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Abstract 
The continued advancement of large language models (LLMs) has unlocked new opportunities 
for systems engineering particularly in the field of visual question answering (VQA). Multi-modal 
LLMs are capable of processing both textual and graphical inputs, allowing them to interpret the 
graphical elements of model-based systems engineering (MBSE) models alongside 
accompanying textual descriptions. This paper explores the capabilities of multi-modal LLMs in 
understanding and interpreting Systems Modeling Language (SysML) v1 block definition 
diagrams (BDDs). BDDs are visual diagrams that formally capture a system’s structural elements, 
properties, relationships, and multiplicities.  

We evaluate both proprietary and open-source multi-modal LLMs using a curated dataset of 
SysML BDDs and associated multiple-choice question set designed to assess LLM performance 
at the first two levels of Bloom’s Taxonomy, Remember and Understand. We also analyzed the 
effect of model size on accuracy. The results provide insights into which current LLMs are able to 
natively interpret SysML BDD syntax which informs future research aimed at enhancing systems 
modeling processes with AI agents. 

Introduction 
The integration of artificial intelligence (AI) into Model-Based Systems Engineering 

(MBSE) processes presents significant opportunities for improving model comprehension, 
validation, and support activities. Multi-modal large language models (LLMs) are capable of 
processing both textual and graphical inputs and have expanded the potential for automating 
the interpretation of system modeling language (SysML) v1 models. Block Definition Diagrams 
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(BDDs) are key elements of SysML v1 models, serving as a foundational representation of 
system structure, properties, and relationships (OMG, 2019). 

Despite the rapid evolution of LLMs, their ability to accurately interpret SysML artifacts 
remains largely unexplored. Existing evaluations of multi-modal LLMs have primarily focused on 
images or general diagrammatic reasoning, rather than domain-specific graphical languages 
such as SysML ( Antol et al., 2015; Ishmam et al., 2024; Lin et al., 2014). This gap limits the 
current understanding of LLMs’ effectiveness in supporting engineering workflows that rely on 
formal SysML model interpretation. 

This paper addresses this gap by evaluating the performance of contemporary multi-
modal LLMs in interpreting SysML v1.x BDDs. We develop a curated dataset of BDDs and 
design a multiple-choice question set aligned with the first two levels of Bloom’s Taxonomy. The 
evaluation examines both proprietary and open-source LLMs, analyzing their capabilities across 
models of varying sizes. The findings offer empirical insights into the strengths and limitations of 
current LLMs in understanding formal systems modeling artifacts and inform future research on 
enhancing AI-driven support for MBSE practices. 

Background and Related Research 
Visual Question Answering 

Visual question answering (VQA) is a field of AI research focused on answering textual 
questions using image(s) as contextual input (Antol et al., 2015). Responses can be binary 
(yes/no), multiple choice, or open-ended. Early VQA methods combined computer vision (CV) 
feature extraction and natural language processing (NLP) machine learning (ML) techniques to 
generate answers (Ishmam et al., 2024). The introduction of attention mechanisms such as 
stacked attention networks and dynamic memory networks enabled multi-step reasoning in VQA 
tasks (Xiong et al., 2016; Yang et al., 2016). Large Visual Language Models (LVLMs) such as 
ViLBERT and VisualBERT further advanced the field by incorporating pretraining techniques 
and transformer architecture to increase model performance (Li et al., 2019; Lu et al., 2019). 

The emergence of multi-modal LLMs transformed VQA by enabling unified reasoning 
over text and images. Models like Flamingo and PaLI demonstrated that scaling vision-language 
pretraining yields strong few-shot VQA capabilities (Alayrac et al., 2022; Chen et al., 2023). 
BLIP-2 (Li et al., 2023) further streamlined this approach by efficiently connecting frozen pre-
trained image encoders and LLMs (Li et al., 2023). OpenAI’s GPT-4 represented a shift toward 
general-purpose multi-modal reasoning achieving similar performance to text only inputs without 
VQA-specific architectures (OpenAI et al., 2024). These advancements have moved VQA from 
specialized models toward foundation models with broad applicability across engineering and 
scientific tasks. 
VQA Benchmarks 

A variety of datasets have been developed to benchmark VQA capabilities. The Dataset 
for Question Answering on Real-Work images (DAQUAR) was one of the first largely used VQA 
benchmarks and was a modern attempt at a “visual Turing test” (Malinowski & Fritz, 2015). 
Microsoft’s Common Objects in Context (COCO) dataset introduced a large dataset where each 
image was provided as a raw image and then a segmented image with highlighted objects 
(Figure 1) that enabled benchmarking for tasks such as counting (Lin et al., 2014). The VQA-2.0 
dataset balanced the VQA-1.0 dataset by collecting complementary images for each question 
ensuring that each question could be applied to different images and yield different answers 
(Antol et al., 2015; Goyal et al., 2019). 
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(a)                                                                          (b)  

Figure 1. Sample Image from COCO Dataset (COCO - Common Objects in Context, n.d.) 
(a) Original Image, (b) Segmented Image Displaying Overlay for Fire Hydrants and Vehicles 

While datasets such as DAQUAR, COCO, and VQA 2.0 addressed general VQA 
questions, they also highlighted the need for application specific datasets such as chart and 
diagram specific datasets. These chart and diagram specific datasets sought to address 
recalling and synthesizing data from the chart using methods such as optical character 
recognition (OCR), interpreting numerical data contained in a chart, and understanding of 
different chart structures (Kafle et al., 2020).  

Chart and figure specific datasets continue to evolve along with new methods to improve 
complex reasoning (Srivastava & Sharma, 2024). Data visualization question answering 
(DVQA) is one of the early chart datasets specifically focused on bar charts (Kafle et al., 2018). 
When introducing the DVQA dataset, Kafle et al. showed that VQA methods were not effective 
at recalling or synthesizing data related to bar charts and proposed new methods for chart 
specific VQA. Also introduced in 2018, FigureQA expanded charts types to include line plots, 
dot-line plots, and pie charts in addition to bar charts and proposed a Relation Network method 
(Kahou et al., 2018). More recent datasets such as ChartQA introduce complex reasoning 
questions that require logical and arithmetic calculations (Masry et al., 2022). A sample from the 
ChartQA dataset shown in Figure 2 demonstrates the increased complexity of questions. 
Answering the questions requires the number of bars in the chart, analyzing their labels for 
relevance (is it a food or not), and then combining those two pieces of information to determine 
the correct answer. 
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Figure 2. ChartQA Sample Question and Associated Image  

(Lmms-Lab/ChartQA · Datasets at Hugging Face, 2024) 

SysML v1.6 BDDs 
In SysML v1.6, “the BDD is used to define blocks in terms of their features, and their 

structural relationships with other blocks” (Friedenthal et al., 2011). While a BDD can convey 
many types of information about blocks and their relationships, this paper focuses on the 
following parts of the BDD as described in SysML Distilled (Delligatti, 2014): 

• Blocks are fundamental modeling elements that represent system components, 
subsystems, or other concepts (e.g., actors). They can define both structural and 
behavioral features. 

• Properties are attributes owned by a block that define the internal structure and 
characteristics.  

o Part properties represent a block’s internal structure and are used to model 
composition. 

o Reference properties represent a relationship to an external structure and are 
used to show dependency on another block. 

o Value properties represent a quantitative or descriptive attribute of a block (e.g., 
speed in miles per hour, length in inches) 

• Relationships convey composition, abstraction, connection, or dependencies between 
model elements. 

o Composite associations convey structural decomposition and are denoted by 
filled in diamonds. 

Question 1 in the ChartQA ‘test’ dataset:

Q: How many food items are shown in the bar graph?
A: 14
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o Reference associations convey a connection or dependency between two blocks. 
They may also be shown as reference properties. 

o Generalizations convey inheritance between elements and are denoted by 
unfilled triangles. The generalized element is known as the supertype while the 
more specialized element is known as the subtype. 

• Multiplicity is a constraint specifying the number of allowable instances, such as one-to-
one (1) and one-to-many (1..*). Multiplicity can also be used to model optional 
components (0..1, 0..*). 

Representing the LLM Cognitive Process with Bloom’s Revised Taxonomy 
Bloom’s taxonomy is a hierarchical model of cognition widely used in education to 

classify learning objectives (Bloom et al., 1956). Bloom’s revised taxonomy specifies six 
cognitive process levels: Remember, Understand, Apply, Analyze, Evaluate, and Create 
(Krathwohl, 2002). In addition to human cognition, recent research has extended Bloom’s 
revised taxonomy to LLMs.  

A recent study analyzing the alignment of existing LLM benchmarks to Bloom’s revised 
taxonomy found that most benchmarks adequately assess the “Remember” and “Understand” 
levels but do not comprehensively address all six cognitive levels (Huber & Niklaus, 2025). 
Although “Remember” and “Understand” represent the lowest levels of cognition, LLMs do not 
always perform the highest at these levels. In a mixed-methods study examining ChatGPT’s 
performance on psychosomatic medicine examination questions, researchers observed that 
GPT-4 exhibited notable deficiencies in these two levels, with 29 errors in “Remember” and 23 
errors in “Understand” stemming from difficulties in recalling specific details and grasping 
conceptual relationships (Herrmann-Werner et al., 2024).  

Consistent with other evaluation approaches, this study focuses on the first two levels of 
Bloom’s revised taxonomy: Remember and Understand. “Remember” questions are designed to 
assess recall of information directly from SysML BDDs without requiring synthesis of multiple 
elements. “Understand” questions assess higher cognitive engagement through summarization 
and inference tasks. Summarization questions require synthesis of multiple pieces of 
information from the diagram while inference questions involve drawing conclusions that are not 
explicitly stated but are logically supported by the diagram’s structure and consistent with 
SysML v1.6 rules. 

Methodology 
This section describes the methodology for constructing and evaluating a dataset aimed 

at assessing LLMs’ ability to interpret SysML v1.x BDDs. In the absence of existing datasets 
focused specifically on SysML, a novel dataset was developed to capture both syntactic and 
semantic understanding of BDDs through structured multiple-choice questions aligned with 
Bloom’s revised taxonomy (Krathwohl, 2002). A set of both proprietary and open source multi-
modal LLMs were evaluated against this dataset. LLM inference was conducted using GPU-
accelerated environments and automated through scripting to ensure consistency and 
reproducibility. The evaluation process culminated in a human as judge assessment of LLM 
responses where the human judge was a practicing systems engineer. 
Dataset Generation 

While there are several datasets focused on VQA and diagrams in particular, there are 
no datasets specifically focused on SysML v1.x. Therefore, the dataset for this analysis was 
generated by systems engineers with experience in both systems modeling and benchmark 
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dataset generation. It consists of a curated set of SysML BDDs and associated multiple choice 
questions. The dataset was exclusively human-generated with no synthetic content. 

The dataset consists of 80 questions. Generated questions cover four key concepts from 
SysML v1.x BDDs: Blocks, Properties, Relationships, and Multiplicity. The difficulty of the 
generated questions is evenly distributed across the remember and understand levels of 
Bloom’s revised taxonomy. Table 1 details the distribution of questions across both Bloom’s 
Taxonomy and BDD concept. 

Table 1. Distribution of Questions 

 Blocks Properties Relationships Multiplicity 
Remember 10 10 10 10 

Understand 10 10 10 10 
 

The dataset follows a syntax common to multiple choice question datasets with some 
minor modifications to incorporate additional fields such as diagram reference, SysML Concept, 
and Bloom Taxonomy Category as shown in Table 2. This syntax will allow the dataset to be 
easily expanded to more diagram types and potentially be incorporated as an extension into 
systems engineering specific benchmarks such as SysEngBench (Bell, 2024). 

Table 2. Dataset Fields 

Field Data Format Description 
QuestionID Integer Unique identifier for each question 

BDDConcept Enumeration One of four options: Blocks, 
Relationships, Properties, Multiplicity 

BloomCategory Enumeration One of two options: Remember, 
Understand 

Diagram String File name of the associated SysML BDD 

Question String Text of the multiple choice question 

ChoiceA String Text for choice A 

ChoiceB String Text for choice B 

ChoiceC String Text for choice C 

ChoiceD String Text for choice D 

Answer String Correct Answer: ChoiceA, ChoiceB, 
ChoiceC, ChoiceD 

 
A camera specification BDD from the dataset is shown in Figure 3. This diagram 

incorporates blocks, value properties, a generalization relationship (denoted by the unfilled 
triangle), and other elements such as requirements and value types. Two sample questions 
based on this diagram are shown below. Note that the rationale field is included as a courtesy 
explanation to the reader as to why the answer is correct, but is not included in the dataset. 
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Figure 3. Camera Specification Diagram 

A sample “Remember” question related to the BDD properties concept is: 
What is the custom value type defined for framerate? 

a) string 

b) kg 

c) boolean 

d) fps 

Correct Answer: d 
Rationale: The framerate property is typed by the fps property in the ‘framerate : fps’ value 
property definition. 

A sample understand question related to the BDD properties category is: 
How many value properties are there for each camera? 

a) 15 

b) 22 

c) 5 

d) 7 

Correct Answer: d 
Rationale: The generalized camera block contains seven value properties that are inherited by 
each camera. Each specific camera block shows the five value properties that are re-defined, 
but not the inherited properties that are not re-defined. 

LLM Selection 
A variety of open source and proprietary models easily accessible to practicing 

engineers were selected for this paper. The open source models were selected as they are the 
multi-modal vision models available from the widely used Ollama library as of April 2025 
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(Ollama, n.d.). ChatGPT-4o and Sonnet-3.7 were selected as they are widely available 
proprietary models. The dataset was evaluated against the following models: 

• baklava: 7B 

• gemma3: 4B, 12B, and 27B Variants 

• granite3.2-vision: 2B 

• llama3.2-vision: 11B and 90B Variants 

• llava: 7B, 13B and 34B Variants 

• llava-llama3: 8B 

• minicpm-v: 8B 

• mistral-small3.1: 24B 

• moondream: 1.8B 

• OpenAI chatgpt-4o 

• Anthropic sonnet-3.7 
Dataset Evaluation 

To evaluate the dataset using Ollama models, a virtual GPU pod instance was 
provisioned on RunPod utilizing an NVIDIA A40 GPU. Ollama was installed on this virtual pod 
following the guidelines provided in the RunPod documentation (Set up Ollama on Your GPU 
Pod | RunPod Documentation, 2025). The selected LLMs were then loaded into the GPU pod 
via the ollama run and pull commands. A Jupyter Notebook was deployed within the same pod 
to facilitate the evaluation process. The question set formatted as a CSV file along with the 
corresponding images was uploaded to the notebook environment. A Python script was 
developed to automate the process of asking questions to the LLMs and capturing their 
responses. The script iterated through each question in the question set, submitted each prompt 
to the LLM under evaluation, and recorded the generated answers. The outputs were then 
written to a CSV file for analysis. This workflow is detailed in Figure 4. 

The same dataset was used to evaluate the chatgpt-4o and sonnet-3.7 models. 
However, instead of using custom scripts and dedicated GPUs, the ChatGPT (ChatGPT, n.d.) 
and Claude (Claude, n.d.) websites were utilized to ask the LLMs questions. 

LLMs do not explicitly know they should answer a multiple choice question with a one 
character response. Therefore the question was asked in the following format: 

You are an automated system that answer multiple choice questions and only outputs 
one of four letters: A, B, C, or D. Given the following question and four answer choices, respond 
with ONLY the letter of the best answer. This will be A, B, C, or D. Do not explain your answer. 
Do not say anything else. Use the image as context for your answer. 

            Question: {question} 

            A. {option_a} 

            B. {option_b} 

            C. {option_c} 

            D. {option_d} 
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There are several methods to compare the model answers to the correct answers 
including LLM as a judge and human as a judge. LLM as a judge refers to the use of LLMs as 
automated judges for evaluating other LLMs on open-ended tasks where traditional benchmarks 
may be insufficient (Zheng et al., 2023). However, due to limitations in dataset size (80 
questions), model coverage (18 models), and the fact that LLM judging focuses on evaluating 
the final answer rather than the reasoning process behind it, human as a judge is employed for 
the final assessment. 

 
Figure 4. Dataset Evaluation Workflow 

Results, Discussion, and Limitations 
Each LLM’s responses were scored against the correct multiple-choice answers to 

evaluate accuracy. Accuracy is defined as the percentage of questions answered correctly. The 
dataset was designed to assess both syntactic and semantic understanding of SysML BDDs 
covering a balanced distribution across four modeling concepts and two levels of Bloom’s 
revised taxonomy. The results presented below compare overall model performance, analyze 
trends relative to model size, and break down accuracy by cognitive level and SysML concept. 



Acquisition Research Program 
department of Defense Management - 364 - 
Naval Postgraduate School 

The overall performance of each LLM is shown in Figure 5. Proprietary LLMs are 
denoted by orange bars while open source LLMs are denoted by blue bars. Although proprietary 
models secured two of the top three scores, the open-source model mistral-small3.1, a 24B 
model, outperformed Sonnet-3.7 while falling short of GPT-4o. Given that each multiple-choice 
question included four possible answers, the expected accuracy from random guessing across 
all 80 questions is 25%. Bakllava, a 7B model, demonstrated the lowest performance and was 
the only model that failed to exceed the random guessing baseline.  

The scatter plot in Figure 6 compares LLM accuracy to model size. It is important to note 
that the size of GPT-4o and Sonnet-3.7 is not publicly available information. There are several 
estimates of around 200 billion parameters, but those estimates have not been confirmed by 
either OpenAI or Anthropic. A correlation coefficient of 0.65 indicates a moderate relationship 
between LLM size and accuracy. However, mistral-small3.1 (24B) outperforms three larger open 
source models as well as Sonnet-3.7. Despite being the second smallest model, granite3.2-
vision (2B) outperforms 10 larger models. These observations suggest that factors beyond 
parameter count, such as training data and/or methods, influence performance. 

The grouped bar chart in Figure 7 visualizes accuracy by Bloom’s revised taxonomy 
category. Most LLMs perform better on “Remember” tasks than on “Understand” questions with 
GPT-4o correctly answering all “Remember” questions. Two LLMs performed slightly better on 
“Understand” questions. These results indicate the LLMs’ ability to recall information from a 
diagram is greater than the ability to synthesize multiple pieces of information or bring in 
additional context not explicitly stated in the BDD. 

The multi-series bar chart shown in Figure 8 breaks down performance across the four 
core SysML v1.6 BDD concepts: Blocks, Relationships, Properties, and Multiplicity. The results 
reveal notable variation across concepts, with most models performing best on Blocks and 
worst on Relationships or Multiplicity, highlighting uneven conceptual understanding amongst 
LLMs. 

 
Figure 5. Overall Performance 
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Figure 6. Performance by LLM Size 

 
Figure 7. Performance by Bloom’s Taxonomy Category 
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Figure 8. Performance by BDD Concept 

Future Work 
This study is an initial exploration of LLM performance on SysML v1.x BDDs using a 

curated dataset of multiple-choice questions. While the current dataset is balanced across four 
core BDD concepts and two levels of Bloom’s revised taxonomy (“Remember” and 
“Understand”), future research can extend the depth and breadth of this analysis. 
Future studies could focus on expanding the dataset in three different ways: 

• Expansion of the dataset to include more questions and images. This could increase the 
robustness of the evaluation and potentially increase the statistical significance of the 
results. 

• Incorporation of additional SysML v1.x diagram types beyond BDDs such as Internal 
Block Diagrams (IBDs), Activity Diagrams, and Sequence Diagrams would provide a 
more comprehensive benchmark to evaluate the extent to which LLMs can generalize 
across different visual and semantic structures in systems modeling. This would also 
increase the number of multiple-choice questions per Bloom’s revised taxonomy level to 
improve statistical robustness and reduce sensitivity to specific wording or diagram 
features. 

• Expansion of the dataset to include higher levels of Bloom’s revised taxonomy, such as 
“Apply,” “Analyze,” “Evaluate,” and potentially even “Create” could give a more holistic 
view of LLM capabilities. By incorporating these more complex cognitive tasks, future 
studies can investigate whether LLM performance declines as tasks become more 
abstract and cognitively demanding. 
This study identified several LLMs that may be promising candidates for techniques such 

as Retrieval-Augmented Generation (RAG) to improve accuracy. Applying RAG could allow 
models to draw from relevant SysML documentation or design patterns to enhance their 
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question answering abilities. Future experiments could explore the impact of RAG on accuracy 
particularly in handling the more difficult “Understand” questions or tasks at higher levels or 
Bloom’s revised taxonomy. 

Conclusion 
This study presents a targeted evaluation of multi-modal LLMs on SysML v1.6 BDDs 

through a VQA framework. By grounding the analysis in Bloom’s revised taxonomy and 
assessing both proprietary and open-source models, we provide empirical insights into how 
LLMs interpret formal, domain-specific systems modeling diagrams. The findings show that 
while model size moderately correlates with accuracy, other factors also impact LLM 
performance. Most models demonstrate stronger capabilities in recalling elements 
(“Remember”) than in synthesizing or inferring information (“Understand”) revealing limitations in 
semantic comprehension of structured graphical artifacts. 

The curated dataset and evaluation framework introduced here lay the groundwork for 
future research into more advanced cognitive tasks and broader SysML diagram types. As the 
field progresses, improving model performance through techniques like RAG on domain-specific 
content holds significant promise. Ultimately, understanding and enhancing how LLMs process 
systems modeling artifacts is a critical step toward their meaningful integration into MBSE 
workflows. 

Acknowledgements 
This work has benefited from the use of generative AI tools including ChatGPT and 

SciSpace for writing assistance and code development. These tools were employed to enhance 
conceptual clarity, improve code efficiency, and support literature synthesis. All AI-generated 
outputs were critically reviewed, refined, and validated to ensure accuracy and alignment with 
academic integrity. Their contributions were limited to supporting the research process, and final 
responsibility for the content, analysis, and conclusions remains with the authors. 

References 
Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A., 

Millican, K., Reynolds, M., Ring, R., Rutherford, E., Cabi, S., Han, T., Gong, Z., 
Samangooei, S., Monteiro, M., Menick, J., Borgeaud, S., … Simonyan, K. (2022). 
Flamingo: A visual language model for few-shot learning (No. arXiv:2204.14198). ArXiv. 
https://doi.org/10.48550/arXiv.2204.14198 

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., & Parikh, D. (2015). VQA: 
Visual question answering. 2015 IEEE International Conference on Computer Vision 
(ICCV), 2425–2433. https://doi.org/10.1109/ICCV.2015.279 

Bell, R. (2024, August). Rabell/SysEngBench \cdot datasets at Hugging Face. In SysEngBench. 
https://huggingface.co/datasets/rabell/SysEngBench 

Bloom, B. S., Engelhart, M. D., Furst, E., Hill, W. H., & Krathwohl, D. R. (1956). Handbook I: 
Cognitive domain. David McKay, 483–498. 

ChatGPT. (n.d.). Retrieved April 24, 2025, from https://chatgpt.com 
Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A. J., Padlewski, P., Salz, D., Goodman, S., 

Grycner, A., Mustafa, B., Beyer, L., Kolesnikov, A., Puigcerver, J., Ding, N., Rong, K., 
Akbari, H., Mishra, G., Xue, L., Thapliyal, A., Bradbury, J., … Soricut, R. (2023). PaLI: A 
jointly-scaled multilingual language-image model (No. arXiv:2209.06794). ArXiv. 
https://doi.org/10.48550/arXiv.2209.06794 

https://doi.org/10.48550/arXiv.2204.14198
https://doi.org/10.1109/ICCV.2015.279
https://huggingface.co/datasets/rabell/SysEngBench
https://chatgpt.com/
https://doi.org/10.48550/arXiv.2209.06794


Acquisition Research Program 
department of Defense Management - 368 - 
Naval Postgraduate School 

Claude. (n.d.). Retrieved April 24, 2025, from https://claude.ai/new 
COCO - Common Objects in Context. (n.d.). Retrieved April 20, 2025, from 

https://cocodataset.org/#explore 
Delligatti, L. (2014). SysML distilled. Pearson Education. 
Friedenthal, S., Moore, A., & Steiner, R. (2011). A practical guide to SysML: The systems 

modeling language. Elsevier Science & Technology. 
http://ebookcentral.proquest.com/lib/ebook-nps/detail.action?docID=787244 

Goyal, Y., Khot, T., Agrawal, A., Summers-Stay, D., Batra, D., & Parikh, D. (2019). Making the V 
in VQA matter: Elevating the role of image understanding in visual question answering. 
International Journal of Computer Vision, 127(4), 398–414. 
https://doi.org/10.1007/s11263-018-1116-0 

Herrmann-Werner, A., Festl-Wietek, T., Holderried, F., Herschbach, L., Griewatz, J., Masters, K., 
Zipfel, S., & Mahling, M. (2024). Assessing ChatGPT’s mastery of Bloom’s taxonomy 
using psychosomatic medicine exam questions: Mixed-methods study. Journal of 
Medical Internet Research, 26, e52113. https://doi.org/10.2196/52113 

Huber, T., & Niklaus, C. (2025). LLMs meet Bloom’s taxonomy: A cognitive view on large 
language model evaluations. In O. Rambow, L. Wanner, M. Apidianaki, H. Al-Khalifa, B. 
D. Eugenio, & S. Schockaert (Eds.), Proceedings of the 31st International Conference 
on Computational Linguistics (pp. 5211–5246). Association for Computational 
Linguistics. https://aclanthology.org/2025.coling-main.350/ 

Ishmam, Md. F., Shovon, Md. S. H., Mridha, M. F., & Dey, N. (2024). From image to language: A 
critical analysis of visual question answering (VQA) approaches, challenges, and 
opportunities. Information Fusion, 106, 102270. 
https://doi.org/10.1016/j.inffus.2024.102270 

Kafle, K., Price, B., Cohen, S., & Kanan, C. (2018). DVQA: Understanding data visualizations 
via question answering. 2018 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 5648–5656. https://doi.org/10.1109/CVPR.2018.00592 

Kafle, K., Shrestha, R., Price, B., Cohen, S., & Kanan, C. (2020). Answering questions about 
data visualizations using efficient bimodal fusion. 2020 IEEE Winter Conference on 
Applications of Computer Vision (WACV), 1487–1496. 
https://doi.org/10.1109/WACV45572.2020.9093494 

Kahou, S. E., Michalski, V., Atkinson, A., Kadar, A., Trischler, A., & Bengio, Y. (2018). FigureQA: 
An annotated figure dataset for visual reasoning (No. arXiv:1710.07300). ArXiv. 
https://doi.org/10.48550/arXiv.1710.07300 

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into Practice, 
41(4), 212. 

Li, J., Li, D., Savarese, S., & Hoi, S. (2023). BLIP-2: Bootstrapping language-image pre-training 
with frozen image encoders and large language models (No. arXiv:2301.12597). ArXiv. 
https://doi.org/10.48550/arXiv.2301.12597 

Li, L. H., Yatskar, M., Yin, D., Hsieh, C.-J., & Chang, K.-W. (2019). VisualBERT: A simple and 
performant baseline for vision and language (No. arXiv:1908.03557). arXiv. 
https://doi.org/10.48550/arXiv.1908.03557 

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. 
(2014). Microsoft COCO: Common objects in context. In D. Fleet, T. Pajdla, B. Schiele, & 

https://claude.ai/new
https://cocodataset.org/#explore
http://ebookcentral.proquest.com/lib/ebook-nps/detail.action?docID=787244
https://doi.org/10.1007/s11263-018-1116-0
https://doi.org/10.2196/52113
https://aclanthology.org/2025.coling-main.350/
https://doi.org/10.1016/j.inffus.2024.102270
https://doi.org/10.1109/CVPR.2018.00592
https://doi.org/10.1109/WACV45572.2020.9093494
https://doi.org/10.48550/arXiv.1710.07300
https://doi.org/10.48550/arXiv.2301.12597
https://doi.org/10.48550/arXiv.1908.03557


Acquisition Research Program 
department of Defense Management - 369 - 
Naval Postgraduate School 

T. Tuytelaars (Eds.), Computer vision—ECCV 2014 (pp. 740–755). Springer 
International Publishing. https://doi.org/10.1007/978-3-319-10602-1_48 

Lmms-lab/ChartQA · Datasets at Hugging Face. (2024, October 4). 
https://huggingface.co/datasets/lmms-lab/ChartQA 

Lu, J., Batra, D., Parikh, D., & Lee, S. (2019). ViLBERT: Pretraining task-agnostic visiolinguistic 
representations for vision-and-language rasks (No. arXiv:1908.02265). ArXiv. 
https://doi.org/10.48550/arXiv.1908.02265 

Malinowski, M., & Fritz, M. (2015). A multi-world approach to question answering about real-
world scenes based on uncertain input (No. arXiv:1410.0210). ArXiv. 
https://doi.org/10.48550/arXiv.1410.0210 

Masry, A., Do, X. L., Tan, J. Q., Joty, S., & Hoque, E. (2022). ChartQA: A benchmark for 
question answering about charts with visual and logical reasoning. In S. Muresan, P. 
Nakov, & A. Villavicencio (Eds.), Findings of the association for computational linguistics: 
ACL 2022 (pp. 2263–2279). Association for Computational Linguistics. 
https://doi.org/10.18653/v1/2022.findings-acl.177 

Ollama. (n.d.). Vision models · Ollama Search. Retrieved April 18, 2025, from 
https://ollama.com/search 

OMG. (2019, November). OMG Systems Modeling Language version 1.6. 
https://www.omg.org/spec/SysML/1.6/PDF 

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., 
Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., 
Baltescu, P., Bao, H., Bavarian, M., Belgum, J., … Zoph, B. (2024). GPT-4 technical 
report (No. arXiv:2303.08774). ArXiv. https://doi.org/10.48550/arXiv.2303.08774 

Set up Ollama on your GPU Pod | RunPod Documentation. (2025). 
https://docs.runpod.io/tutorials/pods/run-ollama 

Srivastava, S., & Sharma, H. (2024). Deep multimodal relational reasoning and guided attention 
for chart question answering. Journal of Electronic Imaging, 33(6), 063052. 
https://doi.org/10.1117/1.JEI.33.6.063052 

Xiong, C., Merity, S., & Socher, R. (2016). Dynamic memory networks for visual and textual 
question answering (No. arXiv:1603.01417). ArXiv. 
https://doi.org/10.48550/arXiv.1603.01417 

Yang, Z., He, X., Gao, J., Deng, L., & Smola, A. (2016). Stacked attention networks for image 
question answering (No. arXiv:1511.02274). ArXiv. 
https://doi.org/10.48550/arXiv.1511.02274 

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, 
E. P., Zhang, H., Gonzalez, J. E., & Stoica, I. (2023). Judging LLM-as-a-judge with MT-
Bench and chatbot arena (No. arXiv:2306.05685). ArXiv. 
https://doi.org/10.48550/arXiv.2306.05685 

 

https://doi.org/10.1007/978-3-319-10602-1_48
https://huggingface.co/datasets/lmms-lab/ChartQA
https://doi.org/10.48550/arXiv.1908.02265
https://doi.org/10.48550/arXiv.1410.0210
https://doi.org/10.18653/v1/2022.findings-acl.177
https://ollama.com/search
https://www.omg.org/spec/SysML/1.6/PDF
https://doi.org/10.48550/arXiv.2303.08774
https://docs.runpod.io/tutorials/pods/run-ollama
https://doi.org/10.1117/1.JEI.33.6.063052
https://doi.org/10.48550/arXiv.1603.01417
https://doi.org/10.48550/arXiv.1511.02274
https://doi.org/10.48550/arXiv.2306.05685


 



 



 
 

 
Acquisition Research Program 
Department of Defense Management 
Naval Postgraduate School 
555 Dyer Road, Ingersoll Hall 
Monterey, CA 93943 

www.acquisitionresearch.net 

                                           

 

http://www.acquisitionresearch.net/

	Exploring Visual Question Answering Capabilities of Multi-Modal Large Language Models with Model Based Systems Engineering Models
	Introduction
	Background and Related Research
	Visual Question Answering
	VQA Benchmarks
	SysML v1.6 BDDs
	Representing the LLM Cognitive Process with Bloom’s Revised Taxonomy

	Methodology
	Dataset Generation
	LLM Selection
	Dataset Evaluation

	Results, Discussion, and Limitations
	Future Work
	Conclusion
	Acknowledgements
	References


