

SYM-AM-25-326

Excerpt from the
Proceedings

of the
Twenty-Second Annual

Acquisition Research Symposium and
Innovation Summit

Wednesday, May 7, 2025 Sessions
Volume I

Accelerating Software Acquisition Using Generative
AI for Regulatory Compliance

Published: May 5, 2025

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Department of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research Program
at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Acquisition Research Program
department of Defense Management - 371 -
Naval Postgraduate School

Accelerating Software Acquisition Using Generative AI for
Regulatory Compliance

John Robert—is a Principal Engineer at the Carnegie Mellon University Software Engineering Institute
(SEI) and currently serves as the Deputy Director of the Software Solutions Division. In this role, Robert
leads software engineering research and development efforts in partnership with programs in the
Department of Defense and industry. Robert is a co-author of Architecting the Future of Software
Engineering: A National Agenda for Software Engineering Research & Development. Robert holds a
Master of Software Engineering from CMU and a BS in Electrical Engineering from West Virginia
University.

Carlos Olea—is a Graduate Research Assistant at the Magnum Research lab, Vanderbilt University. His
work focuses on interdisciplinary AI evaluation and utilization, with applications in fields from cyber-
physical security to aerospace design to sports analytics.

Yash Hindka—graduated with a BS in Computer Science from the University of Wisconsin-Madison in
December 2021 with Highest Distinction. After graduating, he joined Raytheon as a software engineer,
driven by the warfighters he grew up admiring from a young age. Yash currently works at the Software
Engineering Institute (SEI) at Carnegie Mellon University (CMU). He joined the SEI to learn from and be a
part of the strong academic tradition at CMU, all while continuing to support the warfighter. At the SEI, he
analyzes embedded weapon system software for vulnerabilities and participates in research efforts to
increase automation in the analysis process.

Nanette Brown—is a Senior Member of the Technical Staff at the Software Engineering Institute. In that
capacity she has worked as a researcher in the areas of agile and architecture and technical debt
management. She has consulted with government agencies on Agile and Lean Practices, and
Operational Test practices and policy development. Prior to joining the SEI, Brown spent more than 20
years in product development, starting as a developer and continuing on to lead development
organizations and change initiatives as the executive director of Architecture and Quality Management of
a Fortune 500 company.

Douglas C. Schmidt—is the Dean of Computing, Data Sciences & Physics at William & Mary. Schmidt
has served the president-appointed and Senate-confirmed Director of Operational Test and Evaluation,
where he was responsible for overseeing the evaluation of the operational effectiveness, suitability,
survivability, and (when necessary) lethality of United States defense systems to defend the homeland
and prevail in conflict. He also served as the Chief Technology Officer at the Carnegie Mellon University
Software Engineering Institute (SEI).

Abstract
Detecting document incompleteness, inconsistencies, and discrepancies between regulatory
documents and software artifacts is a common and people-intensive task for acquisition teams.
Department of Defense (DoD) Acquisition environments have extensive documentation
describing policies, guidance, and standards that must be repeatedly compared to delivered
software artifacts for a DoD program to ensure regulatory conformance throughout a project’s life
cycle. Acquisition professionals in these environments must learn the extensive and complex
regulatory information, apply the knowledge to multiple projects, and identify document
incompleteness, inconsistencies, and discrepancies (DIID) that could indicate non-compliance or
high-risk areas. Currently, teams of people review multitudes of documents and data, reading and
using general search on keywords to find relevant text to review and compare to regulatory
documents. As the DoD continues moves toward DevSecOps with continuous integration and
rapid capability deployment approaches, people-intensive approaches to ensure regulatory
compliance are slow, do not scale, and delay mission capability.

This paper investigates the use of large language models (LLMs) to improve the efficiency and
accuracy of DIID detection while enabling customization through prompt engineering. The
proposed approach leverages LLMs to augment acquisition professionals by providing semi-

Acquisition Research Program
department of Defense Management - 372 -
Naval Postgraduate School

automated and meaningful connections of software artifacts to regulatory documents. Testing
approaches are proposed to assess the effectiveness of LLMs for DIID detection, and preliminary
results are provided for detecting DIID with augmented LLMs. This paper also proposes prompt
engineering approaches for DIID detection and suggests benefits for DIID detection in software
acquisition activities.

Introduction
Department of Defense (DoD) software acquisition programs must adhere to a complex

web of regulations, standards, and contractual requirements. Ensuring every requirement is
addressed involves producing and reviewing extensive documentation, such as requirements,
design specifications, and test plans. Currently, teams of analysts manually cross-check these
artifacts against DoD policy checklists, derived from DoD directives or standards, to identify any
section that is incomplete, inconsistent, or discrepant with respect to the official guidance. This
manual process is tedious, error-prone, and people-intensive, so important omissions or
contradictions can be overlooked due to sheer volume or reviewer fatigue. Moreover, as the
DoD increasingly adopts DevSecOps practices to enable continuous integration and rapid
deployment, human-centric compliance reviews struggle to keep pace, introducing delays in
delivering mission capabilities.

Automating regulatory compliance checks has become an area of great interest to
improve efficiency and reduce human error. A common regulatory compliance task is identifying
where software acquisition or engineering artifacts are inconsistent, incomplete, or discrepant
from regulatory or standards documents. Such document incompleteness, inconsistencies, and
discrepancies (DIID) could indicate a regulatory requirement is not addressed or does not apply
to a system, or it could be a simple omission. Software acquisition and engineering teams often
begin regulatory or milestone reviews searching for DIID because they can be an indicator of
potential risks or deviations from expected system performance. Currently, acquisition and
engineering teams are using blunt word searches or lengthy reading and review to find DIID,
which is both slow and error-prone because documents can use different words for similar
topics.

Our goal is to augment acquisition professionals by automating the tedious detection of
DIID issues, while human experts remain central to interpreting and resolving these issues.
Determining the applicability generative AI to specific use cases, including software acquisition,
requires assessing the opportunities and risks among multiple considerations for their contexts
(Bellomo et al., 2023). The risks and opportunities of applying large language models (LLMs) to
DIID detection are discussed throughout this paper, along with some of the strengths of LLMs
and understand the risks. This paper does not explore the question of AI-based recommended
resolutions to detected DIID because automating DIID resolutions has higher risks given current
AI capabilities.

Not every document discrepancy or omission is critical because some may be
contextually justified. Identifying all potential DIID issues is a necessary first step before human
judgment can determine their severity. Automated support to augment humans in this task could
significantly improve efficiency. However, any automation to detect DIID, particularly in mission-
or safety-critical environments, must keep humans as an integral part of the process and as the
ultimate decision makers.

There is a pressing need for tools that can rapidly and reliably detect DIID across large
collections of acquisition documents. This paper describes how we are assessing the use of
LLMs to find DIID in software engineering artifacts efficiently by cross-referencing them with
regulatory documents. We also outline prompt engineering techniques to tailor LLMs for this
task and ensure they work effectively alongside humans. Finally, we describe gaps in testing

Acquisition Research Program
department of Defense Management - 373 -
Naval Postgraduate School

and evaluating the LLM’s performance on DIID detection and discuss preliminary findings. Our
approach illustrates initial observations and proposes approaches to improve scalability and
accuracy in compliance checking, ultimately accelerating software acquisition while maintaining
confidence in regulatory conformance.
New Opportunities in AI-Augmented Regulatory Compliance

Recent advances in generative AI, including LLMs, offer a unique opportunity to
transform software engineering and software acquisition (Robert et al., 2024). This
transformation extends to automating and accelerating software regulatory compliance
workflows. Unlike keyword-based search tools, LLMs can consider natural language context
and make judgements about document content based on training and other data. The ability of
LLMs to interpret semantics makes them suitable for text comparisons (Brown et al., 2020).
Using LLMs for document analysis is a common topic of interest across many domains,
including healthcare (Moilanen et al., 2022; Shokrollahi et al., 2023), financial or business
applications (Cao et al., 2024; Shukla et al., 2023), or for analyzing legal documents (Prasad et
al., 2024). In most of these domains, LLMs are used for document summaries and to provide
insights into data for that domain.

LLMs like GPT-4, Gemini, and Ollama can analyze documents, respond to prompts, or
generate natural language from unstructured text. LLM abilities to consider natural language
context has generated interest in automation of document heavy tasks. For example, an LLM
can interpret a requirement like “The system shall implement encryption in accordance with
FIPS 140-2” and check that the design document specifies FIPS 140-2 compliant encryption
beyond a simple word search of the document to include some semantic understanding.

By embedding the relevant regulations and policy documents into a vector database and
using it to provide context, an LLM can be prompted to cross-reference an acquisition document
against applicable rules. This approach, known as retrieval augmented generation (RAG),
allows an LLM to find explicit regulatory clauses or past examples from the vector store to
confirm its compliance checks (Nextra, n.d.). Using RAG to augment LLMs is currently part of
many online services offered by many LLMs and can be implemented on stand-alone LLM
solutions.

LLMs also offer the opportunity for people to interact with the documents and information
in new ways. Prompt engineering (Liu et al., 2023) and prompt patterns (White et al., 2023) are
techniques humans use to create and refine inputs to optimize responses from a generative AI
model, but they also represent new opportunities for humans to interact with AI systems
(Bozkurt, 2024). For software acquisition and engineering teams, prompt engineering and
prompt patterns provide a flexible and natural way to customize and refine DIID detection.
Role of DIID in Regulatory Risk and Non-Compliance

DIID issues in DoD program documents are not just theoretical inconveniences. In
practice they have been linked to project risks and delays. For example, (Brownsword, 2012)
identified DoD program anti-patterns that contribute to cost overruns and schedule delays.
Several of these patterns are examples of discrepancies or incompleteness in a DoD program’s
acquisition artifacts. A more recent GAO report identified that several programs failed to conduct
or report cybersecurity testing phases despite a DoD policy requiring the tests (GAO, 2022).
These findings explain why the DoD mandates rigorous document reviews and checklist-driven
inspections because even minor omissions can indicate compliance violations or additional risk
if left undetected.

Despite these precautions, human reviewers struggle with information overload. Critical
DIID issues can be missed simply because they are buried in hundreds of pages of

Acquisition Research Program
department of Defense Management - 374 -
Naval Postgraduate School

specifications and plans. The more complex the program, the more likely an overwhelmed
analyst might overlook a subtle inconsistency, which is why automated DIID detection assistants
can prove invaluable. Such AI-powered assistants (e.g., an LLM scrutinizing the documents in
parallel) act as a second pair of eyes, scanning at scale and flagging potential issues that
warrant human attention. By catching contradictions and gaps that a single reviewer might miss,
these tools can enhance overall compliance assurance.

Figure 1. Role of DIID in Software Acquisition

Figure 1 visualizes the role of DIID in software acquisition. Multiple documents are
created and connected as part of a program life cycle, and compliance with DoD regulations is
both required and verified. However, DIID examples exist in many documents and remain
unidentified due to the limitations in human reviewers and result in delays and other
consequences. An AI-powered DIID detection assistant helps identify DIID and prevent delays
or other issues.

It is important to note that the findings of AI tools would feed into the human review
process, not replace it. The goal is to improve review effectiveness and reduce risk while
allowing human experts to focus on judgment calls and solutions. In short, improving DIID
detection through automation reduces risk in acquisition programs by increasing the likelihood
that potential issues are found, and humans can review and analyze these issues.

DIID issues can surface at many stages of the software acquisition or software
development life cycle. DoD policies drive some requirements but also contribute to acquisition
strategy, architecture, and testing. When DoD policies recommended or require processes or
standards, these must be reflected in the relevant program documents. Some examples are
provided in Table 1.

Table 1. DIID Examples by Life Cycle

Lifecycle Stage DIID Examples
Acquisition Strategy Goals conflicting with
Requirements Missing safety constraints or security clauses from DoD standards or policies
Design Documents Conflicting interface definitions
Test Plans/Reports Incomplete traceability to requirements
Certification Artifacts Discrepant terminology from regulatory standards

Acquisition Research Program
department of Defense Management - 375 -
Naval Postgraduate School

Defining DIID in the Acquisition Life Cycle
DIID all indicate potential problems in software acquisition artifacts, but each term has a distinct
meaning:
• Incompleteness. Important content is missing either within a document or across a set of

documents. For example, if a safety policy mandates a “detailed analysis of safety-critical
signals” in the architecture description, but the project’s Software Architecture Document
only provides an analysis of “signals” without the safety-critical qualifier, this omission
constitutes an incompleteness. Incompleteness typically means some requirement or
context that should be present is absent, potentially necessitating additional review or
rework to address the gap.

• Inconsistency. There are contradictions or a lack of uniformity in terminology or content
either within one document or between documents. For instance, using “safety” and
“security” interchangeably in a system description (when in some domains they imply
different requirements) can confuse readers about the true requirements. Inconsistencies
might not always signify an error because they can be acceptable in the context, but they
often create confusion and may hint at deeper incompleteness or misunderstandings.

• Discrepancy. There is a direct conflict or divergence between facts or statements in one
place versus another. Discrepancies can be factual (e.g., one document states a response
time requirement as 0.01s while another cites 0.1s for the same event, a tenfold difference),
policy-related (a process described in the project plan deviates from what a governing policy
mandates), narrative (two documents describing the system’s behavior tell conflicting
stories), or theoretical (project results or assumptions conflict with established theory or prior
data). Discrepancies often indicate more serious issues because one of the conflicting
statements could be wrong. If critical parameters differ, the impact can be severe.
These definitions are typical of what is found in dictionaries and literature on human

interpretation or document analysis. Although there is no comprehensive list of different types of
DIID, common types and examples are summarized in Table 2.

Table 2. Types of Incompleteness, Inconsistencies, and Discrepancies

Incompleteness Inconsistency Discrepancy
• Incomplete:

Important context
or terms are
missing.

• Terminology: Using dif-
ferent terms interchangeably
without clear definitions or
consistency.

• Structural: Lack of uniform
structure in presenting
information.

• Factual discrepancies: Conflicting
factual information.

• Policy or procedural
discrepancies: Deviations from
established protocols.

• Narrative discrepancies: Different
user stories fail to align.

• Theoretical discrepancies: Actual
results conflict with theoretical
predictions.

Exploring DIID for Software Safety in DoD Regulatory Compliance

Exploring specific examples provides important insights into the opportunities and
current limitations of automating DIID detection in DoD regulatory use cases. We have
performed initial tests using currently available online LLMs, such as OpenAI ChatGPT 4o and

Acquisition Research Program
department of Defense Management - 376 -
Naval Postgraduate School

Google Gemini 2.0 as well as locally hosted LLMs, such as Ollama, to perform simple DIID
comparisons. Although testing is in progress, our initial results provide important insights into
opportunities and risks to enable generative AI for regulatory compliance. Some of the testing
insights are shared in blogs or webinars, to provide general observations while in progress
(Robert & Schmidt, 2024; Schmidt & Robert, 2024).

The initial testing has been performed on public (Distro-A) data comparing DoD and
NASA software safety standards to text statements that represent different types of DIID. There
are currently more than 100 statements to help identify false positives, the majority of which do
not contain DIID. There are examples of DIID, although not all sub types of discrepancies are
represented at this time.

A common use case is when DoD programs must follow system or software safety
standards to identify safety requirements or risks. For example, MIL-STD-882E is used for
hazards analysis, and Safety Assurance Cases (MIL-STD-882E, 2023), which must align with
and program-specific safety policies. The initial testing of DIID detecting used DoD standards,
including or similar to MIL-STE-882E, to compare with different statements that do or do not
contain DIID when compared to the standard. Inconsistencies could include mismatch in system
functions between FHA and test procedures or missing causal chains in hazard analyses.

Using this DoD standard, we illustrate DIID examples in Table 3 that might be found in
requirements documents, design documents, or testing documents. These are just a few of the
many examples of possible DIID, which can be in any of the DIID types, across many
documents, at different parts of the software development lifecycle, and for difference software
releases over time.

Table 3. DIID Examples

DIID Type DIID Example DIID Justification
Incompleteness The software test report includes

results from functional and
integration testing.

The DoD standard may require explicit
evidence of software safety testing,
including corner cases or hazardous
conditions. The absence of test cases for
safety-critical scenarios indicates
incompleteness in test coverage.

Inconsistency “Cyber resiliency is ensured through
encryption and secure boot
mechanisms,” (in a System
Description)
vs.
“Safety-critical software must handle
fail-safe transitions during fault
events for resiliency”

If the term “resiliency” is used in both
contexts (cybersecurity and safety) but
without consistent definitions, and without
clarifying boundaries, it introduces
inconsistency.

Discrepancy

“The system shall complete data
processing within 5 milliseconds,”
(in Requirements Specification)
vs.
“The implemented architecture
meets the 50 millisecond timing
constraint for processing.” (in
Design Document)

There is a factual discrepancy in
performance in timing requirements with a
10x difference between what is required
and what is implemented or claimed,
possibly leading to a violation of real-time
constraints mandated in mission-critical
DoD systems.

Acquisition Research Program
department of Defense Management - 377 -
Naval Postgraduate School

The examples are a small sample of the many types of DIID tests. The statements are
simple, but each statement must be reviewed by people, sometimes acquisition experts, to
confirm that the tests are relevant DIID that human reviewers would find interesting or consider
investigating in more detail. In addition, examples of statements without DIID, as perceived by
human reviewers, are also needed to consider false positives. The number of tests needed to
really exercise LLM solutions for DIID detection is extensive, particularly to consider all types of
regulatory documents and software artifacts. Work is currently underway to further characterize
DIID testing and gaps.

An important comment from software acquisition professionals and software engineers is
that DIID could appear to be limited when compared to software artifacts, such as design or
testing documents, but DIID could be extensive when compared to software code for that same
system. It is common to have software plans or software artifacts claim performance or
processes, only to review code or detailed testing to discover that the implementation is not
consistent with the documentation. This known issue requires extension of DIID detection of
regulatory documents beyond software artifacts to code. Commercial software development and
analysis tools are already integrating LLMs into their workflows, and these solutions can be
tested for DIID detection. In addition, the DIID detection for software artifacts remains important
for software acquisition teams and this may be the earliest opportunities to automate some of
the regulatory burden on acquisition teams. We strongly agree that DIID solutions must extend
to code, but in practice today we frequently observe programs only reviewing software artifacts.

Figure 2 illustrates a notional DIID detection testing pipeline. One or more regulatory
standards, DoD or other government standards, are used (top left) to create public DIID
detection test data sets. The test data is created and/or reviewed by humans for accuracy and
used to test multiple DIID detection architectures, including online LLMs, stand-alone (locally
hosted) LLMs, or LLMs combined with RAG solutions. The test results are summarized to
understand which solutions provide the best DIID detection, categorized by DIID type and other
groupings.

Figure 2. AI-Augmented DIID Detection Pipeline in DoD Safety Standards

Our initial testing is simplified from the actual needs for an operational system. For
example, the following aspects are, for now, not the focus of our testing:

Acquisition Research Program
department of Defense Management - 378 -
Naval Postgraduate School

• Data security—Sensitive information must be protected. Some software acquisition activities
may involve sensitive or proprietary information to LLMs, which raises concerns about data
security and privacy. We never use CUI or secured information for these tests because the
online LLM services do not support data security for CUI or proprietary data, which is a
known concern. We therefore include self-hosted LLMs as part of our testing to observe
similarities or differences in the responses. Organizations should always be aware of how to
mitigate the data disclosure risks of LLMs and prevent access to private or protected data.

• Scalability—We initially uses LLMs with RAG for testing, but more online services have
increased their support for scaling to support multiple documents. RAG is still needed for the
self-hosted solutions.

These initial tests highlight a few important areas of discussion to achieve AI-augmented
DIID detection for software acquisition use cases:

• Prompt engineering, which is important to ensure clear definition of DIID types and provide
guidance on what documents to compare.

• LLM testing frameworks. As we assess current LLM testing frameworks and data sets, we
found gaps for the DIID use case that point to the need for additional testing resources.

The Role of Prompt Engineering in DIID Detection
The flexibility of LLMs to support a wide range of uses effectively is supported in part by

prompt engineering (Liu et al., 2023), which involves structured interactions with LLMs to
optimize outputs via natural language interfaces. Prompt patterns (White et al., 2023) codify
best practices for phrasing prompts to maximize extraction accuracy and provide knowledge
transfer mechanisms to problem-solve with LLMs more effectively and accurately. Prompt
patterns also enable more effective and repeatable performance of LLMs, and many patterns
have been identified for a range of task objectives.

Prompt engineering is a key capability that provides new opportunities for DIID detection
in software acquisition, e.g., the Context Manager pattern (White et al., 2023) directs an LLM to
set the context. Prompt engineering, including identification and refinement of relevant prompt
patterns, is thus central to our research. When DIID types are narrowly defined and examples
are provided to LLMs through fine tuning or prompt engineering, DIID detection can be
improved for specific use cases. In our initial experiments, failure to include DIID definitions in
the prompt led to a high variance in the output and the increase confusion for the user. For
instance, a user would have to read the output several times to understand is the output was
consistent with the DIID types.

To detect DIID in software artifact analysis, an LLM must act like a reviewer, i.e., it
should analyze the content, the context, and then apply reasoning to identify gaps. For
incompleteness, this analysis means knowing what should be in the document (perhaps via a
template or a checklist derived from policy) and checking if it is there. For inconsistencies, it
entails comparing statements for logical alignment. For discrepancies, it requires cross-
referencing external sources.

Figure 3 provides a summary of prompt engineering for DIID detection. A DIID taxonomy
must be provided to ensure consistency in the types of DIID. Specific context is sometimes
needed to define how different documents are related.

Acquisition Research Program
department of Defense Management - 379 -
Naval Postgraduate School

Figure 3. The Role of Prompt Engineering in DIID Detection

These complex tasks are where the combination of LLM + vector database shines. A
vector database can supply the LLM with a checklist of expected content (for completeness
checks) or the authoritative values/terms from reference documents (for discrepancy checks).
An LLM, in turn, can combine this information and flag where the document deviates. By training
or priming the LLM with plenty of examples of DIID issues (possibly from past project
documentation annotated with findings), we can further improve its detection abilities. Early
experimental setups indicate that LLMs can replicate the judgment of reviewers in identifying
such issues, although careful evaluation and iteration on the prompts are required to minimize
false positives and false negatives.
LLM Testing Frameworks for DIID Use Cases

Evaluating the effectiveness of LLMs on DIID detection requires specialized testing
frameworks and data. Common LLM testing frameworks and benchmarks provide a starting
point but often do not directly assess the kind of document analysis needed for regulatory
compliance. For example, OpenAI’s Evals toolkit allows users to create custom evaluations and
has been used to measure GPT-4’s performance on tasks ranging from math problems to code
generation. For DIID detection on software acquisition, however, we need to design evaluations
that mirror the task, e.g., given a set of documents and related regulations, does the LLM
correctly identify all instances of DIID?

LLM testing protocols for detecting inconsistencies in document summaries could be
extended because it provides tests specific to DIID and benchmarks for some of the latest
LLMs, as described in Laban et al. (2023). This work provides a relevant DIID detection test
framework and dataset that considers multiple discrepancy examples, with multiple LLMs, and
compares results of a few benchmarks. This current solution is limited to only a subset of the
DIID detection needed for software acquisition, however, and without representation about
levels of abstraction.

Acquisition Research Program
department of Defense Management - 380 -
Naval Postgraduate School

Figure 4 further describes the LLM testing framework for DIID. Using the test data set
previously discussed, multiple LLMs are tested for DIID detection. Additional DIID tests with real
systems are performed to ensure consistency of the DIID detection.

Figure 4. LLM Testing Frameworks for DIID Use Cases

Traditional natural language processing (NLP) benchmarks, such as MMLU (Massive
Multitask Language Understanding) or BIG-bench, include reading comprehension and logical
reasoning tasks, but they don’t capture the multi-document, domain-specific nature of DIID
detection. Similarly, academic benchmarks like Holistic Evaluation of Language Models (HELM;
Liang et al., 2023) provide broad assessments on accuracy, robustness, and fairness across
tasks, but lack metrics for “document consistency checking” or “completeness verification” which
are critical in our context. These gaps indicate that testing benchmarks should be extended to
better consider DIID detection. Potential approaches to test LLMs for DIID include the following:
• Synthetic document benchmarks—Construct pairs of documents and regulatory checklists

where we intentionally introduce known incompleteness or inconsistencies. For instance,
create a requirement spec with one requirement missing a subsection, or two documents
with slightly differing data for the same item. These synthetic cases (with ground-truth labels
of where the issues are) can be used to evaluate LLMs quantitatively. Metrics like precision,
recall, and F1-score for issue detection can be computed to indicate how many of the known
missing sections did the model correctly flag (recall) versus how many flags were incorrect
(precision).

• Real-world case studies—Use actual past project documents from DoD or industry, with
appropriate anonymization, where known issues were found through audits. These
documents serve as a gold standard to see if the LLM finds the same issues. This approach
is more challenging because the model might find different issues than the human auditors.
In these cases, additional analysis is needed to determine if the issues are valid or
hallucinations. An evaluation framework must account for these differences by having
experts review the AI-identified DIID issues.

• Challenge datasets for consistency—Leverage existing datasets focusing on contradiction
detection or question answering consistency. For example, some academic tasks require a
model to identify contradictions in text (similar to our inconsistency detection). Adapting such
tasks (e.g., the BoolQ or contradiction questions from NLI benchmarks) could provide some

Acquisition Research Program
department of Defense Management - 381 -
Naval Postgraduate School

insight into how well the LLM maintains consistency understanding. If an LLM struggles with
basic contradiction identification in short texts, it will likely struggle with large documents too.

In testing current LLMs for DIID, limitations and challenges have been identified. One
consideration is how to scale LLMs to support large documents or many documents, which is
very common in DoD software acquisition and software engineering. RAG is a popular approach
to scale LLMs for multiple documents and has proven both effective and relatively fast response
but effectively implementing RAG systems requires some decision about how to chunk and
store data (Godfrey, 2024). An alternate approach is to increase the context length and the trend
has been for LLMs to increase context length to ~ 1 million for current models. This larger
context length simplifies application of LLMs to larger document sets because it does not
require RAG. We are considering architectures with and without RAG, which complicates
evaluation.

Another challenge is ensuring the model doesn’t hallucinate. A powerful generative
model might “imagine” a discrepancy that isn’t there, especially if prompts are not tight. This
type of hallucination is analogous to a false positive in testing. For reliable adoption, we prefer
an LLM to miss a minor issue (false negative) rather than invent a problem (false positive) that
sends teams on a wild goose chase. Testing frameworks must measure hallucination rates. One
way is to include control documents that are error-free (or have no DIIDs) and then verify that
the LLM mostly outputs “No issues found” for those. Any issues it does claim in a known-good
document count as false alarms.

We also can examine the use of LLM self-evaluation and iterative refinement in testing.
Some frameworks allow an LLM to evaluate its own answers or engage in a back-and-forth
(e.g., asking the LLM to provide rationale and then verifying the rationale). For DIID, this self-
evaluation could mean the LLM first lists what it thinks should be in the document, then checks
off what’s present. By evaluating how well this self-check correlates with actual document
quality, we gauge the LLM’s thoroughness.

Citing testing benchmarks and prior work, some LLMs have demonstrated human-level
performance on various professional and academic benchmarks, suggesting its reasoning
abilities are strong (Minaee et al., 2025). This finding gives optimism that LLMs can handle
complex compliance tasks with the right prompts. DoD domain–specific testing with software
artifacts is limited, however, and does not include specific testing of DIID. Early internal tests we
constructed indicate that LLMs can catch subtle requirement inconsistencies (e.g., mismatched
units or thresholds) that earlier models or simple scripts would miss. Conversely, some LLMs
struggled unless the inconsistency was blatant, highlighting a performance gap. Such
observations underscore the need for continued testing and prompt refinement, as well as
possibly fine-tuning models on compliance data to improve their capabilities in DIID detection.

In summary, adapting LLM testing frameworks to DIID use cases involves creating
realistic test scenarios and measuring detection performance carefully. These activities not only
help quantify the effectiveness of current LLMs but also guide future improvements. For
example, if we find that LLMs often miss certain types of discrepancies (e.g., terminology
mismatches), we can then focus on training/prompt strategies to address those problems. In
addition, if we find LLMs are flagging too many non-issues, we can adjust prompts so they are
more conservative. Systematic testing and evaluation is essential for robust AI-augmented
compliance in practice.
Quantifying the Benefits of LLM-Augmented DIID Detection

Beyond qualitative improvements, it is important to measure how LLM-augmented DIID
detection impacts the software acquisition process. Prior research on humans detecting
discrepancies in text provides some clues. For example, Schoor et al. (2023) found that when

Acquisition Research Program
department of Defense Management - 382 -
Naval Postgraduate School

readers encountered conflicting information, it increased their “attention to sources,” i.e., they
spent extra effort cross-checking where the information came from. In the software acquisition
DIID context, this suggests that an AI tool must not only flag an issue but also point analysts to
the source evidence (e.g., the specific sections of the documents in conflict) to effectively aid
and not hinder the human’s workflow.

Figure 5 illustrates some of the potential benefits of DIID detection. Discussions with
acquisition professionals and software engineers that review program artifacts for regulatory
compliance have indicated that manual review is both exhausting and error prone, although
quantifying the frequency of these issues is difficult. The benefits represented are based on
discussions and will be used to define future testing.

Figure 5. Measuring the Impact of AI-Augmented DIID Detection

We are incorporating the insights from prior work by designing our LLM’s output to
include references or quotes from the documents, so analysts can quickly validate the AI’s
findings. To evaluate the overall value proposition of LLM augmentation, we consider the
following key questions and metrics:
• Time savings and analyst workload reduction—Does an LLM-assisted review significantly

reduce the time and effort required by human analysts? We hypothesize that automating the
tedious parts of the comparison will allow analysts to review more documents within the
same time frame or to focus on deeper analysis of each document. Our hypothesis can be
evaluated by controlled experiments where one group uses the LLM assistant and another
follows traditional methods, measuring total person-hours spent. We are also exploring
cognitive load indicators (perhaps via surveys) to see if LLM-based tools alleviate reviewer
fatigue.

• Accuracy gains compared to manual baselines—Can the LLM + vector database approach
match or exceed human performance in finding DIIDs, and with more consistency across
different document types? We hypothesize that LLM-based tool will have higher recall (catch
more true issues) than a typical manual review, especially for cross-document
inconsistencies that humans might overlook. Precision (avoiding false flags) might initially be
lower, but we expect the AI’s precision to improve with effective prompt engineering and

Acquisition Research Program
department of Defense Management - 383 -
Naval Postgraduate School

prompt patterns. We will measure this improvement by comparing the set of issues found by
humans versus the AI in test scenarios.

• Variance—An interesting aspect is the variance of DIID detection in both human reviewers
and LLMs. Human reviewers’ thoroughness can vary widely and is not well quantified, but
this issue is one of the reasons why regulatory compliance reviews include multiple
reviewers. Given the same prompt and data, LLM output can vary, which is a common issue
for generative AI solutions. We aim to demonstrate that the LLM output variance can be
minimized, ensuring even challenging documents get a thorough check every time.

• Enhanced traceability and new metrics—A potential ancillary benefit of using an LLM for
DIID detection is the traceability data it can generate. As the LLM links sections of policy to
sections of project artifacts, it could produce a traceability matrix or graph as a by-product.
For instance, if requirement A in a standard is fulfilled by section X of a design document,
the LLM’s analysis can record that link. Over time, this approach generates a graph of which
policies map to which project artifacts. Such an output could be used to answer questions
like “Have all policy clauses been addressed by the project’s documents?”—providing an
assurance metric for compliance coverage. We are exploring the extent to which an LLM’s
outputs can be aggregated into useful metrics, such as “percentage of requirements with at
least one corresponding implementation evidence.” This analysis goes beyond what manual
reviews typically produce and could transform how compliance is reported by generating
dynamic dashboards of compliance status.

In summary, our research will quantify the LLM’s impact on efficiency (time/workload),
effectiveness (issues detected vs. missed), and augmented capabilities (like automatic
traceability). Demonstrating concrete improvements in these areas is essential for gaining
stakeholder buy-in, especially in DoD programs where any new tool must justify its adoption in
terms of saved resources or improved outcomes.

Future Research
Our initial results are promising, but we are investigating the following avenues to

enhance and validate this approach further, as shown in Figure 6 and described below.

Figure 6. Future Research Directions for AI-Augmented DIID Detection

Acquisition Research Program
department of Defense Management - 384 -
Naval Postgraduate School

1. Benchmark LLMs across different software acquisition domains. The DoD acquisition
landscape is diverse, i.e., what works for a software-intensive weapons system might need
adaptation for an IT business system or a healthcare system. We will test the DIID approach
on documents from multiple domains (with their own terminologies and compliance
standards) to evaluate the model’s adaptability and identify if certain domains require
specialized tuning or domain-specific training data. Likewise, we are experimenting with
various LLMs (including newer models as they become available, or smaller fine-tuned
models that could be deployed on-premises for security reasons) to see which offer the best
balance of accuracy, context length, and ease of integration.

2. Refine our DIID datasets and training resources. A current limitation in our work is the lack of
large, labeled datasets of DIID occurrences. We will therefore curate and release a dataset
of annotated document pairs with known incompleteness, inconsistencies, and
discrepancies. A DIID specific dataset will not only help us fine-tune models for better
performance, but it can also benefit the research community by providing a benchmark for
this problem. In addition, we might explore semi-supervised approaches: using the LLM
itself to generate plausible DIID examples to augment training data (with careful validation to
avoid reinforcing errors). We are currently extending existing software life cycle data sets to
include considerations of DIID, such as Moreno et al. (2024).

3. Incorporate multi-modal inputs like diagrams and code into the DIID detection process.
Many regulatory and technical documents include information that isn’t pure text, e.g.,
architecture diagrams, interface control drawings, or source code snippets for critical
algorithms. Our future work will examine multi-modal LLMs or pipelines to detect DIID issues
across different media. For example, a UML diagram inconsistent with the written design
description. Early exploration might involve feeding textual descriptions of diagrams into the
LLM to see if it can relate them to the text.

4. Rigorously quantify the benefits of LLM-augmented DIID detection in realistic settings. We
are conducting user studies where experienced acquisition professionals use the AI
assistant on real tasks and provide feedback on workload reduction and confidence in the
results. We will measure time saved, error rates reduced, and collect qualitative feedback on
how the tool affects their workflow. Such studies will be vital for refining the tool’s usability
and demonstrating return on investment (ROI) to decision-makers in the DoD.

5. Drive changes in the regulatory documents themselves. If AI tools struggle due to
ambiguous or conflicting policy language, that signals an opportunity to improve the source
materials. We foresee a feedback loop where the AI not only checks compliance but also
suggests improvements to the policies and standards. For example, the LLM might
frequently flag a particular paragraph in a policy as confusing or internally inconsistent; this
could be reported to the policy authors, who can then clarify the text in the next revision. In
fact, we have observed that with simple prompting, LLMs can recommend rewordings of
requirements for clarity.

By adopting the approaches described above, organizations can create AI-friendly
regulations that are easier for both machines and humans to parse. This co-evolution of policy
and AI tooling—essentially writing requirements with automated checking in mind—is an
intriguing area for future exploration. It aligns with the DoD’s interest in more modular and
unambiguous requirements and could further accelerate compliance activities. We will pursue
research into how best to formulate guidance for policy authors, potentially in collaboration with
DoD standards bodies.

In summary, our future work will scale up our current DIID research to cover more
domains and data types, systematically evaluate its impact, and explore the bidirectional

Acquisition Research Program
department of Defense Management - 385 -
Naval Postgraduate School

relationship between AI and policy (e.g., to determine how each can inform improvements in the
other). We believe these steps are crucial to transition our research into a practical capability for
the DoD and beyond.

Concluding Remarks
This paper discussed accelerating regulatory compliance checks in software acquisition

by leveraging LLMs. We defined document incompleteness, inconsistencies, and discrepancies,
and demonstrated how an LLM, guided by prompt engineering, can effectively assist in
detecting DIID. Our approach has the potential to reduce the manual burden on acquisition
professionals significantly, increase the consistency and thoroughness of compliance reviews,
and ultimately help DoD programs deliver capability faster without sacrificing rigor.

Our preliminary exploration indicates that even with current LLM technology, there is
improvement in DIID detection accuracy and efficiency when compared to traditional methods.
There remain challenges to address, including creating test frameworks and data sets to ensure
the LLM’s outputs are trustworthy and consistent, to tailoring the solution for different domains
and document types. Ongoing work is tackling these through targeted evaluation and iterative
refinement.

Overall, the integration of human expertise with LLM capabilities is a powerful new
paradigm. This human-AI collaboration can not only speed up the acquisition process but also
improve its outcomes by catching issues early and iteratively with different software releases. As
generative AI tools mature, and as organizations adapt their practices (and possibly their
documentation standards) to better accommodate AI assistance, we anticipate that LLM-
augmented compliance checking will become an invaluable part of software engineering
researchers and practitioners. By continuing to evaluate and improve our approach in realistic
settings, and by sharing insights with the community, we aim to move one step closer to a future
where compliance is maintained more proactively and efficiently.

Acknowledgements
Copyright 2025 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Requests for permission for non-licensed uses should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM25-0544

Acquisition Research Program
department of Defense Management - 386 -
Naval Postgraduate School

References
Bellomo, S., Zhang, S., Ivers, J., Cohen, J. B., & Ozkaya, I. (2023). Assessing opportunities for

LLMs in software engineering and acquisition. Carnegie Mellon University Software
Engineering Institute. https://doi.org/10.58012/m3hj-6w28

Bozkurt, A. (2024). Tell me your prompts and I will make them true: The alchemy of prompt
engineering and generative AI. Open Praxis, 16(2).
https://doi.org/10.55982/openpraxis.16.2.661

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020).
Language models are few-shot learners. Proceedings of the 34th International
Conference on Neural Information Processing Systems, 1877–1901.

Cao, T., Raman, N., Dervovic, D., & Tan, C. (2024). Characterizing multimodal long-form
summarization: A case study on financial reports (No. arXiv:2404.06162). ArXiv.
https://doi.org/10.48550/arXiv.2404.06162

GAO. (2022). Weapon systems annual assessment: Challenges to fielding capabilities faster
persist. https://www.gao.gov/assets/gao-22-105230.pdf

Godfrey, C. (2024, November 22). RAG in the era of long-context LLMs. Medium.
https://medium.com/tr-labs-ml-engineering-blog/rag-in-the-era-of-long-context-llms-
b8ecda2d5693

Laban, P., Kryściński, W., Agarwal, D., Fabbri, A. R., Xiong, C., Joty, S., & Wu, C.-S. (2023).
LLMs as factual reasoners: Insights from existing benchmarks and beyond.
https://doi.org/10.48550/ARXIV.2305.14540

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D., Yasunaga, M., Zhang, Y., Narayanan,
D., Wu, Y., Kumar, A., Newman, B., Yuan, B., Yan, B., Zhang, C., Cosgrove, C. A.,
Manning, C. D., Re, C., Acosta-Navas, D., Hudson, D. A., … Koreeda, Y. (2023). Holistic
evaluation of language models. Transactions on Machine Learning Research.
https://openreview.net/forum?id=iO4LZibEqW

Liu, P., Zhang, L., & Gulla, J. A. (2023). Pre-train, prompt and recommendation: A
comprehensive survey of language modelling paradigm adaptations in recommender
systems (No. arXiv:2302.03735). ArXiv. https://doi.org/10.48550/arXiv.2302.03735

MIL-STD-882E. (2023). https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=36027
Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2025).

Large language models: A survey (No. arXiv:2402.06196). ArXiv.
https://doi.org/10.48550/arXiv.2402.06196

Moilanen, T., Sivonen, M., Hipp, K., Kallio, H., Papinaho, O., Stolt, M., Turjamaa, R., Häggman-
Laitila, A., & Kangasniemi, M. (2022). Developing a feasible and credible method for
analyzing healthcare documents as written data. Global Qualitative Nursing Research, 9,
23333936221108706. https://doi.org/10.1177/23333936221108706

Moreno, G., Hristozov, A., Robert, J., & Klein, M. (2024, July 23). A model problem for
assurance research: An autonomous humanitarian mission scenario.
https://insights.sei.cmu.edu/library/a-model-problem-for-assurance-research-an-
autonomous-humanitarian-mission-scenario/

Nextra. (n.d.). RAG for LLMs. https://www.promptingguide.ai/research/rag#rag-evaluation

https://doi.org/10.58012/m3hj-6w28

Acquisition Research Program
department of Defense Management - 387 -
Naval Postgraduate School

Prasad, N., Boughanem, M., & Dkaki, T. (2024). Exploring large language models and
hierarchical frameworks for classification of large unstructured legal documents (No.
arXiv:2403.06872). ArXiv. https://doi.org/10.48550/arXiv.2403.06872

Robert, J. & Schmidt, D. (2024, January 22). 10 benefits and 10 challenges of applying large
language models to DoD software acquisition. https://insights.sei.cmu.edu/blog/10-
benefits-and-10-challenges-of-applying-large-language-models-to-dod-software-
acquisition/

Robert, J., Ivers, J., Schmidt, D. C., Ozkaya, I., & Zhang, S. (2024). The future of software
engineering and acquisition with generative AI. Crosstalk, AI Taming the Beast, 26–43.
https://community.apan.org/wg/crosstalk/m/documents/464157

Schmidt, D. C., & Robert, J. (2024, April 1). Applying large language models to DoD software
acquisition: An initial experiment. Carnegie Mellon University, Software Engineering
Institute’s Insights (Blog). https://doi.org/10.58012/s32x-gc46

Schoor, C., Rouet, J.-F., & Britt, M. A. (2023). Effects of context and discrepancy when reading
multiple documents. Reading and Writing, 36(5), 1111–1143.
https://doi.org/10.1007/s11145-022-10321-2

Shokrollahi, Y., Yarmohammadtoosky, S., Nikahd, M. M., Dong, P., Li, X., & Gu, L. (2023). A
comprehensive review of generative AI in healthcare.
https://doi.org/10.48550/ARXIV.2310.00795

Shukla, N. K., Katikeri, R., Raja, M., Sivam, G., Yadav, S., Vaid, A., & Prabhakararao, S. (2023).
Investigating large language models for financial causality detection in multilingual setup.
2023 IEEE International Conference on Big Data (BigData), 2866–2871.
https://doi.org/10.1109/BigData59044.2023.10386558

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J.,
& Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering with
ChatGPT (No. arXiv:2302.11382). ArXiv. https://doi.org/10.48550/arXiv.2302.11382

Acquisition Research Program
Department of Defense Management
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

http://www.acquisitionresearch.net/

	Accelerating Software Acquisition Using Generative AI for Regulatory Compliance
	Introduction
	New Opportunities in AI-Augmented Regulatory Compliance
	Role of DIID in Regulatory Risk and Non-Compliance
	Defining DIID in the Acquisition Life Cycle
	Exploring DIID for Software Safety in DoD Regulatory Compliance
	The Role of Prompt Engineering in DIID Detection
	LLM Testing Frameworks for DIID Use Cases
	Quantifying the Benefits of LLM-Augmented DIID Detection

	Future Research
	Concluding Remarks
	Acknowledgements
	References

