquisition Research Program
department of Defense Management - viii -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - ix -
Naval Postgraduate School

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. RESEARCH QUESTIONS .. 1
B. METHODOLOGY ... 2
C. LIMITATIONS AND SCOPE .. 3
D. ORGANIZATION OF PROJECT .. 4

II. SOFTWARE DEVELOPMENT LITERATURE REVIEW 5

A. THE SOFTWARE ACQUISITION PATHWAY 5
B. SOFTWARE ARCHITECTURE.. 8
C. MONOLITHS ... 11
D. DISTRIBUTED ARCHITECTURE ... 12
E. SUMMARY .. 12

III. AIRCRAFT AND SOFTWARE BACKGROUND ... 15

A. AIRCRAFT HISTORY AND MISSON ... 15
B. SOFTWARE HISTORY AND ISSUES ... 19
C. SUMMARY .. 21

IV. ANALYSIS ... 23

A. AGILITY .. 23
B. COST .. 24
C. DEPLOYABILITY ... 26
D. EXTENSIBILITY ... 26
E. FAULT TOLERANCE AND RELIABILITY ... 26
F. PERFORMANCE ... 27
G. SECURITY ... 27
H. SIMPLICITY .. 28
I. TESTABILITY ... 28
J. ANALYSIS SUMMARY ... 29
K. DECISION MATRIX ... 29
L. SENSITIVITY ANALYSIS ... 31
M. CONCLUSION ... 31

V. SUMMARY AND RECOMMENDATIONS... 33

A. RESEARCH CONCLUSIONS ... 33

Acquisition Research Program
department of Defense Management - x -
Naval Postgraduate School

B. H-1 PATH FORWARD RECOMMENDATION AND FOLLOW-
ON RESEARCH ... 34

C. RECOMMENDATIONS FOR FUTURE RESEARCH AND
PLATFORMS ... 34

LIST OF REFERENCES .. 37

Acquisition Research Program
department of Defense Management - xi -
Naval Postgraduate School

LIST OF FIGURES

Figure 1. Adaptive Acquisition Framework. Adapted from OUSD(A&S,
2022). .. 6

Figure 2. Software Acquisition Pathway. Source: OUSD(A&S, 2020). 7

Figure 3. Comparison of Waterfall and Agile Development Processes. Source:
Government Accountability Office (GAO, 2023). 8

Figure 4. Software Design Relationships. Adapted from Richards (2022). 9

Figure 5. Monolithic Architectural Style Example. Source: Richards (2022). 10

Figure 6. Distributed Architectural Style Example. Source: Richards (2022). 10

Figure 7. A Vietnam-Era UH-1E. Source: Collings Foundation (n.d.). 16

Figure 8. A Vietnam-Era AH-1G. Source: U.S. Army (n.d.). 16

Figure 9. A UH-1Y Firing a Rocket. Source: Bell Textron Inc. (n.d.b). 17

Figure 10. An AH-1Z in Flight. Source: Bell Textron Inc. (n.d.a). 17

Figure 11. Simplified Visualization of Spaghetti Code. Source: PC Magazine
(n.d.e). ... 20

Acquisition Research Program
department of Defense Management - xii -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - xiii -
Naval Postgraduate School

LIST OF TABLES

Table 1. Software Version History.. ... 18

Table 2. Qualitative analysis summary of software architectures 29

Table 3. H-1 Software Architecture Decision Matrix (unweighted scores
only) .. 30

Table 4. H-1 Software Architecture Decision Matrix with weighted ranking 30

Table 5. Decision matrix with microservices as tied for best score 31

Table 6. Decision matrix with current architecture as best score 31

Acquisition Research Program
department of Defense Management - xiv -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - xv -
Naval Postgraduate School

LIST OF ACRONYMS AND ABBREVIATIONS

AAF Adaptive Acquisition Framework

CI/CD continuous integration, continuous delivery

DIB Defense Innovation Board

DOD Department of Defense

DODI Department of Defense Instruction

DON Department of the Navy

FY Fiscal Year

HMLA Light Attack Helicopter Squadron

MAGTF Marine Air-Ground Task Force

MOSA modular open systems approach

NAVAIR Naval Air Systems Command

NDAA National Defense Authorization Act

OUSD (A&S) Office of the Under Secretary of Defense for Acquisition and
Sustainment

PMA Program Management, Air

PMA-276 Light Attack Helicopter Program

PMI Project Management Institute

USMC United States Marine Corps

Acquisition Research Program
department of Defense Management - xvi -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - 1 -
Naval Postgraduate School

I. INTRODUCTION

The AH-1Z Viper and UH-1Y Venom, collectively referred to as H-1s, are multi-

mission helicopter platforms for the United States Marine Corps (USMC) that make up

Light Attack Helicopter Squadrons (HMLA; U.S. Navy, 2021). The mission computer

software in H-1 aircraft is considered by many personnel in the Light Attack Helicopter

Program Office (PMA-276) and users (including the author) as slow to update, time-

consuming and expensive to test, and is often error-prone upon deployment (Department

of the Navy [DON], 2022a). A primary source of these issues lies in the software

architecture (Tran & Schneider, 2024). The complex nature of the software code means

that programmers have more difficulty bringing in new code without breaking existing

proficiency (Tran & Schneider, 2024). Because of the ease with which errors can work

into the software, everything the mission computer interacts with requires extensive

testing, extending an already lengthy timeline of getting capability upgrades to the H-1

fleet.

For over a decade, industry best practices have been to avoid software code and

architecture similar to that found in the H-1, preferring to have groupings of software—

be they in a monolith or distributed architecture—to accomplish individual tasks that

communicate with one another in a controlled manner (Richards, 2022). Instead, the

software in the H-1 mission computer is what Foote and Yoder (1997) would call “a big

ball of mud” (p. 1); that is to say, the software code has grown large and tangled, making

it hard to work with (Tran & Schneider, 2024). PMA-276 urgently needs options to

improve the H-1 software to decrease cost, speed up development and testing, and

ultimately deploy more valuable features to the fleet.

A. RESEARCH QUESTIONS

The primary question of this research is, What is the best option for upgrading the

H-1 mission computer software to better align with current software practices, decrease

cost and time to test, and increase capability and speed to the fleet? The primary question

covers the type of architecture to use and how to transition from the current mission

computer architectural pattern to a new architecture.

Acquisition Research Program
department of Defense Management - 2 -
Naval Postgraduate School

Secondary questions for research include:

• How long might it take to upgrade the software?
• What is a fair estimate of the cost for a contractor to conduct the upgrade?
• Would hiring an outside software architect and/or consultant to oversee

the transition benefit the program office?
• How might the program office maximize utility to the fleet while

minimizing cost during the transition?

B. METHODOLOGY

This capstone uses qualitative analysis to determine which software architecture

and transition methods are most suitable for use in the H-1. The literature review presents

various types of architecture as a baseline, and the analysis chapter delves into the H-1’s

software to determine the best fit. As an infinite number of software configuration

options are available, this study presents and compares common types in use.

Various attributes are used to assess and analyze software and software

architecture. The following is a list of the primary attributes used for this research and

their definitions within the context of software engineering:

• agility: a broad term for the ease of responding to or implementing
change; it is comprised of more measurable metrics such as testability and
deployability (Ford et al., 2022).

• cost: relative expense of developing or implementing change to a system.
• deployability: the ease with which a system can be delivered and

installed; it can also be referred to as implementation (PC Magazine,
n.d.a).

• extensibility: “Capable of being expanded or customized” (PC Magazine,
n.d.b).

• fault tolerance: the ability for the system to continue to operate if an error
is encountered (Richards, 2022). A system with low fault tolerance will
fail completely if an error is encountered; a system with high tolerance
may continue to conduct other processes if a fault is encountered
(Richards, 2022).

• performance: the speed of a system, measured in the time required to
conduct a task (Shanthi, 2018).

• reliability: how likely a system will conduct the functions that it is meant
to or has been asked to perform (PC Magazine, n.d.c). Measures of this
include available time, the probability of failure on demand (how often a
system will fail when asked to do a function), rate of occurrence of failure,

Acquisition Research Program
department of Defense Management - 3 -
Naval Postgraduate School

and mean time to failure (average time between failure events; PC
Magazine, n.d.c).

• security: how safe the system is from attack (PC Magazine, n.d.d). The
security of a computer system incorporates who or what has access,
authenticating access attempts, encrypting data, protection from malware
or spyware, and data backup and recovery (PC Magazine, n.d.d).

• simplicity: relative ease to initially create and deploy a system.
• testability: how simple it is to test a system and how complete such a test

is (Ford et al., 2022).
The scope of this research will not look to prove or test the technical accuracy of

the references’ assessments of the various software architectures, but rather use what is

found in the literature review as a baseline to analyze the H-1 software and recommend

an upgrade strategy. Finally, the analysis is based on the current mission computer used

in the aircraft. The mission computers have recently been upgraded and any will likely be

in use for several years (DON, 2022a). The analysis is based on this hardware constraint.

C. LIMITATIONS AND SCOPE

In researching this topic, much of the published information is unspecific, as

companies wish to limit views into their proprietary software. The architectures

mentioned in most articles and books are either large and meant for multiple servers or

for consumer goods such as smartphones, not computers in an aircraft. The focus of this

capstone research project is on a relatively small computer in an aircraft vice a network

of servers across the globe to connect business and their customers. It bears closer

resemblance to the needs of a smartphone but also requires other considerations for

safety, inputs, and testing. While the principles of software architecture are the same

regardless of the size of the system, there may be different challenges not mentioned in

most research for the niche application of aircraft software. The literature generally uses

theoretical ideas, best practices, and generalized terms. As there is no one-size-fits-all

approach, the best software for the H-1 program may ultimately differ from the ideal

envisioned by the current literature. Further, as software is ever-evolving, options may

expand in the coming years and necessitate further changes.

The scope of this capstone limits the prospective choices to the most common and

viable options. As previously mentioned, there are infinite options for coding software;

Acquisition Research Program
department of Defense Management - 4 -
Naval Postgraduate School

thus, limiting the potential choices was deemed necessary. Future readers should ensure

that new methodologies are explored for their own programs, as software engineering is a

rapidly evolving field.

This capstone research is meant to provide a qualitative and programmatic

perspective on software architecture decisions. Some technical details and background

are presented to help readers understand software architecture, though not at a level of

detail sufficient to make one an expert in how to structure software. Recommendations

are based on the qualitative information found in current research and the analysis of the

H-1 software.

D. ORGANIZATION OF PROJECT

This capstone contains the following chapters:

• Chapter II: Software Development Literature Review
• Chapter III: Aircraft and Software Background
• Chapter IV: Analysis
• Chapter V: Summary and Recommendations
Chapter II summarizes the software acquisition pathway and software architecture

pattern theory, and gives examples of some patterns and their strengths and weaknesses.

Chapter III covers information on the AH-1Z and UH-1Y aircraft, their history,

mission, and historical software challenges.

Chapter IV presents the data and analysis. The H-1 software and procurement

process is qualitatively analyzed using variables such as agility, testability, and reliability.

Chapter V summarizes the data presented, conclusions, and recommendations for

the H-1 program and follow-on research.

Acquisition Research Program
department of Defense Management - 5 -
Naval Postgraduate School

II. SOFTWARE DEVELOPMENT LITERATURE REVIEW

This chapter introduces software architecture fundamentals. An overview of two

major types of architecture and some specific styles are presented, including the strengths

and weaknesses of the styles. The overviews are not meant to delve deeply into the

technical details, rather to give a sufficient understanding of software architecture to help

analyze the current H-1 system and potential future courses of action.

A. THE SOFTWARE ACQUISITION PATHWAY

As part of the Fiscal Year (FY) 2018 National Defense Authorization Act

(NDAA), the Defense Innovation Board (DIB) was tasked with investigating ways to

improve software development and acquisition (Defense Innovation Board [DIB], n.d.).

One of the DIB’s recommendations was to create a software acquisition pathway (DIB,

2019). In January 2020, Department of Defense Instruction (DODI) 5000.02, Operation

of the Adaptive Acquisition Framework (AAF), introduced the software acquisition

pathway (Office of the Under Secretary of Defense for Acquisition and Sustainment

[OUSD(A&S)], 2022). Figure 1 shows the AAF. This new pathway “establishe[d] policy,

assign[ed] responsibilities, and prescribe[d] procedures for the establishment of software

acquisition pathways to provide for the efficient and effective acquisition, development,

integration, and timely delivery of secure software” (OUSD(A&S), 2020, cover page).

Acquisition Research Program
department of Defense Management - 6 -
Naval Postgraduate School

Figure 1. Adaptive Acquisition Framework.

Adapted from OUSD(A&S, 2022).

DODI 5000.87, Operation of the Software Acquisition Pathway, breaks the new

software acquisition pathway into two phases: planning and execution (OUSD[A&S],

2020). In the planning phase, the instruction mandates that programs using the software

acquisition pathway must include end users often throughout the life cycle of the project,

test and evaluate the software continuously, and deliver a product on an annual basis,

with the first delivery due 1 year after beginning a software acquisition pathway program.

It also recommends using architecture patterns that enable a modular open system

approach (MOSA) and utilizing flexible and modular contracts to maximize agility and

responsiveness. In the execution phase, DODI 5000.87 recommends using modern

software development practices such as continuous integration and continuous delivery

(CI/CD), automated testing, and frequent user feedback (OUSD[A&S], 2020). The

instruction allows programs using another type of acquisition pathway to also use the

software acquisition pathway for embedded software as long as the acquisition strategies

are aligned and integrated into one another: schedules for testing, evaluation, and fleet

release should be coordinated to minimize cost and time and maximize capability to the

warfighter.

Acquisition Research Program
department of Defense Management - 7 -
Naval Postgraduate School

As stated, DODI 5000.87 mandates an iterative approach to software acquisition

(OUSD[A&S], 2020). This shift in methodology is one of the biggest differences

between the other pathways of the AAF and the software path. With the other pathways,

especially the Major Capability Acquisition pathway used for the development of major

development acquisition programs with extensive hardware, the primary historical

method of acquisition is the predictive method, also known as traditional or waterfall

(Project Management Institute [PMI], 2021). In the predictive method, requirements are

established during the planning phase, and then during the execution phase, the contractor

works on the project with minimal (and highly vetted) changes (PMI, 2021). With an

adaptive, iterative, or Agile strategy, the goal is to enable the development team to

rapidly change in response to user needs (PMI, 2021). In the Operation of the Software

Acquisition Pathway, programs are mandated away from the waterfall method to an

iterative methodology (OUSD[A&S], 2020). Figure 2 shows a simplified version of the

software pathway; note the emphasis on iteration loops and consistent delivery of

software to the end user. Figure 3 shows a comparison between the waterfall and Agile

methods.

Figure 2. Software Acquisition Pathway. Source: OUSD(A&S, 2020).

Acquisition Research Program
department of Defense Management - 8 -
Naval Postgraduate School

Figure 3. Comparison of Waterfall and Agile Development Processes.

Source: Government Accountability Office (GAO, 2023).

B. SOFTWARE ARCHITECTURE

When building anything, it is usually important to have a plan. For the software

engineer, this plan is software architecture. Software architecture can be understood as

the “blueprint” of a system and its subsystems (Dhaduk, 2020). Just as a structural

architect may use different styles to design a building, such as Gothic, mid-century

modern, or Victorian architecture, a software engineer also has choices in how to

structure computer software. These choices in software architecture can significantly

Acquisition Research Program
department of Defense Management - 9 -
Naval Postgraduate School

impact the software’s characteristics, such as performance, scalability, testability, and

maintainability (Milić & Makajić-Nikolić, 2022; Richards, 2022).

The software blueprint can be broken down into several nesting layers:

architectural style, architectural pattern, and design pattern (Richards, 2022). As Figure 4

shows, several design patterns may be used within any architectural pattern, and multiple

architectural patterns may be used within an architectural style. In the literature, these

names are often used interchangeably. This study focuses on architectural style; all use of

“software architecture” refers to the style unless otherwise noted.

Figure 4. Software Design Relationships. Adapted from Richards (2022).

There are two main categories of software architectural styles: monolith and

distributed (Richards, 2022). Monoliths are single repositories of code that conduct all

operations required of the software (Semaphore, 2022)—see Figure 5 for a visual

representation (Semaphore, 2022). In contrast, distributed styles are made up of multiple

“boxes” of code(Richards, 2022)—see Figure 6.

Acquisition Research Program
department of Defense Management - 10 -
Naval Postgraduate School

Figure 5. Monolithic Architectural Style Example. Source: Richards (2022).

Figure 6. Distributed Architectural Style Example. Source: Richards (2022).

Acquisition Research Program
department of Defense Management - 11 -
Naval Postgraduate School

C. MONOLITHS

A monolith’s strength lies in its simplicity (Richards, 2022). As Richards noted,

they are generally easier and less expensive to create and can be delivered to the end user

faster than other architectural styles. Issues may arise as the monolith grows. If not

carefully handled, a monolith can become what can be called spaghetti code or a “big ball

of mud” (Foote & Yoder, 1997, p. 2). As Foote and Yoder detailed, this growth can

happen haphazardly or due to hastily initiated fixes to the code. What may have started

out as a simple, well-structured code base—or not, as it may have never been neatly

ordered—can become fouled with circular logic and repeated information (Foote &

Yoder, 1997). An unstructured, large repository of code can make it difficult to maintain

and update, as any changes in one portion of the code may have unintended consequences

elsewhere (Su & Li, 2024). Some examples of monoliths include layered, microkernel,

and modular monoliths (Richards, 2022).

Layered architecture, sometimes called n-tier, is one of the most common

software architectures and has been around for many years (Richards, 2022). Normally, a

layered architecture has four layers, though the number of layers can change based on the

use case (Richards, 2022). The layers are usually partitioned by technical domain, such as

presentation logic, business logic, and persistence logic and each has a specific job

(Richards, 2022). When a user requests information, the request goes to the first layer; if

the information is there, it is sent back to the user for display (Richards, 2022). If not, the

request is sent down a layer; if the information is there, it is sent back up to the previous

layer and then to the user for display (Richards, 2022). This can happen all the way down

through as many layers as the system contains (Richards, 2022).

Layered architecture is usually relatively easy to build, quick to deploy, and

inexpensive (Richards, 2022). Drawbacks of this type of architecture include difficulty in

updating the code, low fault tolerance, and, as with all monoliths, a need to redeploy the

entire application anytime anything is changed within the code (Richards, 2022). As with

all monoliths, any code change to one portion means the entire application must be tested.

While it is generally a simple task to test the layered architecture, it can be a laborious

and time-consuming process.

Acquisition Research Program
department of Defense Management - 12 -
Naval Postgraduate School

The modular monolith has become popular relatively recently, though the

monolith and modular architecture are both much older (Su & Li, 2024). It can be a

bridge between a monolith and microservices architectures, combining the monolith’s

simplicity with the strengths of microservices (Su & Li, 2024). While still deploying as a

monolith, the modular monolith seeks to break up the code within an application into

smaller parts for work (Su & Li, 2024). The parts are separated within the code and

communicate via strict interfaces (Semaphore, 2022). Multiple studies, books, articles,

and coder blogs recommend updating a monolith to a modular monolith prior to updating

further to microservices; once the architecture becomes a modular monolith, further

change to microservices may be unnecessary (Fernandez, 2023; Semaphore, 2022; Su &

Li, 2024). Modular monoliths maintain the relative ease of development of a standard

monolith while being easier to maintain and update (Smith, 2024). Drawbacks of the

modular monolith include a requirement to use only one coding language and deploying

as one unit vice the “plug-and-play” ability of microservices (Gupta, 2020).

D. DISTRIBUTED ARCHITECTURE

Distributed architectures are made up of multiple units, often called services, to

accomplish their tasks (Richards, 2022). Although they may be more difficult and

expensive to develop initially, they are more easily updated and scaled and have greater

fault tolerance (Richards, 2022). One of the most common distributed architectures is

microservices. In a microservices architecture, the software is broken down into

individual services that communicate via strict instructions (application programming

interface [API]; Semaphore, 2022). As with all distributed architectures, microservices’

strengths are increased agility, deployability, reliability, and scalability, among others

(Merson, 2015). Some of the weaknesses of microservices include high cost, difficult

testability, increased security needs, and high memory use (Merson, 2015).

E. SUMMARY

The relatively new software acquisition pathway gives programs the ability to

approach software acquisition in a modern way (OUSD[A&S], 2020). Using Agile

methodologies, software teams and contractors can work with end users to “plan,

Acquisition Research Program
department of Defense Management - 13 -
Naval Postgraduate School

develop, build, test, release, deliver, deploy, operate, and monitor” (OUSD[A&S], 2020)

software to the fleet faster, more efficiently, and with more return on investment. The H-

1 software acquisition program will be analyzed against DODI 5000.87’s standard.

The two main types of software architecture are monolith and distributed

(Richards, 2022). Each has its own strengths and weaknesses, with monoliths generally

being fast, cheaper, and easier to create, but they are prone to becoming overly complex

and difficult to update (Richards, 2022). Distributed architecture, exemplified by

microservices, is usually easier to update and faster to test, while also more difficult and

expensive to start (Richards, 2022). A modular monolith combines many of the strengths

of each type (Su & Li, 2024). Chapter IV presents a comparison between a modular

monolith and microservices as candidates for use in the H-1.

Acquisition Research Program
department of Defense Management - 14 -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - 15 -
Naval Postgraduate School

III. AIRCRAFT AND SOFTWARE BACKGROUND

The AH-1Z Viper and UH-1Y Venom, colloquially known as the Cobra and Huey

and known collectively as H-1s, are multi-mission helicopter platforms for the United

States Marine Corps (USMC) (U.S. Navy, 2021). As the aircraft that make up Marine

Light Attack Helicopter Squadrons (HMLAs), their mission statement is to support “the

Marine Air-Ground Task Force (MAGTF) commander by providing offensive air

support, utility support, armed escort, and airborne supporting arms coordination; day or

night; under all weather conditions; during expeditionary, joint, or combined operations”

(Marine Light Attack Helicopter Squadron 267, Unit History section, first paragraph,

n.d.).

A. AIRCRAFT HISTORY AND MISSON

The history of the Cobra and Huey goes back to the 1950s when the first version

of what became the Huey flew at the Bell Aircraft facility in Fort Worth, TX (Fardink,

2016). The Huey became famous during the Vietnam War, known for its iconic looks

(see Figure 7), millions of flight hours, and the signature “whop-whop-whop” sound of

its two main rotor blades, not to mention its inclusion in Vietnam War movies since that

time (Vietnam Veterans Memorial Fund, n.d.). The Cobra was developed from the

baseline of the Huey, and the two aircraft have been upgraded multiple times over the

following decades (U.S. Navy, 2021). Figure 8 shows an early Cobra gunship. Figures 9

and 10 showcase the differences between the upgraded aircraft and their predecessors.

Acquisition Research Program
department of Defense Management - 16 -
Naval Postgraduate School

Figure 7. A Vietnam-Era UH-1E. Source: Collings Foundation (n.d.).

Figure 8. A Vietnam-Era AH-1G. Source: U.S. Army (n.d.).

Acquisition Research Program
department of Defense Management - 17 -
Naval Postgraduate School

Figure 9. A UH-1Y Firing a Rocket. Source: Bell Textron Inc. (n.d.b).

Figure 10. An AH-1Z in Flight. Source: Bell Textron Inc. (n.d.a).

The Viper and Venom versions of the storied H-1 platform have been purpose-

built to have 85% parts commonality, including a glass cockpit, tail section, rotor blades,

and engines (Bell Textron Inc., n.d.b). One of the parts common to both aircraft is the

mission computer. The mission computers’ software controls the pilots’ displays,

keyboards, and other selection keys. Pilots use the software outputs to monitor critical

flight systems, set up weapons and communications channels, and input navigation data,

among other tasks (Bell Textron Inc., 2004). The mission computer software is updated

regularly, usually in concurrence with hardware upgrades that necessitate software

changes. The software has also been updated to increase capability within existing

processes and fix errors and glitches. Table 1 summarizes releases, major capability

updates, and errors, glitches, and other difficulties with each software deployment.

Acquisition Research Program
department of Defense Management - 18 -
Naval Postgraduate School

Table 1. Software Version History..

Mon/Year Version
name

Major Capability Updates Errors/Bugs/Capabilities Not in Use

May 2006 SCS 3.3 -Baseline
-Systems Display
-Flight Information

-Tactical Data Communications
(TDC) page inoperative

May 2008 SCS 4.0 -Minor updates -TDC page inoperative
 Sep 2012 SCS 5.3 -Improved flight page

-Navigation display improvement
-TDC page inoperative

Mar 2013 SCS 6.0 -Warnings update
-Systems display update
-Waypoint Library addition
-User waypoint count increase

-TDC page inoperative

Dec 2015 SCS 7.1 -TDC page partially operative
(requires hardware update for full
capability)
-Targeting update
-Ground proximity warning system
(GPWS)
-Identification, friend or foe
improvement

-GPWS does not account for rising
terrain
-Full motion video page inoperative
-Default conditions not as expected
-7.1 and older model of sensor
incompatibility
-Targeting delay
-Subsystem memory drop on
shutdown
-Airspeed/altitude error

Oct 2018 SCS 7.1.1 &
SCS 8.1.1

-Airspeed/altitude error update
-8.1.1 for new mission computer
hardware, no other appreciable
difference

-Subsystem memory drop on
shutdown

Jun 2021 20.1.5Q2 -Targeting improvements
-Survivability equipment display
changes
-Hover aid graphic

-Hover graphic errors
-Subsystem memory drop on
shutdown

Mar 2022 21.1.5Q2 -Fuel flow calculator
-Flight display improvements
-Stick shaker over-g cueing
-TDC page capability
improvement
-Navigation improvements
-Software to support new weapon

-Subsystem memory drop on
shutdown
-Targeting distance error
-Fuel flow calculator errors/difficult
user interface

Apr 2023 22.1.3Q -Update to support
communications hardware
-Emergency procedures display on
screen

-Subsystem memory drop on
shutdown
-Targeting distance error

Adapted from Department of the Navy ([DON], 2013, 2014, 2015a, 2015b, 2019a, 2019b, 2022a,
2022b, 2022c, 2023a, 2023b); Naval Air Systems Command ([NAVAIR], 2006, 2008, 2009,
2012); L. Simpson (former PMA-276 product developer, interview with author, May 21, 2024)

Like the previous versions of the H-1, the AH-1Z and UH-1Y are capable of

accomplishing the required missions; however, HMLA pilots consistently ask for more

capabilities from the program office and for inefficiencies and bugs to be fixed (PMA-

276, 2024). As aircraft and pilots of the HMLA could find themselves doing any number

of missions during a single sortie, the mission computer software must be robust and

Acquisition Research Program
department of Defense Management - 19 -
Naval Postgraduate School

capable of tasks such as navigation, sensor display, and weapons setup. On today’s

modern battlefield, pilots expect the aircraft to automate as many mundane tasks as

possible to allow more cognitive focus on flying, decision-making, and flight leadership.

To do so, the software needs to be capable of quick, efficient, and inexpensive updates.

B. SOFTWARE HISTORY AND ISSUES

In a world where speed to the fleet is paramount and budgets are tight, the H-1

mission computer software architecture is one of many roadblocks keeping PMA-276

from delivering needed capability fast enough to stay relevant (Tran & Schneider, 2024).

The H-1 software has long been called “spaghetti code” by those in the program office

and developmental test squadron, HX-21 (J. Hurst, email to author, October 14, 2022).

One definition of spaghetti code is “program code written without a coherent structure”

(PC Magazine, n.d.e). In more technical terms, the software may be described as having

an unstructured monolith architecture (Belcher, 2020). Figure 11 provides a visual

example of spaghetti code.

While a monolith is generally easier to begin coding, it may eventually make it

harder for developers and coders to update the software and add new features (Richards,

2022). When changes are made, they often lead to bugs in other areas of the code because

of the interconnectivity and/or circular logic within the software (Belcher, 2020). Due to

the error-prone nature and lack of containment of potential errors, testers must check the

entirety of the software for faults, increasing the time and cost of the test. When faults are

found, the software often needs immediate fixes before deployment, adding time and

expense.

Acquisition Research Program
department of Defense Management - 20 -
Naval Postgraduate School

Figure 11. Simplified Visualization of Spaghetti Code. Source: PC Magazine

(n.d.e).

Instead of military aircraft software that includes all the features desired for

missions, pilots have increasingly turned to tablets to provide needed situation awareness

and processes (Robinson, 2017). In the author’s experience, most are military-procured

tablets, while others are personally procured hardware with civil aviation applications.

Regardless of the source, tablet capabilities, as well as personal use smartphones and other

software-reliant hardware, set the standard for how pilots expect their aircraft software to

behave and the interval at which it is updated. Aircraft software acquisition has been slower

than commercial tablet and smartphone upgrades.

Since the beginning of the Viper and Venom program, software has been viewed as

slow to update (J. Tran, email to author, May 7, 2024), especially by the H-1 fleet

(including by the author during time spent in an HMLA). Deliveries of software to the PMA

from the contractor sped up with a new contract for the last three software releases (J. Tran,

email to author, May 21, 2024). Under this new contract, the PMA receives a software

Acquisition Research Program
department of Defense Management - 21 -
Naval Postgraduate School

delivery every 10 weeks for reference and testing, and the fleet would ideally receive a

software update release once per year (J. Tran, email to author, May 21, 2024).

By searching various editions of the publication that details the H-1 software, the

intervals between software release were determined: H-1s could go several years without

software updates in the first 15 years of the program (DON, 2013, 2014, 2015a, 2015b,

2019a, 2019b, 2022a, 2022b2022c, 2023a, 2023b; NAVAIR, 2006, 2008, 2009, 2012).

Even then, updates did not bring all the capabilities pilots desired, nor was it free of glitches

(DON, 2022b). In recent years, the software has been updated on a 12 month cycle (ideally),

though this is still slow when compared to common software standards, such as Apple’s iOS

(Casserly, 2024; PMA-276, 2024). Furthermore, the issues with bugs and errors persist. In

late 2023, software was scheduled to be tested at HX-21 (T. Trepanier, email to author,

October 11, 2023). However, it was delayed due to a critical error in the code, necessitating

that the prime software contractor readdress and fix said software, all at the taxpayers’

expense and to the detriment of the fleet user (T. Trepanier, email to author, October 11,

2024).

All the delays in delivering software to the fleet potentially means that warfighters

cannot keep up with the threat landscape and improved weapons. In addition to providing

less capability for the warfighter, the complexity of the current software makes it more

likely to be compromised by a sophisticated enemy with cyber-attack capabilities, such as

Russia or China. In order to better defend against such cyberattacks, the H-1 program office

needs the ability to quickly and efficiently update software in weeks rather than months or

years.

C. SUMMARY

The H-1 is a storied aircraft with a long history of mission accomplishment. The

newest versions are even more capable than their predecessors, though that does not mean

the aircraft is without its drawbacks. The mission computer software architecture contributes

to the delayed delivery of updates by increasing difficulty of writing new code (Tran &

Schneider, 2024). The analysis chapter explores the best option for a new software

architecture to increase speed of delivery to the fleet.

Acquisition Research Program
department of Defense Management - 22 -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - 23 -
Naval Postgraduate School

IV. ANALYSIS

The H-1 software architecture is analyzed primarily from a programmatic lens as

opposed to technical. Where applicable, a user lens is also used. General characteristics

of the current software architecture and their effect on the acquisition process and user

are employed and compared with a modular monolith and microservices. Since an

architectural style may be implemented in many ways with varying degrees of quality,

the analysis of potential future upgrades is based on an ideal implementation of each

architectural style. Where relevant, the current software architecture is compared with the

possible upgrade choices. In some cases, it is left out of the following paragraphs, such as

startup cost and simplicity, where the current software means doing nothing and thus no

cost nor difficulty to start. The final stipulation for this analysis is working within the

constraints of the current hardware due to recent upgrade and financial limitations (DON,

2022a).

A. AGILITY

When viewed from a user perspective, the agility of the current H-1 software is

low based on the time between updates. In comparing versions of each aircraft’s Naval

Aviation Technical Information Product (NATIP) from various years, the software was

found to have been updated nine times since 2006 (DON, 2013, 2014, 2015a, 2015b,

2019a, 2019b, 2022a, 2022b, 2022c, 2023a, 2023b; NAVAIR, 2006, 2008, 2009, 2012).

The average time between software updates was 26 months, with a range of 6 months to

over 4 years (DON, 2013, 2014, 2015a, 2015b, 2019a, 2019b, 2022a, 2022b, 2022c,

2023a, 2023b; NAVAIR, 2006, 2008, 2009, 2012). Compared with the release schedule

of new iOS builds, the H-1 software is slow and inconsistent (Casserly, 2024). Apple

released major updates (such as from iOS 4 to iOS 5) to its software 16 times between

2007 and 2023 (Casserly, 2024); this count does not include minor updates to each

version of iOS. For smaller upgrades, Apple deployed 107 updates to its iOS versions

between January 2020 and May 2024 (Apple, 2024); the H-1 program had no such minor

updates. Apple’s major updates occurred once a year, with the longest time between

Acquisition Research Program
department of Defense Management - 24 -
Naval Postgraduate School

updates being approximately 1 year and 4 months (Casserly, 2024); the longest time

between the smaller updates from 2020 to 2024 was 65 days (Apple, 2024).

The example of Apple shows that even monoliths, of which iOS is one, can be

updated quickly. It could also be argued that the update cycle of such common software

as found in smartphones sets a standard that personnel look to achieve regardless of use

case. While Apple and other software creators operate under different rules, needs, and

requirements than government aircraft acquisitions, the speed at which smartphones are

upgraded gives the program office a high benchmark to strive for; in this regard, it has so

far been lacking.

The H-1 software's lack of agility may stem from multiple sources, such as

rework due to its complex nature, lack of funding, and the time required to test. Multiple

factors likely play a part in each long stretch between software upgrades to the H-1 fleet.

The ambiguous nature of “agility” relegates it to a lower tier of importance when

deciding on a new architecture to upgrade to. That said, both a modular monolith and

microservices architectures would likely improve the agility of the H-1 software by

reducing the complexity of the code, thus reducing time to code, rework required, and

testing hours required.

B. COST

In the current U.S. government landscape of tight—and often delayed—budgets

and continuing resolutions, cost is arguably the most important factor in upgrading the H-

1 software. Major factors of this cost are paying the contractor to code, funding any

upgrades (or not), and testing. For this analysis, the base contract with the prime

contractor is ignored as it is already in place, and upgrades can be worked within its

current boundaries.

Each new software version requires extensive test to ensure it meets requirements

and other portions of the code have not been broken, adding to its expense. As part of the

contract, the software contactor conducts testing on the software (J. Tran, email to author,

May 16, 2024). Once complete, the software is delivered to PMA-276 for further testing

(W. Cosgrove, email to author, April 9, 2024). Until recently, all testing at PMA-276 had

Acquisition Research Program
department of Defense Management - 25 -
Naval Postgraduate School

to be completed in the aircraft (J. Hurst, email to author, May 20, 2024). The time

estimated to test the software is 4 hours of ground time and 2 hours of flight time per

functional area tested (W. Cosgrove, email to author, April 9, 2024). The cost of each

flight hour is approximately $34,000, and each ground hour is $1,100 (W. Cosgrove,

email to author, April 9, 2024).

Since the H-1 software has a monolithic architecture, the entire software needs to

be tested. Especially important for test are the updated portions and safety of flight

related items (J. Hurst, email to author, May 17, 2024). Upgrading to a modular monolith

or microservices architecture could save money by removing some burden of test

(Richards, 2022). If the H-1 mission computer software architecture were upgraded, the

PMA could save time, effort, and money on test efforts and reinvest back into further

updates or maintenance.

For the decision matrix, cost is broken into the initial cost of creating a new

architecture and long term maintenance costs. A modular monolith is likely a less

expensive route to take than microservices or any distributed architecture (Su & Li,

2024). Microservices can be exponentially more expensive to build than a modular

monolith due to its initially complex nature (Su & Li, 2024). In a budget-constrained

environment, cost becomes one of the determining factors on options available to the H-1

program, making the startup cost the most important factor for the decision matrix.

In the long term, microservices and a modular monolith would have similar

maintenance and new feature costs (Su & Li, 2024). Each divides the code base into

smaller parts to help manage writing new code (Su & Li, 2024). The current software

scores worst of the three due to longer timelines to add capabilities and consistent rework

required when unforeseen errors occur. Long term maintenance costs are in the second

tier of importance for the decision matrix as cost is likely to continue to be an issue for

the program office but not as difficult to realize or justify as the large, up-front cost

required of a architecture overhaul.

Acquisition Research Program
department of Defense Management - 26 -
Naval Postgraduate School

C. DEPLOYABILITY

The deployability of the current system is high: procedures are in place that make

updating the software in the aircraft relatively simple with common tools in the

squadrons. An upgrade to either a modular monolith or microservices is unlikely to affect

the ability of the program to deliver mission computer software and the squadrons to load

the software into the aircraft. One way that microservices would be an improvement over

a modular monolith is the ability to deploy portions of the software (Richards, 2022).

With a monolith, the entirety of the software is deployed all at once, whereas with

microservices, small portions can be deployed individually (Richards, 2022). For the

mission computer, this feature is assessed to be a low priority and is excluded from the

decision matrix.

D. EXTENSIBILITY

The current H-1 mission computer software has the ability to upgrade but with

difficulty (Tran & Schneider, 2024), giving it a low extensibility score. Normally,

microservices is more extensible than a monolith (Richards, 2022). However, with the

advent of the modular monolith architecture, the monolith becomes more extensible and

able to grow (Su & Li, 20224). Without more technical details, determining whether a

microservices architecture would make the H-1 software significantly more extensible

than a modular monolith is nearly impossible. Both a modular monolith and

microservices would improve the extensibility of the mission computer software.

E. FAULT TOLERANCE AND RELIABILITY

Generally speaking, a microservices architecture is more fault tolerant than a

monolithic architecture (Richards, 2022). However, according to Su and Li (2024), a

modular monolithic architecture attains the same levels of fault tolerance as

microservices. When compared to the rest of the aircraft, the current mission computer

and software are highly reliable, as less than 0.1% of aircraft discrepancies were written

against the mission computer (R. French, email to author, May 20, 2024). For the

decision matrix, fault tolerance is given a weight of only one due to the minimal

improvement between the current software architecture and any future upgrades.

Acquisition Research Program
department of Defense Management - 27 -
Naval Postgraduate School

Reliability is excluded from the decision matrix given the low rate of failure for the

current system and any upgrades would likely provide minimal improvements.

F. PERFORMANCE

The current system speed is sufficient for its use. Monoliths are usually faster than

microservices, as the communications between services required in a microservices

architecture take time (Richards, 2022). While this is normally counted in milliseconds

(Richards, 2022), this is important when responding to threats, and every moment

matters. A modular monolith then has the advantage over microservices for performance.

Microservices is also likely difficult to impossible to implement on the current

hardware in the H-1. While possible to containerize for microservices on a desktop or

similarly sized machine using systems such as Docker (Docker, n.d.), microservices are

typically used on the cloud meaning access to large numbers of servers and high

computing power (IBM, n.d.). This could realize in the inability to put microservices into

the H-1 mission computer or it being prohibitively slow.

Performance is included in the second tier of importance for the decision matrix.

It is important that the system run quickly to display and announce important safety of

flight information to the pilots. It is not included in the top tier due to the current system

operating at a sufficient speed and the overall importance of startup cost on working on

an upgrade.

G. SECURITY

The details of the H-1 mission computer’s security are above the classification

level of this report. From a general standpoint, security is dependent on many factors to

prevent malicious actors from gaining access to the system (PC Magazine, n.d.d).

Security should be part of software development from inception through deployment

regardless of architectural style (OUSD[A&S], 2020). Additionally, Su and Li (2024)

stated that modular monoliths attain the security abilities of microservices and both are an

improvement on a standard monolith. While security is vitally important to any computer

system, it is given minimal weight for the decision matrix as it may be possible to have

high security if well coded regardless of architectural style.

Acquisition Research Program
department of Defense Management - 28 -
Naval Postgraduate School

H. SIMPLICITY

The current architecture is simple yet complex: it can be likened to a ball of yarn

or mud (Tran & Schneider, 2024). The current system may have started as a simple code

base, but it has grown more complex with age.

Simplicity is broken into two parts for the decision matrix: initial build and future

upgrade as both would be important to the program office for deciding a path for the

software.

A modular monolith is generally a simpler upgrade path than microservices (Su &

Li, 2024). Because microservices are complex and difficult to start, some coding

professionals recommend upgrading to a modular monolith prior to microservices

(Belcher, 2020; Gupta, 2020; Richards, 2022; Su & Li, 2024). Time to implement is a

major factor of simplicity, and modular monolith would deploy to the fleet in less time

than microservices. As noted in Chapter III, microservices can be difficult to create,

while a monolith can be much easier, which is why many firms still use monoliths despite

their potential drawbacks (Richards, 2022). As with cost, the difficulty in the initial

creation of a microservices architectural style potentially makes it beyond reach of the H-

1 program; a modular monolith architecture is less likely to have this problem (Richards,

2022; Su & Li, 2024). The simplicity of initial upgrade essentially becomes the main

measure of schedule for the decision matrix.

In the long term, both a modular monolith would improve the ability of the

contractor to upgrade the software. As discussed in Chapter III, the current unstructured

nature of the monolith leads to difficult coding, rework, and errors deploying to the fleet.

Both a modular monolith and microservices remove much of this difficulty (Su & Li,

2024).

I. TESTABILITY

Normally, a microservices architecture is more easily and quickly tested than a

monolith (Richards, 2022). However, according to Su and Li (2024), the modular

monolith is capable of similar levels of testability as a microservices architecture. Either

upgrade option would increase testability over the current software. Without further

Acquisition Research Program
department of Defense Management - 29 -
Naval Postgraduate School

technical details that would be decided upon during the upgrade planning and coding,

determining any difference between the two types is difficult, but either would improve

testability over the current system.

J. ANALYSIS SUMMARY

Table 2 shows a summary of the qualitative analysis for each measurement

characteristic for each software architecture. Factors are given a score of high, medium,

or low to help compare and rank the three architectures. For all factors except cost, high

is good; for the cost factors, high is a poor score. The qualitative analysis is then used in

the decision matrix to assign a rank, one through three, with one being the best. Since the

three architectures receive the same score for reliability and deployability, those two

factors are excluded from the decision matrix.

Table 2. Qualitative analysis summary of software architectures

K. DECISION MATRIX

The decision matrix is a simple ranking based on the previous analysis for the

unweighted row. For instance, the current architecture is the least expensive to build,

followed by the modular monolith, and finally microservices. Therefore, the current

Current
Architecture

Modular
Monolith Microservices

Agility Low High High
Cost - initial Low Medium High
Cost - O&S High Low Low
Deployability High High High
Extensibility Low High High
Fault
tolerance

Low High High

Performance High High Low
Reliability High High High
Security Medium High High
Simplicity -
Initial Build

High Medium Low

Simplicity -
O&S

Low High High

Testability Low High High

Acquisition Research Program
department of Defense Management - 30 -
Naval Postgraduate School

architecture receives one point, modular monolith two, and microservices receives three

points for the unweighted row. In the case of a tie between architectures, the average

score for remaining places are averaged; if two architectures are vying for places one and

two but tie, each is given a score of 1.5. The points are then multiplied by the criteria

weight to get a weighted ranking. Both rows are added up to get a total score for both

unweighted and weighted. For this decision matrix, overall lower scores are better.

Table 3 shows the decision matrix as an unweighted ranking of the current

architecture, modular monolith, and microservices. Table 4 shows the weighted and

unweighted ranking.

Table 3. H-1 Software Architecture Decision Matrix (unweighted scores
only)

In Table 3, the points spread for the unweighted scores shows the modular monolith

as the best choice, followed closely by microservices. The current monolithic architecture

trails well behind with the most points.

Table 4. H-1 Software Architecture Decision Matrix with weighted ranking

Adding the weighting increases the gap between the architecture options. The

modular monolith remains as the best choice with the lowest score. Microservices

remains in second place, though the gap between first and second place has doubled. The

gap between microservices and the current architecture has narrowed.

Criteria → Initial O&S Initial Build O&S
Options ↓ Criteria Weight 3 2 2 1 1 1 2 1 2 1 Unweighted Weighted

Unweighted Ranking 1 3 1.5 1 3 3 3 3 3 3 24.5
Weighted Ranking

Unweighted Ranking 2 1.5 1.5 2 1.5 1.5 1.5 1.5 1.5 1.5 16
Weighted Ranking

Unweighted Ranking 3 1.5 3 3 1.5 1.5 1.5 1.5 1.5 1.5 19.5
Weighted Ranking

Modular
Monolith

Microservices

Cost
 Performance

Simplicity
Agility Extensibility

Fault
Tolerance Security Testability

Scores
(Lower is Better)

Current
architecture

Decision Matrix

Criteria → Initial O&S Initial Build O&S
Options ↓ Criteria Weight 3 2 2 1 1 1 2 1 2 1 Unweighted Weighted

Unweighted Ranking 1 3 1.5 1 3 3 3 3 3 3 24.5
Weighted Ranking 3 6 3 1 3 3 6 3 6 3 37

Unweighted Ranking 2 1.5 1.5 2 1.5 1.5 1.5 1.5 1.5 1.5 16
Weighted Ranking 6 3 3 2 1.5 1.5 3 1.5 3 1.5 26

Unweighted Ranking 3 1.5 3 3 1.5 1.5 1.5 1.5 1.5 1.5 19.5
Weighted Ranking 9 3 6 3 1.5 1.5 3 1.5 3 1.5 33

Modular
Monolith

Microservices

Cost
 Performance

Simplicity
Agility Extensibility

Fault
Tolerance Security Testability

Scores
(Lower is Better)

Current
architecture

Decision Matrix

Acquisition Research Program
department of Defense Management - 31 -
Naval Postgraduate School

L. SENSITIVITY ANALYSIS

Mathematically, microservices is incapable of achieving the lowest score,

weighted or unweighted. Microservices can tie with the modular monolith for lowest

score if startup cost, performance, and initial build simplicity are ignored completely.

However, the Table 5 shows one possible set of weights to achieve a tie between the

modular monolith and microservices. Changes to the weights from the original decision

matrix are shown in red.

Table 5. Decision matrix with microservices as tied for best score

If the criteria weights are changed to six for startup cost and initial build simplicity

and one for O&S cost, extensibility, and security, the current architecture achieves the best

weighted score. Table 6 shows weights that result in the current architecture achieving the

best score.

Table 6. Decision matrix with current architecture as best score

M. CONCLUSION

Based on the assessed needs of the program office and H-1 fleet, the modular

monolith is the preferred choice among the three potential software architectures. Many

software architectures styles exist and any upgrade to a well-structured software

architecture would help tremendously in most areas of H-1 software acquisition. The

modular monolith is capable of doing so for the least expense and the fastest timeline

while combining the strengths of various architecture types (Su & Li, 2024). A

Criteria → Initial O&S Initial Build O&S
Options ↓ Criteria Weight 0 3 0 0 2 2 2 1 2 1 Unweighted Weighted

Unweighted Ranking 3 3 3 3 3 3 3 21
Weighted Ranking 9 6 6 6 3 6 3 39

Unweighted Ranking 1.5 1.5 1.5 1.5 1.5 1.5 1.5 10.5
Weighted Ranking 4.5 3 3 3 1.5 3 1.5 19.5

Unweighted Ranking 1.5 1.5 1.5 1.5 1.5 1.5 1.5 10.5
Weighted Ranking 4.5 3 3 3 1.5 3 1.5 19.5

Modular
Monolith

Microservices

Cost
 Performance

Simplicity
Agility Extensibility

Fault
Tolerance Security Testability

Scores
(Lower is Better)

Current
architecture

`

Criteria → Initial O&S Initial Build O&S
Options ↓ Criteria Weight 6 1 2 6 1 1 1 1 1 1 Unweighted Weighted

Unweighted Ranking 1 3 1.5 1 3 3 3 3 3 3 24.5
Weighted Ranking 6 3 3 6 3 3 3 3 3 3 36

Unweighted Ranking 2 1.5 1.5 2 1.5 1.5 1.5 1.5 1.5 1.5 16
Weighted Ranking 12 1.5 3 12 1.5 1.5 1.5 1.5 1.5 1.5 37.5

Unweighted Ranking 3 1.5 3 3 1.5 1.5 1.5 1.5 1.5 1.5 19.5
Weighted Ranking 18 1.5 6 18 1.5 1.5 1.5 1.5 1.5 1.5 52.5

Modular
Monolith

Microservices

Cost
 Performance

Simplicity
Agility Extensibility

Fault
Tolerance Security Testability

Scores
(Lower is Better)

Current
architecture

Decision Matrix

Acquisition Research Program
department of Defense Management - 32 -
Naval Postgraduate School

microservices architecture would likely be much more expensive and harder and slower

to implement. Any advantages of a microservices architecture are unlikely to outweigh

the expense and time to implement.

The advantages of a modular monolith over the current architecture are the long

term cost savings and ease and speed to upgrade. The initial cost of upgrading may be

recouped after several years from cost savings found in coding time (less money required

to pay contractor to upgrade the system in the future) and test costs. The modular

monolith is also less likely to deploy with errors due to it being easier to upgrade and test.

Doing nothing with the software is likely to cost the program office more money in the

long run and mean that needed capability is delivered to the fleet slower and with more

errors.

The sensitivity analysis shows that microservices would not be a great fit for the

H-1 mission computer regardless of priority factors. The best weighting microservices

can achieve compared to the other two types is a tie if some factors are ignored. In that

case, it would make most sense to then look at those factors and choose another

architecture. The sensitivity analysis also shows that staying with the current architecture

is most appealing when initial cost and build simplicity are significantly more important

than all the other factors. For most other weight selections, the modular monolith remains

the best choice.

Acquisition Research Program
department of Defense Management - 33 -
Naval Postgraduate School

V. SUMMARY AND RECOMMENDATIONS

The major drawback to the current H-1 software is the difficulty of updating: the

tightly coupled code creates difficulty any time updates are attempted (Tran & Schneider,

2024). Developers must carefully change or add code and then check and test the entire

software ecosystem for unforeseen consequences, such as a now-inoperative primary

system display (T. Trepanier, email to author, October 11, 2024). Both the contractor and

developmental test squadron conduct these checks to ensure errors are not present (W.

Cosgrove, email to author, April 9, 2024; J. Hurst, email to author, May 17, 2024; J.

Tran, email to author, May 16, 2024). Until recently, all testing had to be completed on

the aircraft, which increased the cost of said tests (W. Cosgrove, email to author, April 9,

2024). If the software was partitioned, only the changed parts would need testing, saving

time and money. If the number of hours required to test were halved, the program would

save approximately $40,000 for each new software build. Upgrading the mission

computer software should be a high priority for the program office to see long term cost

savings for adding features and deploying them faster to the warfighter.

A. RESEARCH CONCLUSIONS

The primary research question stated in Chapter I is what is the best option for

upgrading the H-1 mission computer software to better align with current software

practices, decrease cost and time to test, and increase capability and speed to the fleet?

Assuming that the H-1 program office, the H-1 fleet, and Headquarters Marine Corps

weigh cost, schedule, and performance as this study does, a modular monolith upgrade is

the most appropriate architecture for the H-1 mission computer. Of the two upgrade

options addressed in this study, it has the lowest cost, fastest build time, and highest

performance. In the long term, it will likely save the program office time and money in

delivering needed capability to the fleet.

The secondary questions (How long might it take to upgrade the software? What

is a fair estimate of the cost for a contractor to conduct the upgrade? Would hiring an

outside software architect and/or consultant to oversee the transition benefit the program

office? How might the program office maximize utility to the fleet while minimizing cost

Acquisition Research Program
department of Defense Management - 34 -
Naval Postgraduate School

during the transition?) are more technical or specific in nature than this study seeks to

answer and are good candidates for future research.

B. H-1 PATH FORWARD RECOMMENDATION AND FOLLOW-ON
RESEARCH

Based on the analysis, it is recommended that PMA-276 work toward a modular

monolithic architecture for the mission computer. Any improvement of the current code

base or new architecture would help long term, but a modular monolith would be the best

option for cost, performance, and schedule reasons. As software developers find new

ways to structure and code, it is also recommended to stay abreast of industry standards

and incorporate them as able.

The exact means of breaking down the current unstructured monolith into a

modular monolith will need to be explored. As there are infinite ways to arrive at the

same user interface, the coders and software architects will need to smartly untangle the

software, modularize, and put it back together in the way they most see fit under the

supervision of the program office. The program office needs to set clear and specific

requirements for the contractor to meet in order to best serve H-1 pilots and aircrew.

Cyber-security should remain top of mind for H-1 software upgrades as required

of all DOD software programs (OUSD[A&S], 2020). The program office and the

contractor need to ensure cyber-security capabilities are as robust and current as possible.

As threats from hostile actors develop more sophisticated attack capabilities, H-1s need

to be agile and resilient to prevent cyberattacks.

C. RECOMMENDATIONS FOR FUTURE RESEARCH AND PLATFORMS

Regardless of platform or size of software, the Department of Defense should

more forcefully incentivize and assist programs to update legacy architectures to

modularized software to the maximum extent practical. Especially for those platforms

that experience problems similar to the H-1 mission computer, a modular monolith or

microservices architecture would help program offices be more responsive to the needs of

the users, minimize rework, and save time and money on testing efforts.

Acquisition Research Program
department of Defense Management - 35 -
Naval Postgraduate School

During research, multiple helicopter platforms were found to have similar issues

as H-1, such as difficulty updating software and a requirement to test the entire system

when changes are made (D. Backlund, email to author, April 15, 2024; M. Cecchini,

email to author, April 4, 2024; D. Feddersen, email to author, April 5, 2024; T. Roberts,

Mission Systems Lead, interview with the author, April 9, 2024). For future systems,

modularity must be incorporated into systems. The commercial space provides a potential

idea for how to accomplish this: operating software with applications. With an overall

backbone, like iOS, new applications could be developed, tested, and deployed quickly in

response to new threats or capabilities.

Another method to modularize is to separate the computers entirely from one

another and minimize the communications between them. The more separate the

computers and the less they need to communicate, the more cyber-secure each can be.

Additionally, development can be faster for less cost, and testing becomes easier. For

instance, if a future aircraft has one computer for managing and running the flight safety

and management systems (such as engines, electrical power generators, and

transmissions) and one to run mission systems (such a communications, sensors,

weapons, and threat detection and countermeasures), they can be developed, tested, and

deployed separately. Additionally, the flight management system can be developed along

with the aircraft in a more traditional or waterfall method while the mission systems use

an Agile approach throughout the life of the aircraft (Dunlap, 2024). With entirely

separate systems, the flight-critical portion can be even more cyber-secure than the

mission systems, ensuring that even if the mission computer is compromised, the aircraft

can safely remain flying.

Acquisition Research Program
department of Defense Management - 36 -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management - 37 -
Naval Postgraduate School

LIST OF REFERENCES

Academic Accelerator. (n.d.). Computer performance. Retrieved November 28, 2023,
from https://academic-accelerator.com/encyclopedia/computer-performance

Apple Inc. (2024, May 13). Apple security releases. https://support.apple.com/en-us/
HT201222

Belcher, M. (2020, September 8). Breaking down the monolith. Codurance.
https://www.codurance.com/publications/2020/09/08/breaking-down-the-
monolith

Bell Textron Inc. (n.d.a). [AH-1Z Viper flying over water]. Retrieved March 21, 2024,
from https://www.bellflight.com/products/bell-ah-1z

Bell Textron Inc. (n.d.b). [UH-1Y Venom firing a rocket]. Retrieved March 21, 2024,
https://www.bellflight.com/products/bell-uh-1y

Bell Textron Inc. (2004). UH-1Y pocket guide [Fact sheet].
https://www.aviatorsdatabase.com/wp-content/uploads/2013/07/Bell-UH1Y.pdf

Casserly, M. (2024, February 24). iOS versions: every version of iOS from the oldest to
the newest. Macworld. https://www.macworld.com/article/1659017/ios-versions-
list.html

Collings Foundation. (n.d.). [Bell UH-1E Iroquois]. Retrieved March 21, 2024, from
https://www.collingsfoundation.org/aircrafts/bell-uh-1e-huey/

Cybersecurity and Infrastructure Security Agency. (2021, February 1). What is
cybersecurity? https://www.cisa.gov/news-events/news/what-cybersecurity

Defense Innovation Board. (2019, May 3). Software is never done: refactoring the
acquisition code for competitive advantage. https://media.defense.gov/2019/May/
01/2002126691/-1/-1/0/SWAP%20FLYER.PDF

Defense Innovation Board. (n.d.) Software Acquisition and Practices (SWAP) study.
Retrieved March 21, 2024, from https://innovation.defense.gov/software/

Department of Defense. (2021, October 19). DevSecOps playbook.
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%
20Playbook_DOD-CIO_20211019.pdf

Department of the Navy. (2013, March 20). UH-1Y Naval aviation technical information
product (NTRP 3-22.4-UH1Y).

Department of the Navy. (2014, January 7). AH-1Z Naval aviation technical information
product (NTRP 3-22.4-AH1Z).

Acquisition Research Program
department of Defense Management - 38 -
Naval Postgraduate School

Department of the Navy. (2015a, December 15). AH-1Z Naval aviation technical
information product (NTRP 3-22.4-AH1Z).

Department of the Navy. (2015b, December 15). UH-1Y Naval aviation technical
information product (NTRP 3-22.4-UH1Y).

Department of the Navy. (2019a, July 1). AH-1Z Naval aviation technical information
product (NTRP 3-22.4-AH1Z).

Department of the Navy. (2019b, November 1). UH-1Y Naval aviation technical
information product (NTRP 3-22.4-UH1Y).

Department of the Navy. (2022a, March 22). UH-1Y Naval aviation technical
information product (NTRP 3-22.4-UH1Y).

Department of the Navy. (2022b, November 1). AH-1Z Naval aviation technical
information product (NTRP 3-22.4-AH1Z).

Department of the Navy. (2022c, November 1). UH-1Y Naval aviation technical
information product (NTRP 3-22.4-UH1Y).

Department of the Navy. (2023a, April 1). AH-1Z Naval aviation technical information
product (NTRP 3-22.4-AH1Z).

Department of the Navy. (2023b, May 1). UH-1Y Naval aviation technical information
product (NTRP 3-22.4-UH1Y).

Dhaduk, H. (2020, July 4). 10 software architecture patterns you must know about.
Simform. https://www.simform.com/blog/software-architecture-patterns/

Docker. (n.d.). Docker desktop. Docker. Retrieved 24 May, 2024, from
https://www.docker.com/products/docker-desktop/

Dunlap, J. (2024). Innovation in software acquisition: The good, bad, and ugly
[Unpublished manuscript]

Fardink, P. J. (2016, September–October). Huey turns 60: A retrospective review of the
UH-1’s remarkable military service. VERTIFLITE, 62(5), 50–52. https://vtol.org/
files/dmfile/50-52HueybyFardinkSO162.pdf

Fernandez, T. (2023, February 14). 12 ways to improve your monolith before
transitioning to microservices. Semaphore. https://semaphoreci.com/blog/
monolith-microservices

Foote, B., & Yoder, J. (1997, September). Big ball of mud [Paper presentation]. Fourth
Conference on Patterns Languages of Programs, Monticello, IL, United States.
https://www.cin.ufpe.br/~sugarloafplop/mud.pdf

Acquisition Research Program
department of Defense Management - 39 -
Naval Postgraduate School

Ford, N., Richards, M., Sadalage, P., & Dehghani, Z. (2022). Software architecture: The
hard parts. O’Reilly. https://learning.oreilly.com/library/view/software-
architecture-the/9781492086888/copyright-page01.html

Gupta, P. (2020 October 29). Understanding the modular monolith and its ideal use
cases. TechTarget. https://www.techtarget.com/searchapparchitecture/tip/
Understanding-the-modular-monolith-and-its-ideal-use-cases

IBM. (n.d.). What are microservices?. IBM. Retrieved May 24, 2024, from
https://libguides.nps.edu/citation/apa#website

Light Attack Helicopter Program. (2024). Capability defect package tracker backlog
[Unpublished raw data].

Marine Light Attack Helicopter Squadron 267. (n.d.). Unit history. Marine Light Attack
Helicopter Squadron 267. Retrieved April 4, 2024, from
https://www.3rdmaw.marines.mil/Units/MAG-39/HMLA-267/

Merson, P. (2015 November 5). Microservices beyond the hype: What you gain and what
you lose. Software Engineering Institute Blog. https://insights.sei.cmu.edu/blog/
microservices-beyond-the-hype-what-you-gain-and-what-you-lose/

Milić, M., & Makajić-Nikolić, D. (2022). Development of a quality-based model for
software architecture optimization: A case study of monolith and microservice
architectures. Symmetry, 14(9), 1824–1860. https://doi.org/10.3390/sym14091824

Naval Air Systems Command. (2006, May 1). Preliminary NATOPS flight manual Navy
model UH-1Y helicopter (NAVAIR 01-110HCG-1)

Naval Air Systems Command. (2008, May 1). Preliminary NATOPS flight manual Navy
model UH-1Y helicopter (NAVAIR 01-110HCG-1)

Naval Air Systems Command. (2009, April 15). NATOPS flight manual Navy model UH-
1Y helicopter (NAVAIR 01-110HCG-1)

Naval Air Systems Command. (2012, September 1). NATOPS flight manual Navy model
UH-1Y helicopter (NAVAIR 01-110HCG-1)

Oakley, S. (2023). Defense software acquisitions: Changes to requirements, oversight,
and tools needed for weapons programs (GAO-23-105867). Government
Accountability Office. https://cle.nps.edu/access/lessonbuilder/item/335588/
group/305d9ba8-2eaf-4d7c-b903-f9faa216cd70/Week%206/Defense%
20Software%20Acquisition.pdf

Acquisition Research Program
department of Defense Management - 40 -
Naval Postgraduate School

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2020,
October 2). Operation of the software acquisition pathway (DOD Instruction
5000.87). Department of Defense. https://www.esd.whs.mil/Portals/54/
Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj4v_LgN1JxpB_dpA%
3D%3D

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2022, June
8). Operation of the adaptive acquisition framework (DOD INSTRUCTION
5000.02). Department of Defense. https://www.esd.whs.mil/Portals/54/
Documents/DD/issuances/dodi/500002p.pdf?ver=2020-01-23-144114-093

PC Magazine. (n.d.a). Deployment. Retrieved April 13, 2024, from
https://www.pcmag.com/encyclopedia/term/deployment

PC Magazine. (n.d.b). Extensible. Retrieved April 13, 2024, from
https://www.pcmag.com/encyclopedia/term/extensible

PC Magazine. (n.d.c). Reliability. Retrieved April 13, 2024, from
https://www.pcmag.com/encyclopedia/term/reliability

PC Magazine. (n.d.d). Security. Retrieved April 13, 2024, from https://www.pcmag.com/
encyclopedia/term/security

PC Magazine. (n.d.e). Spaghetti code. Retrieved November 28, 2023, from
https://www.pcmag.com/encyclopedia/term/spaghetti-code

PMA-276 Software and Avionics Test. (2024, April 10). Software and Avionics Test
(SWAT) [Presentation]. PMA-276 Rollups, Lexington Park, MD, United States.

Project Management Institute. (2021). The standard for project management and a guide
to the project management body of knowledge (7th ed.) [PDF version].
https://www.pmi.org/pmbok-guide-standards/foundational/pmbok#download

Richards, M. (2022, August). Software architecture patterns, 2nd edition. O’Reilly.
https://learning.oreilly.com/library/view/software-architecture-patterns/
9781098134280/

Robinson, H. (2017, March 29). Let’s get digital: 2/6 Marines train with MAGTAB at
WTI. Defense Visual Information Distribution Service. https://www.dvidshub.net/
news/229462/lets-get-digital-2-6-marines-train-with-magtab-wti

Semaphore. (2022). Transitioning from monolith to microservices handbook: Converting
monoliths to the microservice architecture [PDF version].
https://semaphoreci.com/wp-content/uploads/2022/09/
Monolith_to_Microservices_Handbook-1.pdf

Shanthi, R. (2018). Computer architecture. https://www.cs.umd.edu/~meesh/411/CA-
online/index.html

Acquisition Research Program
department of Defense Management - 41 -
Naval Postgraduate School

Smith, S. (2024 February 21). Introducing modular monoliths: The Goldilocks
architecture. Ardalis. https://ardalis.com/introducing-modular-monoliths-
goldilocks-architecture/

Su, R., & Li, X. (2024, January 22). Modular monolith: Is this the trend in software
architecture? ArXiv. https://arxiv.org/pdf/2401.11867.pdf

Tran, J., & Schneider, B. (2024, February). Capability accelerator: Partitioned
architecture [Presentation]. H-1 Fleet Sync, Oceanside, CA, United States.

U.S. Army. (n.d.). [AH-1G flying low]. Retrieved May 27, 2024, from
https://www.thisdayinaviation.com/tag/bell-ah-1g-cobra/

U.S. Navy. (2021, October 22). AH-1Z Viper and UH-1Y Venom helicopters.
https://www.navy.mil/Resources/Fact-Files/Display-FactFiles/Article/2160217/
ah-1z-viper-and-uh-1y-venom-helicopters/

Vietnam Veterans Memorial Fund. (n.d.). Helicopters. Retrieved May27, 2024, from
https://www.vvmf.org/topics/Helicopters/#:~:text=The%20variety%20of%
20roles%20bred,Monument%20in%20Arlington%20National%20Cemetery

Acquisition Research Program
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	I. INtRODUCTION
	A. Research Questions
	B. Methodology
	C. Limitations and Scope
	D. Organization of Project

	II. SOFTWARE DEVELOPMENT LITERATURE REVIEW
	A. The Software Acquisition Pathway
	B. Software Architecture
	C. Monoliths
	D. Distributed Architecture
	E. Summary

	III. Aircraft and software background
	A. Aircraft History and Misson
	B. Software History and Issues
	C. Summary

	IV. Analysis
	A. Agility
	B. Cost
	C. Deployability
	D. Extensibility
	E. Fault tolerance and reliability
	F. Performance
	G. Security
	H. Simplicity
	I. Testability
	J. Analysis Summary
	K. Decision matrix
	L. Sensitivity analysis
	M. Conclusion

	V. Summary and Recommendations
	A. Research Conclusions
	B. H-1 path forward recommendation and follow-on research
	C. Recommendations for Future Research and platforms

	LIST OF REFERENCES

