

COLORADO STATE UNIVERSITY

Applying Agile to Large-Scale, Safety-Critical Systems: A Comparative Analysis of Agile and Waterfall Approaches in Satellite Development

Robin Yeman PhD

Research Questions

RQ1: Can Agile methodologies improve the development speed of largescale, safety-critical, cyber-physical systems without compromising safety and security?

RQ2: What are the key benefits and challenges of applying Agile methodologies at the system level in the development of complex systems like satellites?

RQ3: How do Agile and Waterfall methodologies compare in terms of meeting regulatory compliance, ensuring safety assurance, and managing integration complexity in the context of satellite development?

Satellite Case Study (Waterfall vs Agile)

Estimates were expert judgement and comparisons of similar activities

Specification

	Specification	Detail
1.	Application	LEO
2.	Native Orbit	400km-1200km
3.	Launch Mass	250kg
4.	Payload Mass	130kg
5.	Max Solar Array Power	1kW
6.	Redundancy	Dual-string
7.	Power Systems	66V system power
8.	Communication Data Rate	S-band: 125 Kbps uplink, 2 Mbps downlink X-Band: 650 Mbps downlink
9.	Propulsion	2150s hall effect standard, options available
10.	Thrust	1.1mN
11	Dimensions w/o Solar Panels	82cm x 58cm x 39cm

Mission Requirements

	Mission Req	Description
1.	Observation	The satellite shall provide Earth observation data with 1 meter/pixel. The satellite shall transmit data every orbit.
2.	Performance	The satellite must operate for a minimum of 5 years.
3.	Operational	The satellite must maintain a stable Low Earth Orbit (LEO).
4.	Data Transmission	The satellite shall transmit data every orbit to ground stations.
5.	System Structure	The System must be a modular architecture

System Requirements

<u>~</u>			
	Subsystem	Inputs	Outputs
1.	Structure	Primary & Secondary Structures	Verified structural integrity
2.	Power	Battery, Solar Arrays	Power distribution verified
3.	Attitude Determination and Control	Reaction Wheels, Star Trackers, Software	Attitude accuracy verified
4.	Communication	Transmitters, Receivers, Antennae	Reliable communication link established
5.	Payload	Scientific Instruments, Payload Specifications	Data collection and processing operational
6.	Thermal Control	Radiators, Heaters, Insulation, sensors	Thermal controls verified
7.	Propulsion	Thrusters, Fuel Thanks, Piping	Basic maneuver capability established
8.	Command and Data Handling	Onboard Computer, Software, Sensors	Command & Data handling verified

Assumptions

>	Category	Waterfall Assumption	Agile Assumption
1.	Workflow	NASA Defined approach (<u>NASA SP-2016-6105 Rev2</u>)	Iterative and Incremental with Continuous Assurance Toolkit Plugin
2.	Planning	Complete Integrated Master Schedule defined before work starts.	Roadmap and Planning approach defined
3.	Materials / Components	All required resources are available from the start and cause no delays.	All required resources are available from the start and cause no delays.
4.	Labor / Skill Availability	Functionally Organized Workforce	Cross-Functional Workforce with T-Shaped skills.
5.	Integration and Test	Test equipment and Infrastructure available immediately.	Test equipment and Infrastructure available immediately.
6.	Regulatory Compliance and Safety	Validated at the Phase Gates	Automated and continuously validated at each sprint and Increment (Quarter)
7.	Material Cost	Fixed Material Cost	Fixed Material Cost
8.	Labor Cost	\$120 Per Hour	\$120 Per Hour

WALTER SCOTT, JR. COLLEGE OF ENGINEERING COLORADO STATE UNIVERSITY

Satellite WBS

Continuous Assurance Plugin

People

Safety, Regulatory compliance expertise; Extreme Ownership

Process

Risk Management, Hazard Analysis, Fault Injection, Intent Driven Development.

Tools

Traceability Matrix, automate safety and compliance, expand scope of CI/CD and Stories

A **plugin** is a software component that extends the functionality of an existing software system, we expand This metaphor to the Agile Scaling Frameworks

Results

WALTER SCOTT, JR. COLLEGE OF ENGINEERING

COLORADO STATE UNIVERSITY

Store 2

Mean: 5.92 Year / SD 1.7 M

Mean: 2.43 Year / SD 1 M

Research Question Observations

Observation Simulation found that total time for development for Waterfall was 5.92 years, 01 Agile was 2.43 years $\sim 60\%$ reduction in development time Primary reason was due to batch size and rework at the decision gates and Waterfall focused on getting plan right versus Product. **Observation** Simulation showed a reduced standard deviation 1.7 months to 1 month suggesting 02 Agile not only shortens time-to-delivery but also reduces uncertainty and variation in delivery timelines, supporting higher predictability and schedule stability **Observation** 03 The decomposition showed we could shrink the timeline further if we introduced concurrent engineering. For example, Power and communication modules could be built at same time. **Observation** The lower standard deviation in the Agile build indicates tighter control and 04

The lower standard deviation in the Agile build indicates tighter control and faster feedback loops, allowing teams to detect and manage risks more efficiently compared to the Waterfall approach, where issues may not be discovered until later phases

Questions