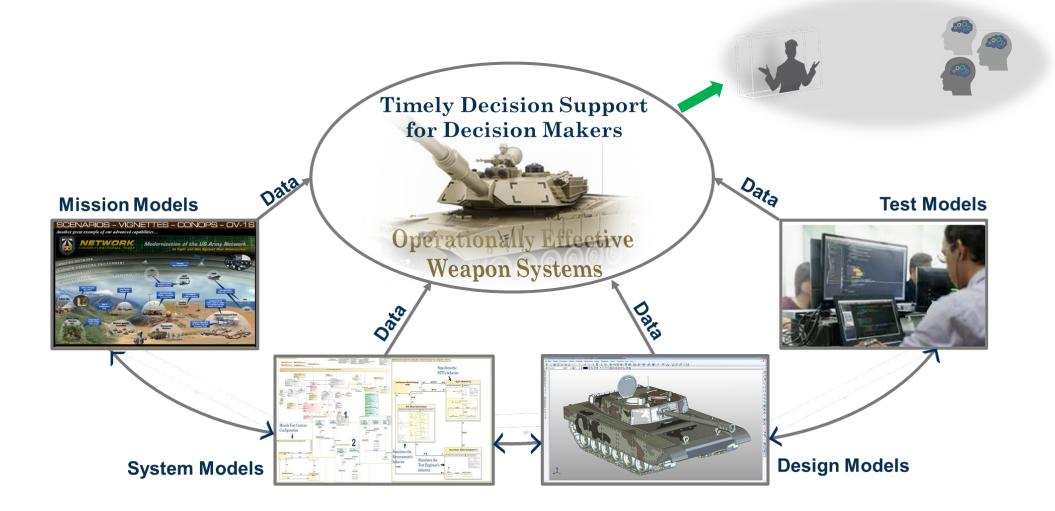
Model-Based IDSK: A Standardized Approach to Mitigating Decision Support Challenges during Acquisition Test and Evaluation

21th Annual NPS Acquisition Research Symposium May 9, 2024

Distribution Statement A: Approved for Public Release. Distribution is Unlimited. Public Release Number: PR2024088

Georgia Tech. Research Institute



Dr. Awele Anyanhun, CSEP Senior Research Engineer Georgia Tech Research Institute (GTRI) awele.anyanhun@gtri.gatech.edu

Dr. Craig Arndt, ESEP Principal Research Engineer Georgia Tech Research Institute (GTRI) craig.arndt@gtri.gatech.edu

This work was sponsored by Office of the Secretary of Defense (OSD) - Director, Operational Test and Evaluation (DOT&E), under contract # 18D0002/0009

Linked data from digital models can be leveraged as an authoritative source of truth to inform or validate decisions.

^{*} Images sourced on line; may be subject to copyright

The Model-based IDSK Value Proposition

- The purpose of the IDSK is to clearly identify decisions of interest to the program, and then to tie these decisions to the tests and other data sources need to support these decisions.
- The IDSK allows programs to focus their resources around getting the data needed to make program critical decision in a timely manor.
- There is a wide range of technology which can be used to support the development of the IDSK for any given program.
- The value of using model-based tools in the IDSK process comes in the ability to automatically link many different technical and programmatic aspects of the program to the critical decision making process.
- The Model-Based IDSK can link requirements, the system model, the system design, system risk, test planning, and resource prioritization.

A tool easily implementable by digitally-born programs to support acquisition T&E decision makers is the goal.

DESIRED CHARACTERISTICS:

- 🎯 Relatively Easy to Use
- 🞯 Standardized Decisions
- 爹 Standardized Data Formats
- 🞯 Minimized Development Time
- Tailored to Program Decision Support Needs

n A K

> Program B MB-IDSK

m C SK

A model-based **IDSK Reference** Architecture provides practical guidelines for program-specific implementations.

STEP-1

Identify and specify a standardized set of decisions and data formats to support test planning.

The IDSK-RA tables can be tailored/configured based on the needs and requirements of the decision makers.

Five sets of standardized decision classes and data formats are identified and defined in the IDSK-RA.

Critical Technical Performance Decisions

IDSK RA Standardized Decision Classes Program Milestone/Technical Review Decisions

Subsystem Critical Performance & Tech Maturity Decisions

Operational Performance Characteristic Decisions

Programmatic (Business) Decisions

4

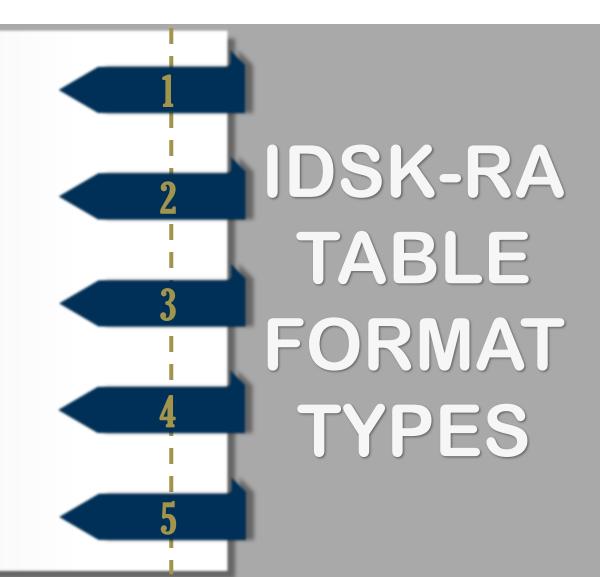
Ē

Five standardized IDSK table formats capture test, test planning, mission, and acquisition-related data.

IDSK DICTIONARY TABLE Ten (10) Dictionary-type Tables Specified

IDSK RESOURCES TABLE

Eight (8) Resource-type Tables Specified


IDSK DECISION TABLE

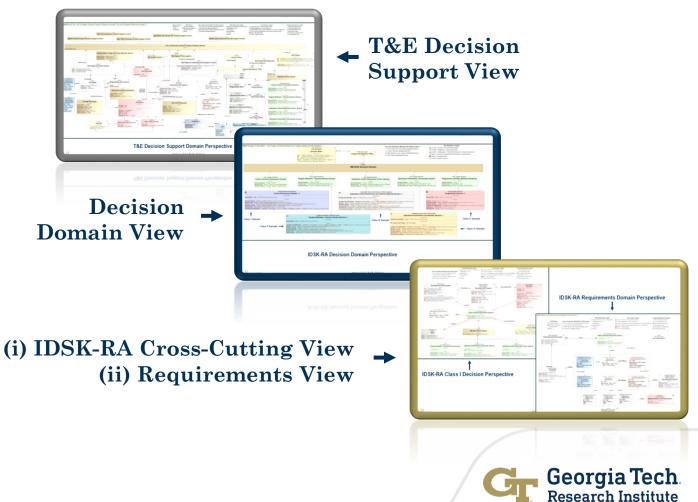
Five (5) Decision-type Tables Specified

IDSK CROSSWALK TABLE

Ten (10) Crosswalk-type Tables Specified

IDSK RISK ASSESSMENT TABLE One (1) Risk Assessment-type Table

Develop a model-based IDSK Reference Architecture to guide and constrain programspecific implementations.


The MB-IDSK RA is developed as a lightweight architecture to encourage usage by programs.

Ref. Arch. views portray the MB-IDSK-RA from multiple perspectives that address key concerns.

The following views of the model-based IDSK-RA serve as digestible chunks of the complete architecture:

- 1. T&E Decision Support Domain View
- 2. Program Office View
- 3. Decision Domain View
- 4. Decision Maker View
- 5. Metrics View
- 6. Requirements View
- 7. Test Article View
- 8. Test Range and Facility View
- 9. Test Personnel View
- 10. Test Budget View
- 11. Mission View

Ē

Tailorable tables generated from the architecture portray pertinent data to support T&E decision making.

Class I Decision Table – specifies decision data regarding critical performance requirements.

#	Name	△ Program Decision	Decision Type	Decision Category	Decision Outcome	Decision Date	Lifecycle Point	Confidence Level Required for Decision	Operational Requirement	Technical Requirement	Data Required	Data Source
1	EW SUT Critical Performance Indicator Decision	Decision question goes here	Critical Technical Requirement	CLASS I	Inconclusive	11/9/23	 Milestone B 	Unspecified	229.2 EW SUT Compute Target ID	R 184 EW SUT Compute Correct Target ID	Total Detected Targets	⊻ Test

Test Event Resource Table – captures test event meta data.

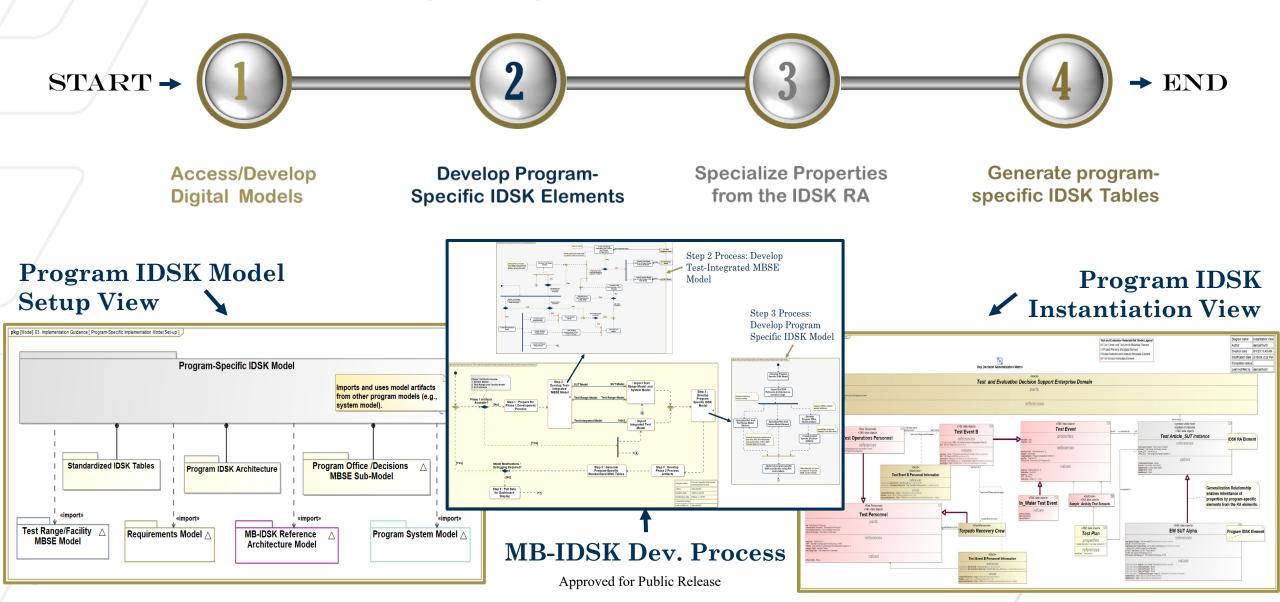
#	Name	Test Event Quarter & Fiscal Year	Type of Test	Test Number	Test Objective	Test Range
1	🖂 Missile SUT Test Event	Q1FY24	Developmental Test (DT)		Determine if the system requirement can be met by the current design.	S Missile Test Range Facility

Test Article Resource Table – captures test article test-planning data.

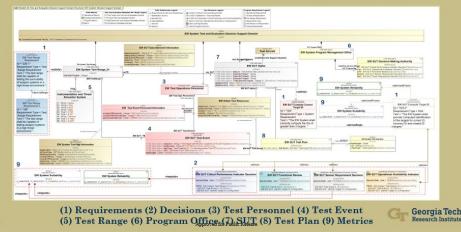
#	Name	Test Article (SUT)	Quantity (SUT)	Support System(s) Required for Test	Quantity (Support System)	Duration_Hour	Dollar Cost	Dollar Cost Total
1	🖂 EW SUT Test Event	😂 EW SUT Alpha	5	Test Aircraft	2	10	3000	30000
2	🖂 Missile SUT Test Event	😂 Missile SUT	2	🖂 Nuclear Submarine	1	5	20000	65000

Operational Metrics Crosswalk Table – captures test article test-planning data.

#	△ Name	Operational Operational Requirement Requirement Type		Derived Technical Requirement	Key Decision	Tests	
1	🎰 Missile System Suitability	229.1 Missile Speed Requirement	♦ КРР	R 219 Missile Speed Requirement	Missile System Critical Performance Indicator	All Scenarios TestMissile Speed Test Scenario	



Instantiate the MB-IDSK-RA to create programspecific MB-IDSK implementations.



A how-to model development process guides program offices on creating program-specific implementations.

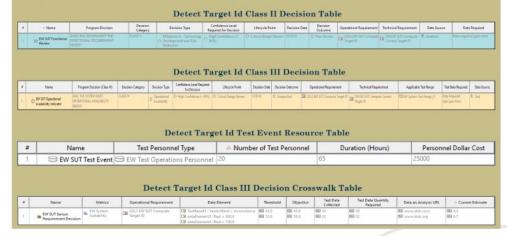
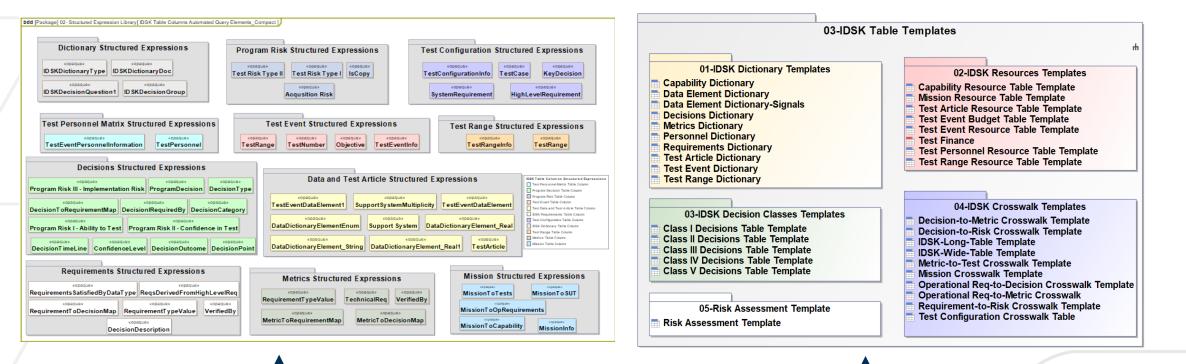

An exemplar EW system MB-IDSK architecture proof-ofconcept validates the MB-IDSK development process.

Diagram describes an exemplar MB-IDSK T&E decision support domain view for a notional EW system program.

Notional EW program Implementation of the MB-IDSK RA architecture

Exemplar IDSK tables for a notional EW system Test (detect target id test) are generated from the IDSK model.

Approved for Public Release


Notional EW program

Implementation of the

MB-IDSK RA tables

MB-IDSK-RA library resources help shorten the development timeline for programs.

- IDSK table templates that can be configured to show necessary data relationships
- Well-documented model query mechanisms (i.e. metachain navigation syntax)
- An IDSK Profile with stereotypes to facilitate communication and model development

Structured Expression Query Mechanisms

MB-IDSK Table Templates

In summary, the MB-IDSK RA enables programs aggregate data from digital models to enable timely decision-making.

STEP-1

Identify and specify a standardized set of decisions and data formats to support test planning.

The IDSK-RA tables can be tailored/configured based on the needs and requirements of the decision makers.

Georgia Tech

STEP-2

Develop a model-based IDSK Reference Architecture to guide and constrain programspecific implementations.

The MB-IDSK RA is developed as a lightweight architecture to encourage usage by programs.

Georgia Tech Research Institute

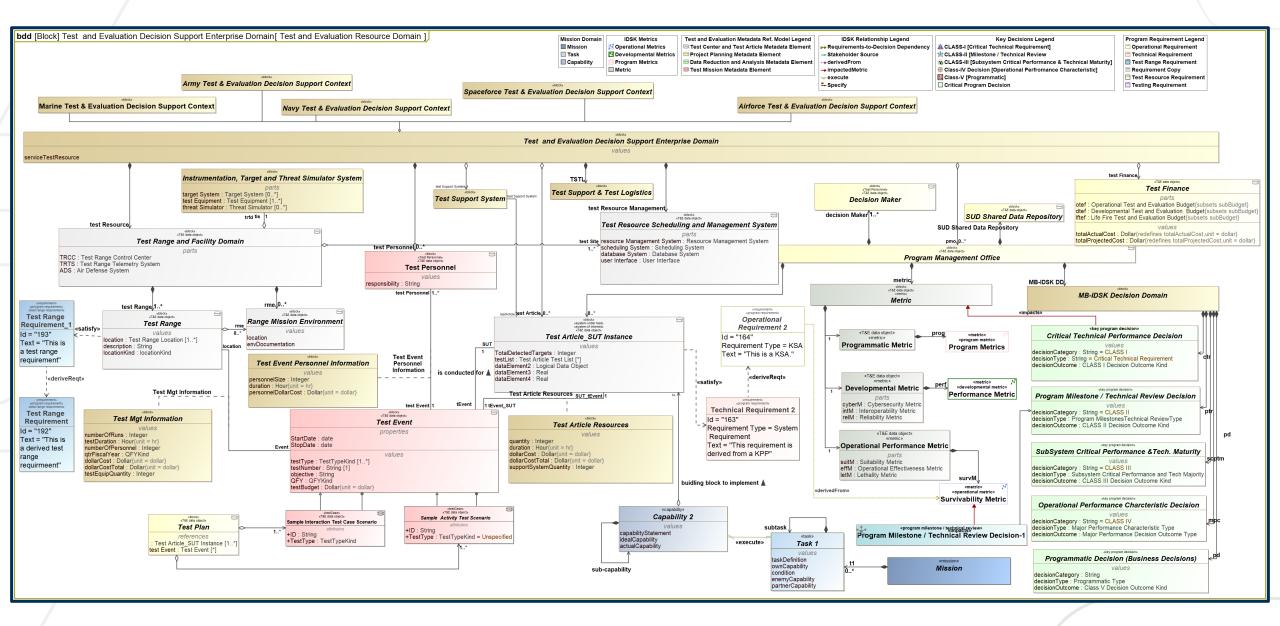
STEP-3

he IDSK-RA has a total of 34 IDSK table templates available.

Instantiate the MB-IDSK-RA to create programspecific MB-IDSK implementations.

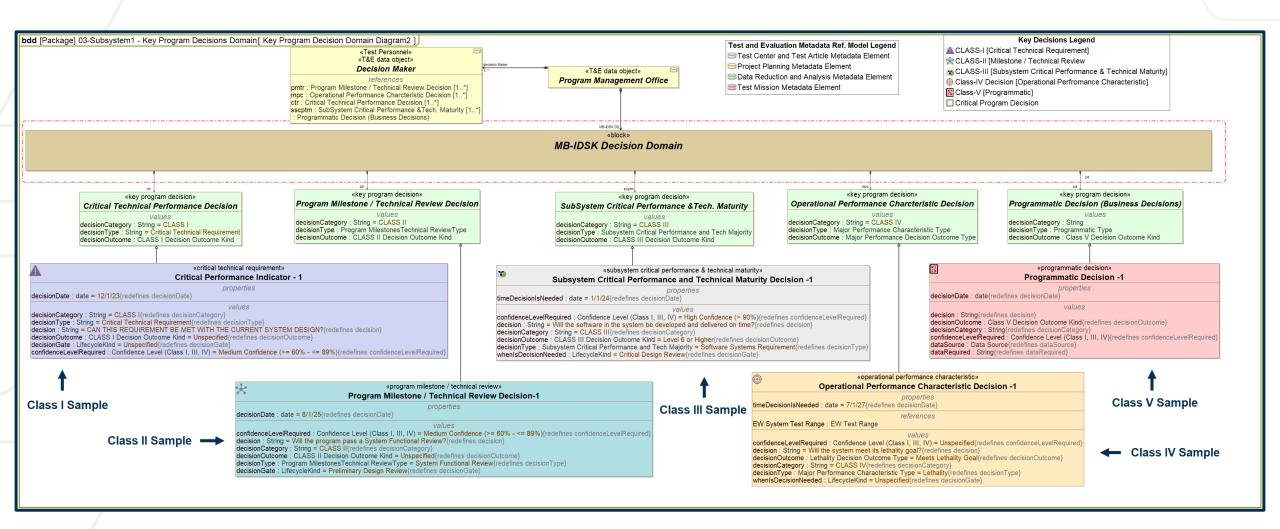
Georgia Tech.

Model-Based IDSK: Mitigating Decision Support Challenges during Acquisition Test and Evaluation.

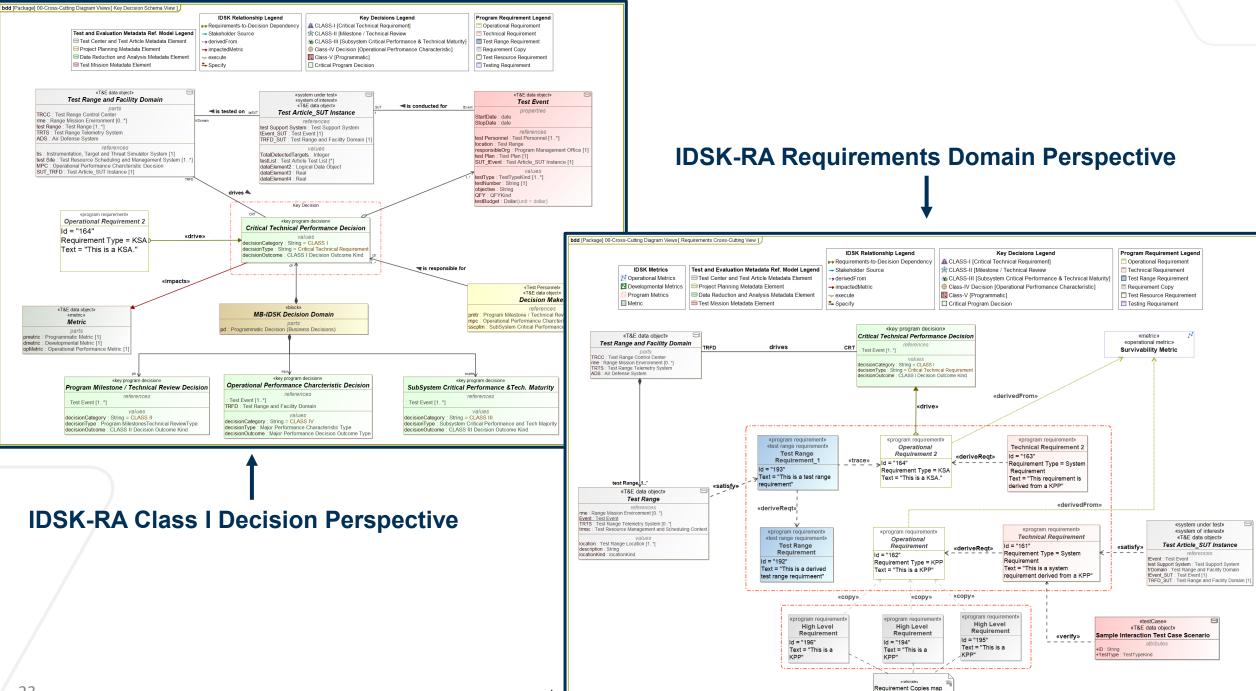


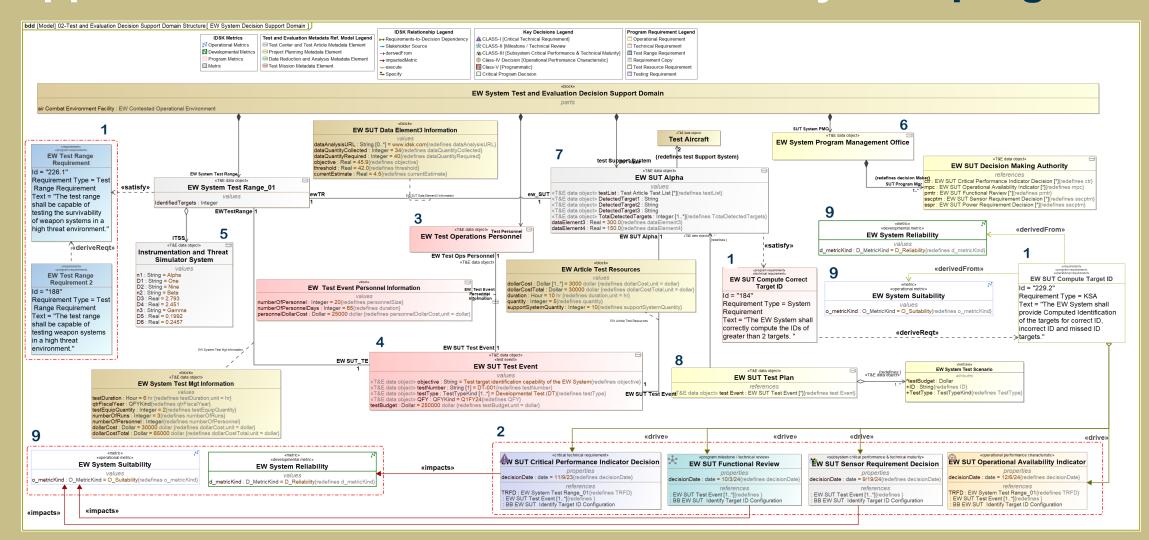
References

- 1. Executive Services Directorate. (2020). DoD Instruction 5000.89. Retrieved from Executive Service Directorate: <u>https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500089p.PDF</u>
- 2. DOT&E. (2022). Office of the Director, Operational Test and Evaluation Strategy Update Strategic Pillars, viewed 30 March, 2023, <u>FINAL DOTE 2022 Strategy Update 20220613.pdf (osd.mil)</u>
- 3. Army Aviation and Missile Command Fort Eustis VA. (2022). Comprehensive Architecture Strategy (CAS). <u>https://apps.dtic.mil/sti/pdfs/AD1185001.pdf</u>
- 4. Werner, J. S., & Arndt, C. (2023). Development of Digital Engineering Artifacts in Support of MBSEbased Test Planning, Execution, and Acquisition Decision Making. Acquisition Research Program.


Paper Abstract

Providing timely decision support to decision-making authorities during the various phases of an acquisition program is critical for the on-time delivery of operationally effective weapon systems that meet the needs of the warfighter. To ensure decision makers are equipped with the necessary test and evaluation (T&E) data to inform decisions, the department of defense (DoD) recently mandated the use of the Integrated Decision Support Key (IDSK) as a tool to encapsulate (i.e., succinctly record) a program's decisions and the T&E data necessary to support the decisions. Therefore, an approach that utilizes digital engineering, specifically model-based systems engineering (MBSE) as a means to standardize the linkage of test data to decisions presents a significant value proposition for decision-making authorities – linking data from a program's system, design and test planning models to key acquisition decisions. An overt value of this approach is the resulting digital thread that connects data sources i.e., digital models into an authoritative source of truth to both inform and validate decisions. Hence, this paper presents a model-based Integrated Decision Support Key (MB-IDSK) Reference Architecture that integrates and links data from multiple digital models to a standardized set of acquisition, technical, and T&E decisions. The MB-IDSK RA provides a standardized pattern and approach for developing program-specific MB-IDSKs to support program acquisition and T&E decision-making.


T&E Decision Support Domain Perspective


IDSK-RA Decision Domain Perspective

to Program Risk Values.

Diagram describes an exemplar MB-IDSK T&E decision support domain view for a notional EW system program.

(1) Requirements (2) Decisions (3) Test Personnel (4) Test Event
 (5) Test Range (6) Program Office (7) SUT (8) Test Plan (9) Metrics

Exemplar IDSK tables for a notional EW system Test (detect target id test) are generated from the IDSK model.

Detect Target Id Class II Decision Table

#	△ Name	Program Decision	Decision Category	Decision Type	Confidence Level Required for Decision	Lifecycle Point	Decision Date	Decision Outcome	Operational Requirement	Technical Requirement	Data Source	Data Required
1	EW SUT Functional	DOES THE DESIGN MEET THE FUNCTIONAL REQUIREMENT NEEDS?	CLASS II	Milestone A - Technology O Development and Risk Reduction	O → High Confidence (> 90%) 90% 00%	 Critical Design Review 	10/3/24	O Pass Review	R 229.2 EW SUT Compute Target ID	R 184 EW SUT Compute Correct Target ID	뀓 Analysis	Data required goes here

Detect Target Id Class III Decision Table

#	Name	Program Decision (Class IV)	Decision Category	Decision Type	Confidence Level Required for Decision	Lifecycle Point	Decision Date	Decision Outcome	Operational Requirement	Technical Requirement	Applicable Test Range	Test Data Required	Data Source
1	EW SUT Operational Availability Indicator	WILL THE SYSTEM MEET OPERATIONAL AVAILABILITY NEEDS?	CLASS IV	Operational Availability	O High Confidence (> 90%)	 Critical Design Review 	12/6/24	O Unspecified	R 229.2 EW SUT Compute Target ID	R 184 EW SUT Compute Correct Target ID	😂 EW System Test Range_01	Data Required type goes here	፻ Test

Detect Target Id Test Event Resource Table

#	Name	Test Personnel Type	A Number of Test Personnel	Duration (Hours)	Personnel Dollar Cost
1	🖂 EW SUT Test Event	😂 EW Test Operations Personnel	20	65	25000

Detect Target Id Class III Decision Crosswalk Table

#	Name	Metrics	Operational Requirement	Data Element	Threshold	Objective	Test Data Collected	Test Data Quantity Required	Data an Analysis URL	△ Current Estimate
	DW CUT C	EW System		TestResult1 : VerdictKind = inconclusive	20. 42.0	20, 45.9	20, 34	20, 40	Txt www.idsk.com	20. 4.5
1	EW SUT Sensor Requirement Decision	Suitability	Target ID	✓ dataElement3 : Real = 300.0	20. 55.0	20. 56.0	20, 22	20, 22	™ www.idsk.org	20. 6.7
	Requirement Decision			☑ dataElement4 : Real = 150.0						