
NPS-AM-26-044

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Delivering Resilient Warfighting Capability at the Speed of
Relevance

June 2025

Christopher M. McCall, CIV

Thesis Advisors: Jeffrey R. Dunlap, Lecturer
Dr. Robert F. Mortlock, Professor

Department of Defense Management

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

 Disclaimer: The views expressed are those of the author(s) and do not reflect the official policy or
position of the Naval Postgraduate School, US Navy, Department of Defense, or the US government.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program of the Department of Defense Management at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact the Acquisition Research Program (ARP) via
email, arp@nps.edu or at 831-656-3793.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

ABSTRACT

Advancements in technology are transforming how U.S. military systems,

especially those in the Navy, are designed, developed, and maintained. In the 20th

century, as the private sector led technological innovation with the rise of the internet and

personal computing, the Navy increasingly adopted commercial technologies. Post–

World War II military systems relied on purpose-built electronics and specialized

software (SW) running on unique operating systems. With limited storage and

processing power, these systems had to be lean and deterministic. For example, the

total storage of a dozen military specification (MILSPEC) devices like the UYH-16

now fits on an $8 Universal Serial Bus (USB) drive. Over time, as memory and

processing capabilities expanded, these monolithic SW programs grew in size,

incorporating new functions but retaining outdated architectures. This created

challenges in transitioning to modern technologies like microservices and

advanced hardware. Modernization though costly and complex, is critical to

maintaining readiness. Efforts like the unmanned surface vessel (USV), Aegis

Virtualization, and Integrated Combat System (ICS) demonstrate progress in adapting

more agile, scalable systems and accelerating deployment to the fleet. These initiatives

reflect the Navy’s commitment to leveraging technological advances effective and

efficiently to stay operationally prepared.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

NPS-AM-26-044

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Delivering Resilient Warfighting Capability at the Speed of
Relevance

June 2025

Christopher M. McCall, CIV

Thesis Advisors: Jeffrey R. Dunlap, Lecturer
Dr. Robert F. Mortlock, Professor

Department of Defense Management

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

 Disclaimer: The views expressed are those of the author(s) and do not reflect the official policy or
position of the Naval Postgraduate School, US Navy, Department of Defense, or the US government.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

TABLE OF CONTENTS

I. INTRODUCTION... 1

II. BACKGROUND ... 3
A. INCREASING PACE OF TECHNOLOGICAL

ADVANCEMENT... 6
B. SHIFT IN TECHNOLOGY DEVELOPMENT 6
C. INTRODUCTION TO MONOLITHIC COMPUTING

ARCHITECTURE .. 8
D. INTRODUCTION TO MICROSERVICES COMPUTING

ARCHITECTURE .. 8

III. LITERATURE REVIEW .. 11
A. FOUNDATIONAL TECHNOLOGIES .. 12
B. MODERNIZATION AND TRANSITION ... 14
C. IDENTIFICATION OF GAPS AND THREADS 16
D. SUMMARY AND CONCLUSION ... 17

IV. MONLITHIC COMPUTING ARCHITECTURE .. 19
A. KEY CHARACTERISTICS .. 19

1. Single Codebase ... 19
2. Tight Coupling .. 20
3. Single Deployment Unit .. 22
4. Performance Considerations.. 23
5. Development Simplicity .. 24

B. ADVANTAGES... 25
1. Ease of Development ... 25
2. Performance .. 26
3. Simplicity in Deployment ... 26

C. DISADVANTAGES .. 27
1. Scalability Issues ... 27
2. Maintenance Complexity.. 28
3. Limited Flexibility ... 29

D. CONCLUSION ... 30
E. CASE STUDY, COMPUTNG INFRASTRUCTURE: A CORE

ENABLER OF NAVAL COMBAT SYSTEMS SOFTWARE
MODERNIZATION ... 31
1. Stage 1: AN/UYK-7 and AN/UYK-43 32

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

2. Stage 2: AN/UYQ-70 ... 35
3. Stage 3: TI12 and TI16 ... 37
4. Stage 4: Unmanned Surface Vessel Integrated Combat

System Computing Infrastructure and MK6 ModX 39
5. Summary .. 40

V. MICROSERVICES ARCHITECTURE ... 43
A. INTRODUCTION... 43

1. Overview .. 43
2. Key Principals ... 44
3. Conclusion ... 51

B. KUBERNETES CLUSTER COMPONENTS 52
1. Pod .. 53
2. Node .. 55
3. Control Plane ... 57
4. Cluster .. 60

C. ADVANTAGES... 64
1. Scalability... 64
2. Flexibility and Agility ... 64
3. Resilience and Fault Isolation .. 65
4. Improved Maintainability .. 66
5. Technology Diversity .. 66
6. Enhanced Security .. 67
7. Better Alignment with Business Domains................................. 67
8. Enhanced Developer Productivity ... 68
9. Optimized Performance ... 68
10. Conclusion ... 69

D. DISADVANTAGES .. 69
1. Increased Complexity ... 69
2. Communication Overhead ... 70
3. Data Management Challenges ... 70
4. Testing Difficulties .. 71
5. Deployment and Release Management 72
6. Increased Operational Overhead .. 72
7. Security Concerns ... 73
8. Service Discovery and Management ... 73

E. SUMMARY OF ADVANTAGES AND DISADVANTAGES 74
1. Conclusion ... 76

F. DEVELOPMENT OPERATIONS .. 76
1. Introduction ... 76

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

2. Benefits ... 78
3. Challenges and Considerations .. 79
4. Conclusion ... 80

VI. UNMANNED SURFACE VESSEL INTEGRATED COMBAT SYSTEM:
RAPID PROTOTYPING OF A MODERNIZED COMBAT SYSTEM 81
A. DEPARTMENT OF DEFENSE FEDERAL ACQUISITION

REGULATION–BASED ACQUISITIONS ... 81
B. OVERVIEW OF FEDERAL ACQUISITION REGULATION–

BASED ACQUISITIONS ... 82
C. RAPID PROTOTYPING ... 86

1. Use of Other Transactional Authority to Enable Speed to
Acquisition ... 86

2. Use of Other Transactional Authority in Unmanned
Surface Vessel Integrated Combat System Computing
Infrastructure Prototyping .. 94

3. Summary and Key Aspects of the Unmanned Surface
Vessel Integrated Combat System Other Transactional
Authority Statement of Work .. 95

4. Small Empowered Teams to Enable Speed to Design,
Development, Delivery, and Ship Integration 96

5. Drawbacks of a Small Team Approach 98
6. Understanding the Requirement ... 100
7. Best Practices for Navy System Prototyping 103
8. Deliver an Excess Capability to Support Development

and Redundancy for Reliability ... 107
9. Use of the Newest Commercial Hardware and

Infrastructure/Platform as a Service Software 113
10. Make it Work: Integrate .. 113
11. Assess and Iterate .. 115
12. Development and Deployment of Unmanned Surface

Vessel Integrated Combat System Computing
Infrastructure Prototype 2 ... 118

13. Conclusion ... 118
14. Challenges in Legacy Procurement Approaches 118
15. Addressing Limitations .. 118
16. Lessons from Large Unmanned Surface Vessel Integrated

Combat System Development .. 119

VII. INTEGRATED COMBAT SYSTEM: GATEWAY TO MODERN SPEED
TO CAPABILITY ... 121

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

1. Introduction ... 121
2. Combat Management System Overview 122
3. Key Components of the Conceptual Reference Model 123
4. Integration of Advanced Technologies.................................... 127
5. System-of-Systems Engineering Approach............................. 128
6. Challenges and Considerations .. 129
7. Conclusion ... 129

B. TECHNICAL STRATEGY ... 131
1. Now: Immediate Actions .. 132
2. Next: Mid-Term Goals ... 132
3. Later: Long-Term Vision ... 132
4. Key Achievements ... 136

C. THE FOUNDRY: U.S. NAVY HARDWARE FACTORY 137
1. Core Objectives ... 137
2. Key Features .. 138
3. Key Achievements ... 139
4. Strategic Importance .. 139

D. ARCHITECTURE .. 141
1. Architecture Strategy ... 142
2. Services-Based Architecture .. 146

E. MODERNIZING SOFTWARE DISTRIBUTION: DELIVERY
PIPELINE .. 147
1. Faster Time to the War Fighter ... 148
2. Improved Code Quality .. 148
3. Reduced Risk of Deployment Failures 148
4. Enhanced Collaboration and Transparency 149
5. Reliability and Consistency .. 149
6. Greater Flexibility and Agility ... 150

F. CONCLUSION ... 150
1. Monolithic Architecture Overview .. 152
2. Transition to Microservices and the Navy’s Approach 152
3. Large Unmanned Surface Vessel Integrated Combat

System Development and Challenges 153
4. Integrated Combat System Conceptual Framework for

Modernization ... 154
5. Integrated Combat System Development Phases and Key

Enablers ... 154
6. Integrated Combat System Modernization Strategy 154

G. IMPLICATIONS FOR FUTURE NAVY ... 154
H. FINAL THOUGHTS .. 155

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

LIST OF REFERENCES ... 157

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

LIST OF FIGURES

Figure 1. Software Modernization Process .. 11

Figure 2. Monolithic Software Design ... 13

Figure 3. Microservices Software Architecture ... 14

Figure 4. Continuous Integration and Deployment Pipeline 15

Figure 5. Simplified Monolithic Computing Architecture 19

Figure 6. Stages of Combat System Computing Environments Evolution 31

Figure 7. Simplified Microservices and Kubernetes Diagram 52

Figure 8. Unmanned Surface Vessel Integrated Combat System Computing
Infrastructure Installed on Overlord Unmanned Surface Vessel 4 115

Figure 9. Integrated Combat System Common Core Concept. Source: Murphy
(2022). ... 122

Figure 10. Murphy Integrated Combat System Concept. Source: Murphy
(2022). ... 126

Figure 11. Integrated Combat System Heritage Code Re-Architecture
Approach. Source Program Executive Office, Integrated Warfare
Systems–Integrated Combat System (2024). .. 145

Figure 12. Mapping Legacy Combat System Code to a Service-Based
Architecture... 146

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

LIST OF TABLES

Table 1. Modernization Elements and Key Factors .. 5

Table 2. Capability Progression as an Enabler of Navy Combat System
Modernization ... 41

Table 3. Features of a Microservices Architecture ... 51

Table 4. Kubernetes Components Summary... 63

Table 5. Advantages and Disadvantages of Microservices Architecture 74

Table 6. Summary of Department of Defense Federal Acquisition
Regulation–Based Acquisitions and Limitations 85

Table 7. Summary of Other Transaction Authorities in the Department of
Defense Procurement System ... 93

Table 8. Assessing Small Team Approached to Project Success 100

Table 9. Department of Defense Guidance Summary on Prototype Systems 106

Table 10. Summarizing the Integrated Combat System Concept 130

Table 11. The Forge Software Factory versus The Foundry Hardware Factory 140

Table 12. Cornerstones of Combat Management System Modernization 142

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

LIST OF ACRONYMS AND ABBREVIATIONS

AI artificial intelligence
API application programming interface
ATP Aegis time processors
AWS Aegis Weapon System
BOM bill of materials
C2 command and control
CaaS communications as a service
CBB capability building block
CDD capability definition document
CI computing infrastructure
CI/CD continuous integration and continuous deployment
CMS combat management system
COTS commercial off the shelf
CPU central processing unit
CRI container runtime interface
CS combat system
DDD domain-driven design
DevOps development operations
DNS domain name server
DoD Department of Defense
DON Department of the Navy
EDAC error detection and correction
FAR Federal Acquisition Regulation
FARS Federal Acquisition Regulation System
FMES failure mode and effects analysis
GAO Government Accountability Office
GDC gyro data converters
GFE government furnished equipment
GPS Global Positioning System
GPS gigabytes per second

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

HMI human-machine interface
HTTP Hypertext Transfer Protocol
HW hardware
I/O input/output
IaaS infrastructure as a service
IaC infrastructure as code
ICD interface control document
ICS integrated combat system
IP internet protocol
IWS Integrated Warfare System
JSON JavaScript object notation
KPP key performance parameters
LPTA lowest price technically acceptable
LUSV large unmanned surface vessel
MILSPEC military specification
MOSA modular open system approach
MOTS military off the shelf
MPM major program manager
MTTR mean time to repair
NASA National Aeronautics and Space Administration
NoSQL not only Structured Query Language
NPS network, processing, and storage
NTDS Navy Tactical Data System
OE operating environment
OKR objective and key result
OS operating system
OTA other transaction authority
PaaS platform as a service
RCM reliability centered maintenance
REST representational state transfer
RIS reduced instruction set
SCS ship control system

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

SDN software defined networking
SE systems engineering
SI system integration
SME subject matter expert
SOW statement of work
SPS software production specification
SQL Structured Query Language
SRP single responsibility principle
SSDS ship self-defense system
SW software
T&E test and evaluation
TDP technical data package
TWS Tomahawk Weapon System
UAV unmanned aerial vehicle
UI user interface
UPS uninterruptable power system
USN U.S. Navy
USV unmanned surface vessel
VLP vertical launch processor
VLS vertical launch system
VM virtual machine
VPS Virtual Pilot Ship
XML Extensible Markup Language

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

EXECUTIVE SUMMARY

The U.S. Navy’s (USN) combat system (CS) development is hindered by lengthy

test, evaluation, and certification processes, due in part to traditional monolithic software

(SW) architectures. Monolithic computing integrates all components into a single block of

code, simplifying deployment but creating scalability and maintenance challenges. Any

modification requires full recompilation, increasing complexity and slowing development

cycles (Lewis & Fowler, 2014).

A. SHIFT TO MODERN ARCHITECTURES

Technological advancements have transitioned USN systems from purpose-built

military hardware (HW) to commercial-based architectures. Modern microservices provide

a modular approach that improves flexibility and scalability (Newman, 2021). By

decentralizing SW design, microservices structure applications into independent, loosely

coupled services that communicate via APIs or message queues. Unlike monolithic

systems, microservices enable independent development, deployment, and scaling,

enhancing maintainability and resilience (Lewis & Fowler, 2014).

Each service operates autonomously, allowing targeted scaling and reducing

resource inefficiencies. For example, a high-traffic recommendation engine can be scaled

separately from a billing system. Additionally, microservices support diverse technology

stacks, optimizing performance based on service-specific needs (Nadareishvili et al.,

2016).

B. OVERCOMING LEGACY CHALLENGES

Modernizing SW architecture requires understanding existing systems and their

original design choices. Monolithic architecture integrates user interfaces, business logic,

and data management into a tightly coupled entity, making development and maintenance

complex. Minor updates can inadvertently effect unrelated components, leading to

increased risk of bugs and slower development cycles (Bass et al., 2021).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

Transitioning to microservices mitigates these challenges by breaking down

applications into independent services. This approach enhances flexibility, reduces

dependencies, and improves fault isolation, ensuring SW evolves efficiently. However,

microservices introduce complexities such as communication overhead, latency, and data

consistency challenges across distributed systems. Ensuring seamless interactions while

maintaining reliability and security requires sophisticated solutions.

C. ENABLING AGILE DEVELOPMENT WITH DEVOPS

Adopting microservices alongside continuous integration/continuous deployment

(CI/CD) accelerates upgrades, mitigates risks, and enhances system capabilities. Advanced

developmental operations (DevOps) practices—such as automated testing, infrastructure

as code, and containerization—facilitate microservices deployment and monitoring

(Newman, 2021). Tools like Docker and Kubernetes streamline operations, improving

scalability and agility for large, evolving applications.

Despite operational complexities, DevOps fosters automation, collaboration, and

continuous improvement. Key practices such as continuous integration, automated testing,

and centralized monitoring contribute to faster time-to-market and enhanced SW quality.

However, integrating DevOps with microservices also presents challenges, including

increased tooling complexity, cultural adaptation, and cybersecurity concerns. Strategic

planning and modern development workflows are essential for overcoming these obstacles.

D. THE NAVY’S TRANSITION TO MICROSERVICES

The USN’s transition from purpose-built computing HW and SW to modern

architecture has enabled the implementation of microservices-based processes. These

advancements allow the rapid fielding of SW capabilities within weeks instead of months

or years. When fully implemented, these technologies will significantly reduce

development, testing, certification, and distribution costs while enhancing operational

readiness and responsiveness to emerging threats.

The USN has made the transition from purpose build computing HW and SW to

modern architectures which enable the implementation of relevant processes which field

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

granular microservices-based SW in weeks vice months or years. These enabling

technologies, when implemented fully, will reduce the cost of development, test,

certification, and distribution of capability.

E. RAPID PROTOTYPING OF UNMANNED SURFACE VESSEL
COMPUTING INFRASTRUCTURE

In the fall of 2020, NSWC Dahlgren’s Computing Infrastructure Group was

assigned to develop and deliver prototype equipment capable of supporting Aegis Weapon

System and Tomahawk Weapon System elements for the large unmanned surface vessel

(LUSV) program. The initial deployment required government furnished equipment (GFE)

for LUSV’s first platform by late 2023. PEO IWS 80, the Major Program Manager for the

LUSV Integrated Combat System (ICS), emphasized the need for modernized computing

infrastructure, featuring virtualized combat computer programs and advanced network,

processing, and storage (NPS) HW. At the time, TI16, a Federal Acquisition Regulations

System (FARS) procurement initiative, was underway to provide NPS to the USN’s

Surface Forces. However, the HW selected for TI16 was already nearing obsolescence. By

the time LUSV fielded its initial GFE in 2023, the TI16-based infrastructure was over eight

years old, raising concerns about its long-term viability and technological relevance.

In the modern defense landscape, the need for advanced computing and network

capabilities is paramount to ensuring mission success. For the USV program the ability to

procure cutting-edge technology quickly, flexibly, and efficiently was critical.

The USV program utilized other transactional authorities (OTAs) for prototypes to

enable rapid, flexible, and cost-effective development of innovative solutions. OTAs

enabled the government to deliver modern network, storage, and compute HW in

MILSPEC cabinetry in 10 months from design to delivery at the first site. This approach

immediately closed the technology gap between military and commercial capability and

provided a path to field modernized virtualized and containerized microservices-based SW.

Utilizing OTAs for delivery of USV ICS CI HW and infrastructure as a service

(IaaS) and Platform as a Service (PaaS) ensured that we could deliver relevant solutions in

months vice six to eight years. While use of OTAs limits the developer to the solutions

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

awarded in the OTA SOW, it enables the team to focus all its energy on the design of the

assembled components and integration to deliver a workable solution. This OTA-based

rapid HW prototyping and delivery is called the Foundry HW Factory, delivering both HW

and IaaS to USN surface CSs.

While more traditional acquisition processes would include lengthy product

selection processes, complete with often years long assessments, the USV OTA process

allows a small development team to focus on “Make Work” and schedule. Knowing that

the solutions being delivered were modern and backed by considerable commercial fielding

and utilization, the team focused on the key development features, confident that the

underlying HW/SW supported system requirements.

F. INTEGRATED COMBAT SYSTEM CONCEPT

The next key enabler to delivering combat capability rapidly is SW re-architecture.

This effort is based on an ICS concept. Dr. Alvin Murphy, an engineer at the Naval Surface

Warfare Center in Dahlgren, Virginia, in a paper for PEO IWS, detailed an ICS Combat

Management System (CMS) Conceptual Reference Model that provides a comprehensive

framework for modern naval CSs. The model ensures seamless integration of sensors,

weapon systems, communication networks, and decision-making tools to enhance

operational effectiveness. ICS is designed to improve situational awareness, optimize

resource use, and enable interoperability across different platforms (Murphy, 2022).

A key component, the CMS, serves as the core processing unit, integrating sensor

data, assessing threats, and coordinating weapon engagement. It employs AI and machine

learning for real-time data fusion, predictive analytics, and decision support, allowing

operators to swiftly respond to evolving threats. The system’s modularity and scalability

facilitate upgrades and adaptation to new technologies, ensuring long-term viability.

The model incorporates cybersecurity measures to protect against cyber threats

while maintaining operational resilience. Additionally, the system-of-systems engineering

approach enables joint operations across naval, air, and land forces, promoting coordinated

defense strategies. Addressing challenges such as resource constraints, human factors, and

life cycle management, the ICS-CMS framework establishes a future-proof, adaptable, and

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

highly effective combat system for modern naval environments. Key principles of the ICS

model are:

• Agility: Emphasizing flexibility to adapt to changing operational and

technological environments.

• Interoperability: Ensuring seamless communication across platforms and

allies.

• Cost-Effectiveness: Reducing life cycle costs through modular design and

efficient acquisition processes.

• Scalability: Supporting diverse mission requirements through adaptable

systems.

G. THE FORGE

A key enabler for modern defense SW development is the Forge SW Factory. The

Forge is a Department of Defense (DoD) initiative focused on revolutionizing SW

development and delivery for defense systems. Spearheaded by the USN, the Forge

operates as a SW factory, leveraging modern development practices and technologies to

produce high-quality, mission-critical applications with speed and efficiency. The Forge

aims to address key challenges in traditional defense SW development, including lengthy

delivery cycles, limited flexibility, and challenges in integrating emerging technologies. Its

main objective is accelerated development and deployment:

• Using Agile and DevSecOps methodologies, The Forge emphasizes

continuous integration, testing, and delivery to reduce the time required to

deliver SW to operational platforms.

• Ensuring scalability and adaptability.

• Focusing on producing modular, scalable solutions that can be easily

adapted to evolving mission requirements, ensuring long-term relevance

and usability.

• Embedding cybersecurity in development.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

• Integrating security into every phase of the SW life cycle (DevSecOps),

ensuring robust defenses against cyber threats from the outset.

• Providing cross-platform interoperability.

• Building SW with a Modular Open Systems Approach (MOSA) to ensure

compatibility across diverse systems and platforms within the USN and

joint forces.

H. CONCLUSION

The USN’s transition to modern SW architectures, particularly microservices, is

critical for enhancing operational efficiency and adaptability. Microservices offer a

modular and scalable approach that aligns with evolving technological requirements by

enabling service independence, decentralized data management, and faster updates. These

benefits enhance system resilience and adaptability, ensuring combat systems can rapidly

evolve in response to mission demands. However, adopting microservices introduces

challenges, including increased management complexity, security risks, and operational

overhead.

To maximize the benefits of microservices, the USN must enhance its DevOps

capabilities. Continuous integration, automated deployment, and rapid iteration improve

scalability and SW quality. However, successful implementation requires overcoming

cultural shifts, tooling complexities, and integration challenges.

Additionally, modern procurement methods like OTAs facilitate faster innovation.

The LUSV program exemplifies the benefits of rapid prototyping and virtualized combat

SW deployment, ensuring operational readiness against evolving threats.

The ICS and CMS further advance USN combat capabilities. These systems

emphasize modularity, real-time data processing, AI-driven decision support, and

enhanced cybersecurity. By integrating Agile and DevSecOps methodologies with rapid

HW prototyping, the USN ensures its combat systems remain flexible, efficient, and future-

ready.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

I. REFERENCES

Bass, L., Clements, P., & Kazman, R. (2021). Software architecture in practice (4th ed.).
Addison-Wesley.

Murphy, A. (2022). Integrated Combat System (ICS) Combat Management System
(CMS) conceptual reference model (NSWCDD/TR-22/48). Naval Surface
Warfare Center Dahlgren Division.

Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice
architecture: Aligning principles, practices, and culture. O’Reilly Media.

Newman, S. (2021). Building microservices: Designing fine-grained systems. O’Reilly
Media

Lewis, J., & Fowler, M. (2014, March 25). Microservices: A definition of this new
architectural term. Martin Fowler. https://martinfowler.com/articles/
microservices.html

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

I. INTRODUCTION

U.S. Navy (USN) combat system (CS) development efforts require lengthy

development, test and evaluation (T&E), and certification processes. The existing USN CS

development efforts, T&E, and certification require years to deliver upgraded capability to

warfighters. A key driver of this problem is the nature of USN software (SW) design, which

delivers large blocks of computer code updated with added functionality over decades.

These large monolithic computer programs are single, tightly integrated applications with

interdependent components bundled together. While such programs may work well for

smaller applications, they can create numerous issues as the system grows in size and

complexity. These issues are explored in depth in this paper.

Current systems do not support granular iterative SW development and rapid

certification. To pace the threat, the USN must adopt modern microservices

implementations in naval CSs supporting continuous integration and continuous deliver/

deployment (CI/CD) and rapid upgrade capability. But, while refactoring a monolithic

application to a microservices architecture offers many benefits, it also comes with a

variety of challenges. The process involves breaking a tightly coupled system into smaller,

independently deployable services, which can be complex and risky if not done carefully.

Naval systems can overcome transitional risk by using a strangler pattern methodology to

incrementally refactor a monolithic system and gradually replacing its components with

newer, modular services or systems. In the strangler pattern, a new system is “grown”

around or alongside the old one, and over time, the new system takes over, ultimately

allowing the old system to be phased out. This approach will allow military systems to

transition incrementally, reducing risk and the probability of large-scale disruption while a

more modern architecture is achieved, and CI/CD processes are implemented.

Embracing this approach will enable the USN to deliver enhanced combat

capabilities faster, more efficiently, and with greater resilience in the face of evolving

operational demands.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

1

This capstone project provides a background on monolithic computing architecture,

an introduction to microservices architecture, and a comparative analysis between both. It

also presents a discussion on transitioning strategies, an introduction to real world

applications/case studies, and an outlook on emerging technologies/architecture paradigms

to which the USN is migrating.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

2

II. BACKGROUND

Changes in technology development are reshaping the U.S. military and, in

particular, the way USN systems are designed, developed, fielded, and maintained. In the

late 20th century, as the private sector began to take the lead in technology development

and the internet and personal computing became commonplace, a shift toward commercial

technologies in the USN became essential.

As Moore’s Law, a prediction that the number of transistors in a defined space

would double every two years, became reality, advanced electronics and computing

devices developed at a rapid pace. This foundational change in technology development

transformed the way naval systems are designed and ushered the government from

purpose-built military computers and large monolithic blocks of SW to commercial-based

hardware (HW) and microservices-based architecture.

Purpose-built electronics and computers, designed to execute highly specialized

SW products built upon specialized operating systems (OSs), were a necessary construct

of the post–World War II landscape in military systems. Today, the total storage size of a

dozen military specification (MILSPEC) devices, like the UHY-16, is equal to what would

fit on an $8 USB drive. The limited storage size of legacy military systems meant SW

products had to be lean, highly tailored, and deterministic to achieve their design ends. As

technology capabilities increased and USN development processes tried to benefit from

memory and processing leaps, these purpose-built monolithic SW programs, running on

specialized OSs, kept growing in size as they were repackaged over and again.

By the 1990s, a connected, e-commerce driven world, aided by the pace of

technology, private companies quickly became the leaders in large-scale computing and

data centers, OS development, and high reliability systems serving banking, commerce,

and advance engineering needs.

Today, it is estimated that a modern smartphone is millions of times more powerful

than the Space Shuttle was. But the Space Shuttle then, like modern military systems now,

required high levels of reliability. These levels of reliability have also been adopted by

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

3

many commercial applications, from modern aircraft avionics to commercial spacecraft

outpacing National Aeronautics and Space Administration (NASA). These high reliability

systems are built from SW that is more modular, micro-segmented, and code-based. These

SW modules are designed to scale on modern data centers/computing to meet the most

demanding high reliability applications for industry and, the U.S. military.

Emerging threats worldwide, hastened by technological leaps, require the USN to

institute greater speed to capability through CI/CD pipelines coupled with modern

microservices oriented architectures, which are able to make rapid warfighting

improvements to small pieces of code and deliver them in days rather than years.

The transition from the systems of the past to modern microservices and HW is

costly and difficult. The shift must be accomplished effectively to ensure the safety of

sailors and assets and efficiently to maintain current readiness levels, all while building the

infrastructure to deliver warfighting improvements that outpace the threat posed by

advisories of the U.S.

This transition requires institutional change that empowers smaller groups to

rapidly deliver incremental change. Before this can happen, secure high-bandwidth

communication paths capable of delivering SW and assessing system readiness (both pre-

and post-update) across the globe must be in place. The USN’s Project Overmatch aims to

deliver this multidomain communications requirement. With both modern computing

architectures and containerized microservices-based code in place, this secure

communications bandwidth can be used to rapidly bring modernized SW capability to the

fleet.

While progress is slow, it is still being made in programs like the unmanned surface

vessel (USV), Aegis Virtualization, and others, and the USN is trending in the right

direction.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

4

Table 1. Modernization Elements and Key Factors

Aspect Legacy Systems Modern Systems Key Transition Factors

HW Purpose-built military
electronics and computers Commercial off the shelf HW Rapid advancements in electronics and

computing (e.g., Moore’s Law)

SW Architecture Monolithic, highly tailored,
deterministic Modular, microservices-based Shift to scalable, reusable, and reliable

SW modules

Development Speed Years to deliver upgrades Days to deploy incremental
updates Adoption of CI/CD pipelines

Storage and Processing Limited (e.g., MILSPEC
devices)

Vast (e.g., modern
smartphones, data centers)

Advancements in commercial data
storage and computational capacity

Reliability
Critical for military systems,
built into specialized HW and
SW

Adopted from high reliability
commercial applications

Commercial industries driving high
reliability SW development (e.g.,
avionics, commercial spacecraft)

Key Challenges Specialized OSs, repackaged
monolithic SW

Transition complexity, high
costs, infrastructure
development

Balancing safety and readiness during
the transition

Emerging Solutions Reliance on legacy systems
and gradual upgrades

Modern architecture,
containerized microservices,
secure global communication

Programs like Project Overmatch
addressing global SW delivery and
readiness assessment

Example Programs UHY-16 Aegis Virtualization Demonstrates progress toward modern
architecture and systems

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

5

A. INCREASING PACE OF TECHNOLOGICAL ADVANCEMENT

Moore’s Law, first articulated by Gordon Moore in 1965, is a foundational

observation in the field of semiconductor technology and electronics. Moore, a co-founder

of Intel, posited that the number of transistors on an integrated circuit would double

approximately every 2 years, leading to a corresponding increase in computational power

and a decrease in cost per transistor (Moore, 1965). This prediction was based on the rapid

advancements in microchip technology observed at the time and served as a benchmark for

the pace of technological progress in the semiconductor industry.

The law has proven remarkably prescient, guiding the development of technology for

several decades. For instance, the doubling of transistor counts roughly every 2 years has

enabled exponential growth in processing power and memory capacity while reducing costs.

This progression has facilitated the proliferation of powerful devices like smartphones,

personal computers, and sophisticated data centers, reshaping modern life and industry.

However, this pace of change has become increasingly difficult due to physical and

technical limitations. As transistors approach atomic scales, challenges such as heat

dissipation, quantum effects, and material constraints emerge, complicating efforts to

continue the historical pace of advancement (Shalf, 2020).

B. SHIFT IN TECHNOLOGY DEVELOPMENT

The transition from government-led to industry-led technology development marks

a significant shift in the innovative landscape, driven by changes in funding, priorities, and

the broader economic environment.

a. Government-Led Technology Development

• Post-War Period: After World War II, governments, especially in the

U.S., played a central role in technology development. Much of this post–

WWII technology focused on national defense.

• Key Innovations: This era saw the development of foundational

technologies such as the internet, GPS, and large-scale computing.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

6

b. Transition to Industry-Led Development

(1) Economic Shifts

In the late 20th century, as global economies grew more interconnected, the private

sector began to take the lead in technological development. Advances in home computing,

cellular phones, and consumer electronics provided economic incentives to invest in

technological development.

(2) Rise of Tech Companies

In this period of technological advance, companies like IBM, Microsoft, and Apple

began to dominate technology innovation. Market incentives and soaring profits

incentivized these companies to invest heavily in research and advancing miniaturization

of electronics components.

(3) Shift in Focus

While governments continued to invest in technology, especially in areas like

defense and space, the focus of innovation shifted to consumer-driven markets. The private

sector became the primary driver of advancements in computing, telecommunications, and

biotechnology (Bresnahan & Trajtenberg, 1995).

c. Current Landscape

(1) Industry Leadership

Today, the technology industry continues to be led by private companies, which are

driven by profit to invest heavily in technological innovation. This expanding push to

miniaturize solid-state computing and develop consumer products will, for the foreseeable

future, perpetuate this industry-led technology development model.

(2) Government’s Role

While still engaged in certain areas of technological development, like basic

science research and infrastructure, the government’s role has shifted toward investment

in critical technologies and policy and adapting commercial products to defense needs.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

7

C. INTRODUCTION TO MONOLITHIC COMPUTING ARCHITECTURE

Monolithic computing architecture refers to systems in which the SW is designed as

a single, unified block of code. In these architectures, all components—such as the user

interface, business logic, and data management—are interconnected, compiled, and executed

as one entity. This design was predominant in the early days of computing, especially in

mainframe systems, because of its simplicity and performance benefits in a limited-resource

environment (Lewis & Fowler, 2014).

This architecture is characterized by a tightly coupled structure. All functionalities

are interdependent, which makes deploying applications easier in certain contexts, as

everything is bundled into a single executable application. However, this can also be a

drawback because any change to one part of the system typically requires recompiling and

redeploying the entire application. As systems grow in complexity, monolithic architecture

becomes increasingly difficult to maintain and scale. The tightly coupled nature can lead to

slower development times and increased risk of bugs, as minor updates may impact unrelated

components. Additionally, scaling requires duplicating the entire monolithic application,

which can result in the inefficient use of resources (Bass et al., 2021).

Overall, while monolithic architecture offers simplicity in certain contexts, their

scalability and maintainability challenges have made them less favored for large-scale

applications in modern computing.

In contrast, modern alternatives, such as microservices architectures, have gained

popularity due to their modular design, which decouples different functionalities into

independent services that can be scaled and maintained individually (Newman, 2021).

Nevertheless, monolithic systems are still prevalent in many legacy applications and can be

suitable for smaller systems where the benefits of microservices do not outweigh their

complexity.

D. INTRODUCTION TO MICROSERVICES COMPUTING
ARCHITECTURE

Microservices computing architecture represents a modern, decentralized approach

to SW design, where applications are structured as a collection of independent, loosely

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

8

coupled services. Each service within a microservices architecture is responsible for a

specific business functionality and operates as a standalone unit that communicates with

other services through lightweight protocols, typically HTTP-based application

programming interface (API) or message queues (Newman, 2021). This architecture has

gained popularity due to its ability to enhance flexibility, scalability, and maintainability,

particularly for large-scale applications.

Unlike traditional monolithic architectures, where all components are integrated in

a single codebase, microservices break down an application into smaller, autonomous

services. Each service can be developed, deployed, and scaled independently, without

affecting the rest of the system. For instance, a team responsible for user authentication can

make changes or updates without needing to redeploy the entire application. This

independence also makes it easier to isolate and resolve issues, as faults are contained

within individual services, rather than spreading across the entire system.

A major advantage of microservices is the ability to scale services independently.

In a monolithic architecture, scaling typically involves duplicating the entire application to

handle increased demand, leading to resource inefficiencies. However, with microservices,

only the specific services that require additional resources are scaled. This selective scaling

enables more efficient use of computing resources, as different services can be optimized

according to their workloads (Lewis & Fowler, 2014). For example, a high-traffic service

like a recommendation engine can be scaled separately from less resource-intensive

services like a billing system.

Microservices architectures also allow for greater technological diversity. Since

each service is independent, development teams can choose the most appropriate

technology stack for the functionality they are building. This flexibility enables the use of

different programming languages, databases, and frameworks across various services,

optimizing the performance of each based on specific requirements (Nadareishvili et al.,

2016). In contrast, monolithic architecture often imposes a single technology stack across

the entire application, which can limit the ability to optimize for specific needs.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

9

Despite these advantages, microservices introduce added complexity. As each

service operates independently, building consistently efficient and reliable communication

between services becomes more challenging. Distributed microservices systems, as they

transit data between services face issues such as latency, fault tolerance, and consistency.

Furthermore, ensuring data consistency can be difficult since each service may have its

own database, requiring distributed transaction management techniques. Implementing

proper security across multiple services also becomes more complex than in monolithic

systems, as microservices architectures require additional mechanisms to secure

communication between services.

Microservices architectures demand robust Development Operations (DevOps)

practices to handle the complexities of deployment, monitoring, and troubleshooting in

distributed environments. Continuous integration, automated testing, and containerization

are commonly used to manage microservices effectively (Newman, 2021). Tools such as

Docker and Kubernetes have become standard in deploying and managing microservices-

based applications.

In summary, microservices architectures offer significant advantages in terms of

flexibility, scalability, and maintainability, making them ideal for large, complex, and

rapidly evolving applications. However, they also introduce new challenges in terms of

service coordination, security, and operational complexity. Successful adoption of

microservices requires careful planning, advanced DevOps practices, and appropriate

tooling.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

10

III. LITERATURE REVIEW

This literature review provides an assessment of reference material used in this

paper to ensure that the cited material provides well-rounded and well-reasoned

information and sufficient synthesis to support the goals of the capstone. The review also

presents gaps in the reference material to highlight areas that require additional sources to

round out the research needed for preparation of the paper.

In this capstone, it is critical to fully explore the foundations of monolithic and

microservices architectures and the features, advantages, and disadvantages of each.

Additionally, understanding best practices for transitioning a monolithic USN system to a

microservices architecture is necessary to move the USV CS to a modern architecture.

Once SW modernization has occurred, it is essential to understand how the

advantages of the new design are transferred to operational units to complete speed to threat

distribution of warfighting improvements. Figure 1 provides a simplified outline of the

required processes.

Figure 1. Software Modernization Process

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

11

The reference material cited in this paper is used to assess the main areas of

foundational technologies and monolithic SW design and attributes, modernization

approaches, microservices SW design, and deployment/delivery processes to complete the

modernization effort.

A. FOUNDATIONAL TECHNOLOGIES

Gordon Moore (1965), a co-founder of Intel, provided data on the accelerating pace

of technological advancement in integrated circuit design that offers context on the

limitations of early naval systems driving monolithic SW designs.

Shalf (2020), discussed the future of computing beyond Moore’s Law, and

illustrated the difficulty in maintaining this pace of change as transistors approach atomic

scales and challenges such as heat dissipation, quantum effects, and material constraints

emerge, complicating efforts to continue the historical pace of advancement.

These two sources give context to the state of technology and its inherent

limitations. Understanding monolithic applications and the challenges of modernization

are foundational to this paper. Kalske et al. (2018) and Kuryazov et al. (2020) explore the

challenges and methodologies associated with transitioning from monolithic to

microservice architectures, emphasizing both theoretical frameworks and practical

approaches.

Kalske et al. (2018) identify key challenges organizations face during the migration

process, focusing on technical, organizational, and cultural barriers. Technically, breaking

down monoliths requires reengineering existing systems to ensure loose coupling,

scalability, and fault isolation. Organizational challenges include aligning development

teams with domain-driven design (DDD) principles to foster a microservices mindset.

Cultural shifts involve encouraging collaboration and adapting to continuous delivery and

DevOps practices.

Kuryazov et al. (2020) complement these insights by proposing systematic

methodologies for decomposing monolithic applications into microservices. They

emphasize the importance of domain analysis and boundary identification to create service

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

12

boundaries that align with business capabilities. The authors also discuss the use of

automated tools and clustering algorithms to analyze existing codebases and facilitate the

decomposition process. Additionally, they highlight best practices, including

implementing APIs, defining communication patterns, and monitoring inter-service

dependencies to maintain system integrity.

Both studies converge on the need for thorough planning and evaluation to mitigate

risks associated with the transition. The authors of both studies stress the importance of

understanding the trade-offs between operational efficiency and the increased complexity

introduced by microservices. They also underscore the significance of stakeholder

engagement, as the migration impacts not only technical teams but also broader business

processes.

Kalske et al. (2018) provide a broad perspective, offering a conceptual framework

to address the multifaceted challenges of transitioning, while Kuryazov et al. (2020)

present a more hands-on approach, detailing specific techniques and tools for

decomposition. Together, these studies provide a holistic view, illustrating that successful

migration to microservices hinges on integrating technical innovation with organizational

readiness and cultural adaptability.

Figure 2. Monolithic Software Design

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

13

As naval systems seek to modernize, the USN increasingly looks to the private

sector, which has become the primary driver of advancements in computing,

telecommunications, and biotechnology (Bresnahan & Trajtenberg, 1995).

B. MODERNIZATION AND TRANSITION

To modernize SW architectures, an in depth understanding of where systems are,

why they were constructed as they were, and what the advantages and disadvantages of

monolithic design are important. It is also essential to understand how all components, such

as the user interface, business logic, and data management, are interconnected, compiled,

and executed as one entity (Lewis & Fowler, 2014). An understanding of how the tightly

coupled nature can lead to slower development times and increased risk of bugs, as minor

updates may impact unrelated components, is equally important (Bass et al., 2021).

To address the disadvantages of monolithic designs, modern alternatives, such as

microservices architectures, have gained popularity due to their modular design, which

decouples different functionalities into independent services that can be scaled and

maintained individually (Newman, 2021). These independent services are depicted in

Figure 3 as “Node 1” and “Node 2” independent SW services.

Figure 3. Microservices Software Architecture

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

14

Key attributes of microservices architectures are automated deployment and CI/

CD. These practices facilitate the efficient management and release of services. Figure 4

illustrates the continuous cycle of the CI/CD Pipeline.

Figure 4. Continuous Integration and Deployment Pipeline

Humble and Farley (2010), Nadareishvili et al. (2016), and Burns et al. (2018)

integrate key principles and practices for building scalable, reliable, and efficient SW

systems, focusing on continuous delivery, microservices, and distributed system design.

Humble and Farley (2010) establish the foundation of continuous delivery,

emphasizing the importance of automating build, test, and deployment pipelines to ensure

reliable SW releases. They advocate for frequent, incremental updates to reduce risks and

improve system stability. Continuous delivery necessitates robust testing frameworks,

infrastructure as code, and automated deployment to enable agility while maintaining high-

quality standards.

Nadareishvili et al. (2016) extend these principles to the realm of microservices

architecture, highlighting how its decentralized nature aligns with continuous delivery

practices. They argue that microservices promote modularity, allowing teams to work

independently and release services without affecting the entire system. The authors also

underscore the cultural shift required for successful adoption, advocating for practices like

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

15

DDD, API-first development, and DevOps. These cultural aspects ensure collaboration and

alignment between technical and business goals.

Burns et al. (2018) provide a complementary perspective by focusing on the design

patterns and paradigms for scalable, reliable distributed systems. Their work emphasizes

containerization, orchestration, and service discovery as critical components of modern

distributed systems. They argue that adopting patterns like sidecars, service meshes, and

immutable infrastructure helps address challenges like fault tolerance, scalability, and

system observability, which are inherent in microservices.

The three groups converge on the need for automation and standardization as the

backbone of modern SW systems. Humble and Farley’s (2010) emphasis on automation in

continuous delivery is reinforced by Burns et al.’s (2018) insights into orchestration and

container management, such as Kubernetes, which provide a robust foundation for

deploying and managing distributed services. Meanwhile, Nadareishvili et al. (2016)

bridge these practices by framing microservices as an architectural enabler that integrates

well with continuous delivery pipelines and distributed system design principles.

Together, these sources highlight that the successful implementation of modern SW

systems requires a holistic approach that integrates technical, organizational, and cultural

factors. Continuous delivery fosters rapid iteration, while microservices enable modular

scalability and innovation. Distributed system patterns provide the reliability and

performance needed to scale these practices effectively. The synthesis underscores that the

intersection of these domains empowers organizations to build resilient systems capable of

meeting the demands of dynamic and competitive environments.

C. IDENTIFICATION OF GAPS AND THREADS

The sources collected for this paper provide a synthesized and broad view of both

the underlying technologies and commercial practices leveraged to transition older

monolithic SW to modern microservices architectures. Throughout these sources,

examples are presented on how commercial enterprises are making this transition and the

benefits gained from this often expensive and complex move to microservices.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

16

It is much more difficult to find examples of successful transitioning to

microservices and modular SW in military applications. As more naval systems are

rearchitected, additional studies and post-mortem analysis will become available, but many

systems, like the USV program, are in the early stages of this transition. Moving from

monolithic blocks of SW, through virtualization efforts, to containerized microservices,

and the associated strangler patterns to root out decades-old codebases, are occurring day

by day.

This study leans heavily on private sector commercial efforts and the documented

best practices to guide the capstone forward while the USV program SW is modernized.

D. SUMMARY AND CONCLUSION

Just as the world transitioned from government-led development of technology to

industry-led development, the USN will depend on commercial tools and practices to

modernize its SW architectures. The challenges of a less flexible system in government

industry and unique applications will become apparent as more systems modernize.

It is incumbent on the USN to leverage the agility and best practices of commercial

industry as it modernizes its way out of decades-long stovepipes and legacy practices. So,

while there is much more data and reference material on commercial initiatives, it is fitting

for this capstone, and military modernization, to bend to the greatest extent possible to

these commercial practices.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

17

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

18

IV. MONLITHIC COMPUTING ARCHITECTURE

Monolithic computing SW refers to a design architecture where a SW system is built

as a single, indivisible unit. In this architecture, the entire application is typically compiled

into a single executable or binary file. This contrasts with modular or microservices

architectures, where the SW is divided into discrete, loosely coupled components. Figure 5

represents a simple view of a monolithic computing architecture where all components of the

end use are integrated into a single SW module or executable.

Figure 5. Simplified Monolithic Computing Architecture

A. KEY CHARACTERISTICS

1. Single Codebase

A single codebase refers to a SW development practice where the entire application’s

source code is maintained in one unified repository or structure. This means that all

components—such as the user interface, backend logic, and data access layers—are housed

in the same location, often forming the basis of monolithic architectures (Fowler & Lewis,

2014). In this setup, developers work within the same code repository, and all changes or

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

19

updates are applied uniformly across the system. A single codebase can simplify version

control and deployment processes, especially in smaller applications, as there is only one

location to manage, compile, and deploy the SW (Dragoni et al., 2017).

One key benefit of a single codebase is consistency. Since all components reside in

the same repository, it ensures that developers work with the same version of the code,

reducing the risk of fragmentation and incompatibility. This also facilitates simpler builds and

deployments, as there is only one application to manage. However, as the system scales,

maintaining a single codebase can become problematic. Large, monolithic applications

become cumbersome to update, as changes in one part of the codebase can affect unrelated

areas, making the development process slower and more error-prone (Newman, 2021).

Furthermore, a single codebase limits the ability to adopt multiple technologies and

languages within the same application. In contrast to microservices architectures, where

different services can be employed to join SW products developed in different teams, a single

codebase typically requires uniformity in programming languages, frameworks, and libraries

which greatly reduces flexibility.

In summary, a single codebase is efficient for smaller applications, but as the

application grows in complexity, this approach can introduce scalability and maintainability

challenges. In a monolithic architecture the components of the application, like databases,

graphic user interfaces, and data management layers, are integrated, tested, and deployed as a

single codebase. This codebase is compiled into one executable or binary file.

2. Tight Coupling

Components within a monolithic system are tightly coupled. This means changing one

part of the end application often drives changes, regression, to other parts. This tight coupling

can lead to complexities in development and maintenance, as modifications can have

widespread effects.

Tight coupling in monolithic architecture refers to the close interdependence between

the various components of a system, such as the user interface, business logic, and data access

layers. In a tightly coupled system, changes made to one part of the codebase often require

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

20

adjustments in other parts, as the components are not designed to function independently. This

creates a situation where all parts of the system are highly interconnected, and altering a single

feature may require recompiling and redeploying the entire application (Newman, 2021).

Tight coupling is a defining characteristic of monolithic systems, especially in early

computing architectures where resource limitations and design simplicity favored single unit

systems (Fowler & Lewis, 2014). In this architecture, the components share the same memory

space and are often designed to rely on internal calls to each other. While this can be beneficial

for performance, as communication within the system is fast, it also introduces challenges,

especially as the system grows in complexity.

One of the primary disadvantages of tight coupling is the difficulty in maintaining and

scaling the system. Since all components are interconnected, even small changes to a single

module may inadvertently affect other parts of the system. This interdependence can lead to

longer development cycles and increased risk of introducing bugs or errors during updates

(Dragoni et al., 2017). Additionally, as the system grows, it becomes harder to isolate issues

and fix bugs without impacting other functionalities.

Tight coupling also limits the scalability of a monolithic system. In modern computing

environments, applications often need to scale, or spawn additional instantiations of a service

to handle increased user demand. With a monolithic system scaling usually causes a

replication of the application, including components that may not need additional resources.

Additionally, this replication causes ripple effects as these secondary instantiations drive the

need to synchronize data between them and development of additional code. This leads to

inefficient resource utilization and can result in performance bottlenecks.

Moreover, tight coupling restricts flexibility in adopting new technologies. In a tightly

coupled system, all components typically need to use the same programming language,

frameworks, and databases, which can prevent teams from leveraging more suitable

technologies for specific tasks (Nadareishvili et al., 2016). This technological uniformity can

limit the system’s adaptability and make it harder to adopt modern practices.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

21

In summary, tight coupling in monolithic architecture creates significant challenges

in terms of maintenance, scalability, and flexibility. While this approach might be simpler for

small systems, it becomes increasingly problematic as the system grows in complexity.

3. Single Deployment Unit

A single deployable unit in a monolithic architecture refers to an application where all

components—such as the user interface, business logic, and data access layers—are packaged

together and deployed as one cohesive entity. This means that the entire application is built,

tested, and released as a single artifact, simplifying the deployment process since there is only

one unit to manage (Newman, 2021). In such an architecture, the tight integration of

components ensures consistency across the application, as all parts are developed and updated

simultaneously.

This approach can be advantageous in terms of initial development speed and

simplicity, especially for smaller applications or teams. With a single deployable unit, there

is less complexity in version control and continuous integration pipelines because there are

fewer moving parts (Richards, 2015). However, this model also has significant drawbacks.

As the application grows, even small changes require the entire system to be redeployed,

which can lead to longer downtime and increased risk of introducing bugs into unrelated areas

(Fowler & Lewis, 2014).

Furthermore, the single deployable unit makes it challenging to scale specific parts of

the application. As the entire system must be replicated to increase capacity, resources are

often wasted on components that do not need scaling (Bass et al., 2021). Thus, while this

model may be manageable for smaller applications, it can become a hindrance in large-scale

systems.

In summary, while a single deployable unit in a monolithic architecture simplifies

deployment and ensures component compatibility, it poses challenges in maintenance,

scalability, and rapid iteration as applications become more complex.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

22

4. Performance Considerations

Monolithic systems benefit from performance efficiencies because all components are

compiled and executed together. This construct often leads to challenges in military

applications as the application becomes too large or complex, affecting performance,

scalability, and drives a magnitude of T&E requirements to assess regression of the monolithic

application from the smallest change or SW update.

Performance considerations in a monolithic architecture are shaped by its tightly

coupled, unified structure, where all components of an application—such as the user interface,

business logic, and data access layers—operate within a single codebase. This tight coupling

can offer performance benefits in certain contexts, particularly due to the reduced overhead

in communication between components. Since all parts of the application share the same

memory space and execute within the same process, internal calls between components are

typically faster compared to distributed systems, where services may need to communicate

over a network (Fowler & Lewis, 2014).

However, as a monolithic system grows in complexity, performance issues can arise.

One significant challenge is the scalability of the system. In a monolithic architecture, scaling

often requires replicating the entire application, even if only a specific part of the system, such

as the business logic or data access, needs additional resources. This can lead to inefficient

resource utilization, as components that do not require scaling are duplicated unnecessarily

(Dragoni et al., 2017).

Another performance consideration is the risk of bottlenecks. A failure or slowdown

in one part of the monolithic application can impact the entire system, as all components are

closely intertwined. Furthermore, as the codebase grows larger, build and deployment times

can increase, which can hinder continuous delivery efforts (Newman, 2021).

Monolithic architecture can also struggle with maintainability over time, which may

indirectly affect performance. As more features and functionalities are added, the system

becomes harder to optimize, making it more difficult to ensure that all parts of the application

perform efficiently.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

23

In summary, while monolithic architecture can offer performance benefits for smaller

applications, their scalability and bottleneck issues make them less ideal for larger, more

complex systems.

5. Development Simplicity

Development simplicity in a monolithic architecture is often cited as one of its key

advantages, especially for small to medium-sized applications. Monolithic architecture

consolidates all components—such as the user interface (UI), business logic, and data access

layers—into a single, unified codebase. This centralized structure simplifies the development

process because everything is in one place, making it easier for developers to understand the

entire application (Fowler & Lewis, 2014). In contrast to more complex architectures like

microservices, where various services operate independently, monolithic systems allow

developers to build, test, and deploy the entire application as a single unit.

One of the primary benefits of this simplicity is the straightforwardness of the

development environment. With all the code in a single repository, there are fewer

dependencies to manage, and developers can work without worrying about the

communication between distributed services. This centralization reduces the need for

complex configuration and infrastructure, making it easier to set up a development

environment, especially for small teams (Bass et al., 2021). Additionally, testing is simpler in

monolithic architecture because tests can cover the entire system in one go, without needing

to mock or simulate multiple services.

Another aspect of development simplicity in monolithic architectures is the ease of

deploying the system. With a single deployable unit, developers can push updates to

production with one build and deployment process, ensuring that all changes are applied

consistently across the system (Newman, 2021). This consistency reduces the complexity of

versioning, deployment scripts, and rollback strategies, which are often more intricate in

distributed systems.

However, the simplicity of monolithic architecture tends to decrease as the application

grows. As more features and modules are added, the codebase becomes more complex and

harder to manage. Even though the development of smaller applications is simplified, larger

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

24

monolithic systems often face difficulties with maintainability and scalability. When a

developer changes one part of the system, it can have unintended consequences elsewhere,

leading to longer testing and debugging cycles. As a result, the initial simplicity of monolithic

architecture can give way to complexity over time (Dragoni et al., 2017).

Monolithic architecture offers significant development simplicity, particularly for

smaller applications, due to their unified codebase, simplified deployment, and reduced

dependencies. However, this simplicity can become a limitation as the system grows in size

and complexity, leading to challenges in maintainability and scalability.

B. ADVANTAGES

1. Ease of Development

In a monolithic architecture there are significant advantages in ease of development.

This design simplifies the development process by consolidating all components into one

application. The main advantage of this approach is the reduced complexity of integrating

multiple services or components, thereby increasing application performance and reducing

latency.

One of the advantages of monolithic development is managing a single codebase,

across developers, making it easier to manage dependencies and version control. Generally,

developers “check out” portions of the unified code while it is in revision/update.

Furthermore, a monolithic approach typically requires fewer coordination efforts between

teams, as changes are made in a single repository rather than across distributed services

(Fowler, 2018).

While these benefits can streamline the initial development phase, monolithic

architectures become cumbersome as the application grows, often through years of update

and inefficient practices of documenting updates/changes over years of growth, potentially

leading to challenges in maintainability and deployment. Nonetheless, for many projects,

especially smaller ones or those in their early stages, the monolithic approach offers a more

straightforward and efficient development process.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

25

2. Performance

Monolithic architecture provides several performance advantages due to its unified

structure and lack of inter-service communication overhead. In a monolithic application, all

components—such as the UI, business logic, and data access layers—are encapsulated within

a single codebase and runtime environment (Fowler, 2018). This integration leads to

streamlined execution processes and minimizes the latency associated with inter-service

communication often encountered in microservices architectures.

Generally, monolithic architectures benefit from simplified data transfer and

management within the application. Since all components are part of a single application,

transactions can be managed more effectively within a single context. This centralized

approach enables more efficient resource management and can lead to improved application

performance.

Another performance advantage is the ease of optimization. Developers can focus on

optimizing a single application rather than multiple services, allowing for more targeted

performance improvements and efficient use of resources. Additionally, monolithic

applications often leverage a single database, which can streamline data access patterns and

reduce the performance overhead associated with managing multiple databases (Fowler,

2018).

The monolithic architecture’s unified structure, in-memory communication, and

simplified transaction management contribute to its performance advantages, particularly in

terms of reduced latency and more efficient resource utilization.

3. Simplicity in Deployment

Monolithic architecture offers notable advantages in deployment simplicity due to its

integrated and unified structure. In a monolithic system, the entire application is packaged

into a single executable or deployable unit. This consolidated approach simplifies the

deployment process, reducing the complexity often associated with managing multiple

services and components Fowler, 2018).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

26

One significant advantage of monolithic SW architecture is the ease of deployment.

Since all the functional pieces or modules are contained within one codebase, there is no need

to manage multiple SW parts and their dependencies or coordinate installations across

different environments. Deployment of this single unit simplifies set up and maintenance.

Another benefit of monolithic applications is the reduced overhead in managing

deployment documentation. In monolithic architecture, deploying updates or patches involves

releasing a single artifact. This contrasts with microservices, where multiple services may

require individual updates and deployments, increasing the risk of inconsistencies and

deployment errors. The monolithic approach ensures that all components are updated

simultaneously, maintaining consistency across the application Fowler, 2018).

Additionally, monitoring and logging application performance are simplified in

monolithic systems. Since the entire application operates as one unit, monitoring tools and

logging mechanisms can be more centrally and easily managed. This often provides a unified

view of the application’s performance and behavior.

In summary, the monolithic architecture’s simplicity in deployment is characterized

by its unified deployment unit, ease of configuration, reduced management overhead, and

centralized monitoring. These factors contribute to efficiency.

C. DISADVANTAGES

1. Scalability Issues

Monolithic architecture, despite its initial simplicity and ease of development, faces

significant scalability issues as applications grow. In a monolithic system, all components are

integrated into a single codebase and executed within a single process or server Fowler, 2018).

This design can lead to several challenges when scaling the application to meet increased

demand.

A drawback to developing and deploying monolithic SW applications is the difficulty

in scaling individual components. In a monolithic architecture, the entire application must be

scaled together, even if only specific parts require additional resources. For example, if a

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

27

particular component experiences high load the entire application must be scaled to handle

this increased load. This often results in higher costs and complexity as the application grows.

Additionally, the single codebase approach can lead to performance bottlenecks. As

the application’s size and complexity increases, the codebase very often becomes unwieldy.

Over years of updates, without modernization of the code structure, monolithic SW becomes

difficult to optimize and manage. Performance issues in one part of the application can affect

the entire system, leading to decreased overall efficiency and responsiveness.

Another challenge is the impact on deployment and maintenance. Scaling a

monolithic application often requires deploying the entire application, and any updates or

changes need to be tested and deployed as a whole, increasing the risk of introducing

regression and unintended defects in the entire application.

In summary, while monolithic architecture offers advantages in terms of initial

development and deployment simplicity, it faces significant scalability issues. The need to

scale the entire application together, potential performance bottlenecks, complex deployment

and maintenance processes, and coordination challenges all contribute to the difficulties in

scaling monolithic systems effectively.

2. Maintenance Complexity

As the application grows, over the course of years and numerous update cycles

maintaining and updating a monolithic codebase becomes increasingly complex. This

complexity often leads to issues when modifying or adding new features.

Maintenance complexity in a monolithic architecture arises from its unified and

interdependent structure, where all application components are integrated into a single

codebase. As the application grows, managing and modifying this extensive codebase can

become increasingly challenging (Fowler, 2018).

One significant issue is the risk of introducing bugs when changes are made. Since all

components of the singular application are tightly coupled, changes in one part of the

application can inadvertently affect other parts, leading to unintended SW regression and

increased complexity of debugging efforts and tools. This interconnectedness can make

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

28

isolating and fixing issues more difficult compared to modular architectures where

components are more decoupled.

Another challenge is the increased complexity of deploying updates. Updating a

monolithic application often requires redeploying the entire system, which can be time-

consuming and prone to implementation errors. This SW design approach means that the

smallest updates necessitate comprehensive testing to determine if the update achieved the

desires outcome free of unintended regression. This lack of granularity drives up the scope,

costs, and time required to validate performance and ensure the stability of the monolithic

application.

A monolithic architecture, in large part, prevents the use of distributed development

teams. As the application codebase grows, coordinating multiple developers working on

different functions/features can become difficult. This leads to integration conflicts, slower

development cycles, and validation test events which are significantly larger in scope.

3. Limited Flexibility

Monolithic architecture, while straightforward in its design, often faces significant

flexibility limitations. In this architectural model, all components and functionalities are

encapsulated within a single codebase, which can restrict the ability to adapt and evolve the

application in response to changing requirements or technological advancements (Fowler,

2018).

One major limitation is the difficulty in implementing new features or modifying

existing ones without affecting the entire application. With all the components of a monolithic

application tightly coupled, any change in one part of the system may bring performance

regression elsewhere. As years pass this tight coupling drives an increasing number of

interdependencies which makes it increasingly more challenging to introduce new

technologies or frameworks. Consequently, the pace of innovation can be slowed as

developers must ensure that modifications do not compromise the stability of the entire

system.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

29

Additionally, the monolithic structure can hinder the adoption of modern development

practices such as CI/CD. The deployment of monolithic applications usually involves

releasing the entire application, even when the smallest updates are made. This prohibits rapid,

incremental updates, and reduces the agility of the development and delivery process. This

inhibitive paradigm greatly limits the ease in which new features or fixes can be quickly

delivered and increases costs.

In summary, monolithic architecture’s flexibility limitations arise from its tight

coupling of components, challenges in adopting new technologies or practices, and

inefficiencies in scaling. These factors can restrict an application’s adaptability and hinder its

ability to evolve in a dynamic technological landscape.

D. CONCLUSION

Monolithic computing SW is characterized by its unified structure where all

application components—UI, business logic, and data access layers—are integrated into a

single codebase (Fowler & Lewis, 2014). A monolithic architecture often simplifies initial

development and deployment. Another benefit is a more easily managed and centralized

version control. A single codebase ensures that all developers work with the same version of

the application, reducing fragmentation and incompatibility issues (Bass et al., 2021).

However, as applications grow, maintaining a monolithic codebase can become cumbersome.

Changes in one area can impact others, making updates more error-prone and time-consuming

(Newman, 2021).

Tight coupling is another defining characteristic of monolithic systems. Components

within these systems are interdependent and the smallest updates can necessitate changes

across the entire application, complicating maintenance and scaling. Additionally, even minor

updates can drive the need for extensive testing and redeployment, driving costs and slowing

the pace of improvement.

Despite these challenges, monolithic architecture offers simplicity in deployment.

Since the entire application is packaged as a single deployable unit, managing updates and

configuration is more straightforward (Newman, 2021). As the application grows, after years

of addition/update, the initial simplicity gained in monolithic architecture diminishes adding

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

30

difficulties in managing large codebases. In summary, while monolithic SW provides

development ease and deployment simplicity, it can struggle with scalability, maintenance

complexity, and flexibility as applications evolve.

E. CASE STUDY, COMPUTNG INFRASTRUCTURE: A CORE ENABLER
OF NAVAL COMBAT SYSTEMS SOFTWARE MODERNIZATION

This case study will explore how naval CS CI enabled decades of USN power

projection and global stability throughout the Cold War era. And, while the purpose-built

computers and computing systems utilized prior to transition to commercial technologies

served the USN well, they also were an inhibitor of the implementation of modern SW

architectures and Pace-of-Threat deployment of CS improvements.

In this case study, four CS computing architecture capability stages will be presented

with their inherent capabilities, and the limitations they placed on SW modernization. Figure

6 provides an overview of each stage in CSs computing environments.

Figure 6. Stages of Combat System Computing Environments Evolution

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

31

1. Stage 1: AN/UYK-7 and AN/UYK-43

The AN/UYK-7 and AN/UYK-43 computers were a critical 32-bit computer system

developed for the USN, primarily used for tactical data processing in systems such as the

Navy Tactical Data System (NTDS) and Aegis CSs. The UYK-7 was introduced in the early

1970s and marked a significant advancement over its predecessors in terms of processing

power, memory capacity, and input/output (I/O) capabilities.

The AN/UYK-43 was the USN’s standard 32-bit computer system for general-

purpose applications from the early 1980s through the 2000s, replacing the AN/UYK-7. The

UYK-43 was highly reliable, flexible, and brought significant performance improvements

over its predecessors. The AN/UYK-43 was widely used in shipboard and submarine

systems for tactical data processing, command and control (C2) processing, sonar, radar

control, and other mission-critical applications.

a. AN/UYK-7 Capabilities

(1) Processing Power

The AN/UYK-7 could process up to 725,000 instructions per second:

• Architecture: The AN/UYK-7 utilized a 32-bit architecture, and featured

a 32-bit word length, allowing for greater data precision and faster

processing of larger numbers compared to older systems.

• Clock Speed: The system operated at a clock speed of approximately 2.5

MHz, typical for military-grade systems of that era.

• Instruction Set: The instruction set included both fixed-point and

floating-point arithmetic, making the system versatile for both general-

purpose and real-time operations.

(2) Memory

The AN/UYK-7 initially came with 64K words (65,536 words) of magnetic core

memory, which equals 256 KB in modern terms (based on the 32-bit word size). This could

be expanded to 1 MB with additional memory modules.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

32

(3) I/O and Networking

The UYK-7 had a flexible and scalable I/O system, supporting 16 to 32 independent

I/O channels. These channels allowed the system to interface with numerous external

devices, such as C2, radar systems, sonar, and missile control.

(4) OS and SW

The AN/UYK-7 ran NTDS SW, as well as the Aegis Tactical Operating Environment

which were developed for real-time combat data processing. This SW allows the system to

manage data from sensors, track objects, and guide weapons in real-time.

(5) Applications

The AN/UYK-7 was widely used in various naval applications, including the NTDS.

It processed real-time combat data from sensors, including radar and sonar, and provided

data to weapons systems for missile control and engagement. Aegis Combat System: Early

Aegis Weapon System (AWS) baselines used the UYK-7 to process radar, C2, and weapons

control data before Aegis transitioning to the AN/UYK-43

b. AN/UYK-43 Capabilities

(1) Processing Power

The AN/UYK-43 was based on a 32-bit architecture, similar to its predecessor, the

AN/UYK-7, but with a more modern design that enhanced performance and scalability. Like

the UYK-7 the UYK-43 computer utilized a 32-bit word length and supported both fixed-

point and floating-point arithmetic. This architecture allowed for more efficient processing

of complex computations (Harris, 1991).

(2) Memory

The AN/UYK-43 initially was configured with 2 MB of core memory, but later

versions supported up to 64 MB of semiconductor memory. The move to semiconductor

memory increased speed, reduced power consumption, and provided greater reliability

compared to the AN/UYK-7. The memory used error detection and correction (EDAC)

techniques to ensure data integrity, which was critical for military operations.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

33

(3) Modularity

The AN/UYK-43 was designed with a high degree of modularity. Its design allowed

for the use of multiple central processing units (CPUs) and the addition of specialized co-

processors (input/output processors [IOPs]), and multiple memory module configurations.

(4) I/O and Networking

The AN/UYK-43 had a highly flexible I/O subsystem, supporting a variety of

external peripherals and interfaces. The system supported up to 64 I/O channels, which

allowed it to communicate simultaneously with multiple external devices.

(5) Processing Modules and Multiprocessing

The AN/UYK-43 supported multiprocessing, enabling multiple processors to work

simultaneously. This feature allowed for parallel processing of data providing much higher

performance than previous USN computers.

(6) OS and SW

The UYK-43 typically ran NTDS SW as well as the Aegis Tactical Executive System

supporting AWS applications.

(7) Applications

Combat Direction Systems: The UYK-43 was widely deployed in combat direction

systems on aircraft carriers, cruisers, and destroyers.

c. Limiting Factors

The UYK computers were purpose build MILSPEC computers designed to field on

USN vessels. As such they needed to be limited in size and power consumption. These design

constraints are limited to performance capabilities for processing and memory/storage.

Within these limitations specialized operating environment (OE) SW was needed.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

34

2. Stage 2: AN/UYQ-70

The AN/UYQ-70 (commonly referred to as the UYQ-70) is an advanced, modular

display and processing system developed for the USN to replace older systems like the AN/

UYK-43 and AN/UYK-44. It became the standard USN combat console and processing

system during the late 1990s and early 2000s. The Q-70 program, and all those that have

followed, sought to harness commercially relevant HW and package/deliver it to the fleet

more rapidly than previous MILSPEC developments.

a. Capabilities

The UYQ-70 was designed to be highly modular and scalable, making it adaptable

for different platforms and missions. The system could be configured in various ways, such

as single-processor or multi-processor configurations, to meet specific requirements.

It was built using commercial off the shelf (COTS) HW components. The use of

COTS technology also meant the system could benefit from rapid advancements in

commercial computing technologies.

UYQ-70 processing, within the AWS, was used to run adjunct computer programs

along UYK-43 computers transitioning portions of the application to a more modern and

flexible computer language and commercial/modified commercial OSs like HP-UX and HP-

RT.

b. Processing Power

The UYQ-70 featured multi-processor capability, which allowed it to handle multiple

tasks simultaneously. It could support a variety of different processors packaged on single

board computers or symmetric multi-processor arrays. The system’s ability to integrate

modern processing units meant it offered significant improvements in speed and

computational power over older systems like the AN/UYK-43.

c. I/O and Networking

The UYQ-70 had robust networking and data communication capabilities. It could

interface with various external sensors and systems, including C2, radar, sonar, and

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

35

electronic warfare systems. It supported a wide range of I/O interfaces, including Ethernet,

fiber optic data transmission, and serial connections, allowing for flexibility in integrating

with onboard systems.

d. OS and SW

The UYQ-70 typically ran Unix-based OSs, which allowed for reliable and secure

multitasking in real-time environments. The system was designed to support real-time

processing, which was crucial for tasks like missile guidance, threat tracking, and electronic

warfare.

e. Modularity

One of the key features of the UYQ-70 was its upgradability. Because it used COTS

components, the system could easily be upgraded with new HW and SW as commercial

technology advanced.

f. Applications

The UYQ-70 is used in a wide range of naval applications, including:

• Aegis CS: The UYQ-70 is an integral part of the Aegis system, providing

real-time radar and weapons control data to operators.

• Submarine CSs: It is also used in submarine combat control systems,

where it processes sonar data, weapons control, and navigation

information.

• C2 Systems: Shore-based installations and mobile command centers use

the UYQ-70 for mission planning, situational awareness, and tactical data

coordination.

The Q-70 era was an important step for modernization of USN systems. In this period

portions of the CS applications were recompiled into commercial-based languages,

commercial HW and OSs executed these applications.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

36

g. Limiting Factors

(1) HW

A limiting factor in this period was the continued reliance on MILSPEC UYK

computers. While COTS/MOTS HW provided vastly superior performance from

processing, memory, and storage these applications still ran as bare metal machines where

an entire single board computer was dedicated to a single application. The use of these

COTS products opened the door for use of commercial operating system SW.

(2) OS and Environment SW

The continued use of UYK computers relied on the same specialized Reduced

Instruction Set (RIS) OE SW. The addition of commercial UNIX-based OS, while an

important step, continued the limits of closely coupled monolithic applications running

“tied” to bare metal locations providing only N+1 resiliency.

3. Stage 3: TI12 and TI16

TI12 and TI16 built upon successes of the Q70 program establishing a notional 4-

year interval between revamped and modernized COTS HW for naval applications. One

major advancement in this period was the elimination of MILSPEC computers and OE/OS.

a. Capabilities

Like UYQ-70, Tis were designed to be highly modular and scalable, making it

adaptable for different platforms and missions. Efforts were made to deliver capability which

supported many applications and delivered performance characteristics which met the most

stringent requirements to make it adaptable to end users. TIs were built using all COTS HW

components. The use of COTS technology continued the benefits of rapid advancements in

commercial computing technologies.

b. Processing Power

TIs featured multi-processor capability, packaged in chassis like IBM Blade Centers

and ATCA form factors. This allowed it to handle multiple tasks simultaneously. It could

support a variety of different processors packaged on single board computers within these

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

37

processing centers. The system’s ability to integrate modern processing units meant it offered

significant improvements of the previous generation of COTS computing infrastructure

c. I/O and Networking

TIs also leveraged industry trends in networking bringing improved network

switching and network speeds.

d. OS and SW

TIs transitioned from UNIX-based to Linux-based OS like Red Hat Enterprise Linux

(RHEL) and RedHawk adaptations for real-time processing.

e. Modularity

TIs continued the modular approach delivering a series of cabinets designed to

provide NPS functions. TIs, built on COTS components, were upgradable with new HW and

SW as commercial technology advanced.

f. Applications

TIs HW continued in many of the same applications of previous generations of HW

across the surface USN.

g. Limiting Factors

(1) HW

While TI equipment was “off the shelf” capable of advancing from bare metal

implementations for well over a decade the SW continued to be deployed as bare metal. In

the last couple of years, these systems have been making efforts to virtualize, thereby

taking advantage of all the resources delivered.

(2) OS and Environment SW

The move to RHEL based OS, offering the ability to jump to more modern SW

deployments continued the limits of closely coupled monolithic applications running “tied”

to bare metal locations providing only N+1 resiliency.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

38

4. Stage 4: Unmanned Surface Vessel Integrated Combat System
Computing Infrastructure and MK6 ModX

USV ICS CI, based upon HW and SW products under development for the

Enterprise ICS and IWS X solutions, is the first fully modern ICS CI fielded in a tactical

AWS. This rapidly developed and fielded ICS brought virtualized and containerized

applications and an IaaS environment to prototype vessels for the USV program, opening

the door to complete modernization of naval CS and their SW.

a. Capabilities

Built on modern commercial technologies these transformational systems fully

support the most modern practices for SW development and delivery. The MK6 ModX

based system features Software Defined Networking (SDN) which delivers virtual

switching and routing functions on ultra-modern Cisco switching, modern storage arrays

and hyper-converged infrastructure, and IaaS and PaaS SW enabling virtualized and

containerized microservices oriented applications.

b. Processing Power

The newest generation of COTS computing infrastructure, these systems break

from previous Computing and CI in that they no longer build systems which are “fixed” to

variants of HW for a given period or TI interval. The processing in these systems is a

selection of the most technically relevant HW available at a given time. Current processing

is built on 32 core Intel Zeon processors.

c. I/O and Networking

Components, like processing, are fielded from the newest of the breed available.

Switch to switch interfaces currently operate at 100GPS.

d. OS and SW

MK6 ModX based systems employ ultra-modern SW products in the IaaS and PaaS

layers which abstract tactical applications away from the underlying infrastructure. It is this

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

39

industry relevant SW environment that enables virtualization, microservices, and continuous

integration and deployment pipelines.

e. Modularity

MK6 ModX based systems employ HW modularity defining 12 unique 8U (a

measure of rack-based appliances) modules. These modules form the building block of an

ICS CI where four modules can be integrated into a common cabinet to deliver the needed

capability.

f. Applications

MK6 ModX is the enterprise ICS CI supplier for all applications across the USN.

g. Limiting Factors

(1) HW

MK6 ModX based systems only limitation is the common module-based

arrangement. The rapid integration of the newest available HW removes HW limitations

from CS deployments.

(2) OS and Environment SW

This modern IaaS/PaaS environment removes all foreseen barriers to CS

modernization of tactical applications. The foundations in CI/CD usher in the potential to

close the gap between military and commercial SW deployment and hasten the speed to

threat capability for the U.S. military.

5. Summary

As presented, the USN has made the transition from purpose build computing and

SW, based on the technology of the day, to modern architectures that enable the

implementation of relevant processes which field granular microservices-based SW in

weeks versus months/years. These enabling technologies, when fully implemented, will

reduce the cost of development, testing, certification, and distribution of capability. Table

2 summarizes the progression of USN CS core capabilities and their inherent limitations.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

40

Table 2. Capability Progression as an Enabler of Navy Combat System Modernization

Stage System Key Features Applications Limitations

1 AN/UYK-7 and
AN/UYK-43

32-bit architecture, fixed-point, and
floating-point arithmetic NTDS Limited processing power and

memory
Processing speeds of 0.725 MIPS
(UYK-7) and 1.2 MIPS (UYK-43) Aegis CS Specialized OE tied to bare metal

HW
Memory of 256 KB (UYK-7)
expandable to 1 MB, up to 64 MB
(UYK-43)

Shipboard and submarine
tactical data processing

Monolithic applications hindered
modernization efforts

Flexible I/O channels, 16–64
MILSPEC design

2 AN/UYQ-70

Modular, scalable design Aegis CS Continued reliance on MILSPEC
UYK systems

Use of COTS components Submarine combat control Bare metal deployments with
limited virtualization

Multi-processor capabilities C2 systems Monolithic applications, restricted
flexibility and resiliency

Unix-based OSs
Upgradable HW and SW

3 TI12 and TI16

Fully COTS-based design Continuation of legacy
applications Bare metal deployments persisted

High modularity with chassis-based
processors

Processing improvements
across USN systems

Closely coupled applications still
limited virtualization

Linux-based OS (RHEL) N+1 resiliency remained dominant
Improved networking and storage
systems

Cabinet-style modularity for
processing and storage functions

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

41

Stage System Key Features Applications Limitations

4
USV ICS CI
and MK6
ModX

Fully virtualized and containerized
microservices

Enterprise ICS CI for all
surface USN applications

Minimal HW limitations due to
modular designs

SDN Rapid modernization of
combat systems

Abstracted SW layers remove
most barriers to modernization

Hyper-converged infrastructure
CI/CD
Modern Intel Xeon processors (32
cores)

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

42

V. MICROSERVICES ARCHITECTURE

The following section presents an overview, key principles, advantages,

disadvantages, and implementation considerations of a microservices-based computing

architecture.

A. INTRODUCTION

1. Overview

Microservices architecture is a design approach in which an application is

composed of multiple small, independent services that communicate over a network. Each

service is designed to perform a specific business function and operates as a separate entity

with its own codebase, data storage, and deployment life cycle (Fowler & Lewis, 2014).

This modular structure contrasts with monolithic architectures in which all functionalities

are tightly integrated into a single application.

In a microservices architecture, services are loosely coupled, meaning that each

service can be developed, deployed, and scaled independently. This independence allows

for greater flexibility in technology choices, as different services can use different

programming languages, frameworks, and databases suited to their specific needs

(Nadareishvili et al., 2016). The services interact through well-defined Application

Program Interfaces (APIs), typically using lightweight protocols such as HTTP or

messaging queues to facilitate communication between disparate components (Bass et al.,

2021).

One of the key benefits of microservices is scalability. Services can be scaled

independently based on demand, allowing for more efficient use of resources and improved

performance (Dragoni et al., 2017). Additionally, microservices enhance resilience; if one

service fails, it does not necessarily impact the entire application, which improves overall

system reliability.

However, microservices also introduce complexities, such as managing inter-

service communication and data consistency. The distributed nature of microservices can

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

43

lead to challenges in maintaining consistent data and coordinating service interactions,

requiring sophisticated orchestration and monitoring tools.

2. Key Principals

Microservices architecture represents a significant shift from traditional monolithic

SW design. This architectural style involves breaking down an application into smaller,

self-contained services that communicate through well-defined APIs. The goal is to

enhance flexibility, scalability, and resilience. This section explores the key principles of

microservices architecture, highlighting their implications and benefits.

a. Service Independence

One of the core principles of microservices architecture is service independence. In

a microservices-based system, each service operates as a standalone unit responsible for a

specific business function or capability (Fowler & Lewis, 2014). This independence allows

for several important benefits.

(1) Autonomous Development and Deployment

Each microservice can be developed, tested, and deployed independently. This

autonomy facilitates CI/CD practices, allowing for frequent and reliable releases. Changes

to one service do not necessitate changes or redeployment of other services, thereby

minimizing disruptions.

(2) Technology Diversity

Services can be built using different programming languages, frameworks, or data

stores best suited to their specific requirements (Nadareishvili et al., 2016). This

technological diversity enables teams to leverage the best tools for each service without

being constrained by a uniform technology stack.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

44

(3) Fault Isolation

Failures in one service do not directly impact others. This isolation enhances the

overall system’s resilience and reliability, as the impact of a failure is contained within the

service experiencing the issue (Dragoni et al., 2017).

b. Loose Coupling

Loose coupling is another fundamental principle of microservices architecture. It

refers to the design of services such that they interact with each other through well-defined

APIs rather than being tightly integrated. Loose coupling offers several advantages.

(1) Reduced Dependencies

Services are designed to be minimally dependent on one another, which reduces the

risk of changes in one service impacting others. This design facilitates more

straightforward modifications and upgrades (Fowler & Lewis, 2014).

(2) Interoperability

Services communicate through standardized protocols such as HTTP, REST, or

messaging queues. This standardization ensures that services can interact seamlessly

despite being built using different technologies or platforms (Bass et al., 2021).

(3) Flexibility and Agility

The decoupling of services supports a more agile development process, as teams

can work on different services concurrently without worrying about integration issues.

c. Single Responsibility Principle

The Single Responsibility Principle (SRP) is a design guideline stating that each

microservice should have one primary responsibility or business capability (Fowler &

Lewis, 2014). SRP contributes to several aspects of microservices architecture.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

45

(1) Focused Functionality

Each service is designed to handle a specific business function, leading to a clear

separation of functions. This focus simplifies development, testing, and maintenance.

(2) Manageability

By adhering to SRP, services remain smaller and more manageable. This

manageability makes it easier to understand, test, and deploy each service individually

(Dragoni et al., 2017).

(3) Scalability

Services designed around SRP can be scaled independently based on their specific

workloads, improving resource utilization and performance.

d. Decentralized Data Management

In microservices architecture, each service typically manages its own data store.

This decentralized approach contrasts with the monolithic model, in which a single central

database is often used (Dragoni et al., 2017). Decentralized data management offers several

benefits.

(1) Data Ownership

Each service has complete control over its own data, including the schema and

storage technology. This autonomy allows services to be optimized for their specific data

needs and requirements (Nadareishvili et al., 2016).

(2) Reduced Data Coupling

By avoiding a shared database, microservices reduce the risk of data conflicts and

integration issues. Each service is responsible for its own data consistency and integrity

(Bass et al., 2021).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

46

(3) Flexibility

Services can use different types of databases (e.g., SQL, NoSQL) based on their

requirements. This flexibility allows for the use of the most appropriate data storage

solution for each service (Fowler & Lewis, 2014).

e. Automated Deployment and Continuous Integration

Automated deployment and continuous integration are essential principles in

microservices architecture. These practices facilitate the efficient management and release

of services.

(1) Continuous Integration

Continuous integration involves frequently integrating code changes from multiple

developers into a shared repository. Automated build and test processes help identify

integration issues early and ensure that code changes do not introduce new defects.

(2) Automated Deployment

Automated deployment pipelines enable the continuous delivery of services to

production environments. This automation reduces manual errors, accelerates release

cycles, and improves deployment reliability (Fowler & Lewis, 2014).

(3) Testing

Automated testing is crucial for maintaining service quality. Tests can include unit

tests, integration tests, and end-to-end tests, all of which are integrated into the CI/CD

pipeline to ensure that services function correctly (Dragoni et al., 2017).

f. Resilience and Fault Isolation

Resilience and fault isolation are critical principles in microservices architecture.

These principles enhance the system’s ability to handle failures and recover from them

effectively.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

47

(1) Fault Isolation

By isolating failures within individual services, microservices architecture prevents

issues from propagating throughout the system. This isolation helps maintain overall

system stability and reliability (Dragoni et al., 2017).

(2) Fault Tolerance

Microservices often employ patterns such as circuit breakers, retries, and timeouts

to handle failures gracefully. These patterns help manage service disruptions and maintain

service availability (Nadareishvili et al., 2016).

(3) Resilient Design

Services are designed to be resilient and capable of recovering from failures.

Techniques such as redundancy, failover, and backup strategies are employed to enhance

resilience and minimize the impact of failures.

g. Scalability

Scalability is a key advantage of microservices architecture. Services can be scaled

independently based on their specific needs, which allows for more efficient resource

utilization (Dragoni et al., 2017).

(1) Horizontal Scaling

Microservices can be scaled horizontally by adding more instances of a service to

handle an increased load. This approach improves performance and capacity without

requiring changes to the service itself (Bass et al., 2021).

(2) Resource Allocation

Independent scaling allows for targeted resource allocation. Resources can be

allocated to specific services experiencing high demand, optimizing overall system

performance (Fowler & Lewis, 2014).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

48

(3) Dynamic Scaling

Microservices architecture supports dynamic scaling, in which services can be

scaled up or down based on real-time demand. This flexibility ensures that resources are

used efficiently and cost-effectively.

h. DDD

DDD is a methodology often used in conjunction with microservices architecture

to model services around business domains (Fowler & Lewis, 2014).

(1) Domain Modeling

DDD encourages the modeling of services based on specific business domains or

capabilities. This approach aligns services with business needs and promotes a clear

separation of responsibilities (Nadareishvili et al., 2016).

(2) Bounded Contexts

DDD introduces the concept of bounded contexts, which define clear boundaries

around a particular domain or subdomain. Each microservice operates within its own

bounded context, ensuring a clear focus and reducing ambiguity (Dragoni et al., 2017).

(3) Collaborative Design

DDD fosters collaboration between business stakeholders and development teams.

By aligning services with business requirements, DDD ensures that the system accurately

reflects the organization’s needs and goals.

i. Service Discovery

Service discovery is essential for managing and locating services dynamically in a

microservices architecture.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

49

(1) Dynamic Registration

Services register themselves with a service registry upon startup. The registry

maintains a list of available services and their locations, enabling other services to discover

and interact with them (Nadareishvili et al., 2016).

(2) Service Lookup

Services can query the service registry to locate other services they need to interact

with. This dynamic discovery mechanism allows for flexible service interactions and

adaptation to changes in the system (Dragoni et al., 2017).

(3) Load Balancing

Service discovery mechanisms often include load balancing capabilities to

distribute requests across multiple instances of a service. This distribution improves

performance and ensures high availability.

j. API Gateway

An API Gateway acts as a single-entry point for clients accessing a microservices-

based application (Bass et al., 2021). It provides several important functions:

(1) Request Routing

The API Gateway routes incoming requests to the appropriate microservices-based

on the request path or other criteria. This centralizes request management and simplifies

client interactions (Fowler & Lewis, 2014).

(2) Cross-Cutting Concerns

The API Gateway handles cross-cutting concerns such as authentication,

authorization, logging, and rate limiting. By centralizing these concerns, the API Gateway

reduces the complexity of individual services.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

50

(3) Aggregation

The API Gateway can aggregate responses from multiple services into a single

response, simplifying the client-side logic and improving performance.

3. Conclusion

Microservices architecture offers a modern approach to SW design, emphasizing

service independence, loose coupling, and decentralized data management. By adhering to

key principles such as the SRP, automated deployment, and resilience, organizations can

build flexible, scalable, and reliable systems. Microservices architecture aligns closely with

business needs through DDD, supports dynamic service discovery, and centralizes cross-

cutting concerns through the API Gateway. These principles collectively contribute to the

success and efficiency of microservices-based applications. Table 3 summarizes the

features of a microservices architecture.

Table 3. Features of a Microservices Architecture

Aspect Details

Definition

Microservices architecture is a modular design approach where
applications are composed of small, independent services. Each
service performs a specific function and operates as an
autonomous entity.

Key Features

Independence: Services have separate codebases, data storage,
and deployment life cycles.
Communication: Services interact through APIs using
lightweight protocols (e.g., HTTP, messaging queues).
Scalability: Each service can be independently scaled to
optimize resource use.

1. Service
Independence

Autonomous Development and Deployment: Services can be
developed, tested, and deployed independently.
Technology Diversity: Services can use different technologies
as needed.
Fault Isolation: Failures in one service do not impact others.

2. Loose Coupling
Services interact through well-defined APIs, minimizing
dependencies.
Ensures interoperability across diverse technologies.

3. Single
Responsibility

Each service focuses on a specific business function.
Enhances manageability and scalability.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

51

Aspect Details

4. Decentralized
Data

Each service manages its own data store, avoiding shared
databases.
Allows data ownership and technology flexibility.

5. CI/CD
Automation

Facilitates continuous integration, automated deployment, and
testing.
Reduces errors and accelerates releases.

6. Resilience and
Fault Isolation

Faults are isolated within individual services to enhance stability.
Employs patterns like circuit breakers and retries for fault
tolerance.

7. Scalability Horizontal and dynamic scaling enables efficient resource
utilization.

8. DDD
Services are modeled around specific business domains and
bounded contexts.
Aligns architecture with organizational goals.

9. Service
Discovery

Enables dynamic registration and lookup of services through a
registry.
Facilitates load balancing and high availability.

10. API Gateway Acts as a central entry point for routing requests.
Handles cross-cutting concerns like authentication and logging.

B. KUBERNETES CLUSTER COMPONENTS

Figure 7 Presents a simplified diagram of a microservices-based architecture.

Figure 7. Simplified Microservices and Kubernetes Diagram

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

52

1. Pod

A Kubernetes Pod is the smallest and most fundamental unit of deployment in

Kubernetes, an open-source container orchestration platform. A Pod represents a single

instance of a running process in a Kubernetes cluster and can host one or more containers.

Containers within the same Pod share the same network namespace, IP address, and

storage, which allows them to communicate with each other via localhost and share data

more easily. Pods are essential in Kubernetes because they abstract much of the complexity

of managing containers directly, allowing users to focus on deploying applications rather

than worrying about the underlying infrastructure.

a. Components

Each Pod in Kubernetes consists of one or more containers, typically Docker

containers, which share resources. These shared resources include the following:

• Networking: Pods are assigned unique IP addresses in the cluster, and all

containers within a Pod share the same network interface. This means they

can communicate internally using localhost, even though they are distinct

containers.

• Storage: Pods can define one or more volumes (persistent storage), and

these volumes are shared across the containers within the Pod. This is

useful for scenarios in which containers need to persist data or share files

(Burns et al., 2018).

Pods can host multiple containers, but they are typically used to group containers that are

tightly coupled and need to run together. For example, a web server container might be

grouped with a logging or monitoring sidecar container. In Kubernetes, multi-container

Pods follow the principle of shared fate, if one container in the Pod dies, Kubernetes treats

it as if the entire Pod has failed and may reschedule the Pod accordingly.

b. Life Cycle

Pods in Kubernetes are ephemeral in nature. They are not designed to be persistent

over long periods of time; instead, they are created, used, and eventually terminated or

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

53

replaced. Kubernetes automatically handles the scheduling and rescheduling of Pods across

nodes in a cluster. This self-healing capability allows Kubernetes to ensure that desired

application states are always maintained (Hightower et al., 2017). Pods can have different

states such as Pending, Running, Succeeded, Failed, or Unknown, reflecting their life cycle

and health.

c. Scaling

A key feature of Kubernetes is its ability to scale applications based on demand.

However, Kubernetes does not scale Pods directly. Instead, it uses higher-level abstractions

like Deployments and ReplicaSets to manage scaling. Deployments define the desired state

of Pods and allow Kubernetes to create or terminate Pods to match that state. This

decoupling allows Kubernetes to maintain high availability and handle the dynamic nature

of containerized applications (Hightower et al., 2017).

d. Networking and Service Discovery

Pods in Kubernetes are assigned ephemeral IP addresses. Since Pods can be

destroyed and recreated dynamically, their IPs are not stable. To solve this issue,

Kubernetes provides services, which act as stable network front ends to Pods. Services

enable consistent access to Pods, regardless of their IP changes. Kubernetes also includes

a built-in domain name server (DNS) service that allows Pods to discover other services

via DNS names, making service discovery seamless in large clusters (Burns et al., 2018).

e. Summary

In summary, Kubernetes Pods provide the foundational building blocks for running

containerized applications in a cluster. They group one or more containers into a single

logical unit, offering shared network and storage resources. Pods are ephemeral by design,

and Kubernetes uses abstractions like Deployments to manage their life cycle and scaling.

With Pods, Kubernetes abstracts much of the complexity involved in container

orchestration, allowing for automated deployment, scaling, and self-healing of

applications.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

54

2. Node

A Kubernetes Node is a worker machine in a Kubernetes cluster, responsible for

running the workloads defined by the Kubernetes control plane. Nodes can be physical

servers or virtual machines (VMs), and they host the necessary services and runtime to

manage and execute Pods, the smallest deployable units in Kubernetes. Each node is

controlled by the Kubernetes control plane, which assigns Pods to nodes and monitors their

performance. Nodes are fundamental components of Kubernetes clusters, enabling

distributed deployment and scaling of containerized applications.

a. Componenets

Every Kubernetes node runs several essential services that are necessary for it to

participate in the cluster.

(1) Kubelet

The kubelet is an agent that runs on each node and ensures that the containers inside

the assigned Pods are running. It communicates with the Kubernetes control plane and

receives instructions on which Pods to run, manages Pod life cycles, and reports the health

of the node (Hightower et al., 2017).

(2) Container Runtime

The container runtime (such as Docker, containerd, or CRI-O) is responsible for

pulling container images from a registry, running the containers, and managing their life

cycles. Kubernetes supports multiple container runtimes through the Container Runtime

Interface (CRI) (Burns et al., 2018).

(3) Kube-Proxy

Kube-proxy is a network proxy that runs on each node and ensures that networking

for Pods is properly configured. It manages network rules that allow Pods to communicate

with each other, as well as external traffic, ensuring that services are reachable both within

and outside the cluster.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

55

(4) Node API Server

In addition to kubelet and kube-proxy, the node may also run the node API server,

which exposes data about the state of the node to the Kubernetes control plane (Burns et

al., 2018).

b. Types

Kubernetes clusters generally have two types of nodes:

• Worker Nodes: These are the standard nodes where application

workloads (Pods) are run. Each worker node runs the necessary services

(kubelet, container runtime, and kube-proxy) and is responsible for

executing and managing the containers that are part of the Pods scheduled

on it (Hightower et al., 2017).

• Master Nodes (Control Plane): These nodes host the control plane

components, such as the Kubernetes API server, scheduler, and controller

manager. While the control plane nodes do not typically run user

workloads, they are critical for managing the cluster by making scheduling

decisions and maintaining the desired state of the cluster (Burns et al.,

2018).

c. Life Cycle

The life cycle of a Kubernetes node includes several key states (Hightower et al.,

2017):

• Ready: A node is in the “Ready” state when it is healthy and available to

run Pods. The control plane regularly checks the health of nodes via

heartbeats from the kubelet.

• Not Ready: If a node is unhealthy or unresponsive, it enters the “Not

Ready” state. The control plane will avoid scheduling new Pods on this

node and may reschedule existing Pods on other healthy nodes, ensuring

high availability.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

56

• Cordoning and Draining: Nodes can be temporarily removed from

service through a process called cordoning, which prevents new Pods from

being scheduled on the node. Draining moves the existing Pods off the

node, typically in preparation for maintenance or scaling down

infrastructure.

d. Scaling

Kubernetes supports cluster autoscaling, in which the number of nodes in the cluster

automatically increases or decreases based on resource demand. For example, if the current

nodes are fully utilized, Kubernetes can provision additional nodes to handle the increased

load. Conversely, underutilized nodes can be decommissioned to optimize resource usage

(Hightower et al., 2017).

Node pools are a way to manage groups of nodes with similar configurations, such

as the same instance type or geographic location. Node pools are particularly useful in

cloud environments, where different types of workloads may require different machine

configurations. Kubernetes can schedule Pods to specific node pools based on resource

requirements or other constraints.

e. Summary

In summary, a Kubernetes node is a critical component of the cluster, providing the

environment to run containerized workloads. Nodes host essential services such as kubelet

and kube-proxy, which enable the node to communicate with the control plane and manage

the life cycle of Pods. With features like autoscaling, node pools, and seamless

orchestration, Kubernetes nodes offer a robust and scalable infrastructure for running

modern applications.

3. Control Plane

The Kubernetes control plane is the central component responsible for managing

and orchestrating the operations of a Kubernetes cluster. It serves as the brain of the cluster,

overseeing the life cycles of Pods, maintaining the desired state of the system, and

providing the necessary APIs for user interaction. The control plane operates on a set of

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

57

master nodes that host several key components, including the API server, etcd, scheduler,

controller manager, and cloud controller manager. Together, these components manage the

cluster state, scheduling, and coordination of resources within the cluster.

a. Components

(1) API Server

The Kubernetes API server is the entry point to the Kubernetes control plane and

serves as the central management hub. It exposes the Kubernetes API, which provides a

RESTful interface for users and services to interact with the cluster. Every interaction with

the cluster, such as deploying applications or scaling resources, passes through the API

server. It authenticates requests, validates them, and processes them by interacting with

other components of the control plane (Hightower et al., 2017). The API server is designed

to be highly scalable and can be replicated across multiple nodes for redundancy.

(2) Etcd

Etcd is a distributed key-value store used by Kubernetes to store all cluster data. It

maintains the cluster’s state and is the source of truth for all configurations, including

details about Pods, services, and network policies. etcd’s consistency guarantees ensure

that the state of the cluster is accurately recorded and can be recovered in the event of a

failure (Burns et al., 2018). Because of its critical role, etcd must be backed up regularly,

and it is usually run on highly available infrastructure.

(3) Scheduler

The Kubernetes scheduler is responsible for assigning Pods to nodes in the cluster.

When a new Pod is created, the scheduler evaluates the current state of the cluster and

assigns the Pod to an appropriate node based on resource availability and predefined

constraints. Factors such as CPU, memory, storage, and affinity rules are considered during

this decision-making process. The scheduler ensures that workloads are distributed

efficiently across nodes to prevent overloading and to maintain optimal performance

(Hightower et al., 2017).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

58

(4) Controller Manager

The Kubernetes controller manager runs a collection of controllers, each

responsible for monitoring the state of the cluster and making changes to ensure the desired

state is achieved. Some of the primary controllers include:

(5) Node Controller

The node controller monitors the health of nodes and ensures that failed nodes are

removed from service.

(6) Replication Controller

The replication controller ensures that the specified number of replicas of a Pod is

always running.

(7) Endpoint Controller

The endpoint controller manages the association between services and Pods. The

controller manager watches the cluster through the API server and continuously reconciles

the actual state of resources with the desired state, as defined by users (Burns et al., 2018).

(8) Cloud Controller Manager

The could controller manager integrates Kubernetes with underlying cloud

infrastructure. It allows Kubernetes to interact with cloud providers’ APIs to manage

resources such as load balancers, VMs, and storage. The cloud controller manager enables

Kubernetes to abstract infrastructure details, making it easier to manage clusters across

different cloud environments (Hightower et al., 2017).

b. Functions

(1) Cluster State Management

The control plane ensures that the actual state of the system matches the desired

state specified by users through configuration files (manifests). If discrepancies arise, the

control plane takes corrective action, such as restarting failed Pods or rescheduling them

on different nodes.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

59

(2) Scaling and Resource Management

The control plane manages the scaling of applications by monitoring resource usage

and deploying additional Pods as needed. Autoscaling can be configured based on CPU

utilization or custom metrics.

(3) Security and Access Control

The API server enforces access control policies, including role-based access control

to manage user permissions and secure communication between components.

c. Summary

In summary, the Kubernetes control plane is the operational core of a Kubernetes

cluster. It manages the scheduling, orchestration, and state of the cluster, ensuring that

applications are running as intended. Through components like the API server, scheduler,

etcd, and various controllers, the control plane enables Kubernetes to be a highly scalable,

resilient, and dynamic platform for managing containerized applications.

4. Cluster

A Kubernetes cluster is a set of machines (physical or virtual) that work together to

run containerized applications, managed and orchestrated by Kubernetes. It is the

foundational infrastructure for Kubernetes, designed to automate the deployment, scaling,

and management of applications across multiple nodes. A Kubernetes cluster is composed

of two major components: the control plane, which oversees the cluster’s operations and

ensures the desired state of applications and the worker nodes, which run the actual

containerized workloads.

a. Components

(1) Control Plane

The control plane is the centralized management unit of the cluster. It is responsible

for maintaining the cluster’s desired state, making scheduling decisions, and responding to

failures. The control plane runs on one or more master nodes and consists of several key

components:

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

60

(2) API Server

The Kubernetes API server acts as the gateway to the cluster. It exposes

Kubernetes’ RESTful API, which is used by administrators, users, and internal components

to interact with the cluster. All requests to create, modify, or retrieve resources pass through

the API server (Hightower et al., 2017).

(3) Etcd

A distributed key-value store, etcd stores the state of the entire Kubernetes cluster,

including configurations and secrets. It serves as the source of truth for the cluster, ensuring

consistency and reliability of data (Burns et al., 2018).

(4) Scheduler

The Kubernetes scheduler assigns newly created Pods to nodes based on resource

availability, ensuring efficient use of cluster resources (Hightower et al., 2017).

(5) Controller Manager

The controller manager runs various controllers that monitor the state of the cluster

and reconcile it with the desired state, such as ensuring the correct number of Pod replicas

are running or monitoring the health of nodes (Burns et al., 2018).

(6) Cloud Controller Manager

This component integrates Kubernetes with cloud providers’ APIs, allowing

Kubernetes to manage cloud resources like load balancers and storage in a cloud-native

environment (Hightower et al., 2017).

(7) Worker Nodes

Worker nodes are the machines that run the actual workloads in a Kubernetes

cluster. Each node hosts Pods, which are collections of one or more containers. The key

components of a worker node include:

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

61

(8) Kubelet

The kubelet is the primary agent on a worker node, ensuring that the containers

specified in a Pod are running and healthy. It communicates with the control plane, receives

instructions, and manages the life cycle of Pods on the node (Hightower et al., 2017).

(9) Container Runtime

The container runtime, such as Docker or container, is responsible for pulling

container images from registries, starting containers, and managing their life cycles (Burns

et al., 2018).

(10) Kube-Proxy

Kube-proxy ensures that network traffic reaches the appropriate Pods. It manages

the networking rules that allow communication between services and Pods, both internally

within the cluster and with external clients.

b. Networking

A key feature of Kubernetes is its networking model, which enables seamless

communication between components. Each Pod in the cluster is assigned a unique IP

address, and Kubernetes ensures that Pods can communicate with each other and with

services inside and outside the cluster, regardless of which node they are running on.

Networking is abstracted through services that provide stable endpoints, even as Pods are

created, destroyed, or rescheduled (Burns et al., 2018).

c. Scaling

Kubernetes clusters are designed to be highly scalable. Horizontal Pod Autoscaling

allows the system to automatically adjust the number of Pods based on demand. Cluster

Autoscaling can add or remove worker nodes as necessary, depending on the resource

requirements of the workloads (Hightower et al., 2017).

Kubernetes also has built-in self-healing capabilities. If a Pod or node fails, the

control plane reschedules the workload on another node, ensuring high availability.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

62

Kubernetes monitors the health of nodes and containers, automatically restarting or

replacing unhealthy components to maintain the desired state of the cluster.

d. Summary

In summary, a Kubernetes cluster is a powerful and scalable platform for running

containerized applications, designed to automate the complex tasks of deployment, scaling,

and management. With their control planes managing the overall state and their worker

nodes executing the workloads, Kubernetes clusters enable organizations to achieve high

availability, efficient resource usage, and automated recovery from failures. Table 4

summarizes Kubernetes cluster components and their key features.

Table 4. Kubernetes Components Summary

Concept Description Key Features Example Uses

Pod

Smallest deployable
unit in Kubernetes,
representing one or
more containers
running together.

Shared network and
storage Hosting tightly

coupled containers
like a web server and
sidecar for logging.

Containers communicate
via localhost
Ephemeral and self-
healing

Node

A machine (physical
or virtual) in the
cluster that runs Pods
and communicates
with the control plane.

Includes kubelet,
container runtime, kube-
proxy

Hosting workloads
(worker node) or
running control plane
components (master
node).

Can be worker nodes or
master nodes (control
plane)

Control
Plane

Central management
unit that orchestrates
cluster operations and
maintains desired
state.

API server for cluster
interaction Assigning Pods to

nodes, ensuring
replicas, and
coordinating resource
usage.

Etcd for storing cluster
state
Scheduler for workload
placement
Controllers for state
management

Cluster

A set of nodes
working together,
managed by the
control plane.

Unified networking
model Running containerized

apps across distributed
systems with load
balancing and
autoscaling.

Scalable and self-
healing
Service discovery
through DNS

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

63

C. ADVANTAGES

Microservices architecture represents a paradigm shift from monolithic design to a

more flexible and scalable approach. By breaking down applications into smaller, self-

contained services, organizations can reap significant benefits. This section explores the

key advantages of microservices architecture, including enhanced scalability, flexibility,

resilience, and maintainability.

1. Scalability

One of the most prominent advantages of microservices architecture is its ability to

scale efficiently. Unlike monolithic systems, where scaling typically involves scaling the

entire application, microservices allow for granular scaling of individual services (Dragoni

et al., 2017).

a. Granular Scaling

Microservices can be scaled independently based on their specific needs. For

instance, if a particular service experiences high demand, it can be scaled up without

affecting other services (Nadareishvili et al., 2016). This capability ensures optimal

resource utilization and improves performance during peak loads.

b. Resource Optimization

By scaling only the necessary services, organizations can optimize their resource

allocation. This targeted approach helps in managing operational costs more effectively, as

resources are not wasted on scaling components that do not require additional capacity

(Fowler & Lewis, 2014).

2. Flexibility and Agility

Microservices architecture promotes flexibility and agility in development and

deployment processes.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

64

a. Independent Development

Each microservice is developed and deployed independently, allowing different

teams to work on various services concurrently. This independence reduces dependencies

and bottlenecks associated with monolithic systems. Teams can use different technologies

and development frameworks that best fit their service requirements (Nadareishvili et al.,

2016).

b. Faster Time-to-Market

With microservices, new features and updates can be introduced more rapidly.

Since services are decoupled, changes to one service do not necessitate changes to or

redeployment of other services (Dragoni et al., 2017). This agility accelerates the

development cycle and helps organizations respond quickly to market demands and

customer feedback.

3. Resilience and Fault Isolation

Microservices architecture enhances the resilience of applications by isolating

faults and minimizing their impact.

a. Fault Isolation

In a microservices architecture, failures are contained within individual services.

This isolation prevents failures in one service from cascading to others, thereby preserving

the overall system’s stability (Fowler & Lewis, 2014). For example, if a payment

processing service fails, it does not affect other services like user management or the

product catalog.

b. Resilient Design

Microservices often incorporate resilience patterns such as circuit breakers, retries,

and fallbacks to handle service disruptions gracefully (Dragoni et al., 2017). These patterns

enable services to recover from failures and continue functioning, enhancing the overall

reliability of the system.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

65

4. Improved Maintainability

Microservices architecture simplifies the maintenance and management of

applications.

a. Modular Structure

Each microservice encapsulates a specific functionality or business capability,

leading to a modular application structure (Nadareishvili et al., 2016). This modularity

makes it easier to understand, test, and manage individual components, as changes are

localized within specific services.

b. Reduced Complexity

By breaking down a large monolithic application into smaller services, the

complexity of managing and updating the system is reduced. Developers can focus on one

service at a time, which simplifies debugging, testing, and deployment.

c. CI/CD

Microservices support CI/CD practices. Automated pipelines enable frequent and

reliable deployments of individual services, reducing the risk of introducing errors and

improving the overall quality of the application.

5. Technology Diversity

Microservices architecture allows for the use of diverse technologies and tools,

which can enhance the overall system’s performance and capabilities.

a. Technology Choices

Different microservices can be built using different programming languages,

frameworks, and databases, depending on their specific needs. This flexibility allows teams

to select the most appropriate technology stack for each service, optimizing performance

and efficiency (Fowler & Lewis, 2014).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

66

b. Innovation and Experimentation

With microservices, teams can experiment with new technologies and approaches

without impacting the entire system. This innovation fosters a culture of experimentation

and continuous improvement (Nadareishvili et al., 2016).

6. Enhanced Security

Microservices architecture can enhance the security of applications by isolating

services and managing access control more effectively.

a. Service Isolation

Each microservice operates independently, which means that security

vulnerabilities are confined to individual services rather than the entire application. This

isolation helps in minimizing the potential impact of security breaches (Dragoni et al.,

2017).

b. Granular Access Control

Microservices allow for fine-grained access control. Security policies and

authentication mechanisms can be implemented at the service level, ensuring that only

authorized users and services can access sensitive data.

7. Better Alignment with Business Domains

Microservices architecture supports DDD, which aligns the architecture with

business needs.

a. Domain Modeling

Microservices are often organized around business domains or capabilities, which

helps in creating services that are closely aligned with organizational goals and processes

(Fowler & Lewis, 2014). This alignment ensures that the architecture reflects the business

structure and facilitates more effective decision-making.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

67

b. Bounded Contexts

DDD introduces the concept of bounded contexts, where each microservice

operates within its own defined boundaries. This approach reduces ambiguity and ensures

that each service has a clear focus and responsibility (Nadareishvili et al., 2016).

8. Enhanced Developer Productivity

Microservices architecture can improve developer productivity by enabling more

efficient development practices.

a. Parallel Development

With microservices, multiple teams can work on different services simultaneously,

reducing development time and increasing productivity. Teams are not blocked by

dependencies on other parts of the application, allowing for faster progress and quicker

delivery of features.

b. Focused Expertise

Developers can specialize in specific services or technologies, leading to greater

expertise and efficiency. This specialization enhances the quality of the service and speeds

up development processes (Dragoni et al., 2017).

9. Optimized Performance

Microservices can enhance performance through various optimizations.

a. Service-Specific Optimization

Each microservice can be optimized based on its specific requirements and

performance characteristics. For example, a service handling high-throughput data

processing can be tuned for performance, while another service focused on user

interactions can be optimized for responsiveness (Fowler & Lewis, 2014).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

68

b. Efficient Resource Utilization

Microservices enable efficient resource utilization by scaling services

independently and optimizing their performance. This approach reduces resource wastage

and improves overall system efficiency.

10. Conclusion

Microservices architecture offers a range of advantages that contribute to the

flexibility, scalability, and resilience of applications. By allowing for granular scaling,

independent development, and fault isolation, microservices enhance the ability to manage

complex systems effectively. The modular structure and support for continuous integration

and deployment improve maintainability and developer productivity. Additionally, the use

of diverse technologies, enhanced security, and alignment with business domains further

highlights the benefits of microservices architecture. As organizations continue to seek

ways to improve their SW systems, microservices provide a robust and adaptable

framework for achieving these goals.

D. DISADVANTAGES

While microservices architecture offers several advantages, it also comes with its

own set of challenges and disadvantages. These can impact development, deployment, and

operational aspects of applications. This section explores the key disadvantages of

microservices architecture, including complexity, communication overhead, data

management issues, testing challenges, deployment difficulties, and increased operational

overhead.

1. Increased Complexity

Compared to monolithic systems, microservices architecture introduces significant

complexity due to the nature of managing multiple services.

a. System Complexity

Decomposing an application into numerous microservices can lead to a complex

system of interconnected services. Each service must be designed, developed, deployed,

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

69

and maintained separately, which increases the overall complexity of the system (Fowler

& Lewis, 2014). Managing dependencies and interactions between services can become

intricate, requiring careful orchestration and monitoring (Dragoni et al., 2017).

b. Operational Overhead

The complexity of managing multiple services extends to operational tasks such as

deployment, monitoring, and troubleshooting. Ensuring that all services are properly

configured, scaled, and maintained requires robust infrastructure and tools (Nadareishvili

et al., 2016). This operational overhead can be challenging for organizations without the

necessary expertise or resources.

2. Communication Overhead

Microservices architecture relies on inter-service communication, which can

introduce several types of overhead.

a. Network Latency

Services in a microservices architecture communicate over a network, typically

using HTTP/REST, gRPC, or messaging protocols. This network communication can

introduce latency compared to in-process calls within a monolithic application. Increased

latency can impact the performance of the system, particularly in scenarios in which

services need to frequently exchange data.

b. Data Serialization

Communication between microservices often involves data serialization and

deserialization, adding extra processing time and overhead. The choice of serialization

formats (e.g., JavaScript object notation [JSON], extensible markup language [XML]) can

influence performance and interoperability between services.

3. Data Management Challenges

Microservices architecture can complicate data management due to the distributed

nature of data storage and access.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

70

a. Data Consistency

Ensuring data consistency across multiple services can be challenging. Unlike

monolithic systems in which a single database manages data consistency, microservices

often require distributed data management strategies (Dragoni et al., 2017). Techniques

such as eventual consistency and distributed transactions can help address consistency

issues but may introduce additional complexity.

b. Database Fragmentation

In a microservices architecture, each service typically has its own database or data

store. This fragmentation can lead to difficulties in managing data schema changes and

ensuring data integrity across services (Nadareishvili et al., 2016). Synchronizing and

aggregating data from multiple sources can be complex and require additional tooling.

4. Testing Difficulties

Testing microservices applications presents unique challenges compared to testing

traditional monolithic systems.

a. Integration Testing

Testing interactions between multiple microservices can be more complex than

testing a monolithic application. Integration tests need to account for the interactions

between services and ensure that data flows correctly through the system (Fowler & Lewis,

2014). Managing test environments and ensuring that all services are correctly mocked or

deployed for testing can be challenging.

b. End-to-End Testing

Conducting end-to-end tests in a microservices architecture requires setting up and

managing a complex environment with multiple services. Ensuring that all services are

available and functioning correctly during testing can be difficult, particularly in

distributed environments.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

71

5. Deployment and Release Management

Deploying and managing releases in a microservices architecture can be more

complicated than doing so in monolithic systems.

a. Service Coordination

Deploying multiple services requires coordinating their release and ensuring

compatibility between versions. This coordination can be challenging, particularly when

services have interdependencies. Managing rollouts, rollbacks, and versioning of services

requires robust deployment strategies and tools.

b. Deployment Automation

Automating the deployment of multiple services requires sophisticated CI/CD

pipelines and orchestration tools. Setting up and maintaining these pipelines can be

complex and may require significant investment in infrastructure and tooling (Dragoni et

al., 2017).

6. Increased Operational Overhead

Microservices architecture can lead to increased operational overhead due to the

need for managing and monitoring multiple services.

a. Monitoring and Logging

Monitoring and logging across multiple services can be more complex than doing

so in monolithic systems. Each service needs to be instrumented for logging and

monitoring, and aggregating and analyzing logs from various services requires

comprehensive tools and practices (Nadareishvili et al., 2016). Ensuring end-to-end

visibility and diagnosing issues across services can be challenging.

b. Resource Management

Microservices often require more resources than monolithic applications do

because of microservices’ need for separate instances of each service. Managing the

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

72

deployment, scaling, and resource utilization of multiple services requires careful planning

and infrastructure management.

7. Security Concerns

Microservices architecture introduces additional security considerations when

compared to monolithic systems.

a. Attack Surface

With multiple services communicating over a network, the attack surface increases.

Each service needs to be secured individually, and the communication channels between

services must be protected (Dragoni et al., 2017). Ensuring that all services adhere to

security best practices and are protected from vulnerabilities can be challenging.

b. Authentication and Authorization

Managing authentication and authorization across multiple services requires a

robust strategy. Ensuring that users and services have appropriate access rights and that

security policies are consistently enforced can be complex (Fowler & Lewis, 2014).

8. Service Discovery and Management

Service discovery and management are essential components of microservices

architecture but can pose challenges.

a. Dynamic Discovery

In a dynamic microservices environment, services can be added, removed, or scaled

dynamically. Implementing effective service discovery mechanisms to ensure that services

can locate and communicate with each other is crucial. This dynamic nature adds

complexity to the architecture and requires reliable discovery tools.

b. Configuration Management

Managing configurations for multiple services can be complex. Each service may

have its own configuration settings, and ensuring consistency and correctness across

services requires robust configuration management practices (Nadareishvili et al., 2016).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

73

E. SUMMARY OF ADVANTAGES AND DISADVANTAGES

Table 5 summarizes the advantages and disadvantages of a microservices

architecture discussed in this section.

Table 5. Advantages and Disadvantages of Microservices Architecture

Aspect Details
Advantages

Scalability

Granular Scaling: Individual services can be scaled
independently based on their needs, optimizing resource
utilization and performance (Dragoni et al., 2017).
Resource Optimization: Targeted scaling reduces operational
costs and prevents over-provisioning (Fowler & Lewis, 2014).

Flexibility and
Agility

Independent Development: Teams can work on different
services concurrently using varied technologies (Nadareishvili et
al., 2016).
Faster Time-to-Market: Decoupled services allow rapid feature
updates without affecting other parts of the application (Dragoni
et al., 2017).

Resilience and
Fault Isolation

Fault Isolation: Failures in one service do not cascade to others,
enhancing system stability (Fowler & Lewis, 2014).
Resilient Design: Patterns like circuit breakers and retries
improve recovery and reliability (Dragoni et al., 2017).

Improved
Maintainability

Modular Structure: Clear separation of functionalities makes
understanding and managing services easier (Nadareishvili et al.,
2016).
Continuous Integration and Deployment: Automated
pipelines facilitate frequent, reliable updates.

Technology
Diversity

Technology Choices: Different services can use the most
suitable technologies, improving performance (Fowler & Lewis,
2014).
Innovation and Experimentation: Teams can test new tools or
methods without affecting the entire system.

Enhanced
Security

Service Isolation: Limits the impact of vulnerabilities to specific
services (Dragoni et al., 2017).
Granular Access Control: Fine-grained security policies ensure
tighter access management.

Alignment with
Business Domains

Domain Modeling: Services align with business processes,
enabling better decision-making (Fowler & Lewis, 2014).
Bounded Contexts: Clear boundaries reduce ambiguity and
streamline service responsibilities (Nadareishvili et al., 2016).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

74

Aspect Details

Enhanced
Developer
Productivity

Parallel Development: Teams can work on separate services
simultaneously, speeding up development.
Focused Expertise: Developers can specialize in specific
services, enhancing efficiency (Dragoni et al., 2017).

Optimized
Performance

Service-Specific Optimization: Services can be fine-tuned for
their unique requirements.
Efficient Resource Utilization: Independent scaling improves
overall system efficiency.

Disadvantages

Increased
Complexity

System Complexity: Managing multiple interconnected services
increases architectural complexity (Fowler & Lewis, 2014).
Operational Overhead: Deployment, monitoring, and
troubleshooting multiple services require robust tools and
expertise (Nadareishvili et al., 2016).

Communication
Overhead

Network Latency: Inter-service communication introduces
delays.
Data Serialization: Serialization/deserialization adds processing
overhead.

Data Management
Challenges

Data Consistency: Achieving consistency across distributed
data stores is complex (Dragoni et al., 2017).
Database Fragmentation: Managing schemas and aggregating
data from multiple databases adds overhead (Nadareishvili et al.,
2016).

Testing
Difficulties

Integration Testing: Verifying interactions between services is
challenging (Fowler & Lewis, 2014).
End-to-End Testing: Complex environments complicate
comprehensive testing.

Deployment and
Release
Management

Service Coordination: Ensuring compatibility during
deployments requires careful planning.
Deployment Automation: Setting up CI/CD pipelines for
multiple services is resource-intensive (Dragoni et al., 2017).

Increased
Operational
Overhead

Monitoring and Logging: Aggregating logs from multiple
services is complex (Nadareishvili et al., 2016).
Resource Management: Managing resources for many services
can lead to inefficiencies.

Security Concerns

Attack Surface: Increased communication channels raise
security risks (Dragoni et al., 2017).
Authentication and Authorization: Managing security across
services requires robust solutions (Fowler & Lewis, 2014).

Service Discovery
and Management

Dynamic Discovery: Ensuring that services can dynamically
locate each other is critical.
Configuration Management: Consistent and accurate
configurations across services are essential (Nadareishvili et al.,
2016).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

75

1. Conclusion

Microservices architecture, while offering significant advantages, also presents

several disadvantages that organizations need to consider. The increased complexity of

managing multiple services, communication overhead, and data management challenges

can impact development, deployment, and operational efficiency. Testing difficulties,

deployment and release management complexities, and increased operational overhead

further contribute to the challenges associated with microservices. Additionally, security

concerns, service discovery and management issues, and cultural and organizational

impacts must be addressed to successfully implement and maintain a microservices

architecture. Understanding these disadvantages is crucial for organizations to make

informed decisions about adopting microservices and develop strategies to mitigate

potential issues.

F. DEVELOPMENT OPERATIONS

DevOps, a blend of development and operations practices, aims to improve

collaboration, efficiency, and continuous delivery in SW development. When applied to

microservices architecture, DevOps practices can significantly enhance the deployment,

monitoring, and management of microservices-based systems. This section explores how

DevOps integrates with microservices architecture, detailing the key practices, benefits,

and challenges associated with this integration.

1. Introduction

DevOps is a cultural and technical movement that emphasizes collaboration

between development and operations teams to streamline the SW development life cycle.

It focuses on automating processes, improving communication, and enabling continuous

delivery and integration. The primary goals of DevOps include reducing deployment times,

increasing deployment frequency, and improving the overall quality of SW releases.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

76

a. DevOps Practices in Microservices Architecture

Microservices architecture, characterized by decomposing applications into small,

independently deployable services, benefits significantly from DevOps practices. Key

practices include the following:

(1) Continuous Integration

Continuous integration involves regularly integrating code changes into a shared

repository and running automated tests to detect integration issues early (Fowler, 2006). In

a microservices environment, continuous integration pipelines are set up for each service,

ensuring that changes are tested and integrated continuously. This practice helps maintain

the quality and stability of each microservice while enabling rapid development and

deployment.

(2) Continuous Development

Continuous development extends continuous integration by automating the

deployment of code changes to production environments (Humble & Farley, 2010). For

microservices, continuous development pipelines are designed to deploy individual

services independently, allowing teams to release updates without affecting the entire

system. This flexibility supports frequent releases and faster time-to-market.

(3) Infrastructure as Code

Infrastructure as code (IaC) involves managing infrastructure through code,

enabling automated provisioning and configuration of resources (Morris, 2016). In

microservices architecture, IaC tools like Terraform and Ansible are used to automate the

setup and management of environments for each microservice. This approach ensures

consistency across environments and simplifies scaling and maintenance.

(4) Automated Testing

Automated testing is crucial for ensuring the quality of microservices. It includes

unit testing, integration testing, and end-to-end testing. Microservices architecture requires

comprehensive testing strategies to verify the functionality and interactions of individual

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

77

services. DevOps practices emphasize the automation of these tests to detect issues early

and ensure reliable deployments.

(5) Monitoring and Logging

Effective monitoring and logging are essential for managing microservices.

DevOps practices involve implementing centralized logging and monitoring solutions to

gain visibility into the performance and health of each microservice (Morris, 2016). Tools

like Prometheus and Elasticsearch, Logstash, Kibana Stack help collect, analyze, and

visualize data from multiple services, facilitating troubleshooting and performance

optimization.

(6) Collaboration and Communication

DevOps fosters collaboration between development and operations teams, which is

crucial for managing microservices architecture. Teams work together to define service

requirements, deployment strategies, and incident response plans. This collaboration

ensures that microservices are developed, deployed, and maintained with a shared

understanding of goals and responsibilities (Humble & Farley, 2010).

2. Benefits

The integration of DevOps practices with microservices architecture offers several

benefits.

(1) Faster Time-to-Market

DevOps practices enable faster development and deployment cycles, allowing

teams to release new features and updates more quickly. In a microservices architecture,

independent deployment of services means that changes can be delivered without waiting

for the entire system to be updated. This speed enhances competitiveness and

responsiveness to market demands.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

78

(2) Improved Quality and Reliability

Automated testing and continuous integration help identify and address issues early

in the development process, reducing the risk of defects and outages in production (Beck,

2003). Monitoring and logging practices provide real-time insights into service

performance, allowing teams to detect and resolve problems proactively.

(3) Enhanced Scalability and Flexibility

IaC and automated deployment practices support dynamic scaling and management

of microservices environments. Teams can easily provision resources, scale services based

on demand, and adapt to changing requirements (Morris, 2016). This flexibility enables

organizations to handle varying workloads and optimize resource utilization.

(4) Increased Collaboration and Efficiency

DevOps practices promote collaboration between development and operations

teams, breaking down silos and improving communication. This collaborative approach

leads to more efficient workflows, faster problem resolution, and a shared understanding

of goals and processes (Humble & Farley, 2010).

3. Challenges and Considerations

While DevOps offers significant benefits, integrating DevOps with microservices

architecture also presents challenges.

(1) Complexity of Managing Multiple Services

Microservices architecture involves managing numerous services, each with its

own CI/CD pipeline, infrastructure, and dependencies. Coordinating and maintaining these

services can be complex and require robust DevOps practices and tools. Ensuring

consistent configurations and managing inter-service interactions are key challenges.

(2) Need for Advanced Tooling and Automation

Implementing DevOps practices for microservices requires advanced tooling and

automation capabilities. Setting up and maintaining CI/CD pipelines and monitoring

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

79

systems and IaC frameworks can be resource-intensive and may require specialized

expertise. Organizations need to invest in appropriate tools and training to effectively

leverage DevOps practices.

(3) Cultural and Organizational Changes

Adopting DevOps practices involves cultural and organizational changes, including

shifts in team dynamics and workflows. Organizations need to foster a culture of

collaboration, continuous improvement, and shared responsibility (Humble & Farley,

2010). Managing these changes and aligning teams with DevOps principles can be

challenging.

(4) Security and Compliance

Ensuring the security and compliance of microservices in a DevOps environment

requires careful consideration. Automated deployments and frequent changes can

introduce security risks if not properly managed. Implementing security best practices,

such as automated security testing and secure coding practices, is essential (Morris, 2016).

4. Conclusion

DevOps practices significantly enhance the management and delivery of

microservices architecture by promoting automation, collaboration, and continuous

improvement. Key practices such as CI/CD, IaC, automated testing, and centralized

monitoring contribute to faster time-to-market, improved quality, and enhanced scalability.

However, integrating DevOps with microservices architecture also presents challenges

related to complexity, tooling, cultural changes, and security. Organizations must address

these challenges to fully leverage the benefits of DevOps and achieve a successful

microservices implementation.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

80

VI. UNMANNED SURFACE VESSEL INTEGRATED COMBAT
SYSTEM: RAPID PROTOTYPING OF A MODERNIZED COMBAT

SYSTEM

In the fall of 2020, NSWC Dahlgren, Computing Infrastructure Group, was tasked

with developing and delivering prototype equipment capable of running AWS elements

and required functions to support the large unmanned surface vessel (LUSV) program. The

initial fielding of this system required GFE for the initial LUSV platform in late 2023.

Early direction from PEO IWS 80, who is the Major Program Manager (MPM) for

delivery of the LUSV / USV Integrated Combat System (ICS) focused on delivery of

computing infrastructure, and an ICS that delivered virtualized combat computer programs

and technologically relevant and modern network, processing, and storage (NPS) HW

(HW).

At the time technology Insertion 16 (TI16), a FARS based acquisition effort was

underway to supply USN surface forces with NPS. Although the HW selected for TI16 was

already near obsolescence it was not t in full rate production. In fact, by the time LUSV

fielded initial GFE in late 2023 the NPS products which made up this TI16 based

infrastructure would have been over 8 years old.

A. DEPARTMENT OF DEFENSE FEDERAL ACQUISITION
REGULATION–BASED ACQUISITIONS

Previous iterations of NPS and CI for surface USN programs, such as TI12, and

TI16, resulted in HW that was plagued by obsolescence issues and delivery of HW that

was generations old before ever reaching in-service platforms. Much of this is a byproduct

of utilizing a lengthy FAR-based acquisition system.

The DoD operates under the Federal Acquisition Regulation (FAR) framework to

procure goods and services. FAR-based acquisitions serve as the regulatory backbone for

ensuring that DoD procurement activities comply with federal laws, maintain

accountability, and achieve value for taxpayers. While the FAR framework has distinct

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

81

advantages, it also comes with limitations that may hinder efficiency and adaptability in

certain scenarios.

B. OVERVIEW OF FEDERAL ACQUISITION REGULATION–BASED
ACQUISITIONS

The DoD utilizes the FAR as the primary framework for managing acquisitions.

This system governs the procurement of goods, services, and construction to ensure

fairness, accountability, and transparency in the expenditure of public funds. However,

while the FAR provides a robust structure, it also imposes significant limitations that can

hinder efficiency, innovation, and flexibility. This document explores the core aspects of

DoD FAR-based acquisitions, highlighting their strengths and inherent challenges.

a. Key Features

(1) Transparency and Accountability

The FAR mandates stringent oversight, ensuring that procurement processes are

conducted transparently and that public funds are spent responsibly. This includes detailed

documentation, audits, and reviews to minimize the risk of fraud and abuse (GAO, 2019).

Standardized processes and regulations enhance public trust by providing clear rules for

contractors and government agencies alike.

(2) Standardization

The FAR establishes uniform procedures across federal agencies, reducing

variability and simplifying compliance for contractors. This standardization is designed to

facilitate smoother interactions between agencies and suppliers.

(3) Competition and Cost Efficiency

FAR promotes open and fair competition, enabling the government to receive better

value through competitive bidding processes. This competition often results in lower costs

and higher-quality outcomes (Fowler, 2014). • Policies such as the “lowest price

technically acceptable” (LPTA) ensure cost-effective acquisitions, though sometimes at

the expense of innovation.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

82

(4) Support for Small Businesses

FAR includes provisions to support small and disadvantaged businesses, ensuring

they have opportunities to participate in government contracts.

(5) Risk Mitigation

FAR incorporates clauses to manage risks, such as performance bonds and

termination rights, safeguarding government interests in case of contractor non-

performance.

b. Limitations

Despite its strengths, the FAR framework presents several challenges that affect the

DoD’s ability to meet its evolving needs.

(1) Complexity and Bureaucracy

The FAR’s extensive regulations and documentation requirements often lead to

administrative burdens, particularly for small businesses and non-traditional contractors

(Nadareishvili et al., 2016). Navigating these complexities requires significant expertise

and resources, which can delay procurement processes.

(2) Limited Flexibility

FAR-based acquisitions are often rigid, making it challenging to adapt to changing

requirements or emerging technologies. This rigidity is particularly problematic for fast-

paced industries like technology and cybersecurity (Dragoni et al., 2017). The focus on

compliance sometimes overshadows the need for innovation and rapid deployment.

(3) Lengthy Procurement Timelines

The structured nature of FAR processes can result in prolonged procurement cycles,

delaying the delivery of critical goods and services. This is especially problematic in

defense scenarios where timely acquisition is essential for operational readiness.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

83

(4) Innovation Challenges

FAR’s preference for proven technologies and cost efficiency often discourages

contractors from proposing cutting-edge solutions. This approach can stifle innovation

(Fowler, 2014). While alternative mechanisms like OTAs exist, their adoption within

traditional FAR systems has been limited.

(5) Inter-Service Communication Overhead

FAR-based acquisitions rely heavily on inter-agency and inter-service

coordination, which can introduce communication delays and inefficiencies (Dragoni et

al., 2017). Networked communication between services, often necessary for complex

acquisitions, increases the risk of errors and inconsistencies.

(6) Data and Cybersecurity Challenges

Managing cybersecurity across multiple contracts and vendors poses significant

challenges. While the FAR includes security provisions, emerging threats necessitate

additional frameworks.

(7) Operational and Monitoring Overhead

FAR-based systems require robust tools and practices for monitoring and auditing,

which can be resource-intensive (Fowler, 2014). Aggregating and analyzing data from

multiple contracts often necessitates advanced infrastructure, increasing costs.

c. Addressing the Limitations

(1) Adoption of Alternative Mechanisms

The DoD has increasingly turned to OTAs for flexibility in research and

development projects, allowing faster acquisition of innovative solutions (GAO, 2019).

Greater integration of these mechanisms within the FAR framework could balance the need

for accountability with the demand for agility.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

84

(2) Streamlining Processes

Simplifying compliance requirements, particularly for small businesses, can

encourage broader participation and reduce administrative burdens. Leveraging technology

to automate documentation and reporting processes can enhance efficiency.

(3) Enhanced Focus on Innovation

Introducing more flexible evaluation criteria that prioritize long-term value and

innovation over cost alone can incentivize contractors to propose advanced solutions.

Increasing investment in contractor education about FAR alternatives like OTAs can foster

a culture of innovation. Table 6 provides a summary of FARS and the limitations.

Table 6. Summary of Department of Defense Federal Acquisition
Regulation–Based Acquisitions and Limitations

Aspect Details
Key Features

Transparency and
Accountability

FAR mandates strict oversight, documentation, audits, and
reviews to ensure public funds are responsibly spent (GAO,
2019).

Standardization Uniform procedures reduce variability and simplify
compliance for contractors across federal agencies.

Competition and Cost
Efficiency

Encourages open and fair competition, leveraging policies
like LPTA for cost-effective acquisitions (Fowler, 2014).

Support for Small
Businesses

Includes provisions to ensure small and disadvantaged
businesses can access government contracts.

Risk Mitigation Incorporates clauses for performance bonds and termination
rights to safeguard government interests.

Limitations
Complexity and
Bureaucracy

Extensive regulations and documentation create
administrative burdens, especially for small businesses
(Nadareishvili et al., 2016).

Limited Flexibility Rigid processes hinder adaptation to evolving requirements
and emerging technologies (Dragoni et al., 2017).

Lengthy Procurement
Timelines

Structured procedures result in delays, impacting operational
readiness in critical scenarios.

Innovation
Challenges

Focus on proven technologies discourages cutting-edge
solutions; limited adoption of mechanisms like OTAs
(Fowler, 2014).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

85

Aspect Details
Inter-Service
Communication
Overhead

Coordination between agencies introduces delays and risks
of errors in complex acquisitions (Dragoni et al., 2017).

Data and
Cybersecurity
Challenges

Managing security across vendors poses risks; FAR includes
provisions, but emerging threats require additional
frameworks.

Operational and
Monitoring Overhead

Monitoring multiple contracts increases resource demands
and costs, requiring advanced infrastructure (Fowler, 2014).

Addressing Limitations
Adoption of
Alternative
Mechanisms

Greater integration of OTAs for flexibility in research,
development, and innovative procurement (GAO, 2019).

Streamlining
Processes

Simplifying compliance for small businesses and leveraging
automation to reduce administrative burdens.

Enhanced Focus on
Innovation

Introducing flexible evaluation criteria that prioritize long-
term value and innovation.

Contractor Education Providing education on FAR alternatives like OTAs to foster
innovative and agile procurement practices.

C. RAPID PROTOTYPING

In early 2021USV ICS CI prototyping efforts were accelerated to support initial

capability testing onboard a pair of commercial vessels adapted to deliver initial autonomy

and vessel control, and USC ICS capability and refine these critical program enablers in

the years prior to delivery of the LUSV platform. This prototyping schedule adjustment

required the delivery of ICS CI GFE HW to The Overlord Unmanned Surface Vessel

(OUSV) # 4 in October 2021. To meet this condensed design, development, and delivery

timeline the USC ICS CI team leveraged and updated existing OTA, established to rapidly

produce CI and IaaS SW suite for the Virtual Pilot Ship (VPS) prototyping effort on the

USS Monterey.

1. Use of Other Transactional Authority to Enable Speed to Acquisition

Other transactional authorities (OTAs) are a significant aspect of the United States

government’s acquisition and procurement system, particularly within the DoD. These

authorities enable the government to enter into agreements that are more flexible and less

restrictive than traditional contracts. OTAs have gained prominence in recent years due to

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

86

their ability to promote innovation, streamline the procurement process, and facilitate the

acquisition of emerging technologies.

In traditional government procurement, agencies often rely on FAR-based

contracts. These contracts are designed to provide a structured, uniform approach to

procurement but can be rigid and slow. In contrast, OTAs offer a more flexible alternative,

enabling government agencies to engage with private industry, academic institutions, and

nonprofit organizations in ways that are less encumbered by traditional federal contracting

rules.

OTAs are used primarily in situations where traditional contracts would not be as

effective, such as in areas where rapid technological advancements are required, or where

the government wants to collaborate more effectively with innovative companies or non-

traditional defense contractors. OTAs can be used for research, development,

demonstration, and prototype work.

OTAs are codified in the U.S. Code, specifically under Title 10 and Title 41, which

provide the legal basis for their use by federal agencies, particularly the DoD. These

authorities are not part of the FAR, which governs most government procurement. There

are three main types of OTAs:

• Prototype Projects: These are used primarily by the DoD to engage with

non-traditional defense contractors to rapidly develop prototype systems

and technologies.

• Research Projects: This category supports research and development

efforts, allowing agencies to work with a wide range of partners, including

universities, nonprofit organizations, and industry leaders.

• Production: These are less common and are used when the government

wishes to transition from a prototype to full production, typically after

successful demonstration and evaluation.

The primary legal authority for OTAs comes from:

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

87

• 10 U.S.C. 2371b: This statute authorizes the DoD to use OTAs for

prototypes, aiming to streamline the development process and encourage

innovation from non-traditional contractors.

• 41 U.S.C. 1901: This provides authority for broader OTA use, beyond

defense applications, to include other federal agencies.

OTAs can also be used in situations where agencies need to engage in collaborative

agreements, such as when working with industry consortia, universities, or small

businesses.

a. Types

OTAs are flexible instruments that can take different forms depending on the nature

of the project. While they all share some common features, such as their ability to allow

the government to work with a broad range of entities, there are specific distinctions

between the types of OTAs used for different purposes.

(1) Prototype Projects

OTAs for prototype projects are perhaps the most well-known and widely used type

of OTA. These authorities allow the government to engage with contractors to develop

prototypes of new technologies or systems. The use of OTAs for prototyping is particularly

significant in the defense sector, where the pace of technological advancement is fast, and

traditional procurement processes may not be well-suited to fostering innovation.

• Purpose: The primary purpose of OTAs for prototypes is to enable rapid,

flexible, and cost-effective development of innovative solutions. These

OTAs allow the government to work with non-traditional defense

contractors who may not have experience with government contracts, but

who possess the technical expertise to develop novel systems or

technologies.

• Advantages: OTAs for prototypes allow the government to avoid the

lengthy and often cumbersome processes associated with traditional

contracts. They provide greater flexibility in terms of cost-sharing,

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

88

intellectual property rights, and other terms of the agreement. This

flexibility is crucial when working with emerging technologies or

companies that may have unique requirements or constraints.

• Collaboration with Non-Traditional Contractors: A significant feature

of prototype OTAs is their ability to facilitate collaboration with non-

traditional defense contractors. The DoD has recognized that non-

traditional contractors, such as small businesses, startups, and companies

from outside the defense industry, often bring innovative solutions to the

table. However, traditional procurement processes can discourage these

entities from engaging with the government due to their complexity and

rigid requirements.

• Example: An example of an OTA for prototype development is the

DoD’s engagement with small technology companies to develop new SW,

drones, or advanced sensors that can be used in combat scenarios.

(2) Research Projects

Research-focused OTAs provide a framework for government agencies to engage

with a wide range of entities, including universities, nonprofit research institutions, and

private industry, to support scientific research and technological development.

• Purpose: These OTAs are primarily used to fund research projects that

are designed to advance knowledge in specific fields, such as aerospace

engineering, cybersecurity, or biotechnology. The government can

leverage the expertise of academic and private sector institutions to

explore new technologies, scientific theories, and experimental designs.

• Flexibility in Terms: OTAs for research projects can offer more

flexibility than traditional grants or contracts. The terms of these OTAs are

negotiated based on the specific research objectives and can be tailored to

meet the needs of both the government and the research institution. The

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

89

agreements are less prescriptive than traditional contracts, allowing for

greater innovation and experimentation.

• Collaboration with Academia: One of the key advantages of OTAs for

research projects is that they enable the government to tap into the

research capabilities of universities and academic institutions. These

institutions may not typically engage in government contracts, but an OTA

allows them to collaborate on research that aligns with their academic

goals while meeting government needs.

• Example: The government may use an OTA to fund a research project at

a university focused on developing new artificial intelligence techniques

for cybersecurity.

(3) Production

OTAs for production are used less frequently but are important when a government

agency wants to transition from prototype development to full-scale production.

• Purpose: These OTAs allow for the production of goods or services that

are initially developed under a prototype OTA. After successful

demonstration and evaluation, the government can use an OTA to scale up

production, particularly when traditional procurement processes would be

too slow or rigid to meet the demand.

• Collaboration with Industry: OTAs for production can be used to

engage with traditional defense contractors, as well as non-traditional

manufacturers who are capable of scaling production quickly. These

agreements provide flexibility in terms of cost-sharing, intellectual

property, and other factors that might otherwise hinder production under a

traditional contract.

• Example: If a prototype for a new unmanned aerial vehicle (UAV) is

successfully demonstrated, the DoD may enter into an OTA for production

to scale up manufacturing and deploy the UAV to military units.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

90

b. Advantages

OTAs provide several key advantages, particularly in fostering innovation,

accelerating the procurement process, and enabling the government to work with a broader

range of organizations. These benefits have made OTAs an increasingly popular choice for

federal agencies, especially the DoD.

(1) Flexibility

One of the main advantages of OTAs is their flexibility. Unlike traditional

contracts, which are subject to the FAR, OTAs offer the ability to negotiate terms and

conditions that are tailored to the needs of the project. This includes greater flexibility in

how funds are allocated, how intellectual property is managed, and the specific deliverables

that are required.

(2) Encouraging Innovation

OTAs are particularly beneficial in encouraging innovation. The traditional

government procurement process is often slow and bureaucratic, which can stifle

innovation and discourage companies from proposing cutting-edge solutions. In contrast,

the flexibility provided by OTAs allows the government to engage with startups, small

businesses, and non-defense companies that might have the technical expertise to develop

groundbreaking technologies but may lack the experience or resources to navigate the

traditional procurement system.

The ability to engage with a broader range of contractors also means that the

government can access the latest technological advances, such as artificial intelligence,

cybersecurity, and quantum computing, much faster than with traditional contracts.

(3) Reduced Administrative Burden

OTAs can reduce the administrative burden on both the government and

contractors. Traditional contracts often require extensive documentation, compliance

checks, and reporting, all of which can slow down the procurement process. With OTAs,

the administrative requirements are less burdensome, which means that agreements can be

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

91

negotiated and executed more quickly. This reduces the time it takes for the government to

access new technologies and capabilities, which is critical in rapidly evolving fields like

defense and cybersecurity.

(4) Promoting Collaboration

OTAs facilitate collaboration between the government and a wide range of entities,

including non-traditional defense contractors, small businesses, universities, and research

institutions. These collaborations can lead to innovative solutions that might not have

emerged from more traditional government-contractor relationships. By working with

diverse partners, the government can ensure that it is leveraging the full range of expertise

and resources available in the private sector and academia.

c. Disadvantages

Despite their many advantages, OTAs also present challenges and limitations.

These can include concerns related to competition, cost control, and ensuring that the

government’s interests are protected.

(1) Lack of Competition

One of the primary concerns with OTAs is that they may not always promote

competition. Since OTAs are negotiated agreements rather than open bidding processes,

there is a risk that a small number of contractors could be repeatedly awarded OT

agreements without sufficient competition. While OTAs can be used in cases where

competitive bidding is impractical or unnecessary, there is a need for safeguards to ensure

that competition is maintained in cases where it is feasible.

(2) Cost Control

While OTAs offer flexibility, they can also pose challenges in terms of cost control.

Traditional contracts typically have well-defined pricing structures and requirements for

cost control, whereas OTAs are negotiated agreements that may not have the same level of

cost transparency. This can lead to challenges in monitoring and controlling costs,

especially for larger or more complex projects.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

92

(3) Lack of Oversight and Accountability

Because OTAs are not subject to FAR, they can sometimes lack the level of

oversight and accountability that is built into traditional procurement processes. This can

lead to concerns about the effectiveness and efficiency of OTA-based projects, particularly

when dealing with large sums of taxpayer money. It is essential to have mechanisms in

place to ensure that OT agreements are properly managed, and that the government is

getting value for expenditures..

(4) Complexity in Implementation

While OTAs provide flexibility, they also require skilled contracting officers and

project managers who are familiar with the unique characteristics of OTA agreements. The

lack of familiarity with OTAs in some government agencies can make it difficult to

effectively implement these authorities, particularly in situations where rapid procurement

is needed.

d. Conclusion

OTAs represent a critical tool in modernizing government procurement processes,

particularly within the DoD. By offering greater flexibility, encouraging innovation, and

streamlining the procurement process, OTAs enable the government to work more

effectively with industry to delivery technologically relevant HW and SW to pace

emerging threats and mature new defense concepts like the USV ICS CI. Table 7

summarizes the key aspect of an OTA.

Table 7. Summary of Other Transaction Authorities in the Department of
Defense Procurement System

Aspect Details
Introduction OTAs provide a flexible alternative to FAR-based contracts,

allowing rapid innovation and streamlined procurement processes.
Purpose Facilitate collaboration with private industry, academia, and non-

profits for research, prototyping, and production.
Legal
Framework

Codified under Title 10 and Title 41 of the U.S. Code, with key
statutes like 10 U.S.C. 2371b for prototypes and 41 U.S.C. 1901 for
broader applications.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

93

Aspect Details
Types

Prototype
Projects

Focuses on developing innovative prototypes. Enables rapid
development, cost-sharing flexibility, and collaboration with non-
traditional contractors.

Research
Projects

Supports research and development with flexible terms. Often
engages universities and research institutions for advancing
scientific knowledge.

Production Used to transition from prototype to full production, especially
when traditional procurement is too slow or rigid.

Advantages
Flexibility Tailored agreements allow negotiated terms, including cost,

intellectual property, and deliverables.
Encouraging
Innovation

Engages startups, small businesses, and non-defense contractors to
bring cutting-edge technologies to government projects.

Reduced
Administrative
Burden

Fewer documentation and compliance requirements compared to
FAR contracts, expediting agreements.

Promoting
Collaboration

Facilitates partnerships with diverse entities, leveraging expertise
from industry, academia, and research institutions.

Rapid
Procurement

Accelerates access to emerging technologies, critical for fast-
evolving fields like defense and cybersecurity.

Challenges and Limitations
Lack of
Competition

Negotiated agreements may reduce competitive bidding, increasing
the risk of awarding contracts to a narrow pool of contractors.

Cost Control Limited transparency in negotiated pricing structures can
complicate monitoring and controlling costs.

Lack of
Oversight

Absence of FAR regulations may reduce accountability, creating
risks for inefficiencies and waste.

Implementation
Complexity

Requires skilled contracting officers familiar with OTA
agreements, which can be a challenge in certain agencies.

2. Use of Other Transactional Authority in Unmanned Surface Vessel
Integrated Combat System Computing Infrastructure Prototyping

In early 2021 an addendum statement of work (SOW) was written and ratified to

design, develop, deliver, and integrate into USV prototyping vessels a USV ICS CI based

on the latest available NPS HW and IaaS SW products. Needing to deliver the USV ICS

CI HW/IaaS suite to a developmental lab at the NWSC-Dahlgren in advance of the October

2021 In Yard Need Date for ICS GFE this rapid prototyping OTA required delivery of

these systems 6 months after design.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

94

3. Summary and Key Aspects of the Unmanned Surface Vessel
Integrated Combat System Other Transactional Authority Statement
of Work

Current USN combat management systems are highly complex, outdated, and

tightly linked to specific HW, creating costly and cumbersome upgrades. Existing

paradigms lead to inefficient HW use, redundancy, and logistical challenges. An IaaS

solution is required to address these issues, enabling scalable, modular, and efficient

computing infrastructure. This solution must support dynamic allocation of compute and

storage resources, function in isolated environments, and meet specific USN CS

requirements.

The contractor must adopt an agile development methodology, enabling iterative

learning and adaptation to meet future CS requirements. Collaboration with USN personnel

is essential for integration, validation, and system refinement.

a. Develop an IaaS Prototype Framework

• Scalable and upgradable infrastructure that decouples HW from SW.

• Support remote management and initialization in low-bandwidth,

disconnected environments.

• Consolidate current cabinet configurations into a maximum of three air-

cooled cabinets for NPS with a UPS system.

b. Support CSs

• Enable operation of AWS and Tomahawk Weapon System (TWS).

• Address challenges of unmanned CS computing infrastructure.

c. Technical Focus Areas

• Modular and open-architecture design to maximize use of COTS HW.

• Ensure infrastructure is secure and supports multi-tenant service

environments.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

95

• Provide UPS configurations for operational sustainability during power

loss.

d. General and Technical Requirements Prototype Development

• Develop CI cabinets for the LUSV and land-based operations.

• Design UPS systems to support operations during power loss for various

durations (e.g., 15 minutes to 48 hours).

• Incorporate advanced remote initialization and management features.

e. Studies and Prototyping

• Investigate technologies for remote operation, intrusion detection, and

anti-tamper measures.

• Explore modular HW designs for efficient CI refresh cycles.

f. Deliverables

• USV ICS CI / IaaS Suites.

• Interface Control Document, Software Production Specification (SPS),

Bill of Materials (BOM), and final technical reports.

• Training materials for users and administrators.

g. Post-Delivery Support

• Technical support for troubleshooting, maintenance, and validation of

delivered systems.

4. Small Empowered Teams to Enable Speed to Design, Development,
Delivery, and Ship Integration

To meet the challenging timeline for the USV ICS CI prototyping and fielding

effort, a small team approach was adopted. A government team consisting of 4 CS and CI

experts with experience with previous CI development initiatives, extensive shipboard and

ship integration, Technical Data Package (TDP) development, mechanical, reliability, and

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

96

USN CS maintenance backgrounds was formed. This small team partnered with a handful

of industry experts within the OTA organization to meet program objectives. The

a. Benefits and Drawbacks of a Small Team Approach to Technology
Project Development

The approach to technology project development has evolved significantly over the

years. While large teams were historically the norm for handling complex projects, the

small team approach has gained popularity due to its unique advantages. However, it is not

without its challenges. This section explores the benefits and drawbacks of a small team

approach to technology project development, providing a comprehensive analysis of its

impact on project success, innovation, and efficiency.

Benefits of a Small Team Approach

b. Enhanced Communication

One of the most significant advantages of small teams is the ease of

communication. With fewer members, it is simpler to align objectives, share updates, and

resolve misunderstandings. Team members can quickly exchange ideas, leading to more

effective collaboration and faster decision-making. This streamlined communication is

particularly beneficial in technology projects, where rapid iterations and adaptability are

often required.

c. Agility and Flexibility

Small teams are inherently more agile than larger ones. They can adapt to changes

in project requirements, pivot strategies, and implement new ideas with minimal

bureaucratic delays. This flexibility is especially valuable in technology projects that

operate in fast-paced or uncertain environments, such as startups or emerging technologies.

d. Greater Accountability

With fewer individuals, each team member has a clearer understanding of their

responsibilities and a greater sense of ownership over their tasks. This heightened

accountability can lead to higher-quality work, as team members are directly invested in

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

97

the success of the project. Moreover, it reduces the likelihood of tasks being neglected or

overlooked.

e. Cost-Effectiveness

Smaller teams typically require fewer resources, making them a cost-effective

option for organizations. Reduced staffing means lower salaries, fewer tools and SW

licenses, and smaller physical workspaces. For technology projects with limited budgets,

this cost efficiency can be a deciding factor in choosing the small team approach.

f. Improved Innovation and Creativity

Small teams foster closer relationships and a more intimate work environment,

which can encourage open discussions and creative problem-solving. Team members are

more likely to contribute ideas, challenge assumptions, and experiment with innovative

solutions. This dynamic is crucial for technology projects that rely on breakthrough

innovations.

g. Faster Decision-Making

Decision-making processes in small teams are typically less bureaucratic than in

larger teams. With fewer layers of approval and less need for extensive consultation, small

teams can make decisions more quickly. This speed can be critical in technology projects,

where time-to-market often determines success.

5. Drawbacks of a Small Team Approach

a. Limited Expertise and Resources

A smaller team means fewer people to bring diverse skills and perspectives to the

table. Technology projects often require specialized knowledge in areas like SW

development, cybersecurity, and data analysis. A small team may lack the breadth of

expertise needed to address complex challenges, potentially leading to slower progress or

lower-quality outcomes.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

98

b. Higher Workload for Team Members

In small teams, each member must handle a larger share of the workload. This can

lead to burnout, decreased morale, and reduced productivity over time. High workloads

can also make it challenging for team members to dedicate time to skill development or

long-term strategic planning.

c. Risk of Knowledge Silos

With fewer individuals, knowledge about specific aspects of the project may

become concentrated in just one or two people. If these individuals leave the team or are

unavailable, critical knowledge gaps can arise, jeopardizing the project’s progress and

continuity.

d. Vulnerability to Disruptions

Small teams are more vulnerable to disruptions caused by unexpected events, such

as illness, personal emergencies, or turnover. Losing even a single team member can have

a significant impact on the team’s ability to meet deadlines and maintain productivity. The

small team assembled for USV ICS CI were enabled to focus solely on this development.

e. Challenges in Scaling

While small teams excel in handling focused, short-term projects, they may struggle

to scale their efforts as project demands grow. Larger, more complex technology projects

may require additional personnel, infrastructure, and coordination, which small teams may

find difficult to manage effectively.

f. Dependence on Individual Performance

In a small team, the performance of each member has a disproportionately large

impact on the overall success of the project. If one member underperforms or fails to

deliver, it can significantly hinder the team’s progress. This dependence can create added

pressure and stress for individual members.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

99

Table 8. Assessing Small Team Approached to Project Success

Benefits and Drawbacks of a Small Team Approach
Category Benefits Drawbacks

Communication
Streamlined, fosters
collaboration, quicker
decision-making

Risk of over-reliance on few
channels, potential for echo
chambers

Agility and
Flexibility

Quickly adapts to changes
and new ideas

May lack resources to handle
rapid or large-scale shifts

Accountability Clear ownership and high
responsibility

Pressure on individuals,
potential for overwork

Cost-Effectiveness Fewer resources needed High risk if critical skills or
tools are missing

Innovation and
Creativity

Close-knit team dynamics
foster ideation

Limited external perspectives
may hinder diverse or
groundbreaking innovations

Resilience Quick recovery from small-
scale issues

Vulnerable to major disruptions
or key member losses

6. Understanding the Requirement

In order to move fast and deliver the relevant capability required, it is crucial and

foundational to understand the requirements of the system being developed. Effective

requirements definition is essential for ensuring that a system aligns with operational needs

and delivers desired capabilities. In military systems, requirements serve as the foundation

for system design, development, and testing, and provide a clear roadmap for engineers

and developers, guiding the system architecture and design. By accurately defining system

requirements, the USN can ensure that it is developing a system that meets operational

goals, such as mission readiness, interoperability, and survivability.

Furthermore, a clear set of well-documented requirements is instrumental in

minimizing project risks. Without proper requirements, projects often experience scope

creep (where the scope of the project expands beyond the original plan) and cost overruns

and delays as changes to the design are needed as a fuller understanding of the requirements

are gained. These risks are particularly significant in the development of defense systems,

like the USV ICS CI, where budget constraints and tight timelines were present. The ability

to track and manage requirements throughout the system development life cycle ensures

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

100

that these risks are mitigated. Clear requirements also foster better communication among

all stakeholders involved in the system’s development.

a. Key Components of Requirements Definition

The process of requirements definition in systems development involves several

key components, including functional and non-functional requirements, technical

specifications, stakeholder engagement, and comprehensive documentation.

(1) Functional Requirements

These specify what the system must do. For instance, in the case of a naval CS,

functional requirements would outline the system’s ability to detect, track, and engage

enemy targets (Defense Acquisition University, 2010). Functional requirements define the

core capabilities and tasks the system must accomplish to support operational missions.

(2) Non-functional Requirements

These focus on how the system performs its functions. They may address

performance attributes such as system reliability, response time, availability, and security

(Ward & McCune, 2018). Non-functional requirements ensure that the system not only

performs its tasks but does so in a manner that meets the USN’s standards for efficiency,

safety, and security.

(3) Technical Specifications

These describe the detailed technical aspects of the system, including HW, SW,

interfaces, and performance thresholds (Department of the Navy, 2020). Technical

specifications are necessary to ensure that the system integrates with existing infrastructure

and meets specific operational constraints, such as environmental conditions or power

consumption limitations.

(4) Stakeholder Involvement

Effective requirements elicitation involves gathering input from all relevant

stakeholders, including military personnel, contractors, end users, and subject matter

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

101

experts. Stakeholder engagement is essential for capturing the full spectrum of system

needs, from operational capabilities to technical specifications.

(5) Documentation and Traceability

All requirements must be carefully documented and managed throughout the

system development life cycle. Traceability refers to the ability to track each requirement

from its origin to its implementation and testing (Defense Acquisition University, 2010).

This ensures that no requirement is overlooked and that any changes to the system can be

properly analyzed and evaluated.

b. Challenges in Requirements Definition

While the importance of requirements definition is clear, the process is not without

its challenges. Some of the common difficulties in defining requirements for military

systems include:

(1) Ambiguity and Lack of Clarity

Requirements that are vague or poorly defined can lead to confusion during system

development. Ambiguous language can result in misinterpretation of system objectives,

causing delays and rework (Ward & McCune, 2018). In the context of the USN, where

operational needs can be complex and dynamic, precise language is essential.

(2) Conflicting Stakeholder Interests

Different stakeholders often have different priorities. For example, military

personnel may emphasize operational capability, while engineers might focus on system

performance and technical feasibility.

(3) Changing Requirements

As system development progresses, new requirements may emerge, or existing

ones may need to be revised due to changes in technology, mission needs, or budget

constraints. Managing changes to requirements can be challenging, especially in large,

complex defense projects (Defense Acquisition University, 2010).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

102

(4) System Complexity

Modern naval systems are highly complex, integrating numerous technologies,

platforms, and operational domains. This complexity makes it difficult to capture all

system requirements accurately. Additionally, systems must be designed to withstand

evolving threats, which requires a high level of flexibility in the requirements definition

process (Department of the Navy, 2020).

c. Methodology of Requirements Definition

During the early prototype phase of the USV ICS CI development, the requirements

were still emerging. By thoroughly analyzing the requirements of previous AWS and ICS

CI systems, the team was able to derive a comprehensive set of requirements that allowed

the development to progress. The approach adopted for the USV ICS CI involved ensuring

that it met all functional and performance requirements of the AWS, while modernizing

the HW and form factor of core components. Additionally, the team incorporated a

virtualization platform to support the modernization of application SW. This combination

of approaches provided the team with a practical and achievable set of requirements,

enabling them to meet the compressed development timelines.

7. Best Practices for Navy System Prototyping

The DoD Prototyping Guidebook serves as a comprehensive resource for defense

acquisition professionals, providing guidance on the effective use of prototyping within the

DoD’s acquisition framework. Prototyping is a critical tool in reducing technical risk,

refining requirements, validating designs, and accelerating the delivery of capabilities to

the warfighter. This section summarizes the material and guidance contained in this

guidebook.

a. Purpose and Scope

The guidebook emphasizes the strategic value of prototyping in fostering

innovation and ensuring technological superiority. It outlines best practices for planning,

executing, and transitioning prototypes, aiming to enhance decision-making and program

outcomes across various acquisition pathways.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

103

b. Key Concepts

Prototyping involves creating a preliminary version of a system or component to

evaluate feasibility, explore design options, and identify potential issues before full-scale

development.

c. Types of Prototypes

• Technology Demonstrators: Showcase new technologies to assess their

maturity and integration potential.

• Operational Prototypes: Developed to evaluate system performance in

operational environments.

• Risk Reduction Prototypes: Address specific technical or integration

risks to inform development decisions.

d. Prototyping Objectives

• Risk Mitigation: Identify and address technical uncertainties early in the

acquisition process.

• Requirements Refinement: Inform and validate user requirements

through iterative development.

• Technology Maturation: Advance the readiness levels of critical

technologies.

• Concept Exploration: Assess alternative solutions to meet mission needs.

e. Prototyping Process

(1) Planning

• Define Objectives: Clearly articulate the goals and success criteria for the

prototype.

• Stakeholder Engagement: Involve end users, technical experts, and

decision-makers to ensure alignment.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

104

• Resource Allocation: Secure necessary funding, personnel, and facilities.

(2) Execution

• Design and Development: Employ agile methodologies to iteratively

build and refine the prototype.

• Testing and Evaluation: Conduct assessments to measure performance

against objectives.

• Documentation: Maintain detailed records of design decisions, test

results, and lessons learned.

(3) Transition

• Assessment: Evaluate the prototype’s success in meeting objectives and

its potential for further development.

• Decision-Making: Determine the appropriate path forward, whether

transitioning to a program of record, additional prototyping, or

termination.

• Integration: Plan for the incorporation of successful prototypes into

existing systems or new acquisition programs.

f. Best Practices

• Early and Continuous User Involvement: Engage end users throughout

the prototyping process to ensure the solution meets operational needs.

• Iterative Development: Adopt flexible development approaches that

allow for rapid iteration and incorporation of feedback.

• Risk Management: Continuously identify, assess, and mitigate risks to

prevent issues from escalating.

• Collaboration: Foster partnerships with industry, academia, and other

government agencies to leverage diverse expertise and resources.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

105

• Metrics and Evaluation: Establish clear metrics to assess prototype

performance and inform decision-making.

g. Challenges and Considerations

• Resource Constraints: Balancing limited resources while pursuing

multiple prototyping efforts.

• Transition Planning: Ensuring successful prototypes are effectively

integrated into acquisition programs.

• Intellectual Property: Navigating IP rights to facilitate collaboration and

future development.

• Regulatory Compliance: Adhering to acquisition regulations while

maintaining flexibility in prototyping efforts.

h. Conclusion

The DoD Prototyping Guidebook underscores the importance of prototyping as a

strategic tool in defense acquisition. In the development of USV ICS CI prototype the team

considered these factors, and the OTA was structured to support these objectives.

Table 9. Department of Defense Guidance Summary on Prototype Systems

Category Key Points
Purpose
and Scope

Provides guidance on effective use of prototyping to foster innovation,
reduce risks, and ensure technological superiority in defense acquisition.

Prototyping
Definition

Creation of preliminary system versions to evaluate feasibility, explore
design options, and address potential issues.

Types of
Prototypes

Technology Demonstrators: Assess new technologies.
Operational Prototypes: Evaluate system performance in real
environments.
Risk Reduction Prototypes: Mitigate technical or integration risks.

Objectives

Mitigate technical risks.
Refine user requirements.
Mature critical technologies.
Explore alternative solutions.

Prototyping
Process

Planning: Define objectives, engage stakeholders, allocate resources.
Execution: Design iteratively, test, document outcomes.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

106

Category Key Points
Transition: Evaluate success, decide on next steps, and integrate into
programs.

Best
Practices

Engage users early and continuously.
Use iterative development approaches.
Identify and mitigate risks continuously.
Collaborate with industry, academia, and agencies.
Define clear metrics for evaluation.

Challenges

Balancing limited resources.
Effective transition planning.
Managing intellectual property.
Ensuring regulatory compliance.

Conclusion
Prototyping is a strategic tool for innovation and risk reduction.
Following the guidebook enhances decision-making and accelerates
capability delivery.

8. Deliver an Excess Capability to Support Development and
Redundancy for Reliability

The USV ICS CI development marked the first time an AWS based CS was

deployed in a virtualized environment. The development team, to ensure that CI capability

could support CS SW development the decision was made to deliver excess capacity.

Long-term plans for prototype iteration leading to final system designed included

assessment of end item SW capacity requirements, coupled with redundant capacity to

support maintenance free operating time, to “right size” the system prior to production. The

nature of the USV ICS CI as an unmanned platform was also considered when designing

the system.

The “Reliability and Maintainability Engineering Guidebook” addresses the

concept of designing reliability through redundancy as a key principle for ensuring that

systems are capable of maintaining their functionality and performance despite potential

failures of individual components. Redundancy is widely employed in systems engineering

to increase the reliability and availability of systems, especially in critical applications such

as aerospace, defense, telecommunications, and industrial processes. This section

summarizes what the guidebook says about designing reliability through redundancy.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

107

a. The Role of Redundancy in Reliability Engineering

Redundancy involves incorporating extra components or systems into the design to

take over the function of failed components, thus preventing the entire system from failing

when one part malfunctions. It is one of the primary strategies to enhance system reliability

and ensure continuous operation.

In reliability engineering, redundancy is often used in mission-critical systems

where system failure can result in catastrophic consequences. The guidebook emphasizes

that the goal of redundancy is to improve the system’s mean time between failures (MTBF)

and availability.

b. Types of Redundancy

The guidebook outlines different types of redundancy, each tailored to address

specific needs of reliability and maintainability in a system:

(1) Active Redundancy

In active redundancy, multiple components or systems perform the same function

simultaneously. If one component fails, the others continue to function without disruption.

• Example: In an aircraft, active redundancy might involve having two

engines where both engines operate simultaneously, and if one fails, the

other takes over the entire load. Both engines are continuously in

operation, sharing the load, which maximizes operational reliability.

• Advantages: The system continues to operate normally even when a

failure occurs, resulting in high system availability.

• Disadvantages: Active redundancy can increase system weight,

complexity, and energy consumption, as additional components must be

constantly operating.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

108

(2) Standby Redundancy

Standby redundancy involves having backup components or systems that are idle

during normal operations but are automatically activated when the primary component

fails.

• Example: A backup battery in an uninterruptible power supply (UPS) is

an example of standby redundancy. The backup battery is not active

during normal operations, but when the primary power source fails, the

battery activates to maintain operation.

• Advantages: Standby redundancy is less costly and more energy-efficient

than active redundancy, as backup systems are only used when needed.

• Disadvantages: There is often a delay in response time when a failure

occurs, and the standby systems may not always activate properly,

especially if they have not been maintained or tested regularly.

(3) Cold Redundancy

Cold redundancy refers to backup components that are only activated in the event

of a failure, but unlike standby redundancy, they are not immediately available. These

components need some time to be brought online after a failure occurs.

• Example: A spare part stored in a warehouse that can be deployed after a

component fails is an example of cold redundancy.

• Advantages: It is the most cost-effective redundancy strategy, as it does

not require additional active components or systems.

• Disadvantages: There is a significant delay in bringing the backup system

online, which can impact system performance and reliability in a real-time

failure situation.

c. Design Considerations for Implementing Redundancy

The guidebook provides several important considerations when designing

redundancy into a system.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

109

(1) Redundancy Allocation

The process of deciding which parts of the system to make redundant and to what

extent is critical. The guidebook stresses that redundancy should be applied strategically to

the most critical components or subsystems that, if failed, would cause the system to stop

functioning. Overuse of redundancy can lead to unnecessary complexity and increased

costs.

• Failure Mode and Effects Analysis: Failure mode and effects analysis is

often used to identify critical components that should be designed with

redundancy. These components are those whose failure would cause

significant degradation or total failure of the system.

• Reliability Centered Maintenance (RCM): When designing

redundancy, the guidebook emphasizes incorporating RCM practices to

ensure that redundant components are appropriately tested, maintained,

and monitored. The redundant systems must be regularly exercised or

tested to ensure they will function correctly when needed.

• Probability of Failure: When designing redundancy, engineers should

account for the probability of failure of the components and systems in

question. Redundant components should not increase the probability of

failure due to issues such as common mode failures. For example, if

redundant components share a common power supply, a failure in the

power supply could lead to a failure in both components simultaneously,

defeating the purpose of redundancy.

• Cost-Effectiveness: The guidebook highlights the importance of

balancing the cost of redundancy with the level of reliability required for

the system. Redundancy increases both initial design costs and operational

costs (e.g., maintenance). Therefore, a trade-off analysis should be

conducted to determine the optimal level of redundancy based on the

system’s reliability requirements, operational environment, and risk

tolerance.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

110

• Design Complexity: Adding redundant components to a system increases

the complexity of the design. The more complex a system becomes, the

harder it is to manage, troubleshoot, and maintain. Redundant systems

must be carefully designed to integrate smoothly with the rest of the

system while minimizing additional complexity. The guidebook stresses

that engineers must ensure that the added redundancy does not

inadvertently reduce the overall reliability of the system due to increased

system complexity.

• Redundancy and System Availability: The concept of availability is

critical when designing reliability through redundancy. Availability is a

measure of the system’s readiness for operation, and redundancy is often

employed to ensure high availability. The guidebook explains that

redundant components can significantly improve the Mean Time to Repair

(MTTR) because backup systems can be quickly brought online when a

failure occurs.

• MTBF: Redundancy increases the mean time between failures by

ensuring that the failure of one component does not result in total system

failure.

• MTTR: Redundant systems can be swapped in quickly, reducing

downtime and minimizing the time needed to restore the system to full

functionality.

• System Availability (A): This is typically calculated using the formula:

 A = MTBFMTBF + MTTRA = MTBF + MTTRMTBF.

Redundancy plays a major role in improving system availability by decreasing the impact

of component failures on the overall system.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

111

(2) Redundancy in Critical Systems

The guidebook places particular emphasis on the use of redundancy in critical

systems, where failure could result in loss of life, severe damage to property, or large-scale

system failures. For these systems, high reliability design through redundancy is essential.

(3) Common Mode Failures and Redundancy Design

A critical aspect of designing reliability through redundancy is avoiding common

mode failures. The guidebook discusses how redundancy can be compromised if redundant

systems are vulnerable to the same failure modes. For example, if two power supply

systems are designed with the same components (e.g., the same battery type), they may

both fail at the same time under certain conditions. To prevent common mode failures,

redundancy must be designed with diversity. This could mean:

• Using different manufacturers for redundant components.

• Using different power sources for each redundant system.

• Ensuring that redundant components are not housed in the same

environment where a single event could cause failure in both systems.

d. Conclusion

The “Reliability and Maintainability Engineering Guidebook” emphasizes that

redundancy is a fundamental design principle for ensuring system reliability, particularly

in critical applications. The use of redundancy helps to mitigate risks associated with

component failure, enhance system availability, and reduce the impact of downtime.

Redundancy is not a one-size-fits-all solution; its implementation must be tailored

to the specific needs of the system, the operational environment, and the risk tolerance of

the organization. Therefore, designing reliability through redundancy is an essential, yet

nuanced aspect of creating high-performance, fault-tolerant systems.

In prototyping the USV system the decision to deliver systems that meet the worst

case capacity for both development and redundancy enabled confidence that the system

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

112

would meet the requirements and enable lessons learned to drive the “Right Sizing” of the

system before production.

9. Use of the Newest Commercial Hardware and Infrastructure/
Platform as a Service Software

In the modern defense landscape, the need for advanced computing and network

capabilities is paramount to ensuring mission success. For the USV program the ability to

procure cutting-edge technology quickly, flexibly, and efficiently was critical.

A central tenant of the USV OTA, and the following IWS X ICS, is continual

iteration with next in breed HW. This approach is an innovative method for procuring

modern computing and network HW, as well as IaaS.

The award of the OTA to an industry team assesses the viability of the HW/SW

solutions presented to meet current requirements. In the awarded contract vehicle for USV

ICS CI systems continual assessment of market solutions is a core activity which ensures

that a system will continue to iterate and integrate the newest components.

10. Make it Work: Integrate

Utilizing the OTA for delivery of USV ICS CI HW and IaaS ensured that we could

deliver relevant solutions in six months vice 6–8 years. While use of the OTA limits the

developer to the solutions awarded in the OTA SOW it enables the team to focus all energy

on the design of the assembled components and integration to deliver a workable solution.

While more traditional acquisition processes would include lengthy product

selection processes, complete with often years long assessments, the USV OTA process

allowed the small development team to focus on “Make Work” and schedule. Knowing

that the solutions being delivered were modern and backed by considerable commercial

fielding and utilization, the team focused on the key development features, confident that

the underlying HW/SW supported system requirements.

These key system requirements were:

• USV computing infrastructure leverages OTA efforts to deliver modern

capability in NPS equipment suites.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

113

• USV ICS CI provides IaaS to tactical virtualized CS’s applications.

• 3 Processing Cabinets and an UPS System.

• USV Prototype 1 systems, delivered in 8U modularity, will refresh

incrementally as Prototype 2 and ICS CI development efforts bring system

iteration leading to modular capability refresh ad infinitum.

• Prototype 1 CI is built on VPS Inc. I HW and IaaS products.

• PCIe based NTDS, Aegis Time Processors (ATP), Gyro Data Converters

(GDC), Vertical Launch Processor (VLP).

• Prototype 1 CI supports AWS, SCS, CaaS, and TWS applications in a VM

or container environment.

• Prototype 1 efforts to address:

• System security and wiping of SW upon intrusion.

• Positive firing chain control with non-resident actuation (given that

solution resides in the VLP vice VLS).

• Remote maintenance and HW management strategy and functionality.

USV ICS CI systems were delivered meeting the GFE need dates to OUSV 4.

Features of the OTA procurement included delivery of the cables needed to connect the

USV ICS CI as well as site integration support from the industry OTA team. The decision

was made to use members of the Government and OTA team to perform the integration of

these systems at both the shore sites and onboard OUSV 4.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

114

Figure 8. Unmanned Surface Vessel Integrated Combat System Computing

Infrastructure Installed on Overlord Unmanned Surface Vessel 4

11. Assess and Iterate

The USV ICS CI successfully delivered three prototype 1 systems within 6 months

of OTA SOW ratification. These systems, fielded on OUSV 4 and shore development sites,

provided a wealth of data to support development of follow-on systems.

One significant benefit of the decision to deliver systems that meet the worst case

capacity for development and redundancy was the ability in the development environment

to utilize all of the system capacity, utilizing the SDN capabilities of the IaaS SW Plane,

to run multiple instantiations (tenancies) within the CI. This enabled developers to run

“many” USV platforms simultaneously supporting development of the system to allow

identification and definition of USV key performance parameters (KPP). Specifically,

exercising these KPPs, enabled by initial system design, are providing insight into operator

workstation demands and the maximum number of USVs that a controlling unit can

manage.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

115

These KPPs, and the ability to provide systems in prototype that support an

understanding of the systems and systems’ behaviors and automation needed to meet them,

is critical to unmanned programs.

KPPs are critical elements of a capability solution required to meet operational

goals and mission effectiveness. In the context of the USN, KPPs are specific performance

attributes that a system must meet to fulfill its role within naval operations. These

parameters ensure that new systems and platforms align with the strategic goals and

operational requirements of the USN.

a. Key Aspects of USN KPPs

KPPs are measurable, testable, and specific capabilities or characteristics that are

essential for the system to perform its intended mission. Failure to meet a KPP typically

renders the system unacceptable for deployment.

(1) Alignment with Operational Requirements

KPPs are derived from top-level requirements documents, such as the Initial

Capabilities Document (ICD) and the Capabilities Development Document (CDD). These

documents outline what the USN needs to achieve in terms of warfighting, readiness, and

sustainment. KPPs in the USN are often categorized to ensure comprehensive system

performance. Some common categories include:

• Force Protection: Ensuring the survivability of naval platforms and

personnel.

• Sustainment: Addressing the life cycle management of systems,

including logistics, maintenance, and reliability.

• Net-Ready: Ensuring interoperability and secure communications within

the USN’s networks and with joint/coalition forces.

• Energy Efficiency: Ensuring that platforms optimize fuel and energy use

to support sustained operations.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

116

• Weapons System Effectiveness: Ensuring the system can meet offensive

and defensive mission requirements.

The USN adheres to several mandatory KPPs set by the Joint Staff to ensure

interoperability and integration within joint military operations. These include:

• Survivability: Systems must withstand and function in contested

environments.

• Net-Ready: Systems must integrate seamlessly with joint networks and

ensure effective data exchange.

• Force Protection: Systems must provide adequate protection for

personnel and equipment.

(2) Mission Success

KPPs are directly tied to the USN’s ability to perform its missions, such as sea

control, power projection, and maritime security.

(3) Acquisition and Testing

KPPs are integral to the DoD’s acquisition process. They are used to evaluate

system performance during developmental and operational testing.

(4) Risk Mitigation

By defining KPPs early in the development process, the USN can identify and

mitigate risks, ensuring that systems meet mission-critical requirements.

(5) Accountability

KPPs provide a clear benchmark for evaluating contractor performance and holding

vendors accountable for delivering systems that meet the USN’s operational needs.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

117

12. Development and Deployment of Unmanned Surface Vessel
Integrated Combat System Computing Infrastructure Prototype 2

The USV program, using lessons earned in the initial USV ICS CI development,

produced a second iteration to support USV program objectives and the T&E site needs.

One key feature of the new OTA-based ICS paradigm is the immediate iteration to the

newest in breed HW. Diverging from past CI development efforts where lifetime buys of

HW would be made to maintain a consistent baseline, USV ICS CI fielded and integrated

new HW, proving the transparency and abstraction of the HW from CS applications.

A key benefit of this continual iteration was the ability to reduce the HW footprint,

delivering the same capacity with fewer physical servers, due to technological increases in

storage and CPU core densities.

13. Conclusion

In 2020, NSWC Dahlgren Computing Infrastructure Group was tasked with

developing prototype equipment for USV ICS CI fielding of a virtualized AWS to support

the LUSV program. The effort aimed to deliver modernized computing infrastructure and

NPS HW, emphasizing virtualized combat SW and advanced technologies. Early guidance

from PEO IWS 80 highlighted the need for rapid, technologically relevant solutions for

maritime operations.

14. Challenges in Legacy Procurement Approaches

Developing the LUSV ICS faced significant hurdles due to limitations in the FAR-

based acquisition process, which governs DoD procurement. Legacy systems like

Technology Insertions 12 and 16 often suffered from HW obsolescence, with components

outdated before deployment. For example, TI16 infrastructure scheduled for LUSV

deployment in 2023 was already eight years old, hindering the USN’s ability to field

cutting-edge solutions.

15. Addressing Limitations

The DoD has turned to OTAs for greater flexibility in research and development,

enabling rapid prototyping and innovation. Streamlining compliance processes and

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

118

fostering contractor education further enhances participation and efficiency. Prioritizing

long-term value over cost efficiency incentivizes advanced solutions.

16. Lessons from Large Unmanned Surface Vessel Integrated Combat
System Development

Key takeaways include the necessity of agile procurement strategies, a small team

approach, and integrating modernization efforts to address obsolescence. Exploring

alternatives like OTAs ensures timely delivery of cutting-edge systems, supporting the

USN’s operational relevance and readiness.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

119

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

120

VII. INTEGRATED COMBAT SYSTEM: GATEWAY TO MODERN
SPEED TO CAPABILITY

The ICS was a concept with technical basis established by a white paper written by

Dr. Alvin Murphy. This whitepaper established the foundation for initial estimates based

on historical timelines and general budget requests for ICS HW and SW work.

This chapter summarizes the ICS-CMS Conceptual Reference Model, as articulated

by Dr. Murphy (Murphy, 2022). This summary covers key aspects like system components,

subsystems, integration, and advanced technologies used within the system. The model is

a framework that ensures the development of cohesive, flexible, and highly effective CSs

for modern naval environments.

1. Introduction

a. Purpose

An ICS is designed to enable seamless integration and interoperability between

various combat components such as sensors, weapon systems, communication channels,

and decision-making systems. It enhances situational awareness, response times, and the

overall combat effectiveness of naval forces by ensuring that all subsystems within a ship

or a fleet are interconnected and working in sync. The ICS approach ensures that all

elements of the CS work together, eliminating redundancies, optimizing resource usage,

and improving operational outcomes.

b. Core Features

• Modularity: ICS systems are modular in nature, meaning that new

technologies or systems can be integrated into existing platforms without

significant overhaul. This is crucial for ensuring that combat systems can

evolve over time.

• Interoperability: The system ensures that various subsystems

communicate effectively, allowing multiple platforms or fleets to operate

together, regardless of technological differences.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

121

• Adaptability: As new threats, technologies, and operational needs

emerge, the ICS can be updated or adapted to meet these requirements.

Figure 9. Integrated Combat System Common Core Concept. Source:

Murphy (2022).

2. Combat Management System Overview

a. Role of CMS in ICS

The CMS is the heart of the ICS. It is responsible for the central processing of data,

coordination of weapon systems, and providing operators with a unified operational

picture. CMS integrates various combat components, including sensors (radar, sonar, etc.),

decision support systems, and weapons control systems, into a single, cohesive entity. The

CMS is the interface through which operators interact with the system, making it essential

for successful combat operations.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

122

b. Core Functions

• Sensor Data Processing and Fusion: The CMS collects raw data from a

wide range of sensors (radar, infrared, sonar, etc.) and processes it to

provide a coherent and actionable operational picture. This data fusion

process ensures that operators have access to real-time information for

decision-making.

• Threat Detection and Assessment: The CMS continuously evaluates the

sensor data to detect and classify potential threats. By using advanced

algorithms and AI-based techniques, the system can prioritize threats

based on urgency, severity, and likelihood.

• Weapon System Control: The CMS manages the engagement of

weapons, coordinating the targeting, firing, and reloading processes. It

ensures that the most appropriate weapon system is selected for a given

target.

• Decision Support: The CMS supports decision-making by providing tools

and algorithms to assess various options based on the current combat

situation. It ensures that operators can make well-informed decisions

under pressure.

3. Key Components of the Conceptual Reference Model

This section outlines the essential components that make up the Conceptual

Reference Model for an ICS-based CMS. These elements work together to provide the

necessary functionality for modern combat systems.

a. Sensor Integration

• Multi-sensor Systems: The model advocates for integrating multiple

types of sensors to provide redundant, accurate, and comprehensive

situational awareness. This includes radar, sonar, infrared sensors, electro-

optical sensors, and other environmental sensing equipment.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

123

• Sensor Fusion: The fusion of data from these diverse sensors allows the

CMS to build a comprehensive, multi-dimensional picture of the

environment. Redundancy ensures that even if one sensor fails, others can

compensate.

• Real-time Data: The integration of real-time data from all sensors ensures

that the system responds dynamically to changing combat conditions,

making it vital for modern warfare scenarios.

b. Data Fusion and Processing

• Real-Time Processing: The CMS processes raw data from sensors in real-

time. Algorithms and computational models are used to identify, track,

and assess potential threats and targets.

• Artificial Intelligence (AI) and Machine Learning: AI and machine

learning models are used to enhance the accuracy of data fusion. These

technologies enable the CMS to continuously learn and adapt based on

changing operational contexts and evolving threats.

• Threat Prioritization: Data fusion algorithms help the system prioritize

threats, focusing on the most imminent or dangerous targets. This is

crucial for managing multiple engagements simultaneously.

c. Decision Support and C2

• C2 Subsystems: The C2 subsystem ensures communication between

different units and facilitates decision-making processes. It allows

commanders to issue orders, share information, and coordinate actions

across various units within a fleet.

• Real-time Operational Picture: A unified operational picture, derived

from fused sensor data, is displayed to operators and commanders,

assisting them in making informed decisions quickly.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

124

• Automated Decision-Making: In complex scenarios, the CMS can

provide automated recommendations for actions. These recommendations

are based on pre-programmed decision trees, predictive models, and real-

time analysis.

d. Weapon Systems Management

• Weapon Selection: Based on the nature of the threat and the available

resources, the CMS selects the most appropriate weapon system (e.g.,

missiles, torpedoes, guns) for engagement.

• Targeting and Engagement: The CMS coordinates targeting processes,

ensuring that weapons are accurately aimed and fired at the right moment.

• Multi-Layered Defense: In certain scenarios, multiple weapon systems

may be used in tandem (e.g., a ship’s close-in weapon system for defense

against incoming missiles, while a longer-range system targets air or

surface threats).

e. Human-Machine Interface

• Operator Interface: The human-machine interface (HMI) is the interface

through which operators interact with the system. It provides visual

displays, alarms, and controls that allow operators to monitor and control

the system.

• Usability: Ensuring that the HMI is intuitive is crucial for effective system

operation. Operators should be able to process critical information and

make decisions rapidly, even under stress.

• Situational Awareness: The HMI provides operators with a clear picture

of the environment, including real-time status updates and mission-critical

information, ensuring situational awareness during combat.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

125

Figure 10. Murphy Integrated Combat System Concept. Source: Murphy (2022).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

126

f. Modularity and Scalability

• Modular Design: The system is built to be modular, meaning individual

subsystems (sensors, weapons, communication systems) can be replaced,

upgraded, or expanded as new technologies become available.

• Scalability: The modular nature of the ICS allows it to scale across

different platforms, from individual ships to entire fleets. This scalability

ensures the system can be adapted for different mission sizes and

complexities.

• Future-Proofing: The model is designed with future technologies in

mind, ensuring that future upgrades can be seamlessly integrated without

the need for major system redesigns.

4. Integration of Advanced Technologies

a. AI Microservices

• AI in Decision Support: AI microservices are integrated into the CMS to

enhance decision support capabilities. AI algorithms can assess combat

scenarios, predict enemy actions, and provide recommendations for

countermeasures.

• Autonomous Decision-making: In some cases, the system can make

autonomous decisions based on predefined parameters, helping to reduce

operator load and increase reaction speed.

• Predictive Analytics: AI can analyze historical data and operational

patterns to predict future outcomes, giving commanders a tactical

advantage.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

127

b. Cybersecurity

• Threat Detection: As combat systems become more interconnected,

cybersecurity becomes a critical consideration. The model includes strong

cybersecurity measures to protect the ICS from cyber-attacks.

• Data Integrity: Ensuring the integrity of the sensor data and

communication channels is vital to prevent manipulation or corruption of

critical information.

• Resilience: The system is designed to maintain operational capability even

in the event of a cyber-attack, ensuring that backup protocols and

redundancies are in place.

5. System-of-Systems Engineering Approach

a. System Integration

• Holistic Design: The ICS-CMS model follows a system-of-systems

approach, recognizing the interdependencies between subsystems. A

failure in one subsystem could potentially compromise the entire system,

so all components must work in harmony.

• Interoperability: The system is designed to ensure that various

subsystems, regardless of their manufacturer or technological basis, can

communicate and operate together seamlessly.

• Joint Operations: By integrating systems across different platforms and

services (e.g., Navy, Army, Air Force), the ICS model supports joint

operations, improving overall coordination and effectiveness.

b. Complexity Management

• Decomposition of Systems: To manage the complexity of modern combat

environments, the system is decomposed into smaller, manageable

subsystems. This approach ensures that the overall system remains

adaptable and maintainable.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

128

• Integration Challenges: One of the challenges faced in system

integration is ensuring that all components are compatible with one

another and can be effectively managed by a central CMS.

6. Challenges and Considerations

a. Resource Constraints

The integration of multiple systems and advanced technologies requires significant

resources in terms of time, funding, and technical expertise. Effective resource allocation

is crucial for successful implementation.

b. Human Factors

• Operator Training: Ensuring that operators are adequately trained to use

the CMS efficiently is crucial for the system’s success.

• User Experience: The system’s HMI design must be optimized for user

experience, minimizing cognitive overload and reducing the chance of

operator error.

c. Life Cycle Management

Managing the life cycle of the system, from initial design to decommissioning,

requires careful planning and support. Maintenance, upgrades, and replacements must be

considered at all stages of the system’s life.

7. Conclusion

The ICS-CMS Conceptual Reference Model by Alvin Murphy presents a robust

and adaptable framework for modern combat management. By focusing on integration,

modularity, real-time data processing, and advanced technologies like AI, the model

ensures that naval combat systems can meet the challenges of modern warfare. Through

effective system design, integration of multiple subsystems, and adaptability to future

needs, the ICS model provides a comprehensive approach to enhancing combat capabilities

across naval platforms.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

129

This conceptual reference model highlights the critical importance of system

integration, decision support, and scalability, while also addressing challenges such as

resource constraints, cybersecurity, and the complexity of modern combat environments.

Ultimately, this framework enables the creation of highly effective, adaptable, and future-

proof combat systems that can operate across a range of mission scenarios.

The ICS-CMS Conceptual Reference Model, as articulated by Dr. Alvin Murphy,

provides a comprehensive framework for understanding and developing modern naval

combat systems. This model emphasizes the integration of various subsystems to create a

cohesive and efficient combat management environment.

Table 10. Summarizing the Integrated Combat System Concept

Section Key Points

1. Introduction

ICS integrates various combat components such as sensors,
weapons, and communication systems.
Provides seamless interoperability for operational effectiveness.
Enhances situational awareness and combat effectiveness.

Core Features

Modularity: Allows for easy integration of new technologies.
Interoperability: Ensures smooth communication across
platforms.
Adaptability: Can evolve with emerging threats and technologies.

2. CMS

The CMS is the central hub for processing data, coordinating
weapons, and aiding decision-making.
Integrates sensors, weapons, and decision support systems.
Provides operators with a unified operational picture.

Core Functions
of CMS

Sensor Data Processing: Collects and processes raw data from
various sensors.
Threat Detection and Assessment: Uses AI to classify and
prioritize threats.
Weapon Systems Control: Manages engagement of weapon
systems.
Decision Support: Assists operators with decision-making under
pressure.

3. Key
Components of
the Model

Sensor Integration: Integrates multiple sensors for accurate,
redundant situational awareness.
Data Fusion and Processing: Uses advanced algorithms for real-
time analysis.
Weapon Systems Management: Manages weapon selection and
targeting.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

130

Section Key Points
HMI: Provides operators with intuitive controls for effective
system interaction.
Modularity and Scalability: Ensures system can be upgraded and
adapted for different platforms.

4. Integration of
Advanced
Technologies

AI Microservices: Enhances decision support and automates
decision-making processes.
Cybersecurity: Protects against cyber threats and ensures data
integrity.

5. System-of-
Systems
Approach

Emphasizes integration of subsystems for overall operational
effectiveness.
Supports joint operations between various military branches.
Focus on interoperability and scalability across platforms.

Challenges and
Considerations

Resource Constraints: Need for significant resources (funding,
time, expertise).
Human Factors: Ensures effective operator training and intuitive
interface design.
Life cycle Management: Focus on maintenance, upgrades, and
system longevity.

6. Conclusion

The ICS-CMS model enables a cohesive, adaptable, and scalable
approach to modern naval combat.
Focuses on integrating advanced technologies, AI, and real-time
data processing.
Ensures future-proofing through modular design and system
integration.

B. TECHNICAL STRATEGY

To further the ICS vision concepts were put into appropriate forms to generate N96

interest and drive to the vision. The team established a rough breakdown with HW and SW

as the Foundry and Forge, respectively. These teams moved quickly to implement build

and development environments using an Agile CS methodology of establishing Objectives

and Key Results (OKRs) for Planning Intervals (PIs) (3-4 months). While the OKRs helped

to guide the initially quick steps the general vision needed more definition. The team wrote

the Now, Next, Later, technical strategy.

This strategy established two entities as key enablers of the ICS concept, The Forge

and the Foundry. Articulated throughout multiple USN guidance documents. The strategy

outlined in Now, Next, Later (NAVSEA 2022) presents a phased approach to modernizing

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

131

and integrating CSs for naval operations. It emphasizes evolving towards a unified ICS to

enhance warfighting capabilities, maintain technological superiority, and adapt to

emerging threats.

1. Now: Immediate Actions

The Now phase focuses on addressing urgent needs and setting the foundation for

future advancements:

• Incremental Modernization: Updates to current CSs to enhance

operational readiness, using existing infrastructure and technology.

• Platform-Specific Capabilities: Maintaining platform independence

while optimizing CSs for individual ship classes.

• Interoperability: Ensuring seamless integration between legacy and new

systems to enable joint operations and data sharing across platforms.

2. Next: Mid-Term Goals

The “Next” phase builds on the foundation laid in the Now phase by transitioning

to a more integrated and flexible CS architecture:

• Modular Open Systems Approach (MOSA): Implementing modular and

open architectures to increase adaptability, reduce costs, and facilitate

technology upgrades.

• Virtualization and Containerization: Adopting SW virtualization to

improve resource efficiency and support rapid deployment of capabilities.

• Improved Cybersecurity: Enhancing resilience against emerging cyber

threats through robust security frameworks.

3. Later: Long-Term Vision

The “Later” phase focuses on achieving the fully realized ICS:

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

132

• Integrated Fleet-Wide Capabilities: Moving from platform-centric

systems to a cohesive, networked fleet where all platforms share CS data

in real-time.

• Autonomy and AI: Leveraging artificial intelligence and autonomous

systems to enhance decision-making, reduce operator workload, and

improve mission outcomes.

• Continuous Modernization: Establishing an agile, iterative development

process to ensure the ICS evolves in response to future threats and

technological advancements.

To achieve the strategic goals of the fully modularized CMS four key ICS phases

have been identified in the ICS Strategic Vision [Office of the Chief of Naval Operations

(OPNAV), 2022] to gauge the maturity of ICS definition, development, fielding, and

support across these three epochs. These key phases are:

1. ICS Foundation: A portion of a CMS subdomain with refactored SW

functions in the form of services (i.e., some legacy functionality strangled

out) organized by common ICS architecture with cyber resilient

subdomain enclaves (e.g., CMS, element), running atop an IaaS and PaaS

infrastructure to bring new/improved warfighting capability.

2. ICS Enabled: Portions of multiple CMS subdomains with refactored SW

functions in the form of services, organized by common ICS architecture

with a cyber resilient enclave (e.g., full CS enclave), running atop an IaaS

and PaaS infrastructure to bring multiple new/improved operational

capabilities (Note: this is where the “ICS Tipping Point” is expected to be

achieved.)

3. ICS Node: Multiple CMS subdomains with fully refactored SW functions

in the form of services, organized by common ICS architecture with cyber

resilient enclaves (e.g., platform and netted level), running atop an IaaS

and PaaS infrastructure to bring new multiple new/improved operational

capabilities.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

133

4. ICS Fully Realized: All CMS subdomains have refactored SW functions

in the form of services for all CMS subdomains, organized by common

ICS architecture with (platform- and netted level) cyber resiliency,

running atop an IaaS and PaaS infrastructure to bring multiple new/

improved operational capabilities.

a. Key Principles

• Agility: The strategy emphasizes flexibility to adapt to changing

operational and technological environments.

• Interoperability: Ensuring seamless communication across platforms and

allies.

• Cost-Effectiveness: Reducing life cycle costs through modular design and

efficient acquisition processes.

• Scalability: Supporting diverse mission requirements through adaptable

systems.

b. Key Enablers

The Forge is a DoD initiative focused on revolutionizing SW development and

delivery for defense systems. Spearheaded by the USN, the Forge operates as a SW factory,

leveraging modern development practices and technologies to produce high-quality,

mission-critical applications with speed and efficiency.

c. Core Objectives

The Forge Software Factory aims to address key challenges in traditional defense

SW development, including lengthy delivery cycles, limited flexibility, and challenges in

integrating emerging technologies.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

134

(1) Accelerated Development and Deployment

Using Agile and DevSecOps methodologies, The Forge emphasizes continuous

integration, testing, and delivery to reduce the time required to deliver SW to operational

platforms.

(2) Scalability and Adaptability

The Forge focuses on producing modular, scalable solutions that can be easily

adapted to evolving mission requirements, ensuring long-term relevance and usability.

(3) Cybersecurity Embedded in Development

Security is integrated into every phase of the SW life cycle (DevSecOps), ensuring

robust defenses against cyber threats from the outset.

(4) Cross-Platform Interoperability

Building SW with a MOSA to ensure compatibility across diverse systems and

platforms within the USN and joint forces.

d. Development Methodology

The Forge Software Factory aims to address key challenges in traditional defense

SW development, by use of modern methods.

(1) Agile Practices

The Forge adopts Agile principles, breaking projects into smaller, iterative sprints

that enable faster delivery of incremental capabilities and better responsiveness to changing

requirements.

(2) DevSecOps Integration

By embedding security and operations within the development process, The Forge

ensures that SW is secure, operationally reliable, and deployable in real world

environments.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

135

(3) Cloud-Native Technologies

The Forge relies on cloud infrastructure to facilitate rapid scaling, resource

optimization, and easier collaboration across teams.

(4) Automation Tools

Leveraging automation for testing, deployment, and monitoring reduces human

error, accelerates timelines, and ensures consistency.

4. Key Achievements

a. Reduced Development Cycles

The Forge has significantly shortened the time needed to develop and deploy

applications, moving from years under traditional models to months or even weeks.

(1) Enhanced Cyber Resilience

With security integrated into development, Forge-produced applications meet

stringent DoD cybersecurity standards.

(2) Operational Software Delivery

The Forge has delivered tools for critical mission areas such as maritime operations,

autonomous systems, and data analytics, showcasing its capability to support cutting-edge

defense technology.

b. Strategic Importance

(1) Rapid Response to Emerging Threats

The Forge enables the USN to quickly adapt to shifting operational environments

by rapidly developing and deploying new capabilities.

(2) Cost Efficiency

By modernizing development practices, The Forge reduces the financial burden

associated with traditional waterfall-style SW development.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

136

(3) Collaborative Ecosystem

The Forge promotes collaboration between government, industry, and academia,

fostering innovation and leveraging expertise across sectors.

C. THE FOUNDRY: U.S. NAVY HARDWARE FACTORY

The Foundry is a USN initiative designed to streamline the design, production, and

delivery of cutting-edge HW systems for naval operations. Similar to the Forge Software

Factory, which focuses on SW, the Foundry aims to modernize and accelerate the USN’s

approach to HW development, ensuring warfighters have access to the most advanced and

reliable systems to meet emerging challenges.

1. Core Objectives

The Foundry addresses inefficiencies and limitations in traditional HW

procurement and development by focusing on the key objectives outlined here.

a. Rapid Prototyping and Deployment

• Emphasizes the quick design, testing, and fielding of HW prototypes to

meet urgent operational needs (Department of the Navy [DON], 2021).

• Reduces the development-to-deployment timeline using modular and

additive manufacturing techniques (DON, 2021).

b. Standardization and Modularity

• Implements a MOSA to ensure HW components are interoperable across

platforms and can be easily upgraded or replaced (Office of the Under

Secretary of Defense for Acquisition and Sustainment [OUSD(A&S)],

2020).

c. Integration with Software Development

• Synchronizes HW development with SW capabilities from initiatives like

The Forge to ensure seamless performance in complex systems (DON,

2021).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

137

d. Scalability and Sustainability

• Focuses on designing HW scalable for various platforms, including

surface ships, submarines, and unmanned systems.

• Uses sustainable materials and processes to align with environmental and

long-term operational goals (DON, 2021).

e. Cost Efficiency

• Reduces costs through advanced manufacturing techniques, streamlined

supply chains, and efficient resource allocation (DON, 2021).

2. Key Features

a. Advanced Manufacturing

• Employs 3D printing and additive manufacturing to produce complex

components quickly and cost-effectively (Defense Innovation Unit, 2020).

• Enables on demand production, reducing inventory needs and minimizing

logistical challenges.

b. Agility in Design and Production

• Utilizes Agile methodologies for iterative HW development, allowing

rapid adaptation to changing requirements (DON, 2021).

• Shortens the design cycle through digital engineering and simulation tools

(OUSD(A&S), 2020).

c. Cybersecurity for Hardware Systems

• Ensures HW components are resistant to tampering and cyber threats,

integrating security measures into every stage of the design and production

process (DON, 2021).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

138

d. Collaborative Development

• Partners with industry and academia to leverage the latest research and

innovations in HW technology (Defense Innovation Unit, 2020).

e. Data-Driven Decision-Making

• Uses advanced analytics and digital twin technology to optimize designs,

predict maintenance needs, and improve life cycle management

(OUSD(A&S), 2020).

3. Key Achievements

a. Prototyping Success

• Delivered prototypes for USVs, including ruggedized computing HW and

sensor systems, within compressed timelines (DON, 2021).

b. Fleet-Wide Modernization

• Contributed to upgrading aging combat systems by replacing obsolete HW

with modern, modular components (OUSD(A&S), 2020).

c. Enhanced Readiness

• Improved operational readiness by producing HW systems that integrate

seamlessly with existing platforms and SW systems (DON, 2021).

d. Supply Chain Resilience

• Built more resilient supply chains by adopting domestic manufacturing

capabilities and reducing reliance on foreign suppliers (Defense

Innovation Unit, 2020).

4. Strategic Importance

The Foundry is crucial to ensuring the USN can maintain technological superiority

and operational readiness in an era of rapid technological advancement. Key benefits are

outlined here.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

139

a. Adaptability to Emerging Threats

• By enabling rapid prototyping and deployment, the Foundry allows the

USN to respond quickly to new challenges in the maritime domain (DON,

2021).

b. Innovation Ecosystem

• Encourages innovation through collaboration with industry and academic

institutions, driving the development of next-generation HW.

c. Life Cycle Optimization

• Extends the lifespan of critical systems by ensuring HW can be easily

upgraded and maintained over time (OUSD(A&S), 2020).

d. Force Multiplier

• Enhances the USN’s overall combat effectiveness by providing high-

quality, interoperable HW systems that meet the demands of modern

warfare (DON, 2021).

Table 11. The Forge Software Factory versus The Foundry Hardware
Factory

Aspect The Forge The Foundry

Focus
Revolutionizing SW
development and delivery for
defense systems.

Streamlining the design,
production, and delivery of
advanced HW systems.

Core
Objectives

Accelerated development using
Agile and DevSecOps.

Rapid prototyping and deployment.

Modular, scalable solutions. Standardization through MOSA.
Cross-platform interoperability. Integration with SW systems.

Development
Methodology

Agile practices for iterative
progress.

Agile methodologies for HW
design.

DevSecOps integrating security
throughout development.

Advanced manufacturing (e.g., 3D
printing).

Cloud-native technologies. Data-driven decision-making using
digital twin technology.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

140

Aspect The Forge The Foundry
Automation for testing and
monitoring.

Key Features

Continuous integration, testing,
and deployment.

Modular, upgradable designs.

Robust cybersecurity embedded
in the life cycle.

Cybersecurity measures in HW
systems.

Automation-driven efficiency. Collaboration with industry and
academia.

Achievements

Reduced development cycles
from years to months or weeks.

Delivered HW prototypes for USVs
within compressed timelines.

Enhanced cyber resilience. Upgraded aging combat systems
with modern components.

Delivered SW for autonomous
systems, maritime ops, and
analytics.

Improved supply chain resilience.

Strategic
Importance

Rapid response to emerging
threats.

Enhanced adaptability to emerging
threats.

Cost-efficient development
practices.

Life cycle optimization with
scalable, sustainable designs.

Collaboration ecosystem for
innovation.

Force multiplier in combat
effectiveness.

The Forge and the Foundry are key pillars in the USN’s modernization strategy,

driving digital transformation and HW innovation. The Forge exemplifies Agile,

DevSecOps, and cloud-based practices to deliver efficient, secure, and adaptable SW

solutions, serving as a model for military-wide application. Complementing this, The

Foundry focuses on developing cutting-edge, flexible, and secure HW, ensuring the USN

maintains technological superiority in an evolving global security landscape. Together,

they align with initiatives like the ICS to redefine how defense capabilities are developed

and sustained in the 21st century.

D. ARCHITECTURE

With architectures, workflow process, and development environments established

the USN team has set-off to refine initial schedules and cost estimates based on realized

Forge SW development progress and the newly awarded systems engineering (SE) and

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

141

systems integration (SI) contract. The SE/SI contract is a key enabler to Forge and SW

refactoring activities

1. Architecture Strategy

The PEO IWS (2024) ICS, CS Re-Architecture Strategy and Approach strategy

document outlines goals, cornerstones, and an approach to build a common CMS on a

modern services-based architecture. This document states, as the ICS Re-architecture Goal,

“By FY28, our goal is to completely phase out heritage CSs by 100% re-architecting to a

unified ICS” (PEO IWS 2024). ICS architecture while continuously deploying hybrid ICS

configurations across IaaS-equipped Surface Platforms” (PEO IWS 2024).

The core result of ICS architecture and re-architecture efforts is a CMS which

provides combat direction capability through the management and deconfliction of sensor

and weapon tasks within the combat system. The CMS provides for the integration of multi-

warfare area displays, track pictures, and decisions. Additionally, the CMS provides an

integrated assessment of platform readiness to complete assigned missions (PEO IWS 2024).

The ICS-CMS is inclusive of infrastructure, display, planning, C2, training, and

element interface SW. This CMS provides force-level functions to services necessary to

coordinate information and effects across the force. Guiding the ICS-CMS architecture are

five cornerstones. Table 7–3 summarizes the architecture cornerstones.

Table 12. Cornerstones of Combat Management System Modernization

Cornerstone Key Focus Objectives and Features

1. Software
Agility

Delivering capabilities
rapidly at the “speed of
relevance.”

Reduce resource, build, test, and delivery
timelines for upgrades.
Modular, loosely coupled SW functions for
easy updates.
Enable over-the-air updates.

2. Tactical
Automation

Enhanced decision-
making using AI, ML,
and visualization.

Common data understanding through
ontologies and common data models.
Develop ICS-based reference architecture for
consistent automation.
Update interfaces for AI use.
Upgrade once, proliferate widely.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

142

Cornerstone Key Focus Objectives and Features
3. Single
CMS
“Core”

Unified CMS
integration across all
ship classes.

Standardize user interfaces to reduce training
needs.
Leverage UX/UI best practices for usability.

4. Seamless
C2ISR&T
Integration

Integrating C2ISR&T
data.

Multi-level security for seamless data
sharing.
Reference architectures for C4I and CS
integration.
Enable actionable tactical insights.

5. Combat
System-of-
Systems

Connecting multiple
ships’ sensors and
effectors into a unified
Combat SoS.

Real-time situational awareness for decision-
making.
Access and control data across all ICS nodes.
IoT-style architecture for distributed
operations and cybersecurity.

The re-architecture approach follows a Refactor, Rehost, and Re-Write strategy. In

the PEO IWS ICS document these activities are defined as:

• Refactor: Modernize existing code in place to improve how the code

works, without changing what the code fundamentally does. This includes

applying the strangler pattern and implementing Facades, reorganizing the

code and other code improvements, wrapping that code in VMs,

establishing external APIs as necessary, and carry-in the VMs into the new

architecture. Migration directly to containers is also possible but depends

on the degree of modernization of the code, and may require additional

effort beyond what would be required to host in VMs (PEO IWS ICS

2024).

• Rehost: Wrap existing code in VMs, establishing external APIs as

necessary, and carry-in the VMs into the new architecture. Rehosting code

associated with a function (or functions) does not change the code itself, it

focuses on wrapping it so that it can be extracted and carried-in to the new

architecture (PEO IWS ICS 2024).

• Greenfield Re-Write: A re-write of the code associated with a function

based on the intent of the original function. This can also be accomplished

by pulling in a 3rd party solution that satisfies the function. The results in

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

143

either case are new applications hosted in containers compliant with the

ICS architecture (PEO IWS ICS 2024).

• Greenfield New: New function(s) written from scratch required as part of

the ICS architecture that do not exist in heritage CS architectures today.

These may be driven by technology advancements or ICS requirements

beyond those of heritage systems. This can also be accomplished by

pulling in a 3rd party solution that satisfies the function. Similar to

greenfield re-write, the results in either case are new applications hosted in

containers compliant with the ICS architecture.

Figure 11provides an overview of the ICS Re-architecture (PEO IWS ICS 2024).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

144

Figure 11. Integrated Combat System Heritage Code Re-Architecture Approach. Source Program Executive Office,

Integrated Warfare Systems–Integrated Combat System (2024).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

145

2. Services-Based Architecture

With ICS processes in place and a high level architecture established, the USN team

developed a next level breakdown (ICS service-based architecture) of the system which

was led by an external consultant in conjunction with ICS SMEs to help eliminate legacy

CS bias.

The resultant notional ICS service-based architecture is expected to grow and

change as solution white papers are developed, transforming legacy architectures into a

modern containerized set of services for the CMS. Figure 12 provides this notional outline

of the reallocation of legacy Aegis and SSDS functions into a services-based architecture.

Figure 12. Mapping Legacy Combat System Code to a Service-Based

Architecture

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

146

To better assess the size of the effort to refactor two codebases into a common ICS

the USN team leveraged the detailed Software Requirements of Aegis and SSDS. At the

Software Requirement Specification, or B5, level the team identified Capability Building

Blocks (CBBs). CBBs have a history with CS development dating to ~2012 with Aegis BL

9.2 development under the Advanced Capability Build 2016 (ACB-16) program. CBBs are

further used on existing BL9 development, BL10, FFG, and other development efforts.

By breaking the refactoring effort into CBBs the team can “tackle” the services-

based refactoring by addressing groups of services needed to perform an end capability.

The main benefit of this ICS / CMS re-architecture is the ability to rapidly deliver

capability to the war fighter. Modern SW development demands flexibility, scalability, and

rapid delivery, driving the DoD to adopt microservices architectures combined with CI/CD

pipelines to achieve these goals. This combination enables SW teams to meet ever-evolving

threats while maintaining high reliability, scalability, and developer productivity. Without

developing a modernized delivery process the significant benefits of microservices would

be lost.

E. MODERNIZING SOFTWARE DISTRIBUTION: DELIVERY PIPELINE

Increased capability to threat SW delivery is essential to meet threats to national

security through maritime superiority. To provide this capability CI/CD of serviced based

SW is needed. As important as CS SW capability is the underlying security of the CS

components and the IaaS/PaaS SW.

As the technology landscape evolves, organizations are increasingly adopting

microservices architecture and CI/CD pipelines to improve SW delivery efficiency,

scalability, and adaptability. Together, these approaches address many of the limitations of

traditional SW development methodologies, empowering businesses to innovate rapidly,

scale seamlessly, and maintain high-quality applications.

CI/CD pipelines are critical components of modern SW development. CI refers to

the practice of frequently integrating code changes into a shared repository, while CD

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

147

automates the delivery of applications to production after the build process. Together, CI/

CD pipelines enable faster, more reliable SW delivery.

1. Faster Time to the War Fighter

CI/CD pipelines streamline the development, testing, and deployment process,

significantly reducing the time it takes to deliver SW updates.

• Automated Testing: With CI/CD, testing becomes an automated part of

the process, ensuring that code changes are validated early and often. This

reduces manual testing efforts and accelerates the release cycle.

• Frequent Releases: By automating the build, test, and deployment

processes, CI/CD enables teams to deploy updates to production on a

regular basis, reducing the time between development and customer-

facing changes (Humble & Farley, 2010).

2. Improved Code Quality

CI/CD pipelines help maintain high standards of code quality by integrating

automated testing and continuous feedback into the development process.

• Early Detection of Bugs: Automated testing within the CI pipeline

ensures that bugs are detected early in the development cycle, preventing

them from propagating to production. This early detection reduces the

time and cost associated with fixing bugs later in the process.

• Consistent Quality Assurance: CI/CD pipelines enforce a consistent

testing process, ensuring that each code change meets predefined quality

standards before being deployed (Humble & Farley, 2010).

3. Reduced Risk of Deployment Failures

CI/CD pipelines reduce the risks associated with SW deployment by automating

the process and ensuring that each release is thoroughly tested.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

148

• Continuous Feedback: Developers receive immediate feedback when

issues are detected, allowing them to address problems before they reach

production (Humble & Farley, 2010).

• Automated Rollback: CI/CD pipelines can include automated rollback

mechanisms, so if a deployment fails, the system can revert to the last

known stable version without manual intervention (Humble & Farley,

2010).

4. Enhanced Collaboration and Transparency

CI/CD pipelines foster collaboration among developers, testers, and operations

teams, promoting a shared responsibility for the success of the application.

• Collaborative Development: CI/CD pipelines facilitate communication

between teams by providing a single point of integration and visibility for

the development process (Humble & Farley, 2010). This transparency

helps ensure that all stakeholders are aligned on the status of the

application.

• Continuous Improvement: With regular deployments, teams can

continuously assess and improve the development process, ensuring that

workflows remain efficient and aligned with the evolving needs of the

business (Humble & Farley, 2010).

5. Reliability and Consistency

By automating the build, test, and deployment processes, CI/CD pipelines reduce

the variability associated with manual deployments.

• Repeatable Deployments: CI/CD ensures that the same process is

followed for every deployment, eliminating human error and ensuring that

every deployment is consistent with the previous one (Humble & Farley,

2010).

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

149

• Reliability in Production: With automated testing and continuous

integration, CI/CD pipelines increase the reliability of production releases.

6. Greater Flexibility and Agility

CI/CD pipelines support agile development practices by enabling rapid iterations

and frequent releases of new features and bug fixes.

• Faster Feedback Loops: With automated testing and continuous

integration, teams can quickly assess new code and rapidly respond to

feedback from stakeholders (Humble & Farley, 2010).

• Iterative Development: CI/CD pipelines support the agile model, coupled

with micro services-based architectures it is easier to implement frequent,

smaller releases rather than infrequent, large ones. This enables USN

developers and the Forge to react quickly to emergent threats and make

changes more efficiently.

The combination of microservices architecture and CI/CD pipelines offers

significant benefits for modern SW development. Microservices enable scalability,

modularity, and flexibility, while CI/CD pipelines streamline the development, testing, and

deployment processes. Together, these practices reduce development cycles, improve code

quality, and enhance collaboration, ensuring that USN organizations can deliver high-

quality SW at scale, respond quickly to threats, and maintain operational agility.

F. CONCLUSION

The ICS-CMS Conceptual Reference Model by Alvin Murphy outlines a

framework for modernizing naval combat systems by focusing on integration, modularity,

real-time data processing, and advanced technologies like AI. The model aims to ensure

naval platforms can adapt to modern warfare challenges by creating efficient, scalable, and

adaptable combat systems. It addresses key issues such as system integration, decision

support, cybersecurity, and resource constraints, enabling the USN to operate effectively

in complex environments.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

150

The ICS framework integrates various subsystems to improve decision-making

through real-time data processing, AI, and automation. These technologies help reduce

operator workload and speed up decision-making. The development of ICS is structured

around the Now, Next, Later vision, which outlines a phased modernization process. The

Now phase addresses urgent needs by enhancing legacy systems and ensuring

interoperability. The “Next” phase emphasizes flexible, modular architectures and

improved cybersecurity. The “Later” phase envisions a networked fleet with AI and

autonomous systems, supported by continuous modernization.

The ICS development follows four key phases: ICS Foundation, ICS Enabled, ICS

Node, and ICS Fully Realized. Each phase progressively integrates modular systems across

platforms and enhances cybersecurity, preparing the USN for future operational needs. The

ICS emphasizes agility, interoperability, cost-effectiveness, and scalability to meet diverse

mission requirements.

Key enablers of ICS include the Forge Software Factory and the Foundry Hardware

Factory. The Forge uses Agile and DevSecOps practices to accelerate SW development

and ensure security, while the Foundry focuses on rapidly prototyping and deploying

hardware using modular designs and advanced manufacturing techniques. Together, these

initiatives allow the USN to respond quickly to emerging threats and ensure technological

superiority.

In conclusion, the ICS framework provides a comprehensive modernization

strategy that integrates SW, hardware, and advanced technologies. It ensures the USN’s

CSs remain flexible, resilient, and capable of meeting the evolving challenges of modern

warfare. Through initiatives like the Forge and the Foundry, the USN can maintain its

operational readiness and adapt to future needs.

This paper endeavored to lay a foundation from purpose-built DoD computing and

weapon systems and the SW structures these early capabilities supported, to the path

towards adoption of practices and components enabling the USN to “Deliver Resilient

Warfighting Capability at the Speed of Relevance.”

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

151

The following summarizes the key findings of the architectures and process

improvements which are guiding efforts and modernizing the USN Surface Force.

1. Monolithic Architecture Overview

Monolithic SW integrates all components—UI, business logic, and data access—

into a single codebase, simplifying initial development, deployment, and version control

(Fowler & Lewis, 2014; Bass et al., 2021). However, as the application grows, maintaining

the codebase becomes challenging, with updates in one area affecting others, leading to

time-consuming and error-prone changes (Newman, 2021).

a. Challenges with Monolithic Systems

Monolithic systems are tightly coupled, meaning minor updates require widespread

changes, complicating scaling and maintenance. This increases testing and redeployment

costs, slowing progress. As the system grows, the initial simplicity diminishes, making the

codebase harder to manage

b. Deployment Simplicity

While monolithic systems offer simple deployment as a single unit, this simplicity

becomes less effective over time, as managing the system becomes increasingly difficult

as the application evolves.

2. Transition to Microservices and the Navy’s Approach

The USN has transitioned from purpose-built computing systems to modern

architectures, enabling the fielding of granular microservices-based SW in weeks rather

than months or years. This shift significantly reduces the cost of development, testing,

certification, and distribution of capabilities. The USN’s core capabilities and their

limitations are outlined in Table 4–1, showcasing this technological progression.

a. Microservices Architecture Overview

Microservices architecture focuses on service independence, loose coupling, and

decentralized data management. By adopting principles like the SRP, automated

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

152

deployment, and resilience, organizations can create scalable and flexible systems.

Microservices support business alignment through DDD and centralized concerns via the

API Gateway, contributing to efficient and reliable applications.

b. Challenges with Microservices

Despite its advantages, microservices architecture comes with increased

complexity in managing multiple services, communication overhead, and data

management. Testing, deployment, and operational challenges can slow efficiency.

Security concerns, service discovery, and organizational impacts also need addressing to

ensure successful implementation.

c. DevOps Integration with Microservices

DevOps practices enhance microservices by promoting automation, collaboration,

and continuous improvement. Practices like continuous integration, deployment, and

automated testing enable faster market delivery and improved quality. However,

integrating DevOps with microservices introduces complexity, tooling challenges, and

security concerns that organizations must overcome.

3. Large Unmanned Surface Vessel Integrated Combat System
Development and Challenges

The USN’s development of the LUSV ICS encountered significant challenges due

to legacy procurement approaches. Systems like Technology Insertions 12 and 16 suffered

from hardware obsolescence, which hindered the deployment of cutting-edge solutions. To

address this, the DoD turned to OTAs for more flexibility in R&D, enabling rapid

prototyping and innovation.

The challenges of legacy procurement led to a focus on agile procurement strategies

and integrating modernization efforts to combat obsolescence. OTAs, contractor education,

and prioritizing long-term value over cost efficiency are key strategies for overcoming

procurement barriers and ensuring timely system delivery.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

153

4. Integrated Combat System Conceptual Framework for
Modernization

The ICS framework emphasizes integration, modularity, real-time data processing,

and AI to modernize naval combat systems. The framework supports efficient decision-

making, improved cybersecurity, and the integration of new technologies. The phased

approach—Now, Next, Later—focuses on urgent needs, flexible architectures, and

autonomous systems, preparing the USN for future challenges.

5. Integrated Combat System Development Phases and Key Enablers

ICS development follows four phases: ICS Foundation, ICS Enabled, ICS Node,

and ICS Fully Realized, progressively integrating modular systems and enhancing

cybersecurity. Key enablers like the Forge Software Factory and the Foundry Hardware

Factory accelerate SW development and hardware prototyping using agile practices and

modular designs. These initiatives ensure the USN can respond quickly to emerging

threats.

6. Integrated Combat System Modernization Strategy

The ICS framework integrates SW, hardware, and advanced technologies, ensuring

that the USN’s combat systems remain flexible, resilient, and capable of adapting to

modern warfare challenges. Through initiatives like the Forge and the Foundry, the USN

can maintain operational readiness and continuously modernize its capabilities to meet

future needs.

G. IMPLICATIONS FOR FUTURE NAVY

The transition from monolithic computing SW to modern architectures, particularly

microservices, has significant implications for the future of the USN. The monolithic

approach, characterized by a unified codebase that simplifies initial development and

deployment, faces challenges as systems grow. The difficulty in managing large codebases,

the risk of error-prone updates, and the complexity of scaling hinder long-term

effectiveness. As applications evolve, the simplicity of monolithic architecture diminishes,

making them less adaptable to modern operational needs.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

154

In contrast, microservices architecture provides a more flexible, scalable, and

modular approach that better aligns with the USN’s evolving technological requirements.

By emphasizing service independence, loose coupling, and decentralized data

management, microservices allow for quicker updates, enhanced resilience, and more

efficient systems that can evolve rapidly in response to operational demands. However, the

adoption of microservices comes with its own challenges, including the complexity of

managing multiple services, testing difficulties, increased operational overhead, and

security concerns.

To fully leverage the advantages of microservices, the USN must continue to

integrate and refine modern practices like DevOps, which enable continuous integration,

automated deployment, and rapid iteration. This allows for faster time-to-market, improved

quality, and better scalability. However, DevOps adoption must overcome challenges such

as complexity, tooling requirements, and cultural shifts within the organization.

Furthermore, the USN’s transition from legacy procurement methods to more agile

models, like OTAs, allows for faster innovation and the development of cutting-edge

solutions, as demonstrated in the LUSV program. The ability to rapidly prototype and

deploy systems, such as virtualized combat SW, helps the USN maintain operational

relevance and readiness in the face of evolving threats.

Modernizing USN combat systems through initiatives like the ICS-CMS which

emphasizes modularity, real-time data processing, and advanced technologies such as AI.

By improving decision-making, reducing operator workload, and enhancing cybersecurity,

ICS will ensure that the USN’s combat systems remain flexible and resilient. The use of

Agile and DevSecOps in the development of ICS, along with rapid hardware prototyping,

supports a more adaptive and efficient approach to meeting future operational needs.

H. FINAL THOUGHTS

The shift from monolithic to microservices-based architectures, coupled with agile

procurement practices and modernization efforts, positions the USN to maintain

technological superiority and adaptability in the rapidly changing landscape of modern

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

155

warfare. Through initiatives like the Forge Software Factory and the Foundry Hardware

Factory, the USN can continue to innovate and respond effectively to emerging challenges.

But these efforts are not without challenges. The scope of the effort to re-architect

CS SW and build the fully realized ICS is both very large and complex. And, while rapid

prototype efforts like USV ICS CI demonstrate the value of streamlined procurement

vehicles like the OTA, industry teams will gain greater control of technical solutions and

costs.

It is incumbent on USN leadership and the government to exert and maintain the

right balance of oversight and control and maintain the technical acumen to oversee these

developments. The right balance is one where small and highly capable teams can maintain

critical oversight while not significantly impeding the pace of development to Deliver

Resilient Warfighting Capability at the Speed of Relevance!

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

156

LIST OF REFERENCES

Bass, L., Clements, P., & Kazman, R. (2021). Software architecture in practice (4th ed.).
Addison-Wesley.

Beck, K. (2003). Extreme programming explained: Embrace change. Addison-Wesley.

Bresnahan, T. F., & Trajtenberg, M. (1995). General purpose technologies: ‘Engines of
growth’? Journal of Econometrics, 65(1), 83–108.

Burns, B., Beda, J., & Hightower, K. (2018). Designing distributed systems: Patterns and
paradigms for scalable, reliable services. O’Reilly Media.

Defense Acquisition University. (2010). Requirements management: A primer for the
defense acquisition professional. DAU Press.

Department of the Navy. (2020). Naval systems engineering. U.S. Government
Publishing Office.

Department of the Navy. (2021). Modernizing naval capabilities through innovation.

Dragoni, N., Dustdar, S., Larsen, S. T., & Mazzara, M. (2021). Microservices: Migration
of a mission critical system. IEEE Transactions on Cloud Computing, 14(5).

Dragoni, N., Giazzi, F., Larsen, S. T., Mazzara, M., Montesi, F. … Safina, L. (2017).
Microservices: Yesterday, today, and tomorrow. Present and Ulterior Software
Engineering

Fowler, M. (2006). Continuous integration. Martin Fowler. https://martinfowler.com/
articles/continuousIntegration.html

Fowler, M. (2018). How to break a Monolith into Microservices. Martin Fowler.
https://martinfowler.com/articles/break-monolith-into-microservices.html

Government Accountability Office. (2019). Defense acquisitions: Key considerations for
implementing effective procurement processes. GAO

Hightower, K., Burns, B., & Beda, J. (2017). Kubernetes: Up & running: Dive into the
future of infrastructure. O’Reilly Media.

Humble, J., & Farley, D. (2010). Continuous delivery: Reliable software releases through
build, test, and deployment automation. Addison-Wesley.

Kalske M., Mäkitalo N., & Mikkonen T. (2018). Challenges when moving from monolith
to microservice architecture. In I. Garrigós & M. Wimmer (Eds.), Current trends
in web engineering: ICWE 2017 international workshops. Springer.

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

157

https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/break-monolith-into-microservices.html

Kuryazov, D., Jabborov, D., & Khujamuratov, B. (2020). Towards decomposing
monolithic applications into microservices. Proceedings of the 14th International
Conference on Application of Information and Communication Technologies
(AICT), 1–5. https://doi.org/10.1109/AICT50176.2020.9368605

Lewis, J., & Fowler, M. (2014). Microservices: A definition of this new architectural
term. Martin Fowler. https://martinfowler.com/articles/microservices.html

Mazzara, M., & Meyer, B. (2017). Present and ulterior software engineering. Springer.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,
38(8), 114–117.

Morris, K. (2016). Infrastructure as code: Managing servers in the cloud. O’Reilly
Media.

Murphy, A. (2022). Integrated Combat System (ICS) Combat Management System (CMS)
conceptual reference model (NSWCDD/TR-22/48). Naval Surface Warfare
Center Dahlgren Division.

Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice
architecture: Aligning principles, practices, and culture. O’Reilly Media.

Newman, S. (2021). Building microservices: Designing fine-grained systems. O’Reilly
Media.

Office of the Under Secretary of Defense for Research and Engineering. (2022).
Department of Defense prototyping guidebook. Department of Defense.

Program Executive Office, Integrated Warfare Systems–Integrated Combat System,
(PEO IWS ICS). (2024). Combat system re-architecture strategy and approach.

Program Executive Office, Integrated Warfare Systems. (2022). Now, next, later – A
technical strategy for evolving towards the Integrated Combat System. Naval Sea
Systems Command.

Richards, M. (2015). Software architecture patterns. O’Reilly Media.

Shalf, J. (2020). The future of computing beyond Moore’s Law. Philosophical
Transactions of the Royal Society A, 378(2166), http://dx.doi.org/10.1098/
rsta.2019.0061

Acquisition Research Program
department of Defense Management
Naval Postgraduate School

158

https://doi.org/10.1109/AICT50176.2020.9368605
https://martinfowler.com/articles/microservices.html

Acquisition Research Program
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Front Cover of Report_1-15-2026
	2. - Formatting - NPS-__-26-044
	I. introduction
	II. background
	A. increasing pace of technological advancement
	B. Shift in Technology Development
	a. Government-Led Technology Development
	b. Transition to Industry-Led Development
	(1) Economic Shifts
	(2) Rise of Tech Companies
	(3) Shift in Focus

	c. Current Landscape
	(1) Industry Leadership
	(2) Government’s Role

	C. iNTRODUCTION TO monolithic computing architecture
	D. iNTRODUCTION TO microservices COMPUTING architecture

	III. literature review
	A. foundational technologies
	B. modernization and transition
	C. identification of gaps and threads
	D. summary and conclusion

	IV. monlithic computing architecture
	A. key characteristics
	1. Single Codebase
	2. Tight Coupling
	3. Single Deployment Unit
	4. Performance Considerations
	5. Development Simplicity

	B. advantages
	1. Ease of Development
	2. Performance
	3. Simplicity in Deployment

	C. disadvantages
	1. Scalability Issues
	2. Maintenance Complexity
	3. Limited Flexibility

	D. conclusion
	E. case studY, computng infrastructure: a core enabler of naval combat systems software modernization
	1. Stage 1: AN/​UYK-7 and AN/​UYK-43
	a. AN/​UYK-7 Capabilities
	(1) Processing Power
	(2) Memory
	(3) I/​O and Networking
	(4) OS and SW
	(5) Applications

	b. AN/​UYK-43 Capabilities
	(1) Processing Power
	(2) Memory
	(3) Modularity
	(4) I/​O and Networking
	(5) Processing Modules and Multiprocessing
	(6) OS and SW
	(7) Applications

	c. Limiting Factors

	2. Stage 2: AN/​UYQ-70
	a. Capabilities
	b. Processing Power
	c. I/​O and Networking
	d. OS and SW
	e. Modularity
	f. Applications
	g. Limiting Factors
	(1) HW
	(2) OS and Environment SW

	3. Stage 3: TI12 and TI16
	a. Capabilities
	b. Processing Power
	c. I/​O and Networking
	d. OS and SW
	e. Modularity
	f. Applications
	g. Limiting Factors
	(1) HW
	(2) OS and Environment SW

	4. Stage 4: Unmanned Surface Vessel Integrated Combat System Computing Infrastructure and MK6 ModX
	a. Capabilities
	b. Processing Power
	c. I/​O and Networking
	d. OS and SW
	e. Modularity
	f. Applications
	g. Limiting Factors
	(1) HW
	(2) OS and Environment SW

	5. Summary

	V. microservices architecture
	A. iNTRODUCTION
	1. Overview
	2. Key Principals
	a. Service Independence
	(1) Autonomous Development and Deployment
	(2) Technology Diversity
	(3) Fault Isolation

	b. Loose Coupling
	(1) Reduced Dependencies
	(2) Interoperability
	(3) Flexibility and Agility

	c. Single Responsibility Principle
	(1) Focused Functionality
	(2) Manageability
	(3) Scalability

	d. Decentralized Data Management
	(1) Data Ownership
	(2) Reduced Data Coupling
	(3) Flexibility

	e. Automated Deployment and Continuous Integration
	(1) Continuous Integration
	(2) Automated Deployment
	(3) Testing

	f. Resilience and Fault Isolation
	(1) Fault Isolation
	(2) Fault Tolerance
	(3) Resilient Design

	g. Scalability
	(1) Horizontal Scaling
	(2) Resource Allocation
	(3) Dynamic Scaling

	h. DDD
	(1) Domain Modeling
	(2) Bounded Contexts
	(3) Collaborative Design

	i. Service Discovery
	(1) Dynamic Registration
	(2) Service Lookup
	(3) Load Balancing

	j. API Gateway
	(1) Request Routing
	(2) Cross-Cutting Concerns
	(3) Aggregation

	3. Conclusion

	B. kubernetes cluster components
	1. Pod
	a. Components
	b. Life Cycle
	c. Scaling
	d. Networking and Service Discovery
	e. Summary

	2. Node
	a. Componenets
	(1) Kubelet
	(2) Container Runtime
	(3) Kube-Proxy
	(4) Node API Server

	b. Types
	c. Life Cycle
	d. Scaling
	e. Summary

	3. Control Plane
	a. Components
	(1) API Server
	(2) Etcd
	(3) Scheduler
	(4) Controller Manager
	(5) Node Controller
	(6) Replication Controller
	(7) Endpoint Controller
	(8) Cloud Controller Manager

	b. Functions
	(1) Cluster State Management
	(2) Scaling and Resource Management
	(3) Security and Access Control

	c. Summary

	4. Cluster
	a. Components
	(1) Control Plane
	(2) API Server
	(3) Etcd
	(4) Scheduler
	(5) Controller Manager
	(6) Cloud Controller Manager
	(7) Worker Nodes
	(8) Kubelet
	(9) Container Runtime
	(10) Kube-Proxy

	b. Networking
	c. Scaling
	d. Summary

	C. advantages
	1. Scalability
	a. Granular Scaling
	b. Resource Optimization

	2. Flexibility and Agility
	a. Independent Development
	b. Faster Time-to-Market

	3. Resilience and Fault Isolation
	a. Fault Isolation
	b. Resilient Design

	4. Improved Maintainability
	a. Modular Structure
	b. Reduced Complexity
	c. CI/​CD

	5. Technology Diversity
	a. Technology Choices
	b. Innovation and Experimentation

	6. Enhanced Security
	a. Service Isolation
	b. Granular Access Control

	7. Better Alignment with Business Domains
	a. Domain Modeling
	b. Bounded Contexts

	8. Enhanced Developer Productivity
	a. Parallel Development
	b. Focused Expertise

	9. Optimized Performance
	a. Service-Specific Optimization
	b. Efficient Resource Utilization

	10. Conclusion

	D. disadvantages
	1. Increased Complexity
	a. System Complexity
	b. Operational Overhead

	2. Communication Overhead
	a. Network Latency
	b. Data Serialization

	3. Data Management Challenges
	a. Data Consistency
	b. Database Fragmentation

	4. Testing Difficulties
	a. Integration Testing
	b. End-to-End Testing

	5. Deployment and Release Management
	a. Service Coordination
	b. Deployment Automation

	6. Increased Operational Overhead
	a. Monitoring and Logging
	b. Resource Management

	7. Security Concerns
	a. Attack Surface
	b. Authentication and Authorization

	8. Service Discovery and Management
	a. Dynamic Discovery
	b. Configuration Management

	E. Summary of advantages and disadvantages
	1. Conclusion

	F. DEVELOPMENT OPERATIONS
	1. Introduction
	a. DevOps Practices in Microservices Architecture
	(1) Continuous Integration
	(2) Continuous Development
	(3) Infrastructure as Code
	(4) Automated Testing
	(5) Monitoring and Logging
	(6) Collaboration and Communication

	2. Benefits
	(1) Faster Time-to-Market
	(2) Improved Quality and Reliability
	(3) Enhanced Scalability and Flexibility
	(4) Increased Collaboration and Efficiency

	3. Challenges and Considerations
	(1) Complexity of Managing Multiple Services
	(2) Need for Advanced Tooling and Automation
	(3) Cultural and Organizational Changes
	(4) Security and Compliance

	4. Conclusion

	VI. UNMANNED SURFACE VESSEL INTEGRATED COMBAT SYSTEM: Rapid Prototyping of a modernized COMBAT SYSTEM
	A. DEPARTMENT OF DEFENSE FEDERAL ACQUISITION Regulation–BASED acquisitions
	B. overview of FEDERAL ACQUISITION Regulation–BASED acquisitions
	a. Key Features
	(1) Transparency and Accountability
	(2) Standardization
	(3) Competition and Cost Efficiency
	(4) Support for Small Businesses
	(5) Risk Mitigation

	b. Limitations
	(1) Complexity and Bureaucracy
	(2) Limited Flexibility
	(3) Lengthy Procurement Timelines
	(4) Innovation Challenges
	(5) Inter-Service Communication Overhead
	(6) Data and Cybersecurity Challenges
	(7) Operational and Monitoring Overhead

	c. Addressing the Limitations
	(1) Adoption of Alternative Mechanisms
	(2) Streamlining Processes
	(3) Enhanced Focus on Innovation

	C. RAPID prototyping
	1. Use of Other Transactional Authority to Enable Speed to Acquisition
	a. Types
	(1) Prototype Projects
	(2) Research Projects
	(3) Production

	b. Advantages
	(1) Flexibility
	(2) Encouraging Innovation
	(3) Reduced Administrative Burden
	(4) Promoting Collaboration

	c. Disadvantages
	(1) Lack of Competition
	(2) Cost Control
	(3) Lack of Oversight and Accountability
	(4) Complexity in Implementation

	d. Conclusion

	2. Use of Other Transactional Authority in Unmanned Surface Vessel Integrated Combat System Computing Infrastructure Prototyping
	3. Summary and Key Aspects of the Unmanned Surface Vessel Integrated Combat System Other Transactional Authority Statement of Work
	a. Develop an IaaS Prototype Framework
	b. Support CSs
	c. Technical Focus Areas
	d. General and Technical Requirements Prototype Development
	e. Studies and Prototyping
	f. Deliverables
	g. Post-Delivery Support

	4. Small Empowered Teams to Enable Speed to Design, Development, Delivery, and Ship Integration
	a. Benefits and Drawbacks of a Small Team Approach to Technology Project Development
	b. Enhanced Communication
	c. Agility and Flexibility
	d. Greater Accountability
	e. Cost-Effectiveness
	f. Improved Innovation and Creativity
	g. Faster Decision-Making

	5. Drawbacks of a Small Team Approach
	a. Limited Expertise and Resources
	b. Higher Workload for Team Members
	c. Risk of Knowledge Silos
	d. Vulnerability to Disruptions
	e. Challenges in Scaling
	f. Dependence on Individual Performance

	6. Understanding the Requirement
	a. Key Components of Requirements Definition
	(1) Functional Requirements
	(2) Non-functional Requirements
	(3) Technical Specifications
	(4) Stakeholder Involvement
	(5) Documentation and Traceability

	b. Challenges in Requirements Definition
	(1) Ambiguity and Lack of Clarity
	(2) Conflicting Stakeholder Interests
	(3) Changing Requirements
	(4) System Complexity

	c. Methodology of Requirements Definition

	7. Best Practices for Navy System Prototyping
	a. Purpose and Scope
	b. Key Concepts
	c. Types of Prototypes
	d. Prototyping Objectives
	e. Prototyping Process
	(1) Planning
	(2) Execution
	(3) Transition

	f. Best Practices
	g. Challenges and Considerations
	h. Conclusion

	8. Deliver an Excess Capability to Support Development and Redundancy for Reliability
	a. The Role of Redundancy in Reliability Engineering
	b. Types of Redundancy
	(1) Active Redundancy
	(2) Standby Redundancy
	(3) Cold Redundancy

	c. Design Considerations for Implementing Redundancy
	(1) Redundancy Allocation
	(2) Redundancy in Critical Systems
	(3) Common Mode Failures and Redundancy Design

	d. Conclusion

	9. Use of the Newest Commercial Hardware and Infrastructure/​Platform as a Service Software
	10. Make it Work: Integrate
	11. Assess and Iterate
	a. Key Aspects of USN KPPs
	(1) Alignment with Operational Requirements
	(2) Mission Success
	(3) Acquisition and Testing
	(4) Risk Mitigation
	(5) Accountability

	12. Development and Deployment of Unmanned Surface Vessel Integrated Combat System Computing Infrastructure Prototype 2
	13. Conclusion
	14. Challenges in Legacy Procurement Approaches
	15. Addressing Limitations
	16. Lessons from Large Unmanned Surface Vessel Integrated Combat System Development

	VII. Integrated Combat System: gateway to modern speed to capability
	1. Introduction
	a. Purpose
	b. Core Features

	2. Combat Management System Overview
	a. Role of CMS in ICS
	b. Core Functions

	3. Key Components of the Conceptual Reference Model
	a. Sensor Integration
	b. Data Fusion and Processing
	c. Decision Support and C2
	d. Weapon Systems Management
	e. Human-Machine Interface
	f. Modularity and Scalability

	4. Integration of Advanced Technologies
	a. AI Microservices
	b. Cybersecurity

	5. System-of-Systems Engineering Approach
	a. System Integration
	b. Complexity Management

	6. Challenges and Considerations
	a. Resource Constraints
	b. Human Factors
	c. Life Cycle Management

	7. Conclusion
	B. technical strategy
	1. Now: Immediate Actions
	2. Next: Mid-Term Goals
	3. Later: Long-Term Vision
	a. Key Principles
	b. Key Enablers
	c. Core Objectives
	(1) Accelerated Development and Deployment
	(2) Scalability and Adaptability
	(3) Cybersecurity Embedded in Development
	(4) Cross-Platform Interoperability

	d. Development Methodology
	(1) Agile Practices
	(2) DevSecOps Integration
	(3) Cloud-Native Technologies
	(4) Automation Tools

	4. Key Achievements
	a. Reduced Development Cycles
	(1) Enhanced Cyber Resilience
	(2) Operational Software Delivery

	b. Strategic Importance
	(1) Rapid Response to Emerging Threats
	(2) Cost Efficiency
	(3) Collaborative Ecosystem

	C. The Foundry: U.S. Navy Hardware Factory
	1. Core Objectives
	a. Rapid Prototyping and Deployment
	b. Standardization and Modularity
	c. Integration with Software Development
	d. Scalability and Sustainability
	e. Cost Efficiency

	2. Key Features
	a. Advanced Manufacturing
	b. Agility in Design and Production
	c. Cybersecurity for Hardware Systems
	d. Collaborative Development
	e. Data-Driven Decision-Making

	3. Key Achievements
	a. Prototyping Success
	b. Fleet-Wide Modernization
	c. Enhanced Readiness
	d. Supply Chain Resilience

	4. Strategic Importance
	a. Adaptability to Emerging Threats
	b. Innovation Ecosystem
	c. Life Cycle Optimization
	d. Force Multiplier

	D. Architecture
	1. Architecture Strategy
	2. Services-Based Architecture

	E. modernizing software distribution: delivery pipeline
	1. Faster Time to the War Fighter
	2. Improved Code Quality
	3. Reduced Risk of Deployment Failures
	4. Enhanced Collaboration and Transparency
	5. Reliability and Consistency
	6. Greater Flexibility and Agility

	F. conclusion
	1. Monolithic Architecture Overview
	a. Challenges with Monolithic Systems
	b. Deployment Simplicity

	2. Transition to Microservices and the Navy’s Approach
	a. Microservices Architecture Overview
	b. Challenges with Microservices
	c. DevOps Integration with Microservices

	3. Large Unmanned Surface Vessel Integrated Combat System Development and Challenges
	4. Integrated Combat System Conceptual Framework for Modernization
	5. Integrated Combat System Development Phases and Key Enablers
	6. Integrated Combat System Modernization Strategy

	G. implications for future navy
	H. final thoughts

	LIST OF REFERENCES

	Blank Page
	Blank Page

