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Abstract 
Title 10 § 4324 tasks the Product Support Manager (PSM) to “(B) ensure the life cycle 
sustainment plan is informed by appropriate predictive analysis and modeling tools that can 
improve material availability and reliability, increase operational availability rates, and reduce 
operation and sustainment costs.” Advances in modeling and simulation offer the opportunity for 
PSMs to bring new approaches to long-standing challenges, particularly using AI and machine 
learning models. This paper examines how one PSM has used a series of traditional and AI-
based models to develop predictive analytics that can advise the platform life cycle with the 
expectation of improved Operational Availability (Ao) and Material Availability (Am). 

There are many challenges, including: (1) most models are built to suit the particular user 
community, without any intention of connecting the model to others, (2) each model is often built 
with a set of algorithms that are custom adapted to the problem set, giving rise to composability 
questions, and (3) many models are built to different time scales, or even independent of any time 
representation. 

Life cycle sustainment of submarines, particularly during service life extension, has been met with 
challenges that have led to inefficient use of time and personnel resources. While maintenance 
availabilities include various service, planned, corrective and alteration jobs that maintain or 
increase readiness of the Navy’s deterrent fleet, these facilities encounter cost and schedule 
overruns caused by constraining factors including personnel, equipment, facilities, supplies, 
material, weather, or other uncontrollable factors. The COLUMBIA Submarine Program has 
developed several models to assist in decision making. We describe two models, one a discrete 
event simulation of the approved and alternate life cycles and the other a manpower forecasting 
model for the repair facilities and how these models have led to new insights in improvements 
that will improve Ao and Am. 
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We also describe a future state where currently disconnected models are integrated together, 
allowing decision makers insights to see the complete loop from a 3D product model used to 
design, build, and sustain the platform to the end user applications. 

Introduction 
We have previously reported on the application of governance to the sustainment effort 

on COLUMBIA (Baker et al., 2019). In this work, we described the Complex Governance 
System, its alignment with the nine directed responsibilities of the PSM, and how it could fill in 
the governance gaps from the Product Support Manager’s Guidebook. We also discussed the 
application of several governance meta-functions to the program situation. One meta-function 
(Learning and Transformation M4*) was touched upon lightly but presaged our work in modeling 
and simulation. Currently, an explicit gap exists in the Title 10 responsibilities; we note that  

The Learning and Transformation (M4*) meta-function, although not 
emphasized in the Title 10 responsibilities, is a critical element for 
governance. Learning facilitates the evolution of product support but also 
involves transformation of the DoD components if their business processes 
do not satisfy program requirements, or if their way of doing business 
comes at the cost of viability of another organization or a set of 
organizations (M4*). Governance through M4* implies continual adaptation 
and design of the underlying system and business processes through 
fundamental double-order learning to improve future execution. (Baker et 
al., 2019, pp. 13–14) 

The continued exploration of Learning and Transformation leads to several questions 
complemented by the governance perspective of having a model of the current system and 
potential future systems: 

• How can a Product Support Manager (PSM) take advantage of the rapid advances in 
modeling and simulation to develop an integrated, through life cycle ecosystem of models 
and simulations to develop otherwise hard to find improvements that lead to cost sensible 
improvements in Fleet Availability and Operational Availability?  

• What considerations might a PSM evaluate as the ecosystem is developed from a collection 
of siloed simulation instances?  

• Can the learnings from this effort be applied to other current or future acquisition programs? 
In this paper, we look at how one program is using modeling and simulation to improve 

the key parameters of Ao, Am and C/DA specified in DODI 3110.05, first from an individual 
model perspective, then combining the models into an ecosystem. We begin with an 
introductory section that lays the foundation of the legal and regulatory basis for the work, 
describes our evolving concept of an ecosystem, and discusses the fundamental science of the 
models and simulation. We then transition to a methodology section describing the technical 
approaches taken in the computational models. A discussion of some of the insights learned 
and results from our work to date follows, along with some conclusions. We wrap up with a 
discussion of future work on our vision of expanding the modeling boundaries across the 
organizational ecosystem and some of the challenges we are sure to confront. 
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Background 
Product Support Management Guidance in USC Title 10 and DoD/USN Supporting 
Instructions 

The Product Support Manager (PSM) is a position designated in law to deliver and 
implement product support strategies for covered systems. This position is required to develop 
and maintain the life cycle sustainment plan, approved by the milestone B decision authority. 
The life cycle decision plan has eight significant elements. The PSM also has nine specific 
responsibilities, including “(B) ensure the life cycle sustainment plan is informed by appropriate 
predictive analysis and modeling tools that can improve material availability and reliability, 
increase operational availability rates, and reduce operation and sustainment costs” (NDAA, , 
2021). This section is relatively new and represents the evolving understanding of the tools 
available to the PSM and the growing responsibilities. For instance, Public Law 111-84 of 2009, 
which introduced the Product Support Manager (Chapple & Faire) called out only five 
responsibilities for the PSM, none of which specified requirements for modeling and simulation. 
The responsibility to conduct modeling and simulation arrived in public law in Section 2337 
(renumbered from 805) in the National Defense Authorization Act for Fiscal Year 2013, which 
began the explicit enumeration of requirements for the PSM to “use appropriate predictive 
analysis and modeling tools that can improve material availability and reliability, increase 
operational availability rates, and reduce operation and sustainment costs” (NDAA, 2013).  

While Congress was providing legislative direction, OSD and the services were providing 
regulatory direction for PSMs to execute the law. Department of Defense Instruction 3110.05 
has had several iterations, with the latest issuance in April 2024. It specifies three 
“superordinate metrics that will allow decision makers at all levels across the DoD enterprise to 
assess the effectiveness and efficiency of weapon system sustainment using a standard 
structure and consistently applied methodology.” An additional nine metrics are specified in 
3110.05. While the instruction specifies several characteristics and methods of calculation, it 
makes no comment on models or simulations (DoD, 2024b). 

From a Navy perspective, a new Memorandum was signed out in 2024 that similarly 
focuses on key measures like Operational Availability (Ao) and Material Availability (Am). 
Following the DODI format, instructions are provided to calculate specific measures and 
reporting intervals (OPNAV letter, 2024). 

The COLUMBIA PSM had been working on various models and simulations, to be 
discussed in detail later, but the recognition had grown that the thread of the guidance 
combined with rapid advances in modeling and simulation offered the opportunity to begin 
connecting these models in an ecosystem embedded within the larger Project Blue ecosystem. 
Application of “Ecosystems” as a Pervasive Lens 
The rise of industry 4.0 and digital solutions has identified a new complexity, in that many of the 
technologies are interrelated and themselves complex, with few providers able to provide the 
complete suite with the requisite speed and flexibility. Benitez et al. (2020) had noted that 

Before the advent of Industry 4.0, technology providers had mostly worked 
in a dyadic relationship for the development of their solutions in the supply 
chain (Marodin et al., 2017, 2018), while technology implementation was 
based on the exchange of units (Lusch and Vargo, 2014). This means that 
each actor contributed with specific technology modules to the supply 
chain, which were developed independently from other technology parts 
and based mainly on transaction as a mechanism of exchange.  
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The PSM and his staff set out to create an ecosystem centered around delivery of 
sustainment to COLUMBIA, all within the scope of the PSM guidebook direction to employ 
Product Support Integrators (PSI) to facilitate the product support strategy through formal 
arrangements (e.g., Memorandums of Understanding/Agreement, formal contracts, teaming 
agreements) with designated Product Support Providers (PSP). The formal arrangements 
document mutual agreements for the scope of PS and resources provided and constrained in 
each individual arrangement. 

We retain the earlier definition of governance as “occurring within a “meta-system” 
responsible for design, execution, and evolution of those meta-system functions (“meta-
functions”) necessary to provide communication, control, coordination, and integration for the 
complex system (Keating & Bradley, 2015)” (Baker, 2019). This paper addresses the specific 
need to develop models of the system, both current and desired future, and how COLUMBIA 
has developed and used models to meet the statutory and regulatory guidance, as well as 
intended path for a system of models covering the physical span from design through 
operations and the temporal span of the entire class lifetime.  
Modeling Perspectives  

This section discusses the current modeling approaches for the life cycle and repair 
facility manpower. The PSM has explored earlier modeling techniques, not reported here, as 
part of an exploration of “the art of the possible.” The remainder of this section discusses each 
approach, software choices made and some detail on how each model was designed and 
implemented. 
Discrete Event Simulation (DES) 

Discrete Event Simulation (DES) models evaluate operation of a system or System of 
Systems (SoS) as sequential discrete time periods where each time period is distinguishable by 
a marked change that is clearly identifiable. In DES, abstract system models use a continuous 
but bounded time base where only a finite number of relevant events occur. These events 
cause state changes within the system which are then evaluated within the model to determine 
the effects on the overall system. In DES models, events occur at a discrete point in time that 
signifies a change to a system’s status. Between two successive status changes, the system 
remains static. DES is a method that steps through time, skipping static periods where no 
changes occur (Griendling & Mavris, 2011). In continuous simulations, a system is allowed to 
change continuously over time (Banks et al., 2004). In DES, however, models are designed to 
specifically deal with discrete changes through either time-triggered or event-triggered activities 
whose stochastic output can be used for making decisions. Any continuous time period can be 
discretized into discrete time periods using cut points. DES evaluates a continuous time period 
by analyzing and quantizing attributes within discrete time segments before recombining them 
into a single result that spans the original continuous time period. DES results quantify results 
for the discrete time periods analyzed within the model. Thus, any continuous time period under 
examination must be discretized. 

Discretization segregates data into discrete units. It replaces an infinite sequence into 
finite-dimensional problems that can each be solved individually through mathematics before 
being recombined to represent the solution in the original infinite sequence. Discretization 
methods produce data whose values can be counted (Yang et al., 2010). The discretization 
process establishes discrete data values that exist in intervals across a continuous range (Liu et 
al., 2002). Continuous results can be achieved by examining smaller and simpler results in 
discrete-time processes (Jacod & Protter, 2012). Partitioning a continuous time segment using 
cut points is a simple way to discretize any continuous time period. Any continuous time 
segment can be separated into “k” partitions using k-1 cut points. The process consists first of 
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determining the number of discrete intervals (i.e., partitions) followed by demarcating the 
boundaries of the intervals (Kotsiantis & Kanellopoulos, 2006). There is no theoretical limit to 
the granularity of discretization. Mathematically, discretization methods are approximations, but 
as granularity of the discretization becomes smaller and smaller, the approximation becomes 
closer to the actual solution of the original infinite sequence (Stetter, 1973). However, there is a 
practical limit that is determined by the period of observation or the ability to measure or record 
values associated with discrete time values or cut points. A continuous range can be discretized 
by using cut points to dissect the range into partitions or intervals. Phases, modes and states 
have been defined as clearly distinct and different partitions of an operation and a system’s 
functional operations (Wasson, 2014). Although a lack of a standardized taxonomy has resulted 
in much conjecture and confusion as to the distinction between phases, modes and states 
(Olver & Ryan 2014), they present an appropriate method for segmenting a life cycle into 
discrete periods that can be examined through DES.  

Phases, modes and states of operation are integral to defining a system even though the 
distinction between modes and states may be relatively arbitrary (Wasson 2014, 2016). A 
submarine’s life cycle is a continuous period from conception to disposal. A ship’s Life Cycle 
Model (LCM) is the assemblage of unambiguous and specific phases, modes and states and 
the assigned product baseline. There is not much difference between modes and states, but it is 
primarily how a user defines modes and states in the context in which it is being used (Wasson, 
2016). Any DES must be discretized. DES, as used in the COLUMBIA Submarine Program, 
requires discretizing each submarine’s continuous life cycle into discrete periods that can be 
quantized. Modeling a submarine using DES requires segmenting the life cycle into discrete 
time periods. Decomposing a submarine’s life cycle into phases, modes and states provides the 
cut points in the LCM and discretizes a submarine’s life cycle. 

Each submarine’s life cycle is a sequence of phases: Research and Development (R & 
D), design and construction (including delivery), Operations and Sustainment (O & S) and 
disposal. DES within COLUMBIA’s IPS is primarily concerned with the O & S phase which 
begins with the submarine’s delivery and ends with decommissioning. Decommissioning is the 
event signaling the transition from the O & S phase to disposal phase. The O & S phase is 
comprised of alternating modes of operations and sustainment (Lemerande, 2020, p. 8). The 
operations mode decomposes further into various states, each defined by a configuration of 
constituent systems and equipment that must meet pre-defined criteria to be considered in the 
operational mode. A Functional Profile (FP) segregates a mission into periods for specific 
functions to be performed rather than performing all functions simultaneously. FPs includes all 
events performed during a mission (USN, 2002). States can correlate to mission segments and 
be paired with specific equipment and specific configurations assigned to mission segments as 
unique periods to be assessed (Wasson 2014, 2016; Esary & Ziehms, 1975; Burdick et al., 
1977). The sustainment mode is comprised of any period where the submarine is undergoing 
intermediate or depot level maintenance. A submarine’s LCM is the assemblage of specific 
phases, modes and states. Phases, modes and states provide the cut points for discretizing an 
SSBN’s life cycle. The SSBN fleet life cycle is an agglomeration of the life cycles of the 
constituent submarines. The COLUMBIA Class LCM consolidates all the phases, modes and 
states of the SSBN fleet into a single model. DES is a state-driven model that uses probabilistic 
characteristics for submarines’ O & S Phase’s modes and states to evaluate and assess 
scenarios and quantify outcomes across all submarines included in SSBN force data models.  

Naval Sea System Command (NAVSEASYSCOM) initiated Model Based Product 
Support (MBPS) as a digital transformation program to consolidate and update Integrated 
Product Support (IPS) activities across the fleet. A core aspect of MBPS is the Navy Common 
Readiness Model (NCRM) that will provide “predicted, optimized and sustainable readiness” for 
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ships and submarines. Systecon’s Opus Suite is the chosen software for producing NCRMs in 
MBPS (NAVSEASYSCOM, 2022). SIMLOX, one of three software programs within Opus Suite, 
is DES software that has the ability to illustrate how outcomes vary over time, taking into 
account changing operational demands as well as changing resource availability, maintenance 
operations and logistics transportation operations. “SIMLOX is an event driven simulation tool 
that enables detailed analyses of how technical system's performance vary over time given 
different operational and logistics support scenarios” (Systecon, 2021, p. 17). Systecon 
developed SIMLOX to evaluate scenarios through simulations to help users understand the 
implications of various logistics and support conditions on the identified operational 
requirements. COLUMBIA’s PSM became an early adopter of Opus Suite and has been 
developing SSBN models in SIMLOX to drive improved IPS in the COLUMBIA Submarine 
Program. 
Artificial Intelligence and Machine Learning 

AI and ML-driven approaches have the potential to significantly improve fleet 
management by increasing availability and operational performance. One area of improvement 
involves adequately sizing the workforce required to perform necessary maintenance. This 
occurs at both the facility and trade levels. Workforce sizing exercises have been performed in 
similar circumstances. Turan et al. (2021) provided a case study involving the Royal Australian 
Navy that combined system dynamics simulations with the use of a sorting genetic algorithm to 
generate plausible workforce planning scenarios, which are then passed to further simulation 
models for evaluation. Witteman et al. (2021) applied time-constrained variable-sized bin 
packing approaches to calculate workforce requirements under optimal operational 
maintenance conditions for an entire aircraft fleet owned by a European airline. Potential 
modifications to these workforce sizing algorithms can include the incorporation of models for 
resignations, retirements, recruitments, promotions, and even annual leave (Akyurt et al., 2022). 

While workforce sizing is an appropriate technique to summarize the requirements 
across an entire facility, complex systems require analysis at the trade level to ensure that all 
aspects of maintenance can be covered by the workforce. Applying skillsets to the individual 
workers creates a variation of the Multi-Skilled Resource Constrained Project Scheduling 
Problem (MS-RCPSP), which attempts to optimize work schedules while considering worker 
skillset (namely, each worker can only work on tasks for which they are skilled) and material 
availability constraints. MS-RCPSP has been frequently tackled across a variety of industries 
using techniques such as parallel scheduling schemas (Almeida et al., 2016), genetic 
programming (Lin et al., 2020; Zhu et al., 2021; Snauwaert & Vanhoucke, 2023), binary integer 
programming (Zhang et al., 2023), mixed integer linear programming (Snauwaert & Vanhoucke, 
2023), Benders decomposition (Balouka & Cohen, 2019), and variable neighborhood searching 
(Chakrabortty, 2020).  

MS-RCPSP has been proven to be an NP-hard problem (Blazewicz et al., 1983). The 
consequence of this finding is that known methods are incapable of producing a solution to the 
MS-RCPSP problem in polynomial time, meaning that the computation required to produce the 
optimal solution scales at least exponentially as the inputs become more complex. Submarine 
maintenance requires hundreds of workers tackling hundreds, if not thousands, of jobs during 
any maintenance period. Even under idealized conditions, the scope of the submarine 
maintenance environment renders existing MS-RCPSP techniques computationally impractical. 
Techniques that attempt to simulate operational conditions, such as the stochasticity induced by 
Isah and Kim (2021) or the mid-project job delay forecasting by Awada et al. (2020), improve 
the realism of the modeling and simulation process but exacerbate the computational 
complexity of the problem. As a result, entities have asked whether other numerical, data 



Acquisition Research Program 
department of Defense Management - 202 - 
Naval Postgraduate School 

science, artificial intelligence, or machine learning techniques can achieve results faster while 
appropriately considering the operational conditions (Washko, 2019).  

Another area where AI and ML can improve maintenance facility performance involves 
prediction of unplanned work, which is known to contribute significantly to maintenance delays. 
The Government Accountability Office (GAO, 2020) notes that unplanned maintenance causes 
a 36% underestimation of workforce size, directly leading to over 4,000 days of maintenance 
delays in the aircraft carrier and submarine fleets during Fiscal Years (FYs) 2015–2019. This 
number accounts for 47% of all delays across the nuclear-powered fleet during that time span 
(GAO, 2019). Unplanned work generally arises after maintenance begins and can result from 
equipment breakdowns, inspection and/or test failures, discovery during maintenance of other 
parts, or other reasons. As a result, unplanned work is difficult to project. Data science efforts 
can identify patterns in unplanned work and attempt to apply the results to other machinery, 
allowing synthetic work packages to be developed for equipment that does not yet have 
maintenance history. 

Methodology 
In this section, we detail the two specific models that were developed for the life cycle 

model and the repair facility manning.  
Discrete Event Simulation 

DES in the COLUMBIA Submarine Program uses SIMLOX to demonstrate how 
simulation outcomes vary over time with varying inputs, resources and constraints. SIMLOX is 
designed to account for operational demands, maintenance requirements, resource availability 
and transport schedules to produce results that characterize operational and maintenance 
demands. SIMLOX models simulate mission scenarios according to predefined operational 
profiles while considering maintenance and support and the consequences resulting from 
logistics constraints and on operations throughout the scenario. Data related to maintenance 
schedules and resources, operational schedules/profiles and maintenance strategy are loaded 
into SIMLOX templates to produce a Database Model (DM). Each SIMLOX DM is generated by 
importing curated data tables from a Predictive Data Model (PDM) directly into SIMLOX using 
Open Database Connectivity (ODBC) functionality inherent in Opus Suite.  

The PDM creates conditions and curates data needed to conduct DES in SIMLOX. The 
PDM was developed within the Navy Marine Corps Intranet (NMCI) using common applications 
available in the USN’s Information Technology (IT) infrastructure. It is a development 
environment that collates submarine LCM and pertinent product support information into the 
requisite tables for importation into SIMLOX. The PDM developed for SSBNs uses MS Excel 
and MS Access to create, condition and curate data tables that comprise a comprehensive data 
model. Synthetic data was created and conditioned in MS Excel and curated in MS Access 
before importation into designated SIMLOX data tables for processing in a DES. The PDM’s 
data architecture is a collection of data tables that allows flexibility in the composition of 
individual submarines and their life cycle phases, modes and states and the necessary product 
support environment (i.e., model entities and resources). The PDM is modularly constructed to 
allow for incremental improvements to increase model fidelity and usefulness. The PDM’s 
output is curated data collated into tables that exactly match SIMLOX tables. Curated data 
tables in the PDM are imported directly into SIMLOX via ODBC. Data integrity is maintained 
between MS Excel, MS Access and SIMLOX to ensure data quality remains intact throughout 
the model. The PDM’s continued development and improvements remain unclassified while 
using synthetic data. However, the PDM is portable to the USN’s classified network to allow 
classified modeling when actual fleet data will be used. Using a standardized PDM allows 
separate DMs to be developed independently before being assimilated into a single model and 
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run as a consolidated simulation with multiple ships. Moreover, the standardized PDM allows 
any quantity of modes and states to be included in a single DM. The PDM can be applied to any 
submarine within the fleet. Every submarine can use the same PDM to develop its own model 
specific to that ship. A standardized PDM ensures any DES will be executed in the same way.  

PDM data tables are characterized as either common across the scenario or specific to 
a product (model entity). Common tables apply universally across the entire model and do not 
change based on submarine schedules. They consist primarily of logistics, product and 
organizational support resources that apply universally throughout the model. Common data 
tables often apply across multiple scenarios because they establish the product support 
environment for ships and ship operations within models. Tables specific to individual ships 
consist primarily of each ship’s LCM data. Ship specific tables share a common structure, but 
the data contained within each row of data is unique. Tables in a SIMLOX DM consist of 
columns and rows. Each column is defined by a specific name and header and, in some cases, 
default values (Systecon, 2021, p. 83). Every row is a separate record in the database. In each 
DM, each row is either uniquely associated with an individual ship (i.e., ship specific data), or it 
is common and applies across the entire fleet. The order of joining is inconsequential since each 
row represents an individual record. Any rows common across the fleet will be duplicated and 
therefore must be removed, while rows specific to an individual ship are unique. Combining data 
tables from separate DMs is simply consolidating rows of data from individual DMs into common 
data tables and removing duplicate rows. SIMLOX’s table structure supports piecemeal 
development; separate DMs can independently run individual ships’ simulations separately. 
However, to simulate all ships in the same integrated fleet simulation, the data tables from 
separate database models must be combined into a consolidated DM. Individual ship DMs 
combined into a single model yields an Integrated Fleet DM (IFDM). Running an IFDM in 
SIMLOX as a DES produces results for individual ships within the confines of the product 
support structure and within constraints of the fleet’s shared resources. SIMLOX results contain 
data stored as tables and graphical renderings in one common file. 

SIMLOX can produce a DES for any number of submarines within a product support 
structure defined by the modeler. SIMLOX is scalable and can be used to evaluate any quantity 
of SSBNs in any configuration for all phases, modes and states. SIMLOX, as an “off the shelf” 
product, has some limitations but is an adequate modeling environment. Furthermore, SIMLOX 
is approved to be installed on Navy classified networks. SIMLOX allows for spiral development 
in successive models to continually improve and increase model fidelity. Features available 
within SIMLOX support different levels of fidelity, depending on a given model’s construct. The 
most basic model requires specific data tables to be populated, while more complicated models 
must include additional tables. Once the minimum tables are populated and a basic simulation 
can be executed, additional features within SIMLOX can be included to add fidelity to DES 
results. DES in SIMLOX can be continually improved and updated with new functionality. 
Systecon has continually improved Opus Suite functionality with multiple releases throughout 
the past several years.  
Artificial Intelligence/Machine Learning 

Due to the overall taxpayer investment and strategic importance of the COLUMBIA 
class, it is important to ensure that the submarines last throughout the entire planned life cycle. 
The best way to achieve this standard prior to ship delivery is to thoroughly plan for 
maintenance throughout the ship’s life cycle. Artificial intelligence and machine learning 
methodologies can assist with this planning by learning from historical maintenance data and 
providing insights on the requirements needed to sustain COLUMBIA ships. This is important 
because the sensitivity and hiring requirements imposed by national defense work limit the 
amount by which the workforce can be scaled at any one time. Furthermore, there may be 
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changes in the structure of the workforce, particularly the number of employees skilled in 
different trades, due to the incorporation of new technologies onto the COLUMBIA class.  

The artificial intelligence and machine learning aspect of this project addresses five key 
questions:  

1. What sized workforce is required to perform the maintenance necessary to ensure that 
the COLUMBIA fleet fulfills its national security obligations? 

2. Given the calculated workforce size in Question 1, what distribution of skillsets is needed 
to ensure the COLUMBIA fleet fulfills its national security obligations? 

3. Given the results of Questions 1 and 2, what is the probability that a provided work 
package gets completed within a provided timeframe? 

4. Can work packages be generated synthetically to improve the confidence in Answer 2? 
5. How can the tools developed to analyze Questions 1–4 be efficiently packaged for use 

by maintenance planners? 
Several assumptions regarding working conditions were made in the modeling process. 

It is assumed that staffing levels remain consistent throughout the period of work, meaning that 
daily staffing levels do not change drastically at any point during the simulated life cycle. 
Machinery is assumed to be of sufficient quality and quantity to avoid causing bottlenecks in the 
work process. Future jobs are assumed to be completed as scheduled, meaning that no 
individual job is deferred to future maintenance periods. Due to the nature of the data and 
normal operating conditions, the model inherently accounts for a base level of deferral which is 
assumed to be consistent over the life cycle. Maintenance periods that require use of drydock 
facilities are assumed to be conducted entirely in the drydock. Finally, the modeling process 
assumes that work at the two facilities happens independently, meaning that jobs and workers 
remain at their original facility and that boats do not switch homeports during their life cycle. This 
final assumption allows for the development of separate models for each maintenance facility, 
which makes sense given that the two TRF facilities operate under slightly different 
philosophies. A system of models (comprising of predictive modules) is proposed to address the 
above five key questions: 

A Resource Per Day – Schedule Confidence (RPD-SC) module was developed to 
determine the overall workforce size. The first iteration of the RPD-SC module is trained using a 
corpus of all completed jobs conducted on 207 maintenance activities across all OHIO class 
submarines from 2010–2021. These activities include 34 docking and 77 pierside (non-docking) 
maintenance activities for Bangor and 19 docking and 71 pierside (non-docking) maintenance 
activities for Kings Bay. Daily charge data, including the number of man-hours spent on each 
job, is captured daily at each maintenance facility. These data were aggregated across the 
entire facility, then subdivided separately by maintenance activity and calendar day. Similarly 
sized maintenance activities were grouped together, and their daily charges were normalized to 
produce a generic work profile for that “type” of maintenance activity. When provided with 
maintenance dates and a projected scope (in man-hours), the RPD-SC module calculates the 
required resource expenditure needed for each day in the maintenance period to stay on track 
to complete the project in time. This process can be applied over each maintenance activity for 
each boat at a facility to produce a plot of the overall staffing needed at the maintenance facility. 
This plot provides the guidance needed for facility leadership to determine the required 
workforce size, thereby answering the first question. 

The charge data that powers the RPD-SC module also bins the jobs by Work Center 
(WC). Hence, the second iteration of the RPD-SC module was to perform a similar analysis at a 
more granular level for each WC. These work centers are typically broken down by trade. For 
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example, work center 38C conducts repairs requiring machining while work center 72A performs 
rigging operations. The process for generating work profiles is conducted at each of the WCs 
with sufficient work for analysis. This step is significant during WC analysis as some work 
centers only perform their work at specific times during a maintenance period. For example, 
72A’s work, which mostly involves the removal and replacement of equipment to improve 
access to other parts of the submarine, is largely conducted at the beginning and end of 
activities, while 38C’s work is performed consistently throughout the maintenance activity. A 
similar plot to the overall facility plot is generated as output of the RPD-SC WC iteration, which 
provides the guidance needed for facility leadership to determine the number of workers at each 
WC and answer the second question. 

Work center analysis revealed that oftentimes work is not linearly related to the 
estimates at the beginning of a maintenance activity. A third iteration of the RPD-SC model 
addresses this issue at both the facility and WC levels by incorporating a heuristic-based, non-
linear model approach. Data sets are broken into three regions using the Jenks natural break 
algorithm (Jenks, 1967). Linear analysis is conducted in the two outer regions to provide better 
fits on outlier data and provide reasonable extrapolations of the work estimates. In the interior 
region, a gradient boosting decision tree algorithm (Friedman, 2001) is used to fit on the data. 
The results of each of the trees are calculated then aggregated to produce a non-linear fit in the 
central region. The result is a fit that better adheres to the non-outlier data while minimizing the 
number of degrees of freedom.  

The RPD-SC module can produce raw work estimates, but when used alone, it cannot 
determine the likelihood that a maintenance activity is completed on time. The Resource 
Probability of On-Time Completion (RPC) module fills this void. RPC takes the start date, 
projected maintenance activity length (in days), estimated scope of maintenance, facility-wide 
staffing levels, and a derived value for the amount of work conducted at the facility (called load 
measure) as inputs. Load measure is derived from aggregated historical performance metrics 
gathered from the observed data. This measure is similar to the work profiles generated in RPD-
SC, but it applies across the whole facility rather than for an individual maintenance activity. The 
underlying technology of RPC is a Gaussian Process Classification model that is trained using 
the aforementioned observed maintenance data and outputs a probability that a maintenance 
activity completes within a provided activity length, answering the third question posed. It should 
be noted that the RPC module only uses historical maintenance activities in its training set, so 
the outputs will only be accurate for new activities that somewhat resemble those in the training 
set. 

The previously mentioned modules are each trained using observed maintenance 
records, but the available data may not be sufficient to ensure that the models run at peak 
efficiency. A synthetic data generation routine was developed to combat this issue by simulating 
realistic staffing/planning data using advanced machine learning techniques. The routine starts 
by clustering all available job data at the work center level to identify distinct job types. A job list 
is created for each maintenance activity, which consists of a list of job counts by cluster. A 
conditional variational autoencoder (CVAE) learns patterns from the job list training data and 
generates new synthetic job lists based on specified characteristics. 

This synthetic data is instrumental in filling gaps in the existing datasets, such as 
projecting job distributions for maintenance activities that are not similar to those currently 
observed. Synthetic data allows for analysis and prediction of job compositions across different 
scenarios, correlates job types with input maintenance activity characteristics, and helps 
anticipate staffing needs more accurately. Additionally, the model can simulate future 
maintenance activities by leveraging shared jobs, enabling better understanding of what 
COLUMBIA maintenance activities will look like, particularly under newly developed 
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circumstances foreign to existing ship maintenance plans. These simulated work packages 
address the fourth question posed at the opening of this section. 

The RPD-SC, nonlinear RPD-SC, RPC, and synthetic work generation modules combine 
to produce a powerful tool suite capable of predicting maintenance needs across the entire 60+ 
year life cycle of the COLUMBIA class. The final package takes a nominal life cycle schedule as 
an input. Facility-level workloads used in the RPC module are calculated using the provided 
start and end dates for the maintenance activities. The RPD-SC module uses the provided 
maintenance scopes and profiles each activity based on the activity length and the learned 
workload profiles. These RPD-SC results are graphically depicted on a visualization dashboard 
for each activity, as well as aggregated over the entire facility to show the entire projected 
workload on a given date. Additionally, the scopes and dates feed into the RPC model, which 
estimates the probability of a successful maintenance activity. These outputs allow maintenance 
planners to set target rules such as a nominal workforce size, which allows for further 
calculations such as overtime rate during busy periods, white space during slower periods, and 
workforce optimization through re-assigning work on docked ships (Tse & Viswanath, 2005). 
The above-mentioned modeling and dashboard will allow planners to envision ‘what-if’ 
scenarios at both TRFs and adjust maintenance availabilities to over the entire life cycle of the 
fleet. This overall package solves the final question posed at the opening of this section. 

Discussion 
Each of the models provided insights to assist the PSM. The discrete event model 

highlighted several risks within the approved life cycle and offered alternative life cycles for 
consideration to reduce or eliminate those risks. The AI/ML model is an earlier model but has 
offered insights the ability to develop synthetic work packages for a class not yet delivered. 
Some specific results are discussed in the following paragraphs. 

The first OHIO class SSBNs transferred into service in the early 1980s. The USN has 
more than 40 years of historical technical and logistics data for OHIO class SSBNs. The 
VIRGINIA class submarine program has about 20 years since the first of its class entered 
service. Although much of COLUMBIA’s design incorporates legacy systems from OHIO and 
VIRGINIA class submarines, a portion of the new SSBNs will be new technology for which there 
is limited technical and logistics data for parts other than data estimated by the ship designer. 
Moreover, 12 COLUMBIA class SSBNs will deliver the same Sea Based Strategic Deterrence 
(SBSD) mission currently provided by 14 OHIO class SSBNs. O & S for COLUMBIA will 
necessarily be different to OHIO in order to deliver SBSD with two fewer submarines. DES 
provides the ability to model COLUMBIA’s configuration baselines, life cycle schedules and O & 
S profiles as well as wider USN logistics support and TRFs’ facilities and resources to forecast 
effects integral to IPS.  

Success thus far using SIMLOX has demonstrated the usefulness of DES to IPS for the 
COLUMBIA Submarine Program. SSBN operations and sustainment are different to other Navy 
ships. SSBNs operate a “two crew” concept with each submarine routinely scheduled strategic 
deterrent patrols followed by in-port refit periods at a TRF. SIMLOX uses discretized life cycle 
schedules to simulate individual submarines’ modes and states for an entire class of 
submarines within the same simulation. Both TRFs play the primary role in sustaining SSBNs; 
they will provide the majority of all in-service sustainment and husbandry for COLUMBIA class 
SSBNs. Within SIMLOX, the TRFs are key resources within the DES that support evaluation of 
submarines across their life cycles. Stochastic forecasting predicts submarines’ operational 
successes during specific modes and states based on each submarine’s configuration, technical 
parts data, expected failures and repair capabilities within the product support network. SIMLOX 
also generates parts’ demands based on simulated operations and sustainment activities, to 
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include adequacy of OBRP allocations from simulated parts failures and subsequent onboard 
repairs conducted Ships Force personnel, to forecast demand rates for parts. DES results have 
also produced availability calculations based on simulated operations and sustainment 
activities.  
Artificial Intelligence – Machine Learning  

Early analysis focused on applying reinforcement learning (RL) techniques to optimize 
maintenance schedules, but several shortcomings were discovered. RL is ideal for cases where 
jobs must be performed in a certain order, but the existing datasets do not capture this 
information. RL also works best when job lists for a maintenance period are known, but in many 
cases, these lists are fluid until the maintenance period is underway. This results in a model that 
is myopic in nature and incapable of producing long-term predictions. The compute time 
required to run RL models makes application of RL models difficult in an operational 
environment. This is particularly true when determining the compounding effects of deferring 
work to future maintenance periods since the unplanned work added to future job lists cannot be 
finalized until the boat performs its patrol. Finally, RL algorithms usually produce an 
autonomous guidance for conducting maintenance periods, which may be met with distrust and 
operational resistance by people familiar with conducting live maintenance. 

Considering these shortcomings, the AI efforts shifted focus to traditional statistical 
learning approaches. The result was a suite of models that are less complex, capable of viewing 
long-term effects of short-term solutions, and powerful enough to provide meaningful results. 
Early model development directly predicted daily charged hours, but it proved difficult due to 
many unknowns, including the total ongoing work at the facility, how these charged hours were 
distributed, and other factors that might impact the workforce, such as extreme weather and 
extraneous conditions such as the Covid-19 pandemic. This prompted the development of 
models trained at the refit level on completed jobs. The workforce prediction models are trained 
using completed work as input and total charged hours as output. These models determine the 
resources required to complete a scoped work package. The trained models do not directly 
make daily predictions. Instead, profiles outlining the distribution of work over a maintenance 
activity are generated by computing statistics on historical data. By combining maintenance 
activity level predictions and profiles, daily workforce predictions are obtained. A requirement for 
this method is an understanding of how conditions affect the workforce on a daily scale. 
However, this model excels at making long-term predictions for the required workforce and 
understanding long-term trends in workforce demand. 

Iterative model development practices allowed for the creation of more complex models 
that maintained long-term outlooks and retained predictive capability over the RL approaches. 
These models include the non-linear and machine learning-based approaches outlined in the 
Methodology section. By applying these approaches, the mean absolute errors of prediction 
were reduced by more than 5% for the non-linear approach when predicting resource 
expenditures at the western maintenance facility. Model run time does not increase significantly 
despite the additional complexity. Furthermore, the non-linear model was designed to give 
reasonable predictions in regions without data, for example, activities with very small or large 
work packages. This package was named Maintenance Availability and Resource Prediction 
(MARP) for brevity. 

Model Integrations and Results 
DES modeling efforts described above produce common data useful in multiple 

modeling environments. A standardized output file has been generated for use in cooperative 
modeling activities. The PDM output file contains the following data fields: submarine unique 
identifier (i.e., hull number), unique maintenance availability identifier, scheduled start date, 
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scheduled completion date, planned duration and estimated scope of work in RDs. For 
maintenance periods where a portion of the production work will be conducted in a dry dock, 
planned durations of time in dry dock as well as scheduled dates for docking and undocking 
operations are also included. The output file is a simple MS Excel worksheet with data 
separated by columns with common header names. These curated data sets are common 
between modeling environments; they provide the source data for both the DES and the AI/ML 
models and any other models that could potentially be developed in the future.  

Model integrations between the DES (SIMLOX) and the AI-based MARP model are 
carried out by passing in the output schedule of the SIMLOX model as input (in the form of a 
spreadsheet as described above) to the MARP model. The input schedule includes a 
contiguous sequence of COLUMBIA maintenance availabilities over the lifespan of the fleet 
(2030–2080), the scope of work, and the type of availability. The MARP model then processes 
the input schedule and computes resources needed and a probability of on-time completion for 
each maintenance availability.  

Conclusions  
The work to date has demonstrated the viability of our intended path to develop 

an interconnected ecosystem of models, including 3D product models, reliability 
models, supply models, and class maintenance plans, to enhance decision-making and 
operational efficiency. The model offers an improved ability to optimize workforce sizing 
and predict maintenance needs, considering factors such as resignations, retirements, 
recruitments, and promotions to ensure an adequate workforce. Initial efforts to use 
reinforcement learning illustrated the limitations in a high noise environment, enabling 
the decision to more traditional statistical learning approaches augmented by newer 
algorithms. Since the new class of submarine has not been completed, the use of 
synthetic data generation routines will allow for credible simulations of realistic staffing 
and planning, enabling better analysis and prediction of job compositions and staffing 
needs. Iterative model development led to the creation of non-linear and machine 
learning-based models, which improved long-term predictions and reduced prediction 
errors.  

Future Research 
Future work is progressing at two levels; the first is the individual model level. Future 

work on the AI/ML modeling side includes further enhancing and validating the RPD-SC models 
at a granular work center level. Future work also aims to use job level information as input. 
Current models use the sum of estimated man-hours across jobs to make a prediction. Using 
trends at the job level would provide more accurate predictions. For example, some jobs may 
tend to require more expended man-hours than originally estimated. Another avenue to explore 
is incorporating job and workload assignment practices at the facilities. This allows for flexibility 
in how work is distributed overtime and does not use a static profile. Using this approach, a 
facility could predict workload while minimizing overtime, for example.  

Due to the success of the development of the first two models and the demonstrated 
ability to interconnect brining other models together is underway. An initial exploration of other 
elements of the ecosystem has been explored. Contained within our ecosystem are at least the 
following models and simulations: 1) the builder’s 3D product model used to design, build, and 
sustain the platform; 2) an intermediary viewer that permits rapid access to the 3D model data in 
a lightweight, easily transportable model; 3) the reliability models, primarily developed by 
warfare centers for the Hull, Mechanical and Electrical (HME) and combat systems; 4) the 
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supply models populated by the construction data packages from the builder and government 
organizations held by both NAVSUP and DLA; and 5) the class maintenance plan. Other 
models and simulations exist but are ignored for this level of abstraction. A generic pictorial is 
offered in Figure 1. 
 

 
 
 
 
 
 
 
 
 

Figure 1. Abstracted Model Ecosystem 

The future work will focus on developing the ecosystem. Several challenges are already 
understood and will require research and development. Three challenges will be discussed as 
part of future work. Those challenges are 1) composability, 2) verification and validation, and 3) 
governance of the ecosystem as an enterprise. Davis and Tolk (2007) assert that  

Strict plug-in/plug-out is unlikely to be valid for models, except in special 
cases, because of substantive subtleties about the component models and 
the assumptions that underlie them. It is much more feasible to design 
models in a fashion that will allow subsequent composition in short 
amounts of time—e.g., hours or weeks, rather than months or years.  
Many of the models in our ecosystem are complex, well-developed products. However, 

the interaction with the other models is in a nascent stage. This highlights the problem of 
composability, which Davis and Tolk (2007) define as “Composability refers to the ability to 
select and assemble components in various combinations to satisfy specific user requirements 

Life Cycle Model 
(Discrete Event 

Simulation)

MRAP

 Supply 
(Materiel) 
Availability 

Models

Sustainment 
System 

Performance

3D
Product 
Models

MRO Activity 
Dynamic 

Simulation 
(AI-ML)

Operating 
Performance

Model Ecosystem

Life Cycle Class 
Maintenance 

Plan

Ao
Am

C/DA

Build an integrated model ecosystem spanning from the 3D 
product model to operational models to report, predict and 
improve Ao, Am and C/DA 



Acquisition Research Program 
department of Defense Management - 210 - 
Naval Postgraduate School 

meaningfully (NRC 2006)” (p. 860). Additional research is necessary to identify, clarify and 
resolve composability issues. 

Related to the composability challenge is the concept of Validation, Verification and 
Accreditation of both the individual models and the entire ecosystem of models. Each of the 
individual models has a VV&A path adjudicated by the product owner (PM or equivalent). 
However, the ecosystem as a whole has not developed a VV&A plan. Research (Salado, 2015, 
2023) offers suggestions to supplement to DODI 500.61 and MIL STD 3022 guidance.  

The final challenge discussed in this paper is the topic of ecosystem (and model) 
governance. Several of the models are not program exclusive and are themselves evolving in 
conjunction with their environments. Technical advances like the advent of cloud hosting and a 
microservice architecture collide with monolithic models not designed as Cloud Native 
Applications. Whether cloud hosted or not, cyber security concerns must be integrated into the 
development path. Several of the model product owners have mature charters; others are 
nascent. The earlier reflection on the impact of Industry 4.0 creating a need for multiple 
participating organizations rather than a single source all create a complex system (or system of 
systems for those inclined). A governance system is also evolving to enable “control, 
communication, coordination, and integration of a complex system” (Keating & Bradley, 2015). 
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