

SYM-AM-25-369

Excerpt from the
Proceedings

of the
Twenty-Second Annual

Acquisition Research Symposium and
Innovation Summit

Volume III

Digital Engineering, Understanding the Policy and the
Engineering in the Minimal Viable Product Approach

Published: May 5, 2025

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Department of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research Program
at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Acquisition Research Program
department of Defense Management - 149 -
Naval Postgraduate School

Digital Engineering, Understanding the Policy and the
Engineering in the Minimal Viable Product Approach

N. Peter Whitehead, PhD, ME—is a Senior Engineer and Professor of Policy Analysis at RAND, where
he conducts research in systems engineering applications & practice, systems analysis, artificial
intelligence, cybersecurity, supply chain risk management, and space technology. Prior to coming to
RAND, Whitehead conceived of and led an AI at the edge research program at MITRE and supported the
DHS HART biometric database program. He was an AAAS S&T Policy Fellow at NSF and OSTP, self-
funded his PhD program in systems at UVa, served as Program Manager of an Air Force satellite program
at Lockheed Martin, was Test Director of the Air Force DMSP mission sensor, and was a Foreign Service
Officer, serving in 60 countries. Whitehead’s PhD dissertation in systems developed an AI-supported
empirical approach to determining the quality of a systems approach. [nwhitehead@rand.org]

Abstract
This analysis endeavors to clarify the dichotomy of policy and engineering in DoD system
acquisition. It considers the Software Acquisition Pathway (DoDI 5000.87) in current DoD policy,
approaching that policy from the perspective of good systems engineering practice. It endeavors
to provide a bit of guidance on the following: distinguishing policy from engineering – using DoDI
5000.97 Digital Engineering as an example, distinguishing engineering writ-large from software
coding, and understanding the importance of working closely with the stakeholder through the
minimal viable product (MVP) process. It defines through allusion two distinct flavors (definitions)
of MVP – the flavor practiced in commercial industry by many large software companies (systems
engineering goal development), and the flavor directed specifically by DoDI 5000.87 (policy). This
analysis attempts to show how to use them respectively in the acquisition policy flow and in the
systems engineering process.

Summing-up: In developing capability for the DoD, there is a right way, a wrong way, and a policy
way, and an acquisition program has to always understand which is in play.

Digital Engineering
The origins of the DoD digital engineering paradigm trace their lineage to the structured

software architectures of the 1970s pioneered by such developers as Tom DeMarco and
Edward Yourdon.1 These approaches spawned the concept of computer-aided software
engineering tools in the days before recent advancements such as Curser and OpenAI Codex
(O’Regan, 2013). In parallel, the paradigm of object-oriented software development evolved to
where, in 1995, Grady Booch, Ivar Jacobson, and James Rumbaugh integrated multiple
conventions of software engineering and architecture into UML. Their goal was to construct an
object-based programming tool where lines of code are replaced with objects, thereby
simplifying and expediting the coding process. As it turned out, UML required an extreme level
of detail and effort that paradoxically made line-by-line coding more efficient, and so it failed to
be adopted for its intended purpose (Bell, 2004; Pandey, 2010). The front-end structured
approach to software development was also overshadowed by the Agile approach at the dawn
of the new millennium, making architectural frameworks a tool for later documentation but not
useful for the new approaches to development (Whitehead et al., 2024).

1 Systems engineering and the software-based paradigm that became digital engineering diverged primarily through
the work of Barry Boehm at USC, the inventor of the systems engineering Vee diagram. Boehm effectively postulated
and promoted the assumption that all systems behave like software code, so coding-based systems analyses would
be close enough.
The Vee started as a greater than symbol and is wholly derived from software development practices in the 1970s,
not established systems engineering practice. See Boehm (1981, 1984).

Acquisition Research Program
department of Defense Management - 150 -
Naval Postgraduate School

MODAF and DoDAF
Meanwhile, in Britain, engineers in the Ministry of Defense developed a graphical

approach to describing complex systems called the Ministry of Defence Architectural
Framework. By the year 2000, this had become the U.S. standard known as DoDAF, and the
software tool System Architect was adopted as the industry standard for creating the multi-
layered weapon system program perspectives of DoDAF (DoD Chief Information Officer, 2021).

In the early-mid 2000s, a group of software architects, seeing the similarity between
DoDAF and the graphical products of UML, created a dialect of UML that they called Systems
Modeling Language, thus creating an open-source alternative to System Architect (SysML.org,
n.d.). SysML was adopted by a software-centric engineering organization, INCOSE, which
coined the term MBSE to describe the DoDAF-like architecture use of SysML.2 In 2006, the
Office of the Under Secretary of Defense for Acquisition and Technology, MITRE, Lockheed
Martin, Boeing, and others collectively aligned on the MBSE initiative as proposed by INCOSE
for system architecture applications in weapon system programs (Hardy, 2006).3
Model-Based

The term model-based systems engineering might catch some experienced systems
engineers off guard, as all systems engineering through thousands of years of practice has
been model based, making the term itself sound redundant.4 Egyptians built scale models of
pyramids to study the related mathematics, engineer their construction, and plan the required
logistics (Rossi, 2004). Galileo developed mathematical models of the parabolic trajectory of
cannon shells that proved to be highly accurate in practice (Naylor, 1976). Bell Labs practiced
what Arthur D. Hall (1962) called systems engineering and defined it as “organized creative
technology and its functions” (p. 3). NASA and military engineers and program managers
leveraged thousands of models in successfully putting men on the moon and giving rise to the
current perceived value of good systems engineering practice in a complex program (Miles,
1974).

2MBSE is “the formalized application of modeling to support system requirements, design, analysis, verification and
validation activities beginning in the conceptual design phase and continuing throughout development and later life
cycle phases” (INCOSE, 2007, p. 15). See also SysML.org (n.d.).
3 Hardy (2006) writes:
MBSE enhances the ability to capture, analyze, share, and manage the information associated with the complete
specification of a product, resulting in the following benefits:

• Improved communications among the development stakeholders (e.g. the customer, program
management, systems engineers, hardware and software developers, testers, and specialty
engineering disciplines).

• Increased ability to manage system complexity by enabling a system model to be viewed from
multiple perspectives, and to analyze the impact of changes.

• Improved product quality by providing an unambiguous and precise model of the system that can be
evaluated for consistency, correctness, and completeness.

• Enhanced knowledge capture and reuse of the information by capturing information in more
standardized ways and leveraging built in abstraction mechanisms inherent in model driven
approaches. This inturn [sic] can result in reduced cycle time and lower maintenance costs to modify
the design.

4 Arthur D. Hall describes the origins of the concept that became labeled systems engineering at Bell labs in
describing the 1940 development of the TD-2 radio relay system: “the name was new, but the functions were not.” He
traces systems analysis, which includes what we will call system goal definition later in this report, to a philosophy
developed in the 1940s by the RAND Corporation. Hall adds the terms systems thinking and systems approach to the
list of supporting concepts. These concepts had existed and evolved over millennia, so, while the authors use the
term systems engineering here, it is used in a general sense to include the supporting concepts and the history of
systems engineering predating 1940 (Hall, 1962, pp. 7, 26).

Acquisition Research Program
department of Defense Management - 151 -
Naval Postgraduate School

We know from our study of the state of practice in the DoD that the term MBSE
describes the leveraging of object-oriented architecture modeling, specifically SysML, as
derived from the waterfall, object-oriented software development practice of the late 1990s
(Hardy, 2006). In other words, it is a 1990s-era software coding tool repurposed through policy
to serve as an engineering tool.5 We have observed SysML used for architecture, system
interface, and organizational modeling predominantly, with teams leveraging the tools for other
applications as they see fit. We also know that stakeholders across the DoD and the defense
industrial base define the details and scope of MBSE differently, so no observation on our part
may be considered universal. Further confusion of systems versus software emanates from the
IEEE Software Society standards (e.g., ISO/IEEE 15288 and 24641) that are adopted
incorrectly by some in the DoD and in the defense industrial complex as systems engineering
approaches (Whitehead, 2024).

Studies conducted by a DoD-sponsored university affiliated research center, SERC, in
the 2010s worked to leverage MBSE as defined in SysML onto metamodel optimization
concepts originated by such researchers as Markish and Willcox (2003) and Kühne (2006). This
work led ultimately to the concept of digital engineering as espoused in the 2018 policy
document DoD Digital Engineering Strategy and DoDI 5000.97, Digital Engineering (2023)
(Bone et al., 2019; Shyu, 2023).

Distinguishing Policy from Engineering
Based on the above, digital engineering and model-based systems engineering as

prescribed in DoDI 5000.97 are policies – they come to us from the top-down, and their use is
not supported with empirical evidence. Policies have terms of justification reflecting the lack of
evidence, such as “can modernize how the DoD designs, develops, [etc.]” and “should enable
faster, higher-quality decision making” (Shyu, 2023, p. 8).

Engineering emanates from the bottom up, driven by design (goals) and applied science
– empirical evidence. Momentum equals mass times velocity. Increasing pressure will reduce
the volume of a gas if the temperature is constant.

Confusion may emanate from the tendency of some documents such as DoDI 5000.97
to readily conflate the two, as in this statement:

Digital engineering requires planning and providing financial and other resources for digital
methods (e.g., model-based systems engineering (MBSE), product life-cycle management,

computer aided design) in support of program activities to the maximum extent possible. (Shyu,
2023, p. 3)

In that statement, digital engineering, MBSE and product life-cycle management are policies;
computer-aided design is an engineering tool, the use of which is supported with empirical
evidence.

Goal Definition in Concept Development – The Engineering
Engineering starts with system goal definition, a highly complex, human-centric

endeavor with no direct parallel in digital engineering policy. Goal definition also brings into play
the stakeholder interaction known as minimal viable product (MVP).

5 Coding and engineering writ-large are two very different practices. The computer does as instructed. Code may be
complicated, but it does not deal with complexity in the systems engineering sense. Complexity, as dealt with in
systems engineering, involves humans, politics, the axiological as well as the applied science and the interaction of
often incompatible sub systems. This will be addressed further in the goal development section.

Acquisition Research Program
department of Defense Management - 152 -
Naval Postgraduate School

Before initiating the planning phase, the goal definition phase of the program can be the
most important phase of any development program (Gibson et al., 2016). This phase examines
where the program must functionally go, how to measure progress, who will benefit, and how
they will benefit. It provides the foundation for planning the way the system will operate, the
path, and the methodologies (Buede & Miller, 2016). In software acquisition, goal definition does
not end at any milestone but continues iteratively through the entire system lifecycle. The
software is never finished, and goals evolve. Getting the preliminary step of goal definition
correct will reduce program risks and streamline both complex and rudimentary aspects of the
acquisition process (Whitehead, 2014).
Goal definition defines where to go and how we can tell when we arrive. Engineering
necessarily follows with how to get there. Policy puts necessary constraints on engineering.

Identifying Stakeholders
The originating office must not define the system goals in a vacuum, no matter how well

they may understand the problem. At the outset of goal definition, they should establish a
hierarchical list that includes all of the system stakeholders (Gibson et al., 2016, pp. 55–75). At
the top of the hierarchy are the end users, the customers. Next are the entities that support the
end-users directly, to include their help desk functions, financial representatives, and the many,
varied sources of data and models for their simulations. Next are the enterprise entities that will
be responsible for training, cloud operations, future planning, access, security, and integration
across the military enterprise. The originating or coordinating office is not necessarily the
provider of the facilities or resources needed to make the program go but is the critical center of
this and most other following activities.
Elucidating Stakeholder Goals via Scenario Development

In facilitated exercises conducted multiple times, the coordinating office aligns and
integrates the goals of all the respective stakeholders into a common set of functional goals.6
These goals take the form of multiple scenarios describing the use, function, and
implementation of the system (Alexander & Maiden, 2005). Systems engineering shows us a
litany of approaches for doing this, generally parsed into preliminary surveys, in-person
exercises, hotwash, iteration, and final drafts socialized for stakeholder comment.7 An important
principle the coordinating office should adhere to is to focus the process of scenario
development on a clear articulation of the desired end state, rather than identifying specific parts
of the design and/or specific development approaches (Weinberg, 1982). Instead, the
development team must continually refine the development features and process in the (later)
planning and execution phases in the context of the stakeholder-informed scenarios (Reis,
2011, pp. 99–113). Figure 1 suggests how a classical system development process—one that
does not specify exactly how the desired system will be used and by whom—can ultimately
miss the desired end state, the conflict of policy and engineering.

6 An objective, outside entity could provide neutral facilitation based on systems principles. These functional goals are
likely to differ from the conceptual system architecture shown in Figure 1.
7Instead of seeking approval from all stakeholders, the coordinating office will likely adjudicate comments using a
formal process such as Department of Army Form 7874, the Army-Wide Staffing Comment Resolution Matrix.

Acquisition Research Program
department of Defense Management - 153 -
Naval Postgraduate School

Figure 1. Classical System Development Failure

Scenarios generally have four parts described in plain language or with relatable
examples. First, describe the environment where the system will be used, including accessibility
hardware and the operational conditions (e.g., in a remote location on a tablet with limited,
unclassified connectivity or in a training center in the continental United States with high-speed,
classified connectivity).

Second, the users of the simulation are characterized to scope their familiarity with the
intended use. This can be achieved with various traits but should be definable and explicit, such
as domain-specific training, service experience, and typical operating tempo, among many
others.

Third, the immediate user-goals and intended activities are described (e.g., test the
simulated effectiveness of a new counter unmanned aerial vehicle system or improve the
logistics and timeline of a deployment of armored personnel carriers to Europe).

Finally, the scenario should specify concrete outcomes and/or data expected from the
simulation activity, such as gaining skill training, refining a conceptual design, developing or
validating novel concepts of operation, planning an upcoming operation, or assessing weapon
effectiveness (Alexander & Maiden, 2005).

The set of goal definition scenarios is intended to be as complete as possible, in
recognition of the iterative minimum viable product (MVP) process, illustrated in Figure 2.8 The
MVP process in industry is characterized by the phrase, not like that, more like this, as options
are presented to the stakeholders by the developers (Reis, 2011, pp. 99–113). Each successive
hypothetical design is less wrong, iteratively both refining and explaining the mental model of

8 MVP is often interpreted differently in different circles. The first part of this chapter loosely follows the industry
definition of an MVP, one that is developed closer to the goal definition phase and provides the simplest product
viable for commercialization. The second part of this chapter focuses on the DoD definition, where iterative products
are delivered during the execution phase.

Acquisition Research Program
department of Defense Management - 154 -
Naval Postgraduate School

the stakeholder to the developer in terms that they both understand, as in Figure 2.9 Not only
does the creation of end-user scenarios help to refine the initial design, but it establishes
stakeholder buy-in for the program, not unimportant in DoD culture. Assumptions, beliefs, and
unwritten cultural factors will inevitably have an impact on the development. These axiological
factors represent a critical subject for discussion in the goal definition process that should not be
ignored.

Note that this is the first of the two flavors of the MVP process to be employed during the
system development and acquisition process flow. This is the system goal definition phase
before the DoDI 5000.87 Capability Needs Statement/planning phase. Subsequently, the DoD
flavor of MVP will be employed during the DoDI 5000.87 execution phase.

Figure 2. Minimum Viable Product System Development – Commercial Industry Flavor

System Scope
The system scope is expanded by the developed scenarios but bounded by the

management triad of schedule, cost, and quality. How much can be afforded, when do
stakeholders need it, what are the minimum quality attributes that get the job done for them, and
what are acceptable program risks? In the goal definition phase, the coordinating office
accumulates these data for planning and costing, including all the logistics and support for
deployment and lifecycle operation. Financial bounds have to be a part of the goal definition
process to obtain an on schedule and within cost (i.e., viable) end state.
Indices of Performance

Indices of performance (IoPs) represent metrics that relate to the respective goals.
These metrics can be technical, descriptive of a process, or concerning the engineering or
execution activities themselves. IoPs will be subject to refinement during the MVP process, but
the key, longitudinal IoPs should be maintained throughout the lifecycle, and the units must be
consistent. Critical aspects of IoPs are that they be measurable, objective, nonrelativistic,
meaningful, and understandable to the stakeholders (Gibson et al., 2016, pp. 41–45).

9 Systems engineers have known this approach for a very long time; see Churchman (1968).

Acquisition Research Program
department of Defense Management - 155 -
Naval Postgraduate School

Software Acquisition Pathway – The Policy
Once system goals are well defined, the program advances in the DoD acquisition cycle.

DoDI 5000.02, Operation of the Adaptive Acquisition Framework, lays out the different pathways
that can be used to acquire solutions for end users throughout the DoD (Office of the Under
Secretary of Defense for Acquisition and Sustainment, 2022). Figure 1 of DoDI 5000.02 includes
software acquisition which is described in detail in DoDI 5000.87 and reproduced in Figure 3.10
Compared with the other acquisition pathways, which are largely unidirectional and marked by
milestone events, software acquisition is iterative, implying that software components must be
continuously improved (via MVP iteration and CI/CD) during the entire system lifecycle.

Figure 3. The Software Acquisition Pathway

(Lord, 2020, p. 8)

As shown in Figure 3, the software acquisition pathway is divided into two phases,
planning and execution. During the initial planning phase, market analysis is conducted to
determine if a commercial off-the-shelf (COTS) software solution to address the system goals is
available for purchase. If available, the COTS option must be pursued in accordance with Title
10, Section 3453. If COTS is not available, then the planning phase of the framework proceeds
to understand end user needs and establish methodologies to deliver to the users the correct
software capabilities (Lord, 2020, p. 9).

Programs using the software acquisition pathway will be identified in competent DoD
program lists and databases within 60 calendar days of initiating the planning phase in
accordance with the DoD’s implementation of Section 913 of Public Law 115-91 on acquisition
data analysis (Lord, 2020, p. 10).

10 The actual process requirements will largely be defined by the overall cost, application, and/or ownership of the
final system. This, in turn, will specify the funding source, proponent, and coordinating office.

Acquisition Research Program
department of Defense Management - 156 -
Naval Postgraduate School

The Planning Phase
The planning phase of the Software Acquisition Pathway is guided by a draft Capabilities

Need Statement (CNS) that is developed by the operational community via the MVP process
described above. Through the process, requirements in the CNS are re-prioritized to facilitate
effective software development, and user engagement is utilized to update the CNS accordingly.
The decision authority, the Under Secretary of Defense for Acquisition and Sustainment, selects
the project manager to strategize and govern the software acquisition process (Lord, 2020, p.
9). Software design and architecture attempt to use existing enterprise services as much as
reasonably possible. However, this should be guarded by focusing on the system goals
discussed earlier in the chapter; planners should realize when the re-use benefit of existing
solutions is outweighed by the gaps to goals introduced when forcing alignment. Planning
considers and documents in appropriate artifacts a range of factors including but not limited to
development environment, automation tools and capabilities, cybersecurity threats, risk-based
lifecycle management, testing, and evaluation (Lord, 2020, p. 10). Once the decision authority
validates that the appropriate acquisition artifacts are complete and the strategies, analysis, and
resources are in place, the process transitions to the execution phase. From planning and
through execution, the program develops and tracks metrics of success and keeps cost
estimates, costs, and software data reporting up to date.
Other Required Planning Documents

In conjunction with the CNS, a user agreement, acquisition strategy, intellectual property
strategy, test strategy, and cost estimate must be approved to transition to the execution phase.
The sponsor and program manager must develop a user agreement to ensure commitment,
involvement among parties, and delegate decision-making authorities (Lord, 2020, p. 11).
Decisions include capabilities defining, capabilities prioritization, software feature trade-offs,
software cadence, user acceptances, and readiness for operation deployment. In addition, the
user agreement will commit proper resourcing to engage users and create a system for
feedback and ways to shape requirement details.
The Acquisition Strategy

The acquisition strategy identifies how to acquire, develop, deliver, and sustain software
capabilities for the end users’ needs (Lord, 2020, p. 11). Active collaboration between the
program manager, program stakeholders, and functional experts ensure the acquisition strategy
addresses current environments, priorities, risks, and approaches. The acquisition strategy will
be revised by the program manager until it is sufficient for the decision authority to approve
development and continue to mature it through the acquisition lifecycle. The acquisition strategy
will be approved by the decision authority to include process and documentation tailoring. Key
elements of the acquisition strategy are risk-based business and technical management,
roadmap and cadence for delivery, flexible and modular contract strategy, planned government
personnel and resources, tailoring to use modern practices, high-level test strategies,
architecture strategy to enable open modular systems, intellectual property training, product
support strategies, and program manager strategy to ensure all is in accordance with law and
regulations. If software is embedded, then it must align with the platform acquisition strategy.
The Intellectual Property Strategy

The intellectual property strategy (IPS) identifies and describes the management of
delivery and license rights for all software and related material necessary to meet requirements
(Lord, 2020, p. 12). The IPS must support and be consistent with government strategies and
implemented through requirements in contracts. Rights and obligations of the government and
industry should be understood by the program manager to handle strategy and negotiation for
software deliverables and license rights. The IPS includes negotiation for and periodic delivery

Acquisition Research Program
department of Defense Management - 157 -
Naval Postgraduate School

of software components (Lord, 2020, p. 13). The IPS should address collaboration with other
developers and users of software, in the case of government will take delivery and/or modify
source code, to reduce duplication. The program manager should attempt to avoid the creation
of program-specific versions of software components. Commercial or proprietary software not
previously included in the IPS will be approved by the program manager before insertion into
software developed for the government. The IPS identifies where intellectual property may
result from government investments and treat them appropriately. The program manager should
require delivery of all source code at the government’s expense and any other requisite
documentation. Timelines for delivery should be planned around transitions to new contractors
or the government.
Test Strategy

The test strategy defines the process by which capabilities, features, user stories, use
cases, and elements will be tested and evaluated to demonstrate if criteria are satisfied. The
test strategy identifies the independent test organizations, testing artifacts that will be shared,
tools and resources for data collection, and transparency. Tests should assess software
performance, reliability, sustainability, and other key metrics. For embedded software, safety
assessments and mitigation strategies should be included for any implications to the
overarching system. The schedule for embedded software should also align with test and
integration for the overarching system. To the extent practical, testing and operational
monitoring should be automated for user evaluation. The test strategy should include
information in accordance with applicable modeling and simulation policies. The decision
authority will approve the test strategy, and the Director, Operational Test and Evaluation, will be
the final approver for programs on their oversight list.
Cost Estimate

The cost estimate, in accordance with DoDI 5000.73, Cost Analysis Guidelines and
Procedures, estimates and considers the technical content of the program described by the
other software acquisition pathway required documents. The initial cost estimate must be
completed before the execution phase and then updated annually. Where applicable, cost and
software data reporting, to include software resources data reports, must be submitted in
accordance with DoDI 5000.73 policies and procedures.

The Execution Phase
Software capabilities that correspond with the needs of the end users are developed and

delivered during the execution phase. The program assembles components from enterprise
services and contracts. Existing connections are preferred to new ones and based on the
acquisition and intellectual property strategies. The program maximizes automation of
processes related to the project when possible. Consideration should be given for lifecycle
objectives and managing technical debt. The sponsor and program office develop and maintain
a product roadmap, while the product owner and office maintain a backlog detailing a prioritized
list of user needs. The product roadmap and backlog are shaped by continual user feedback.

That continual user feedback takes place in the second iteration of the MVP process,
this time during acquisition execution. The program manager and sponsor use an interactive
human-centric design process to define the MVP as user needs evolve. If the MVP does not
have sufficient capabilities or performance to deploy into operations, then the program manager
and sponsor define an MVP release. The MVP release delivers initial capabilities to enhance
mission outcomes and must be deployed to an operational environment within a year of the first
obligated funds given to acquire or develop new capabilities. Subsequent MVP releases should
be delivered at least annually per policy. Through execution, the program should continually
update the development process and take user feedback to inform short-term capability

Acquisition Research Program
department of Defense Management - 158 -
Naval Postgraduate School

deliveries and long-term solutions. Testing should be guided by risk strategies, and cyber testing
and monitoring should be automated to be used to support a conditional authority to operate or
accelerated accreditation process.

Cybersecurity policies and assigned authorized officials guide this process. Recurring
cybersecurity assessments should be performed on all components of the process. Program
managers work with stakeholders to provide controls to enable conditional authority to operate
where needed and ensure secure development, cybersecurity and assurance capabilities, and
secure lifecycle management. Intellectual property strategy considerations should be marinated
through execution. Programs develop and track metrics of success of the program, keep cost
estimates, costs, and software data reporting up to date from planning and through the
execution phase. The sponsor and user community conduct value assessments at least on
delivered software. The results of the assessments inform progress and updates to the process.

Summary/Recommendations
Both policy and engineering impact acquisition programs. Please, never confuse the

two.
Understand the limits of software coding tools such as UML and SysML and don’t

conflate the policy directive to use them in programs with systems engineering practice –
despite the confusing verbiage.

The DoD Software Acquisition Pathway includes plenty of space to accommodate a wide
variety of sound systems engineering approaches to deliver capability to the warfighter. We
have attempted to show one systems engineering approach to doing so via MVP.

Program success will likely depend on the regular engagement of the stakeholders in the
development and iteration process via MVP and the budgeting of continuous improvement over
the lifecycle of the program.

Bibliography
Alexander, I. F., & Maiden, N. (2005). Scenarios, stories, use cases: Through the systems

development life-cycle. John Wiley & Sons.
Bell, A. E. (2004). Death by UML fever: Self-diagnosis and early treatment are crucial in the fight

against UML fever. Queue, 2(1), 72–80.
Boehm, B. W. (1981). Software engineering economics. New York, 197.
Boehm, B. W. (1984). Software engineering economics. IEEE Transactions on Software

Engineering, (1), 4–21.
Bone, M. A., Blackburn, M. R., Rhodes, D. H., Cohen, D. N., & Guerrero, J. A. (2019).

Transforming systems engineering through digital engineering. Journal of Defense
Modeling and Simulation: Applications, Methodology, Technology, 16(4), 339–355.
https://doi.org/10.1177/1548512917751873

Buede, D. M., & Miller, W. D. (2016). The engineering design of systems: Models and methods
(3rd ed.).

Churchman, C. W. (1968). The systems approach (Vol. 1). Dell.
Defense, D. C. I. O. U. S. D. o. (2023). DODAF - DOD architecture framework version 2.02.

https://dodcio.defense.gov/library/dod-architecture-framework/
DoD. (2020). Operation of the adaptive acquisition framework.

Acquisition Research Program
department of Defense Management - 159 -
Naval Postgraduate School

DoD Chief Information Officer. (2021). The DODAF architecture framework version 2.02.

Friedenthal, S., Griego, R., & Sampson, M. (2007). INCOSE model based systems engineering
(MBSE) initiative. INCOSE 2007 symposium.

Gibson, J. E., Scherer, W. T., Gibson, W. F., & Smith, M. C. (2016). How to do systems analysis:
Primer and casebook. John Wiley & Sons.

Hall, A. D. (1962). A methodology for systems engineering. D. Van Nostrand Company.
Hardy, D. (2006). Model based systems engineering and how it aids DoD acquisition & systems

engineering. 9th Annual Systems Engineering Conference.
INCOSE. (2007, September). Systems engineering vision 2020.
Kühne, T. (2006). Matters of (meta-) modeling. Software & Systems Modeling, 5(4), 369–385.
Light, T., Younossi, O., Clayton, B., Whitehead, P., Wong, J. P., Pfeifer, S., & Triezenberg, B. L.

(2022). A preliminary assessment of digital engineering implications on weapon system
costs. T. R. Corporation.

Lord, E. M. (2020). Operation of the software acquisition pathway (DoD Instruction 5000.87).
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF

Markish, J., & Willcox, K. (2003, October). Value-based multidisciplinary techniques for commercial
aircraft system design. American Institute of Aeronautics and Astronautics Journal, 41(10), 2004–
2012. https://doi.org/10.2514/2.1890

McQuade, J. M., Murray, R. M., Louie, G., Medin, M., Pahlka, J., & Stephens, T. (2019).
Software is never done: Refactoring the acquisition code for competitive advantage, final
report of the software acquisition and practices (SWAP) study conducted by the Defense
Innovation Board. https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMP
ETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF

Miles, R. F., Jr. (1974, January 15). A contemporary view of systems engineering. Jet Propulsion
Laboratory.

Naylor, R. H. (1976). Galileo: The search for the parabolic trajectory. Annals of Science, 33(2).

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2022, June 8).
Operation of the adaptive acquisition framework (DoD Instruction 5000.02, change 1).

O’Regan, G. (2013). Ed Yourdon. In Giants of computing: A compendium of select, pivotal
pioneers (pp. 277–279). Springer.

Pandey, R. (2010). Architectural description languages (ADLs) vs UML: A review. ACM
SIGSOFT Software Engineering Notes, 35(3), 1–5.

Reis, E. (2011). The lean startup. Crown Business, 27, 2016–2020.
Rossi, C. (2004). Architecture and mathematics in ancient Egypt. Cambridge University Press.
Shyu, H. (2023). Digital engineering (DoD Instruction 5000.97). DoD.

https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500097p.PDF?ver=b
ePIqKXaLUTK_Iu5iTNREw%3D%3D

SysML.org. (n.d.). SysML open source project: What is SysML? Who created it?
Weinberg, G. M. (1982). Rethinking systems analysis and design. Little, Brown.

Acquisition Research Program
department of Defense Management - 160 -
Naval Postgraduate School

Whitehead, N. P. (2014). The dimensions of systems thinking - An approach for a standard
language of systems thinking [Doctoral dissertation, University of Virginia].
https://libraetd.lib.virginia.edu/public_view/3x816m893

Whitehead, N. P., Light, T., Luna, A., & Mignano, J. (2024). A framework for assessing the costs
and benefits of digital engineering.

Acquisition Research Program
Department of Defense Management
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

http://www.acquisitionresearch.net/

	Digital Engineering, Understanding the Policy and the Engineering in the Minimal Viable Product Approach
	MODAF and DoDAF
	Model-Based
	Distinguishing Policy from Engineering
	Goal Definition in Concept Development – The Engineering
	Identifying Stakeholders
	Elucidating Stakeholder Goals via Scenario Development
	Figure 1. Classical System Development Failure
	Figure 2. Minimum Viable Product System Development – Commercial Industry Flavor

	System Scope
	Indices of Performance

	Software Acquisition Pathway – The Policy
	The Planning Phase
	Other Required Planning Documents
	The Acquisition Strategy
	The Intellectual Property Strategy
	Test Strategy
	Cost Estimate

	The Execution Phase
	Summary/Recommendations
	Bibliography

