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Abstract 
Detecting document incompleteness, inconsistencies, and discrepancies between regulatory 
documents and software artifacts is a common and people-intensive task for acquisition teams. 
Department of Defense (DoD) Acquisition environments have extensive documentation 
describing policies, guidance, and standards that must be repeatedly compared to delivered 
software artifacts for a DoD program to ensure regulatory conformance throughout a project’s life 
cycle. Acquisition professionals in these environments must learn the extensive and complex 
regulatory information, apply the knowledge to multiple projects, and identify document 
incompleteness, inconsistencies, and discrepancies (DIID) that could indicate non-compliance or 
high-risk areas. Currently, teams of people review multitudes of documents and data, reading and 
using general search on keywords to find relevant text to review and compare to regulatory 
documents. As the DoD continues moves toward DevSecOps with continuous integration and 
rapid capability deployment approaches, people-intensive approaches to ensure regulatory 
compliance are slow, do not scale, and delay mission capability. 

This paper investigates the use of large language models (LLMs) to improve the efficiency and 
accuracy of DIID detection while enabling customization through prompt engineering. The 
proposed approach leverages LLMs to augment acquisition professionals by providing semi-
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automated and meaningful connections of software artifacts to regulatory documents. Testing 
approaches are proposed to assess the effectiveness of LLMs for DIID detection, and preliminary 
results are provided for detecting DIID with augmented LLMs. This paper also proposes prompt 
engineering approaches for DIID detection and suggests benefits for DIID detection in software 
acquisition activities. 

Introduction 
Department of Defense (DoD) software acquisition programs must adhere to a complex 

web of regulations, standards, and contractual requirements. Ensuring every requirement is 
addressed involves producing and reviewing extensive documentation, such as requirements, 
design specifications, and test plans. Currently, teams of analysts manually cross-check these 
artifacts against DoD policy checklists, derived from DoD directives or standards, to identify any 
section that is incomplete, inconsistent, or discrepant with respect to the official guidance. This 
manual process is tedious, error-prone, and people-intensive, so important omissions or 
contradictions can be overlooked due to sheer volume or reviewer fatigue. Moreover, as the 
DoD increasingly adopts DevSecOps practices to enable continuous integration and rapid 
deployment, human-centric compliance reviews struggle to keep pace, introducing delays in 
delivering mission capabilities. 

Automating regulatory compliance checks has become an area of great interest to 
improve efficiency and reduce human error. A common regulatory compliance task is identifying 
where software acquisition or engineering artifacts are inconsistent, incomplete, or discrepant 
from regulatory or standards documents. Such document incompleteness, inconsistencies, and 
discrepancies (DIID) could indicate a regulatory requirement is not addressed or does not apply 
to a system, or it could be a simple omission. Software acquisition and engineering teams often 
begin regulatory or milestone reviews searching for DIID because they can be an indicator of 
potential risks or deviations from expected system performance. Currently, acquisition and 
engineering teams are using blunt word searches or lengthy reading and review to find DIID, 
which is both slow and error-prone because documents can use different words for similar 
topics.    

Our goal is to augment acquisition professionals by automating the tedious detection of 
DIID issues, while human experts remain central to interpreting and resolving these issues. 
Determining the applicability generative AI to specific use cases, including software acquisition, 
requires assessing the opportunities and risks among multiple considerations for their contexts 
(Bellomo et al., 2023). The risks and opportunities of applying large language models (LLMs) to 
DIID detection are discussed throughout this paper, along with some of the strengths of LLMs 
and understand the risks. This paper does not explore the question of AI-based recommended 
resolutions to detected DIID because automating DIID resolutions has higher risks given current 
AI capabilities. 

Not every document discrepancy or omission is critical because some may be 
contextually justified. Identifying all potential DIID issues is a necessary first step before human 
judgment can determine their severity. Automated support to augment humans in this task could 
significantly improve efficiency. However, any automation to detect DIID, particularly in mission- 
or safety-critical environments, must keep humans as an integral part of the process and as the 
ultimate decision makers.   

There is a pressing need for tools that can rapidly and reliably detect DIID across large 
collections of acquisition documents. This paper describes how we are assessing the use of 
LLMs to find DIID in software engineering artifacts efficiently by cross-referencing them with 
regulatory documents. We also outline prompt engineering techniques to tailor LLMs for this 
task and ensure they work effectively alongside humans. Finally, we describe gaps in testing 
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and evaluating the LLM’s performance on DIID detection and discuss preliminary findings. Our 
approach illustrates initial observations and proposes approaches to improve scalability and 
accuracy in compliance checking, ultimately accelerating software acquisition while maintaining 
confidence in regulatory conformance. 
New Opportunities in AI-Augmented Regulatory Compliance 

Recent advances in generative AI, including LLMs, offer a unique opportunity to 
transform software engineering and software acquisition (Robert et al., 2024). This 
transformation extends to automating and accelerating software regulatory compliance 
workflows. Unlike keyword-based search tools, LLMs can consider natural language context 
and make judgements about document content based on training and other data. The ability of 
LLMs to interpret semantics makes them suitable for text comparisons (Brown et al., 2020). 
Using LLMs for document analysis is a common topic of interest across many domains, 
including healthcare (Moilanen et al., 2022; Shokrollahi et al., 2023), financial or business 
applications (Cao et al., 2024; Shukla et al., 2023), or for analyzing legal documents (Prasad et 
al., 2024). In most of these domains, LLMs are used for document summaries and to provide 
insights into data for that domain. 

LLMs like GPT-4, Gemini, and Ollama can analyze documents, respond to prompts, or 
generate natural language from unstructured text. LLM abilities to consider natural language 
context has generated interest in automation of document heavy tasks. For example, an LLM 
can interpret a requirement like “The system shall implement encryption in accordance with 
FIPS 140-2” and check that the design document specifies FIPS 140-2 compliant encryption 
beyond a simple word search of the document to include some semantic understanding.  

By embedding the relevant regulations and policy documents into a vector database and 
using it to provide context, an LLM can be prompted to cross-reference an acquisition document 
against applicable rules. This approach, known as retrieval augmented generation (RAG), 
allows an LLM to find explicit regulatory clauses or past examples from the vector store to 
confirm its compliance checks (Nextra, n.d.). Using RAG to augment LLMs is currently part of 
many online services offered by many LLMs and can be implemented on stand-alone LLM 
solutions.  

LLMs also offer the opportunity for people to interact with the documents and information 
in new ways. Prompt engineering (Liu et al., 2023) and prompt patterns (White et al., 2023) are 
techniques humans use to create and refine inputs to optimize responses from a generative AI 
model, but they also represent new opportunities for humans to interact with AI systems 
(Bozkurt, 2024). For software acquisition and engineering teams, prompt engineering and 
prompt patterns provide a flexible and natural way to customize and refine DIID detection.  
Role of DIID in Regulatory Risk and Non-Compliance 

DIID issues in DoD program documents are not just theoretical inconveniences. In 
practice they have been linked to project risks and delays. For example, (Brownsword, 2012) 
identified DoD program anti-patterns that contribute to cost overruns and schedule delays. 
Several of these patterns are examples of discrepancies or incompleteness in a DoD program’s 
acquisition artifacts. A more recent GAO report identified that several programs failed to conduct 
or report cybersecurity testing phases despite a DoD policy requiring the tests (GAO, 2022). 
These findings explain why the DoD mandates rigorous document reviews and checklist-driven 
inspections because even minor omissions can indicate compliance violations or additional risk 
if left undetected. 

Despite these precautions, human reviewers struggle with information overload. Critical 
DIID issues can be missed simply because they are buried in hundreds of pages of 
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specifications and plans. The more complex the program, the more likely an overwhelmed 
analyst might overlook a subtle inconsistency, which is why automated DIID detection assistants 
can prove invaluable. Such AI-powered assistants (e.g., an LLM scrutinizing the documents in 
parallel) act as a second pair of eyes, scanning at scale and flagging potential issues that 
warrant human attention. By catching contradictions and gaps that a single reviewer might miss, 
these tools can enhance overall compliance assurance.  

 
Figure 1. Role of DIID in Software Acquisition 

Figure 1 visualizes the role of DIID in software acquisition. Multiple documents are 
created and connected as part of a program life cycle, and compliance with DoD regulations is 
both required and verified. However, DIID examples exist in many documents and remain 
unidentified due to the limitations in human reviewers and result in delays and other 
consequences. An AI-powered DIID detection assistant helps identify DIID and prevent delays 
or other issues.   

It is important to note that the findings of AI tools would feed into the human review 
process, not replace it. The goal is to improve review effectiveness and reduce risk while 
allowing human experts to focus on judgment calls and solutions. In short, improving DIID 
detection through automation reduces risk in acquisition programs by increasing the likelihood 
that potential issues are found, and humans can review and analyze these issues. 

DIID issues can surface at many stages of the software acquisition or software 
development life cycle. DoD policies drive some requirements but also contribute to acquisition 
strategy, architecture, and testing. When DoD policies recommended or require processes or 
standards, these must be reflected in the relevant program documents. Some examples are 
provided in Table 1. 

Table 1. DIID Examples by Life Cycle 

Lifecycle Stage DIID Examples 
Acquisition Strategy Goals conflicting with  
Requirements Missing safety constraints or security clauses from DoD standards or policies 
Design Documents Conflicting interface definitions 
Test Plans/Reports Incomplete traceability to requirements 
Certification Artifacts Discrepant terminology from regulatory standards 
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Defining DIID in the Acquisition Life Cycle 
DIID all indicate potential problems in software acquisition artifacts, but each term has a distinct 
meaning: 
• Incompleteness. Important content is missing either within a document or across a set of 

documents. For example, if a safety policy mandates a “detailed analysis of safety-critical 
signals” in the architecture description, but the project’s Software Architecture Document 
only provides an analysis of “signals” without the safety-critical qualifier, this omission 
constitutes an incompleteness. Incompleteness typically means some requirement or 
context that should be present is absent, potentially necessitating additional review or 
rework to address the gap. 

• Inconsistency. There are contradictions or a lack of uniformity in terminology or content 
either within one document or between documents. For instance, using “safety” and 
“security” interchangeably in a system description (when in some domains they imply 
different requirements) can confuse readers about the true requirements. Inconsistencies 
might not always signify an error because they can be acceptable in the context, but they 
often create confusion and may hint at deeper incompleteness or misunderstandings.  

• Discrepancy. There is a direct conflict or divergence between facts or statements in one 
place versus another. Discrepancies can be factual (e.g., one document states a response 
time requirement as 0.01s while another cites 0.1s for the same event, a tenfold difference), 
policy-related (a process described in the project plan deviates from what a governing policy 
mandates), narrative (two documents describing the system’s behavior tell conflicting 
stories), or theoretical (project results or assumptions conflict with established theory or prior 
data). Discrepancies often indicate more serious issues because one of the conflicting 
statements could be wrong. If critical parameters differ, the impact can be severe. 
These definitions are typical of what is found in dictionaries and literature on human 

interpretation or document analysis. Although there is no comprehensive list of different types of 
DIID, common types and examples are summarized in Table 2. 

Table 2. Types of Incompleteness, Inconsistencies, and Discrepancies 

Incompleteness Inconsistency Discrepancy 
• Incomplete: 

Important context 
or terms are 
missing.  

• Terminology: Using dif-
ferent terms interchangeably 
without clear definitions or 
consistency. 

• Structural: Lack of uniform 
structure in presenting 
information. 

• Factual discrepancies: Conflicting 
factual information.  

• Policy or procedural 
discrepancies: Deviations from 
established protocols. 

• Narrative discrepancies: Different 
user stories fail to align. 

• Theoretical discrepancies: Actual 
results conflict with theoretical 
predictions. 

 
Exploring DIID for Software Safety in DoD Regulatory Compliance 

Exploring specific examples provides important insights into the opportunities and 
current limitations of automating DIID detection in DoD regulatory use cases. We have 
performed initial tests using currently available online LLMs, such as OpenAI ChatGPT 4o and 
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Google Gemini 2.0 as well as locally hosted LLMs, such as Ollama, to perform simple DIID 
comparisons. Although testing is in progress, our initial results provide important insights into 
opportunities and risks to enable generative AI for regulatory compliance. Some of the testing 
insights are shared in blogs or webinars, to provide general observations while in progress 
(Robert & Schmidt, 2024; Schmidt & Robert, 2024). 

The initial testing has been performed on public (Distro-A) data comparing DoD and 
NASA software safety standards to text statements that represent different types of DIID. There 
are currently more than 100 statements to help identify false positives, the majority of which do 
not contain DIID. There are examples of DIID, although not all sub types of discrepancies are 
represented at this time.  

A common use case is when DoD programs must follow system or software safety 
standards to identify safety requirements or risks. For example, MIL-STD-882E is used for 
hazards analysis, and Safety Assurance Cases (MIL-STD-882E, 2023), which must align with 
and program-specific safety policies. The initial testing of DIID detecting used DoD standards, 
including or similar to MIL-STE-882E, to compare with different statements that do or do not 
contain DIID when compared to the standard. Inconsistencies could include mismatch in system 
functions between FHA and test procedures or missing causal chains in hazard analyses.  

Using this DoD standard, we illustrate DIID examples in Table 3 that might be found in 
requirements documents, design documents, or testing documents. These are just a few of the 
many examples of possible DIID, which can be in any of the DIID types, across many 
documents, at different parts of the software development lifecycle, and for difference software 
releases over time. 

Table 3. DIID Examples 

DIID Type DIID Example DIID Justification 
Incompleteness The software test report includes 

results from functional and 
integration testing. 

The DoD standard may require explicit 
evidence of software safety testing, 
including corner cases or hazardous 
conditions. The absence of test cases for 
safety-critical scenarios indicates 
incompleteness in test coverage. 

Inconsistency “Cyber resiliency is ensured through 
encryption and secure boot 
mechanisms,” (in a System 
Description) 
vs.  
“Safety-critical software must handle 
fail-safe transitions during fault 
events for resiliency” 

If the term “resiliency” is used in both 
contexts (cybersecurity and safety) but 
without consistent definitions, and without 
clarifying boundaries, it introduces 
inconsistency. 

Discrepancy 
 

“The system shall complete data 
processing within 5 milliseconds,” 
(in Requirements Specification)  
vs.  
“The implemented architecture 
meets the 50 millisecond timing 
constraint for processing.” (in 
Design Document) 

There is a factual discrepancy in 
performance in timing requirements with a 
10x difference between what is required 
and what is implemented or claimed, 
possibly leading to a violation of real-time 
constraints mandated in mission-critical 
DoD systems. 
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The examples are a small sample of the many types of DIID tests. The statements are 
simple, but each statement must be reviewed by people, sometimes acquisition experts, to 
confirm that the tests are relevant DIID that human reviewers would find interesting or consider 
investigating in more detail. In addition, examples of statements without DIID, as perceived by 
human reviewers, are also needed to consider false positives. The number of tests needed to 
really exercise LLM solutions for DIID detection is extensive, particularly to consider all types of 
regulatory documents and software artifacts. Work is currently underway to further characterize 
DIID testing and gaps. 

An important comment from software acquisition professionals and software engineers is 
that DIID could appear to be limited when compared to software artifacts, such as design or 
testing documents, but DIID could be extensive when compared to software code for that same 
system. It is common to have software plans or software artifacts claim performance or 
processes, only to review code or detailed testing to discover that the implementation is not 
consistent with the documentation. This known issue requires extension of DIID detection of 
regulatory documents beyond software artifacts to code. Commercial software development and 
analysis tools are already integrating LLMs into their workflows, and these solutions can be 
tested for DIID detection. In addition, the DIID detection for software artifacts remains important 
for software acquisition teams and this may be the earliest opportunities to automate some of 
the regulatory burden on acquisition teams. We strongly agree that DIID solutions must extend 
to code, but in practice today we frequently observe programs only reviewing software artifacts. 

Figure 2 illustrates a notional DIID detection testing pipeline. One or more regulatory 
standards, DoD or other government standards, are used (top left) to create public DIID 
detection test data sets. The test data is created and/or reviewed by humans for accuracy and 
used to test multiple DIID detection architectures, including online LLMs, stand-alone (locally 
hosted) LLMs, or LLMs combined with RAG solutions. The test results are summarized to 
understand which solutions provide the best DIID detection, categorized by DIID type and other 
groupings. 

 
Figure 2. AI-Augmented DIID Detection Pipeline in DoD Safety Standards 

Our initial testing is simplified from the actual needs for an operational system. For 
example, the following aspects are, for now, not the focus of our testing: 
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• Data security—Sensitive information must be protected. Some software acquisition activities 
may involve sensitive or proprietary information to LLMs, which raises concerns about data 
security and privacy. We never use CUI or secured information for these tests because the 
online LLM services do not support data security for CUI or proprietary data, which is a 
known concern. We therefore include self-hosted LLMs as part of our testing to observe 
similarities or differences in the responses. Organizations should always be aware of how to 
mitigate the data disclosure risks of LLMs and prevent access to private or protected data. 

• Scalability—We initially uses LLMs with RAG for testing, but more online services have 
increased their support for scaling to support multiple documents. RAG is still needed for the 
self-hosted solutions. 

These initial tests highlight a few important areas of discussion to achieve AI-augmented 
DIID detection for software acquisition use cases: 

• Prompt engineering, which is important to ensure clear definition of DIID types and provide 
guidance on what documents to compare. 

• LLM testing frameworks. As we assess current LLM testing frameworks and data sets, we 
found gaps for the DIID use case that point to the need for additional testing resources. 

The Role of Prompt Engineering in DIID Detection 
The flexibility of LLMs to support a wide range of uses effectively is supported in part by 

prompt engineering (Liu et al., 2023), which involves structured interactions with LLMs to 
optimize outputs via natural language interfaces. Prompt patterns (White et al., 2023) codify 
best practices for phrasing prompts to maximize extraction accuracy and provide knowledge 
transfer mechanisms to problem-solve with LLMs more effectively and accurately. Prompt 
patterns also enable more effective and repeatable performance of LLMs, and many patterns 
have been identified for a range of task objectives. 

Prompt engineering is a key capability that provides new opportunities for DIID detection 
in software acquisition, e.g., the Context Manager pattern (White et al., 2023) directs an LLM to 
set the context. Prompt engineering, including identification and refinement of relevant prompt 
patterns, is thus central to our research. When DIID types are narrowly defined and examples 
are provided to LLMs through fine tuning or prompt engineering, DIID detection can be 
improved for specific use cases. In our initial experiments, failure to include DIID definitions in 
the prompt led to a high variance in the output and the increase confusion for the user. For 
instance, a user would have to read the output several times to understand is the output was 
consistent with the DIID types.  

To detect DIID in software artifact analysis, an LLM must act like a reviewer, i.e., it 
should analyze the content, the context, and then apply reasoning to identify gaps. For 
incompleteness, this analysis means knowing what should be in the document (perhaps via a 
template or a checklist derived from policy) and checking if it is there. For inconsistencies, it 
entails comparing statements for logical alignment. For discrepancies, it requires cross-
referencing external sources.  

Figure 3 provides a summary of prompt engineering for DIID detection. A DIID taxonomy 
must be provided to ensure consistency in the types of DIID. Specific context is sometimes 
needed to define how different documents are related. 
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Figure 3. The Role of Prompt Engineering in DIID Detection 

These complex tasks are where the combination of LLM + vector database shines. A 
vector database can supply the LLM with a checklist of expected content (for completeness 
checks) or the authoritative values/terms from reference documents (for discrepancy checks). 
An LLM, in turn, can combine this information and flag where the document deviates. By training 
or priming the LLM with plenty of examples of DIID issues (possibly from past project 
documentation annotated with findings), we can further improve its detection abilities. Early 
experimental setups indicate that LLMs can replicate the judgment of reviewers in identifying 
such issues, although careful evaluation and iteration on the prompts are required to minimize 
false positives and false negatives. 
LLM Testing Frameworks for DIID Use Cases 

Evaluating the effectiveness of LLMs on DIID detection requires specialized testing 
frameworks and data. Common LLM testing frameworks and benchmarks provide a starting 
point but often do not directly assess the kind of document analysis needed for regulatory 
compliance. For example, OpenAI’s Evals toolkit allows users to create custom evaluations and 
has been used to measure GPT-4’s performance on tasks ranging from math problems to code 
generation. For DIID detection on software acquisition, however, we need to design evaluations 
that mirror the task, e.g., given a set of documents and related regulations, does the LLM 
correctly identify all instances of DIID?  

LLM testing protocols for detecting inconsistencies in document summaries could be 
extended because it provides tests specific to DIID and benchmarks for some of the latest 
LLMs, as described in Laban et al. (2023). This work provides a relevant DIID detection test 
framework and dataset that considers multiple discrepancy examples, with multiple LLMs, and 
compares results of a few benchmarks. This current solution is limited to only a subset of the 
DIID detection needed for software acquisition, however, and without representation about 
levels of abstraction.   



Acquisition Research Program 
department of Defense Management - 380 - 
Naval Postgraduate School 

Figure 4 further describes the LLM testing framework for DIID. Using the test data set 
previously discussed, multiple LLMs are tested for DIID detection. Additional DIID tests with real 
systems are performed to ensure consistency of the DIID detection.  

 
Figure 4. LLM Testing Frameworks for DIID Use Cases 

Traditional natural language processing (NLP) benchmarks, such as MMLU (Massive 
Multitask Language Understanding) or BIG-bench, include reading comprehension and logical 
reasoning tasks, but they don’t capture the multi-document, domain-specific nature of DIID 
detection. Similarly, academic benchmarks like Holistic Evaluation of Language Models (HELM; 
Liang et al., 2023) provide broad assessments on accuracy, robustness, and fairness across 
tasks, but lack metrics for “document consistency checking” or “completeness verification” which 
are critical in our context. These gaps indicate that testing benchmarks should be extended to 
better consider DIID detection. Potential approaches to test LLMs for DIID include the following: 
• Synthetic document benchmarks—Construct pairs of documents and regulatory checklists 

where we intentionally introduce known incompleteness or inconsistencies. For instance, 
create a requirement spec with one requirement missing a subsection, or two documents 
with slightly differing data for the same item. These synthetic cases (with ground-truth labels 
of where the issues are) can be used to evaluate LLMs quantitatively. Metrics like precision, 
recall, and F1-score for issue detection can be computed to indicate how many of the known 
missing sections did the model correctly flag (recall) versus how many flags were incorrect 
(precision). 

• Real-world case studies—Use actual past project documents from DoD or industry, with 
appropriate anonymization, where known issues were found through audits. These 
documents serve as a gold standard to see if the LLM finds the same issues. This approach 
is more challenging because the model might find different issues than the human auditors. 
In these cases, additional analysis is needed to determine if the issues are valid or 
hallucinations. An evaluation framework must account for these differences by having 
experts review the AI-identified DIID issues. 

• Challenge datasets for consistency—Leverage existing datasets focusing on contradiction 
detection or question answering consistency. For example, some academic tasks require a 
model to identify contradictions in text (similar to our inconsistency detection). Adapting such 
tasks (e.g., the BoolQ or contradiction questions from NLI benchmarks) could provide some 
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insight into how well the LLM maintains consistency understanding. If an LLM struggles with 
basic contradiction identification in short texts, it will likely struggle with large documents too. 

In testing current LLMs for DIID, limitations and challenges have been identified. One 
consideration is how to scale LLMs to support large documents or many documents, which is 
very common in DoD software acquisition and software engineering. RAG is a popular approach 
to scale LLMs for multiple documents and has proven both effective and relatively fast response 
but effectively implementing RAG systems requires some decision about how to chunk and 
store data (Godfrey, 2024). An alternate approach is to increase the context length and the trend 
has been for LLMs to increase context length to ~ 1 million for current models. This larger 
context length simplifies application of LLMs to larger document sets because it does not 
require RAG. We are considering architectures with and without RAG, which complicates 
evaluation.  

Another challenge is ensuring the model doesn’t hallucinate. A powerful generative 
model might “imagine” a discrepancy that isn’t there, especially if prompts are not tight. This 
type of hallucination is analogous to a false positive in testing. For reliable adoption, we prefer 
an LLM to miss a minor issue (false negative) rather than invent a problem (false positive) that 
sends teams on a wild goose chase. Testing frameworks must measure hallucination rates. One 
way is to include control documents that are error-free (or have no DIIDs) and then verify that 
the LLM mostly outputs “No issues found” for those. Any issues it does claim in a known-good 
document count as false alarms.  

We also can examine the use of LLM self-evaluation and iterative refinement in testing. 
Some frameworks allow an LLM to evaluate its own answers or engage in a back-and-forth 
(e.g., asking the LLM to provide rationale and then verifying the rationale). For DIID, this self-
evaluation could mean the LLM first lists what it thinks should be in the document, then checks 
off what’s present. By evaluating how well this self-check correlates with actual document 
quality, we gauge the LLM’s thoroughness.  

Citing testing benchmarks and prior work, some LLMs have demonstrated human-level 
performance on various professional and academic benchmarks, suggesting its reasoning 
abilities are strong (Minaee et al., 2025). This finding gives optimism that LLMs can handle 
complex compliance tasks with the right prompts. DoD domain–specific testing with software 
artifacts is limited, however, and does not include specific testing of DIID. Early internal tests we 
constructed indicate that LLMs can catch subtle requirement inconsistencies (e.g., mismatched 
units or thresholds) that earlier models or simple scripts would miss. Conversely, some LLMs 
struggled unless the inconsistency was blatant, highlighting a performance gap. Such 
observations underscore the need for continued testing and prompt refinement, as well as 
possibly fine-tuning models on compliance data to improve their capabilities in DIID detection.  

In summary, adapting LLM testing frameworks to DIID use cases involves creating 
realistic test scenarios and measuring detection performance carefully. These activities not only 
help quantify the effectiveness of current LLMs but also guide future improvements. For 
example, if we find that LLMs often miss certain types of discrepancies (e.g., terminology 
mismatches), we can then focus on training/prompt strategies to address those problems. In 
addition, if we find LLMs are flagging too many non-issues, we can adjust prompts so they are 
more conservative. Systematic testing and evaluation is essential for robust AI-augmented 
compliance in practice. 
Quantifying the Benefits of LLM-Augmented DIID Detection 

Beyond qualitative improvements, it is important to measure how LLM-augmented DIID 
detection impacts the software acquisition process. Prior research on humans detecting 
discrepancies in text provides some clues. For example, Schoor et al. (2023) found that when 



Acquisition Research Program 
department of Defense Management - 382 - 
Naval Postgraduate School 

readers encountered conflicting information, it increased their “attention to sources,” i.e., they 
spent extra effort cross-checking where the information came from. In the software acquisition 
DIID context, this suggests that an AI tool must not only flag an issue but also point analysts to 
the source evidence (e.g., the specific sections of the documents in conflict) to effectively aid 
and not hinder the human’s workflow.  

Figure 5 illustrates some of the potential benefits of DIID detection. Discussions with 
acquisition professionals and software engineers that review program artifacts for regulatory 
compliance have indicated that manual review is both exhausting and error prone, although 
quantifying the frequency of these issues is difficult. The benefits represented are based on 
discussions and will be used to define future testing.  

 
Figure 5. Measuring the Impact of AI-Augmented DIID Detection 

We are incorporating the insights from prior work by designing our LLM’s output to 
include references or quotes from the documents, so analysts can quickly validate the AI’s 
findings. To evaluate the overall value proposition of LLM augmentation, we consider the 
following key questions and metrics: 
• Time savings and analyst workload reduction—Does an LLM-assisted review significantly 

reduce the time and effort required by human analysts? We hypothesize that automating the 
tedious parts of the comparison will allow analysts to review more documents within the 
same time frame or to focus on deeper analysis of each document. Our hypothesis can be 
evaluated by controlled experiments where one group uses the LLM assistant and another 
follows traditional methods, measuring total person-hours spent. We are also exploring 
cognitive load indicators (perhaps via surveys) to see if LLM-based tools alleviate reviewer 
fatigue. 

• Accuracy gains compared to manual baselines—Can the LLM + vector database approach 
match or exceed human performance in finding DIIDs, and with more consistency across 
different document types? We hypothesize that LLM-based tool will have higher recall (catch 
more true issues) than a typical manual review, especially for cross-document 
inconsistencies that humans might overlook. Precision (avoiding false flags) might initially be 
lower, but we expect the AI’s precision to improve with effective prompt engineering and 
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prompt patterns. We will measure this improvement by comparing the set of issues found by 
humans versus the AI in test scenarios.  

• Variance—An interesting aspect is the variance of DIID detection in both human reviewers 
and LLMs. Human reviewers’ thoroughness can vary widely and is not well quantified, but 
this issue is one of the reasons why regulatory compliance reviews include multiple 
reviewers. Given the same prompt and data, LLM output can vary, which is a common issue 
for generative AI solutions. We aim to demonstrate that the LLM output variance can be 
minimized, ensuring even challenging documents get a thorough check every time. 

• Enhanced traceability and new metrics—A potential ancillary benefit of using an LLM for 
DIID detection is the traceability data it can generate. As the LLM links sections of policy to 
sections of project artifacts, it could produce a traceability matrix or graph as a by-product. 
For instance, if requirement A in a standard is fulfilled by section X of a design document, 
the LLM’s analysis can record that link. Over time, this approach generates a graph of which 
policies map to which project artifacts. Such an output could be used to answer questions 
like “Have all policy clauses been addressed by the project’s documents?”—providing an 
assurance metric for compliance coverage. We are exploring the extent to which an LLM’s 
outputs can be aggregated into useful metrics, such as “percentage of requirements with at 
least one corresponding implementation evidence.” This analysis goes beyond what manual 
reviews typically produce and could transform how compliance is reported by generating 
dynamic dashboards of compliance status. 

In summary, our research will quantify the LLM’s impact on efficiency (time/workload), 
effectiveness (issues detected vs. missed), and augmented capabilities (like automatic 
traceability). Demonstrating concrete improvements in these areas is essential for gaining 
stakeholder buy-in, especially in DoD programs where any new tool must justify its adoption in 
terms of saved resources or improved outcomes. 

Future Research 
Our initial results are promising, but we are investigating the following avenues to 

enhance and validate this approach further, as shown in Figure 6 and described below. 

 
Figure 6. Future Research Directions for AI-Augmented DIID Detection 
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1. Benchmark LLMs across different software acquisition domains. The DoD acquisition 
landscape is diverse, i.e., what works for a software-intensive weapons system might need 
adaptation for an IT business system or a healthcare system. We will test the DIID approach 
on documents from multiple domains (with their own terminologies and compliance 
standards) to evaluate the model’s adaptability and identify if certain domains require 
specialized tuning or domain-specific training data. Likewise, we are experimenting with 
various LLMs (including newer models as they become available, or smaller fine-tuned 
models that could be deployed on-premises for security reasons) to see which offer the best 
balance of accuracy, context length, and ease of integration. 

2. Refine our DIID datasets and training resources. A current limitation in our work is the lack of 
large, labeled datasets of DIID occurrences. We will therefore curate and release a dataset 
of annotated document pairs with known incompleteness, inconsistencies, and 
discrepancies. A DIID specific dataset will not only help us fine-tune models for better 
performance, but it can also benefit the research community by providing a benchmark for 
this problem. In addition, we might explore semi-supervised approaches: using the LLM 
itself to generate plausible DIID examples to augment training data (with careful validation to 
avoid reinforcing errors). We are currently extending existing software life cycle data sets to 
include considerations of DIID, such as Moreno et al. (2024). 

3. Incorporate multi-modal inputs like diagrams and code into the DIID detection process. 
Many regulatory and technical documents include information that isn’t pure text, e.g., 
architecture diagrams, interface control drawings, or source code snippets for critical 
algorithms. Our future work will examine multi-modal LLMs or pipelines to detect DIID issues 
across different media. For example, a UML diagram inconsistent with the written design 
description. Early exploration might involve feeding textual descriptions of diagrams into the 
LLM to see if it can relate them to the text.  

4. Rigorously quantify the benefits of LLM-augmented DIID detection in realistic settings. We 
are conducting user studies where experienced acquisition professionals use the AI 
assistant on real tasks and provide feedback on workload reduction and confidence in the 
results. We will measure time saved, error rates reduced, and collect qualitative feedback on 
how the tool affects their workflow. Such studies will be vital for refining the tool’s usability 
and demonstrating return on investment (ROI) to decision-makers in the DoD.  

5. Drive changes in the regulatory documents themselves. If AI tools struggle due to 
ambiguous or conflicting policy language, that signals an opportunity to improve the source 
materials. We foresee a feedback loop where the AI not only checks compliance but also 
suggests improvements to the policies and standards. For example, the LLM might 
frequently flag a particular paragraph in a policy as confusing or internally inconsistent; this 
could be reported to the policy authors, who can then clarify the text in the next revision. In 
fact, we have observed that with simple prompting, LLMs can recommend rewordings of 
requirements for clarity.  

By adopting the approaches described above, organizations can create AI-friendly 
regulations that are easier for both machines and humans to parse. This co-evolution of policy 
and AI tooling—essentially writing requirements with automated checking in mind—is an 
intriguing area for future exploration. It aligns with the DoD’s interest in more modular and 
unambiguous requirements and could further accelerate compliance activities. We will pursue 
research into how best to formulate guidance for policy authors, potentially in collaboration with 
DoD standards bodies.  

In summary, our future work will scale up our current DIID research to cover more 
domains and data types, systematically evaluate its impact, and explore the bidirectional 
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relationship between AI and policy (e.g., to determine how each can inform improvements in the 
other). We believe these steps are crucial to transition our research into a practical capability for 
the DoD and beyond. 

Concluding Remarks 
This paper discussed accelerating regulatory compliance checks in software acquisition 

by leveraging LLMs. We defined document incompleteness, inconsistencies, and discrepancies, 
and demonstrated how an LLM, guided by prompt engineering, can effectively assist in 
detecting DIID. Our approach has the potential to reduce the manual burden on acquisition 
professionals significantly, increase the consistency and thoroughness of compliance reviews, 
and ultimately help DoD programs deliver capability faster without sacrificing rigor.  

Our preliminary exploration indicates that even with current LLM technology, there is 
improvement in DIID detection accuracy and efficiency when compared to traditional methods. 
There remain challenges to address, including creating test frameworks and data sets to ensure 
the LLM’s outputs are trustworthy and consistent, to tailoring the solution for different domains 
and document types. Ongoing work is tackling these through targeted evaluation and iterative 
refinement. 

Overall, the integration of human expertise with LLM capabilities is a powerful new 
paradigm. This human-AI collaboration can not only speed up the acquisition process but also 
improve its outcomes by catching issues early and iteratively with different software releases. As 
generative AI tools mature, and as organizations adapt their practices (and possibly their 
documentation standards) to better accommodate AI assistance, we anticipate that LLM-
augmented compliance checking will become an invaluable part of software engineering 
researchers and practitioners. By continuing to evaluate and improve our approach in realistic 
settings, and by sharing insights with the community, we aim to move one step closer to a future 
where compliance is maintained more proactively and efficiently. 
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