Factors Influencing the Effectiveness of Systems Engineering Training in the Department of Defense

William R. Fast
Graduate School of Business and Public Policy
Naval Postgraduate School

wrfast@nps.edu 831-656-3628

Overview

- Literature Search: How do today's educators define effective training and education?
- Research Question: Do DoD's Systems Engineering courses encourage a <u>deep approach to learning</u> and the <u>far-transfer of learning to the job</u>?
- Approach: Examine DAU and NPS Systems Engineering courses:
 - Learning Outcomes (Objectives)
 - Methods of Instruction
 - Learning Assessments

Learning – What Really Works?

- Knowledge is constructed, not received
- Mental models change slowly and only by challenging students intellectually
- Questions are crucial because they help students construct knowledge

• Caring is crucial; if students don't ask important questions and care about the answers, they will not try to reconcile or integrate new information and replace old mental models

Source: Ken Bain, What the Best College Teachers Do

Far-Transfer of Learning to the Job

- Requires creative and critical thinking,
- stimulated by inductive training, and
- problem-centered instruction

 that engages students to build their own knowledge and skill base in long-term memory within a real-world context

Source: Ruth Colvin Clark, Building Expertise

DAU Systems Engineering Course Hours Categorized by Method of Instruction

SE 203 Tower Exercise

Problem-Centered Instruction

Challenging the Students'
Mental Models

Teaching Around the Cycle

(Learning Style Preferences)

Source: R. Felder & R. Brent, <u>Understanding Student Differences</u>

Engineering Student Learning Style Preferences vs. DoD SE Courses Instructional Methods

Bloom's Taxonomy

DAU Systems Engineering Lesson Objectives Categorized by Bloom's Level

NPS Systems Engineering Course Objectives Categorized by Bloom's Level

Types of Learning Assessments Used In DAU and NPS Systems Engineering Courses

Assessment	SYS 101	SYS 202	SYS 203	SYS 302	SE 3100	SI 3400	SE 4012
Objective Exam/Quiz	X	X	X	X	X	X	Χ
Subjective Exam/Quiz					X	X	X
Homework					X	X	X
Discussion Participation			X		X	X	X
Reflective Writing						X	
Individual Briefing			X	X	Χ	X	X
Individual Project					X	X	X
Team Project			X	X	X	X	X

Recommendations

- SYS 101 and SYS 201 could be improved by adding **problem** solving scenarios to stimulate the mind and help students build more sophisticated mental models of the systems engineering discipline earlier in their training
- To promote critical thinking, more of the lesson objectives within all of the DAU and NPS systems engineering courses could be written with verbs that target the *analyze*, *evaluate*, and *create* levels of Bloom's Taxonomy
- Additional research into learning for rapid cognition and learning patterns of response might reveal other ways to improve the effectiveness of systems engineering training and education

Learning for Rapid Cognition

...the ability of our subconscious mind to recognize patterns in everyday life situations based upon narrow slices or samples of experience...

Source: Malcolm Gladwell, <u>Blink:</u>
<u>The Power of Thinking Without Thinking</u>

"Experts see patterns that elicit from memory the things they know about such situations [and]...what distinguishes experts is that they have very good encyclopedias that are indexed and **pattern recognition** that is that index"

Source: Nobel laureate Herbert Simon

Learning Patterns of Response

 The human brain has the ability to adapt to chaos, uncertainty, and change

Human experience consists of about:
 50 percent stored responses, and
 50 percent newly created responses

 Can we teach more "patterns of response" to help systems engineers better solve complex acquisition problems?

Source: Moshe Rubinstein & Iris Firstenberg, The Minding Organization