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ABSTRACT 

Advancements in technology are transforming how U.S. military systems, 

especially those in the Navy, are designed, developed, and maintained. In the 20th 

century, as the private sector led technological innovation with the rise of the internet and 

personal computing, the Navy increasingly adopted commercial technologies. Post–

World War II military systems relied on purpose-built electronics and specialized 

software (SW) running on unique operating systems. With limited storage and 

processing power, these systems had to be lean and deterministic. For example, the 

total storage of a dozen military specification (MILSPEC) devices like the UYH-16 

now fits on an $8 Universal Serial Bus (USB) drive. Over time, as memory and 

processing capabilities expanded, these monolithic SW programs grew in size, 

incorporating new functions but retaining outdated architectures. This created 

challenges in transitioning to modern technologies like microservices and 

advanced hardware. Modernization though costly and complex, is critical to 

maintaining readiness. Efforts like the unmanned surface vessel (USV), Aegis 

Virtualization, and Integrated Combat System (ICS) demonstrate progress in adapting 

more agile, scalable systems and accelerating deployment to the fleet. These initiatives 

reflect the Navy’s commitment to leveraging technological advances effective and 

efficiently to stay operationally prepared. 
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EXECUTIVE SUMMARY 

The U.S. Navy’s (USN) combat system (CS) development is hindered by lengthy 

test, evaluation, and certification processes, due in part to traditional monolithic software 

(SW) architectures. Monolithic computing integrates all components into a single block of 

code, simplifying deployment but creating scalability and maintenance challenges. Any 

modification requires full recompilation, increasing complexity and slowing development 

cycles (Lewis & Fowler, 2014). 

A. SHIFT TO MODERN ARCHITECTURES 

Technological advancements have transitioned USN systems from purpose-built 

military hardware (HW) to commercial-based architectures. Modern microservices provide 

a modular approach that improves flexibility and scalability (Newman, 2021). By 

decentralizing SW design, microservices structure applications into independent, loosely 

coupled services that communicate via APIs or message queues. Unlike monolithic 

systems, microservices enable independent development, deployment, and scaling, 

enhancing maintainability and resilience (Lewis & Fowler, 2014). 

Each service operates autonomously, allowing targeted scaling and reducing 

resource inefficiencies. For example, a high-traffic recommendation engine can be scaled 

separately from a billing system. Additionally, microservices support diverse technology 

stacks, optimizing performance based on service-specific needs (Nadareishvili et al., 

2016). 

B. OVERCOMING LEGACY CHALLENGES 

Modernizing SW architecture requires understanding existing systems and their 

original design choices. Monolithic architecture integrates user interfaces, business logic, 

and data management into a tightly coupled entity, making development and maintenance 

complex. Minor updates can inadvertently effect unrelated components, leading to 

increased risk of bugs and slower development cycles (Bass et al., 2021). 
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Transitioning to microservices mitigates these challenges by breaking down 

applications into independent services. This approach enhances flexibility, reduces 

dependencies, and improves fault isolation, ensuring SW evolves efficiently. However, 

microservices introduce complexities such as communication overhead, latency, and data 

consistency challenges across distributed systems. Ensuring seamless interactions while 

maintaining reliability and security requires sophisticated solutions. 

C. ENABLING AGILE DEVELOPMENT WITH DEVOPS

Adopting microservices alongside continuous integration/continuous deployment

(CI/CD) accelerates upgrades, mitigates risks, and enhances system capabilities. Advanced 

developmental operations (DevOps) practices—such as automated testing, infrastructure 

as code, and containerization—facilitate microservices deployment and monitoring 

(Newman, 2021). Tools like Docker and Kubernetes streamline operations, improving 

scalability and agility for large, evolving applications. 

Despite operational complexities, DevOps fosters automation, collaboration, and 

continuous improvement. Key practices such as continuous integration, automated testing, 

and centralized monitoring contribute to faster time-to-market and enhanced SW quality. 

However, integrating DevOps with microservices also presents challenges, including 

increased tooling complexity, cultural adaptation, and cybersecurity concerns. Strategic 

planning and modern development workflows are essential for overcoming these obstacles. 

D. THE NAVY’S TRANSITION TO MICROSERVICES

The USN’s transition from purpose-built computing HW and SW to modern

architecture has enabled the implementation of microservices-based processes. These 

advancements allow the rapid fielding of SW capabilities within weeks instead of months 

or years. When fully implemented, these technologies will significantly reduce 

development, testing, certification, and distribution costs while enhancing operational 

readiness and responsiveness to emerging threats. 

The USN has made the transition from purpose build computing HW and SW to 

modern architectures which enable the implementation of relevant processes which field 
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granular microservices-based SW in weeks vice months or years. These enabling 

technologies, when implemented fully, will reduce the cost of development, test, 

certification, and distribution of capability. 

E. RAPID PROTOTYPING OF UNMANNED SURFACE VESSEL 
COMPUTING INFRASTRUCTURE 

In the fall of 2020, NSWC Dahlgren’s Computing Infrastructure Group was 

assigned to develop and deliver prototype equipment capable of supporting Aegis Weapon 

System and Tomahawk Weapon System elements for the large unmanned surface vessel 

(LUSV) program. The initial deployment required government furnished equipment (GFE) 

for LUSV’s first platform by late 2023. PEO IWS 80, the Major Program Manager for the 

LUSV Integrated Combat System (ICS), emphasized the need for modernized computing 

infrastructure, featuring virtualized combat computer programs and advanced network, 

processing, and storage (NPS) HW. At the time, TI16, a Federal Acquisition Regulations 

System (FARS) procurement initiative, was underway to provide NPS to the USN’s 

Surface Forces. However, the HW selected for TI16 was already nearing obsolescence. By 

the time LUSV fielded its initial GFE in 2023, the TI16-based infrastructure was over eight 

years old, raising concerns about its long-term viability and technological relevance. 

In the modern defense landscape, the need for advanced computing and network 

capabilities is paramount to ensuring mission success. For the USV program the ability to 

procure cutting-edge technology quickly, flexibly, and efficiently was critical. 

The USV program utilized other transactional authorities (OTAs) for prototypes to 

enable rapid, flexible, and cost-effective development of innovative solutions. OTAs 

enabled the government to deliver modern network, storage, and compute HW in 

MILSPEC cabinetry in 10 months from design to delivery at the first site. This approach 

immediately closed the technology gap between military and commercial capability and 

provided a path to field modernized virtualized and containerized microservices-based SW. 

Utilizing OTAs for delivery of USV ICS CI HW and infrastructure as a service 

(IaaS) and Platform as a Service (PaaS) ensured that we could deliver relevant solutions in 

months vice six to eight years. While use of OTAs limits the developer to the solutions 
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awarded in the OTA SOW, it enables the team to focus all its energy on the design of the 

assembled components and integration to deliver a workable solution. This OTA-based 

rapid HW prototyping and delivery is called the Foundry HW Factory, delivering both HW 

and IaaS to USN surface CSs. 

While more traditional acquisition processes would include lengthy product 

selection processes, complete with often years long assessments, the USV OTA process 

allows a small development team to focus on “Make Work” and schedule. Knowing that 

the solutions being delivered were modern and backed by considerable commercial fielding 

and utilization, the team focused on the key development features, confident that the 

underlying HW/SW supported system requirements. 

F. INTEGRATED COMBAT SYSTEM CONCEPT 

The next key enabler to delivering combat capability rapidly is SW re-architecture. 

This effort is based on an ICS concept. Dr. Alvin Murphy, an engineer at the Naval Surface 

Warfare Center in Dahlgren, Virginia, in a paper for PEO IWS, detailed an ICS Combat 

Management System (CMS) Conceptual Reference Model that provides a comprehensive 

framework for modern naval CSs. The model ensures seamless integration of sensors, 

weapon systems, communication networks, and decision-making tools to enhance 

operational effectiveness. ICS is designed to improve situational awareness, optimize 

resource use, and enable interoperability across different platforms (Murphy, 2022). 

A key component, the CMS, serves as the core processing unit, integrating sensor 

data, assessing threats, and coordinating weapon engagement. It employs AI and machine 

learning for real-time data fusion, predictive analytics, and decision support, allowing 

operators to swiftly respond to evolving threats. The system’s modularity and scalability 

facilitate upgrades and adaptation to new technologies, ensuring long-term viability. 

The model incorporates cybersecurity measures to protect against cyber threats 

while maintaining operational resilience. Additionally, the system-of-systems engineering 

approach enables joint operations across naval, air, and land forces, promoting coordinated 

defense strategies. Addressing challenges such as resource constraints, human factors, and 

life cycle management, the ICS-CMS framework establishes a future-proof, adaptable, and 
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highly effective combat system for modern naval environments. Key principles of the ICS 

model are: 

• Agility: Emphasizing flexibility to adapt to changing operational and 

technological environments. 

• Interoperability: Ensuring seamless communication across platforms and 

allies. 

• Cost-Effectiveness: Reducing life cycle costs through modular design and 

efficient acquisition processes. 

• Scalability: Supporting diverse mission requirements through adaptable 

systems. 

G. THE FORGE 

A key enabler for modern defense SW development is the Forge SW Factory. The 

Forge is a Department of Defense (DoD) initiative focused on revolutionizing SW 

development and delivery for defense systems. Spearheaded by the USN, the Forge 

operates as a SW factory, leveraging modern development practices and technologies to 

produce high-quality, mission-critical applications with speed and efficiency. The Forge 

aims to address key challenges in traditional defense SW development, including lengthy 

delivery cycles, limited flexibility, and challenges in integrating emerging technologies. Its 

main objective is accelerated development and deployment: 

• Using Agile and DevSecOps methodologies, The Forge emphasizes 

continuous integration, testing, and delivery to reduce the time required to 

deliver SW to operational platforms. 

• Ensuring scalability and adaptability. 

• Focusing on producing modular, scalable solutions that can be easily 

adapted to evolving mission requirements, ensuring long-term relevance 

and usability. 

• Embedding cybersecurity in development. 
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• Integrating security into every phase of the SW life cycle (DevSecOps), 

ensuring robust defenses against cyber threats from the outset. 

• Providing cross-platform interoperability. 

• Building SW with a Modular Open Systems Approach (MOSA) to ensure 

compatibility across diverse systems and platforms within the USN and 

joint forces. 

H. CONCLUSION 

The USN’s transition to modern SW architectures, particularly microservices, is 

critical for enhancing operational efficiency and adaptability. Microservices offer a 

modular and scalable approach that aligns with evolving technological requirements by 

enabling service independence, decentralized data management, and faster updates. These 

benefits enhance system resilience and adaptability, ensuring combat systems can rapidly 

evolve in response to mission demands. However, adopting microservices introduces 

challenges, including increased management complexity, security risks, and operational 

overhead. 

To maximize the benefits of microservices, the USN must enhance its DevOps 

capabilities. Continuous integration, automated deployment, and rapid iteration improve 

scalability and SW quality. However, successful implementation requires overcoming 

cultural shifts, tooling complexities, and integration challenges. 

Additionally, modern procurement methods like OTAs facilitate faster innovation. 

The LUSV program exemplifies the benefits of rapid prototyping and virtualized combat 

SW deployment, ensuring operational readiness against evolving threats. 

The ICS and CMS further advance USN combat capabilities. These systems 

emphasize modularity, real-time data processing, AI-driven decision support, and 

enhanced cybersecurity. By integrating Agile and DevSecOps methodologies with rapid 

HW prototyping, the USN ensures its combat systems remain flexible, efficient, and future-

ready. 
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I. INTRODUCTION

U.S. Navy (USN) combat system (CS) development efforts require lengthy 

development, test and evaluation (T&E), and certification processes. The existing USN CS 

development efforts, T&E, and certification require years to deliver upgraded capability to 

warfighters. A key driver of this problem is the nature of USN software (SW) design, which 

delivers large blocks of computer code updated with added functionality over decades. 

These large monolithic computer programs are single, tightly integrated applications with 

interdependent components bundled together. While such programs may work well for 

smaller applications, they can create numerous issues as the system grows in size and 

complexity. These issues are explored in depth in this paper. 

Current systems do not support granular iterative SW development and rapid 

certification. To pace the threat, the USN must adopt modern microservices 

implementations in naval CSs supporting continuous integration and continuous deliver/

deployment (CI/CD) and rapid upgrade capability. But, while refactoring a monolithic 

application to a microservices architecture offers many benefits, it also comes with a 

variety of challenges. The process involves breaking a tightly coupled system into smaller, 

independently deployable services, which can be complex and risky if not done carefully. 

Naval systems can overcome transitional risk by using a strangler pattern methodology to 

incrementally refactor a monolithic system and gradually replacing its components with 

newer, modular services or systems. In the strangler pattern, a new system is “grown” 

around or alongside the old one, and over time, the new system takes over, ultimately 

allowing the old system to be phased out. This approach will allow military systems to 

transition incrementally, reducing risk and the probability of large-scale disruption while a 

more modern architecture is achieved, and CI/CD processes are implemented. 

Embracing this approach will enable the USN to deliver enhanced combat 

capabilities faster, more efficiently, and with greater resilience in the face of evolving 

operational demands. 
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This capstone project provides a background on monolithic computing architecture, 

an introduction to microservices architecture, and a comparative analysis between both. It 

also presents a discussion on transitioning strategies, an introduction to real world 

applications/case studies, and an outlook on emerging technologies/architecture paradigms 

to which the USN is migrating. 
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II. BACKGROUND

Changes in technology development are reshaping the U.S. military and, in 

particular, the way USN systems are designed, developed, fielded, and maintained. In the 

late 20th century, as the private sector began to take the lead in technology development 

and the internet and personal computing became commonplace, a shift toward commercial 

technologies in the USN became essential. 

As Moore’s Law, a prediction that the number of transistors in a defined space 

would double every two years, became reality, advanced electronics and computing 

devices developed at a rapid pace. This foundational change in technology development 

transformed the way naval systems are designed and ushered the government from 

purpose-built military computers and large monolithic blocks of SW to commercial-based 

hardware (HW) and microservices-based architecture. 

Purpose-built electronics and computers, designed to execute highly specialized 

SW products built upon specialized operating systems (OSs), were a necessary construct 

of the post–World War II landscape in military systems. Today, the total storage size of a 

dozen military specification (MILSPEC) devices, like the UHY-16, is equal to what would 

fit on an $8 USB drive. The limited storage size of legacy military systems meant SW 

products had to be lean, highly tailored, and deterministic to achieve their design ends. As 

technology capabilities increased and USN development processes tried to benefit from 

memory and processing leaps, these purpose-built monolithic SW programs, running on 

specialized OSs, kept growing in size as they were repackaged over and again. 

By the 1990s, a connected, e-commerce driven world, aided by the pace of 

technology, private companies quickly became the leaders in large-scale computing and 

data centers, OS development, and high reliability systems serving banking, commerce, 

and advance engineering needs. 

Today, it is estimated that a modern smartphone is millions of times more powerful 

than the Space Shuttle was. But the Space Shuttle then, like modern military systems now, 

required high levels of reliability. These levels of reliability have also been adopted by 
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many commercial applications, from modern aircraft avionics to commercial spacecraft 

outpacing National Aeronautics and Space Administration (NASA). These high reliability 

systems are built from SW that is more modular, micro-segmented, and code-based. These 

SW modules are designed to scale on modern data centers/computing to meet the most 

demanding high reliability applications for industry and, the U.S. military. 

Emerging threats worldwide, hastened by technological leaps, require the USN to 

institute greater speed to capability through CI/CD pipelines coupled with modern 

microservices oriented architectures, which are able to make rapid warfighting 

improvements to small pieces of code and deliver them in days rather than years. 

The transition from the systems of the past to modern microservices and HW is 

costly and difficult. The shift must be accomplished effectively to ensure the safety of 

sailors and assets and efficiently to maintain current readiness levels, all while building the 

infrastructure to deliver warfighting improvements that outpace the threat posed by 

advisories of the U.S. 

This transition requires institutional change that empowers smaller groups to 

rapidly deliver incremental change. Before this can happen, secure high-bandwidth 

communication paths capable of delivering SW and assessing system readiness (both pre- 

and post-update) across the globe must be in place. The USN’s Project Overmatch aims to 

deliver this multidomain communications requirement. With both modern computing 

architectures and containerized microservices-based code in place, this secure 

communications bandwidth can be used to rapidly bring modernized SW capability to the 

fleet. 

While progress is slow, it is still being made in programs like the unmanned surface 

vessel (USV), Aegis Virtualization, and others, and the USN is trending in the right 

direction.
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Table 1. Modernization Elements and Key Factors 

Aspect Legacy Systems Modern Systems Key Transition Factors 

HW Purpose-built military 
electronics and computers Commercial off the shelf HW Rapid advancements in electronics and 

computing (e.g., Moore’s Law) 

SW Architecture Monolithic, highly tailored, 
deterministic Modular, microservices-based Shift to scalable, reusable, and reliable 

SW modules 

Development Speed Years to deliver upgrades Days to deploy incremental 
updates Adoption of CI/CD pipelines 

Storage and Processing Limited (e.g., MILSPEC 
devices) 

Vast (e.g., modern 
smartphones, data centers) 

Advancements in commercial data 
storage and computational capacity 

Reliability 
Critical for military systems, 
built into specialized HW and 
SW 

Adopted from high reliability 
commercial applications 

Commercial industries driving high 
reliability SW development (e.g., 
avionics, commercial spacecraft) 

Key Challenges Specialized OSs, repackaged 
monolithic SW 

Transition complexity, high 
costs, infrastructure 
development 

Balancing safety and readiness during 
the transition 

Emerging Solutions Reliance on legacy systems 
and gradual upgrades 

Modern architecture, 
containerized microservices, 
secure global communication 

Programs like Project Overmatch 
addressing global SW delivery and 
readiness assessment 

Example Programs UHY-16 Aegis Virtualization Demonstrates progress toward modern 
architecture and systems 
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A. INCREASING PACE OF TECHNOLOGICAL ADVANCEMENT 

Moore’s Law, first articulated by Gordon Moore in 1965, is a foundational 

observation in the field of semiconductor technology and electronics. Moore, a co-founder 

of Intel, posited that the number of transistors on an integrated circuit would double 

approximately every 2 years, leading to a corresponding increase in computational power 

and a decrease in cost per transistor (Moore, 1965). This prediction was based on the rapid 

advancements in microchip technology observed at the time and served as a benchmark for 

the pace of technological progress in the semiconductor industry. 

The law has proven remarkably prescient, guiding the development of technology for 

several decades. For instance, the doubling of transistor counts roughly every 2 years has 

enabled exponential growth in processing power and memory capacity while reducing costs. 

This progression has facilitated the proliferation of powerful devices like smartphones, 

personal computers, and sophisticated data centers, reshaping modern life and industry. 

However, this pace of change has become increasingly difficult due to physical and 

technical limitations. As transistors approach atomic scales, challenges such as heat 

dissipation, quantum effects, and material constraints emerge, complicating efforts to 

continue the historical pace of advancement (Shalf, 2020). 

B. SHIFT IN TECHNOLOGY DEVELOPMENT 

The transition from government-led to industry-led technology development marks 

a significant shift in the innovative landscape, driven by changes in funding, priorities, and 

the broader economic environment. 

a. Government-Led Technology Development 

• Post-War Period: After World War II, governments, especially in the 

U.S., played a central role in technology development. Much of this post–

WWII technology focused on national defense. 

• Key Innovations: This era saw the development of foundational 

technologies such as the internet, GPS, and large-scale computing. 
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b. Transition to Industry-Led Development 

(1) Economic Shifts 

In the late 20th century, as global economies grew more interconnected, the private 

sector began to take the lead in technological development. Advances in home computing, 

cellular phones, and consumer electronics provided economic incentives to invest in 

technological development. 

(2) Rise of Tech Companies 

In this period of technological advance, companies like IBM, Microsoft, and Apple 

began to dominate technology innovation. Market incentives and soaring profits 

incentivized these companies to invest heavily in research and advancing miniaturization 

of electronics components. 

(3) Shift in Focus 

While governments continued to invest in technology, especially in areas like 

defense and space, the focus of innovation shifted to consumer-driven markets. The private 

sector became the primary driver of advancements in computing, telecommunications, and 

biotechnology (Bresnahan & Trajtenberg, 1995). 

c. Current Landscape 

(1) Industry Leadership 

Today, the technology industry continues to be led by private companies, which are 

driven by profit to invest heavily in technological innovation. This expanding push to 

miniaturize solid-state computing and develop consumer products will, for the foreseeable 

future, perpetuate this industry-led technology development model. 

(2) Government’s Role 

While still engaged in certain areas of technological development, like basic 

science research and infrastructure, the government’s role has shifted toward investment 

in critical technologies and policy and adapting commercial products to defense needs. 
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C. INTRODUCTION TO MONOLITHIC COMPUTING ARCHITECTURE 

Monolithic computing architecture refers to systems in which the SW is designed as 

a single, unified block of code. In these architectures, all components—such as the user 

interface, business logic, and data management—are interconnected, compiled, and executed 

as one entity. This design was predominant in the early days of computing, especially in 

mainframe systems, because of its simplicity and performance benefits in a limited-resource 

environment (Lewis & Fowler, 2014). 

This architecture is characterized by a tightly coupled structure. All functionalities 

are interdependent, which makes deploying applications easier in certain contexts, as 

everything is bundled into a single executable application. However, this can also be a 

drawback because any change to one part of the system typically requires recompiling and 

redeploying the entire application. As systems grow in complexity, monolithic architecture 

becomes increasingly difficult to maintain and scale. The tightly coupled nature can lead to 

slower development times and increased risk of bugs, as minor updates may impact unrelated 

components. Additionally, scaling requires duplicating the entire monolithic application, 

which can result in the inefficient use of resources (Bass et al., 2021). 

Overall, while monolithic architecture offers simplicity in certain contexts, their 

scalability and maintainability challenges have made them less favored for large-scale 

applications in modern computing. 

In contrast, modern alternatives, such as microservices architectures, have gained 

popularity due to their modular design, which decouples different functionalities into 

independent services that can be scaled and maintained individually (Newman, 2021). 

Nevertheless, monolithic systems are still prevalent in many legacy applications and can be 

suitable for smaller systems where the benefits of microservices do not outweigh their 

complexity. 

D. INTRODUCTION TO MICROSERVICES COMPUTING 
ARCHITECTURE 

Microservices computing architecture represents a modern, decentralized approach 

to SW design, where applications are structured as a collection of independent, loosely 
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coupled services. Each service within a microservices architecture is responsible for a 

specific business functionality and operates as a standalone unit that communicates with 

other services through lightweight protocols, typically HTTP-based application 

programming interface (API) or message queues (Newman, 2021). This architecture has 

gained popularity due to its ability to enhance flexibility, scalability, and maintainability, 

particularly for large-scale applications. 

Unlike traditional monolithic architectures, where all components are integrated in 

a single codebase, microservices break down an application into smaller, autonomous 

services. Each service can be developed, deployed, and scaled independently, without 

affecting the rest of the system. For instance, a team responsible for user authentication can 

make changes or updates without needing to redeploy the entire application. This 

independence also makes it easier to isolate and resolve issues, as faults are contained 

within individual services, rather than spreading across the entire system. 

A major advantage of microservices is the ability to scale services independently. 

In a monolithic architecture, scaling typically involves duplicating the entire application to 

handle increased demand, leading to resource inefficiencies. However, with microservices, 

only the specific services that require additional resources are scaled. This selective scaling 

enables more efficient use of computing resources, as different services can be optimized 

according to their workloads (Lewis & Fowler, 2014). For example, a high-traffic service 

like a recommendation engine can be scaled separately from less resource-intensive 

services like a billing system. 

Microservices architectures also allow for greater technological diversity. Since 

each service is independent, development teams can choose the most appropriate 

technology stack for the functionality they are building. This flexibility enables the use of 

different programming languages, databases, and frameworks across various services, 

optimizing the performance of each based on specific requirements (Nadareishvili et al., 

2016). In contrast, monolithic architecture often imposes a single technology stack across 

the entire application, which can limit the ability to optimize for specific needs. 
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Despite these advantages, microservices introduce added complexity. As each 

service operates independently, building consistently efficient and reliable communication 

between services becomes more challenging. Distributed microservices systems, as they 

transit data between services face issues such as latency, fault tolerance, and consistency. 

Furthermore, ensuring data consistency can be difficult since each service may have its 

own database, requiring distributed transaction management techniques. Implementing 

proper security across multiple services also becomes more complex than in monolithic 

systems, as microservices architectures require additional mechanisms to secure 

communication between services. 

Microservices architectures demand robust Development Operations (DevOps) 

practices to handle the complexities of deployment, monitoring, and troubleshooting in 

distributed environments. Continuous integration, automated testing, and containerization 

are commonly used to manage microservices effectively (Newman, 2021). Tools such as 

Docker and Kubernetes have become standard in deploying and managing microservices-

based applications. 

In summary, microservices architectures offer significant advantages in terms of 

flexibility, scalability, and maintainability, making them ideal for large, complex, and 

rapidly evolving applications. However, they also introduce new challenges in terms of 

service coordination, security, and operational complexity. Successful adoption of 

microservices requires careful planning, advanced DevOps practices, and appropriate 

tooling. 
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III. LITERATURE REVIEW 

This literature review provides an assessment of reference material used in this 

paper to ensure that the cited material provides well-rounded and well-reasoned 

information and sufficient synthesis to support the goals of the capstone. The review also 

presents gaps in the reference material to highlight areas that require additional sources to 

round out the research needed for preparation of the paper. 

In this capstone, it is critical to fully explore the foundations of monolithic and 

microservices architectures and the features, advantages, and disadvantages of each. 

Additionally, understanding best practices for transitioning a monolithic USN system to a 

microservices architecture is necessary to move the USV CS to a modern architecture. 

Once SW modernization has occurred, it is essential to understand how the 

advantages of the new design are transferred to operational units to complete speed to threat 

distribution of warfighting improvements. Figure 1 provides a simplified outline of the 

required processes. 

 
Figure 1. Software Modernization Process 
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The reference material cited in this paper is used to assess the main areas of 

foundational technologies and monolithic SW design and attributes, modernization 

approaches, microservices SW design, and deployment/delivery processes to complete the 

modernization effort. 

A. FOUNDATIONAL TECHNOLOGIES 

Gordon Moore (1965), a co-founder of Intel, provided data on the accelerating pace 

of technological advancement in integrated circuit design that offers context on the 

limitations of early naval systems driving monolithic SW designs. 

Shalf (2020), discussed the future of computing beyond Moore’s Law, and 

illustrated the difficulty in maintaining this pace of change as transistors approach atomic 

scales and challenges such as heat dissipation, quantum effects, and material constraints 

emerge, complicating efforts to continue the historical pace of advancement. 

These two sources give context to the state of technology and its inherent 

limitations. Understanding monolithic applications and the challenges of modernization 

are foundational to this paper. Kalske et al. (2018) and Kuryazov et al. (2020) explore the 

challenges and methodologies associated with transitioning from monolithic to 

microservice architectures, emphasizing both theoretical frameworks and practical 

approaches. 

Kalske et al. (2018) identify key challenges organizations face during the migration 

process, focusing on technical, organizational, and cultural barriers. Technically, breaking 

down monoliths requires reengineering existing systems to ensure loose coupling, 

scalability, and fault isolation. Organizational challenges include aligning development 

teams with domain-driven design (DDD) principles to foster a microservices mindset. 

Cultural shifts involve encouraging collaboration and adapting to continuous delivery and 

DevOps practices. 

Kuryazov et al. (2020) complement these insights by proposing systematic 

methodologies for decomposing monolithic applications into microservices. They 

emphasize the importance of domain analysis and boundary identification to create service 
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boundaries that align with business capabilities. The authors also discuss the use of 

automated tools and clustering algorithms to analyze existing codebases and facilitate the 

decomposition process. Additionally, they highlight best practices, including 

implementing APIs, defining communication patterns, and monitoring inter-service 

dependencies to maintain system integrity. 

Both studies converge on the need for thorough planning and evaluation to mitigate 

risks associated with the transition. The authors of both studies stress the importance of 

understanding the trade-offs between operational efficiency and the increased complexity 

introduced by microservices. They also underscore the significance of stakeholder 

engagement, as the migration impacts not only technical teams but also broader business 

processes. 

Kalske et al. (2018) provide a broad perspective, offering a conceptual framework 

to address the multifaceted challenges of transitioning, while Kuryazov et al. (2020) 

present a more hands-on approach, detailing specific techniques and tools for 

decomposition. Together, these studies provide a holistic view, illustrating that successful 

migration to microservices hinges on integrating technical innovation with organizational 

readiness and cultural adaptability. 

 
Figure 2. Monolithic Software Design 
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As naval systems seek to modernize, the USN increasingly looks to the private 

sector, which has become the primary driver of advancements in computing, 

telecommunications, and biotechnology (Bresnahan & Trajtenberg, 1995). 

B. MODERNIZATION AND TRANSITION 

To modernize SW architectures, an in depth understanding of where systems are, 

why they were constructed as they were, and what the advantages and disadvantages of 

monolithic design are important. It is also essential to understand how all components, such 

as the user interface, business logic, and data management, are interconnected, compiled, 

and executed as one entity (Lewis & Fowler, 2014). An understanding of how the tightly 

coupled nature can lead to slower development times and increased risk of bugs, as minor 

updates may impact unrelated components, is equally important (Bass et al., 2021). 

To address the disadvantages of monolithic designs, modern alternatives, such as 

microservices architectures, have gained popularity due to their modular design, which 

decouples different functionalities into independent services that can be scaled and 

maintained individually (Newman, 2021). These independent services are depicted in 

Figure 3 as “Node 1” and “Node 2” independent SW services. 

 
Figure 3. Microservices Software Architecture 
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Key attributes of microservices architectures are automated deployment and CI/

CD. These practices facilitate the efficient management and release of services. Figure 4 

illustrates the continuous cycle of the CI/CD Pipeline. 

 
Figure 4. Continuous Integration and Deployment Pipeline 

Humble and Farley (2010), Nadareishvili et al. (2016), and Burns et al. (2018) 

integrate key principles and practices for building scalable, reliable, and efficient SW 

systems, focusing on continuous delivery, microservices, and distributed system design. 

Humble and Farley (2010) establish the foundation of continuous delivery, 

emphasizing the importance of automating build, test, and deployment pipelines to ensure 

reliable SW releases. They advocate for frequent, incremental updates to reduce risks and 

improve system stability. Continuous delivery necessitates robust testing frameworks, 

infrastructure as code, and automated deployment to enable agility while maintaining high-

quality standards. 

Nadareishvili et al. (2016) extend these principles to the realm of microservices 

architecture, highlighting how its decentralized nature aligns with continuous delivery 

practices. They argue that microservices promote modularity, allowing teams to work 

independently and release services without affecting the entire system. The authors also 

underscore the cultural shift required for successful adoption, advocating for practices like 
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DDD, API-first development, and DevOps. These cultural aspects ensure collaboration and 

alignment between technical and business goals. 

Burns et al. (2018) provide a complementary perspective by focusing on the design 

patterns and paradigms for scalable, reliable distributed systems. Their work emphasizes 

containerization, orchestration, and service discovery as critical components of modern 

distributed systems. They argue that adopting patterns like sidecars, service meshes, and 

immutable infrastructure helps address challenges like fault tolerance, scalability, and 

system observability, which are inherent in microservices. 

The three groups converge on the need for automation and standardization as the 

backbone of modern SW systems. Humble and Farley’s (2010) emphasis on automation in 

continuous delivery is reinforced by Burns et al.’s (2018) insights into orchestration and 

container management, such as Kubernetes, which provide a robust foundation for 

deploying and managing distributed services. Meanwhile, Nadareishvili et al. (2016) 

bridge these practices by framing microservices as an architectural enabler that integrates 

well with continuous delivery pipelines and distributed system design principles. 

Together, these sources highlight that the successful implementation of modern SW 

systems requires a holistic approach that integrates technical, organizational, and cultural 

factors. Continuous delivery fosters rapid iteration, while microservices enable modular 

scalability and innovation. Distributed system patterns provide the reliability and 

performance needed to scale these practices effectively. The synthesis underscores that the 

intersection of these domains empowers organizations to build resilient systems capable of 

meeting the demands of dynamic and competitive environments. 

C. IDENTIFICATION OF GAPS AND THREADS 

The sources collected for this paper provide a synthesized and broad view of both 

the underlying technologies and commercial practices leveraged to transition older 

monolithic SW to modern microservices architectures. Throughout these sources, 

examples are presented on how commercial enterprises are making this transition and the 

benefits gained from this often expensive and complex move to microservices. 
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It is much more difficult to find examples of successful transitioning to 

microservices and modular SW in military applications. As more naval systems are 

rearchitected, additional studies and post-mortem analysis will become available, but many 

systems, like the USV program, are in the early stages of this transition. Moving from 

monolithic blocks of SW, through virtualization efforts, to containerized microservices, 

and the associated strangler patterns to root out decades-old codebases, are occurring day 

by day. 

This study leans heavily on private sector commercial efforts and the documented 

best practices to guide the capstone forward while the USV program SW is modernized. 

D. SUMMARY AND CONCLUSION 

Just as the world transitioned from government-led development of technology to 

industry-led development, the USN will depend on commercial tools and practices to 

modernize its SW architectures. The challenges of a less flexible system in government 

industry and unique applications will become apparent as more systems modernize. 

It is incumbent on the USN to leverage the agility and best practices of commercial 

industry as it modernizes its way out of decades-long stovepipes and legacy practices. So, 

while there is much more data and reference material on commercial initiatives, it is fitting 

for this capstone, and military modernization, to bend to the greatest extent possible to 

these commercial practices. 
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IV. MONLITHIC COMPUTING ARCHITECTURE 

Monolithic computing SW refers to a design architecture where a SW system is built 

as a single, indivisible unit. In this architecture, the entire application is typically compiled 

into a single executable or binary file. This contrasts with modular or microservices 

architectures, where the SW is divided into discrete, loosely coupled components. Figure 5 

represents a simple view of a monolithic computing architecture where all components of the 

end use are integrated into a single SW module or executable. 

 
Figure 5. Simplified Monolithic Computing Architecture 

A. KEY CHARACTERISTICS 

1. Single Codebase 

A single codebase refers to a SW development practice where the entire application’s 

source code is maintained in one unified repository or structure. This means that all 

components—such as the user interface, backend logic, and data access layers—are housed 

in the same location, often forming the basis of monolithic architectures (Fowler & Lewis, 

2014). In this setup, developers work within the same code repository, and all changes or 
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updates are applied uniformly across the system. A single codebase can simplify version 

control and deployment processes, especially in smaller applications, as there is only one 

location to manage, compile, and deploy the SW (Dragoni et al., 2017). 

One key benefit of a single codebase is consistency. Since all components reside in 

the same repository, it ensures that developers work with the same version of the code, 

reducing the risk of fragmentation and incompatibility. This also facilitates simpler builds and 

deployments, as there is only one application to manage. However, as the system scales, 

maintaining a single codebase can become problematic. Large, monolithic applications 

become cumbersome to update, as changes in one part of the codebase can affect unrelated 

areas, making the development process slower and more error-prone (Newman, 2021). 

Furthermore, a single codebase limits the ability to adopt multiple technologies and 

languages within the same application. In contrast to microservices architectures, where 

different services can be employed to join SW products developed in different teams, a single 

codebase typically requires uniformity in programming languages, frameworks, and libraries 

which greatly reduces flexibility. 

In summary, a single codebase is efficient for smaller applications, but as the 

application grows in complexity, this approach can introduce scalability and maintainability 

challenges. In a monolithic architecture the components of the application, like databases, 

graphic user interfaces, and data management layers, are integrated, tested, and deployed as a 

single codebase. This codebase is compiled into one executable or binary file. 

2. Tight Coupling 

Components within a monolithic system are tightly coupled. This means changing one 

part of the end application often drives changes, regression, to other parts. This tight coupling 

can lead to complexities in development and maintenance, as modifications can have 

widespread effects. 

Tight coupling in monolithic architecture refers to the close interdependence between 

the various components of a system, such as the user interface, business logic, and data access 

layers. In a tightly coupled system, changes made to one part of the codebase often require 
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adjustments in other parts, as the components are not designed to function independently. This 

creates a situation where all parts of the system are highly interconnected, and altering a single 

feature may require recompiling and redeploying the entire application (Newman, 2021). 

Tight coupling is a defining characteristic of monolithic systems, especially in early 

computing architectures where resource limitations and design simplicity favored single unit 

systems (Fowler & Lewis, 2014). In this architecture, the components share the same memory 

space and are often designed to rely on internal calls to each other. While this can be beneficial 

for performance, as communication within the system is fast, it also introduces challenges, 

especially as the system grows in complexity. 

One of the primary disadvantages of tight coupling is the difficulty in maintaining and 

scaling the system. Since all components are interconnected, even small changes to a single 

module may inadvertently affect other parts of the system. This interdependence can lead to 

longer development cycles and increased risk of introducing bugs or errors during updates 

(Dragoni et al., 2017). Additionally, as the system grows, it becomes harder to isolate issues 

and fix bugs without impacting other functionalities. 

Tight coupling also limits the scalability of a monolithic system. In modern computing 

environments, applications often need to scale, or spawn additional instantiations of a service 

to handle increased user demand. With a monolithic system scaling usually causes a 

replication of the application, including components that may not need additional resources. 

Additionally, this replication causes ripple effects as these secondary instantiations drive the 

need to synchronize data between them and development of additional code. This leads to 

inefficient resource utilization and can result in performance bottlenecks. 

Moreover, tight coupling restricts flexibility in adopting new technologies. In a tightly 

coupled system, all components typically need to use the same programming language, 

frameworks, and databases, which can prevent teams from leveraging more suitable 

technologies for specific tasks (Nadareishvili et al., 2016). This technological uniformity can 

limit the system’s adaptability and make it harder to adopt modern practices. 
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In summary, tight coupling in monolithic architecture creates significant challenges 

in terms of maintenance, scalability, and flexibility. While this approach might be simpler for 

small systems, it becomes increasingly problematic as the system grows in complexity. 

3. Single Deployment Unit 

A single deployable unit in a monolithic architecture refers to an application where all 

components—such as the user interface, business logic, and data access layers—are packaged 

together and deployed as one cohesive entity. This means that the entire application is built, 

tested, and released as a single artifact, simplifying the deployment process since there is only 

one unit to manage (Newman, 2021). In such an architecture, the tight integration of 

components ensures consistency across the application, as all parts are developed and updated 

simultaneously. 

This approach can be advantageous in terms of initial development speed and 

simplicity, especially for smaller applications or teams. With a single deployable unit, there 

is less complexity in version control and continuous integration pipelines because there are 

fewer moving parts (Richards, 2015). However, this model also has significant drawbacks. 

As the application grows, even small changes require the entire system to be redeployed, 

which can lead to longer downtime and increased risk of introducing bugs into unrelated areas 

(Fowler & Lewis, 2014). 

Furthermore, the single deployable unit makes it challenging to scale specific parts of 

the application. As the entire system must be replicated to increase capacity, resources are 

often wasted on components that do not need scaling (Bass et al., 2021). Thus, while this 

model may be manageable for smaller applications, it can become a hindrance in large-scale 

systems. 

In summary, while a single deployable unit in a monolithic architecture simplifies 

deployment and ensures component compatibility, it poses challenges in maintenance, 

scalability, and rapid iteration as applications become more complex. 
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4. Performance Considerations 

Monolithic systems benefit from performance efficiencies because all components are 

compiled and executed together. This construct often leads to challenges in military 

applications as the application becomes too large or complex, affecting performance, 

scalability, and drives a magnitude of T&E requirements to assess regression of the monolithic 

application from the smallest change or SW update. 

Performance considerations in a monolithic architecture are shaped by its tightly 

coupled, unified structure, where all components of an application—such as the user interface, 

business logic, and data access layers—operate within a single codebase. This tight coupling 

can offer performance benefits in certain contexts, particularly due to the reduced overhead 

in communication between components. Since all parts of the application share the same 

memory space and execute within the same process, internal calls between components are 

typically faster compared to distributed systems, where services may need to communicate 

over a network (Fowler & Lewis, 2014). 

However, as a monolithic system grows in complexity, performance issues can arise. 

One significant challenge is the scalability of the system. In a monolithic architecture, scaling 

often requires replicating the entire application, even if only a specific part of the system, such 

as the business logic or data access, needs additional resources. This can lead to inefficient 

resource utilization, as components that do not require scaling are duplicated unnecessarily 

(Dragoni et al., 2017). 

Another performance consideration is the risk of bottlenecks. A failure or slowdown 

in one part of the monolithic application can impact the entire system, as all components are 

closely intertwined. Furthermore, as the codebase grows larger, build and deployment times 

can increase, which can hinder continuous delivery efforts (Newman, 2021). 

Monolithic architecture can also struggle with maintainability over time, which may 

indirectly affect performance. As more features and functionalities are added, the system 

becomes harder to optimize, making it more difficult to ensure that all parts of the application 

perform efficiently. 
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In summary, while monolithic architecture can offer performance benefits for smaller 

applications, their scalability and bottleneck issues make them less ideal for larger, more 

complex systems. 

5. Development Simplicity 

Development simplicity in a monolithic architecture is often cited as one of its key 

advantages, especially for small to medium-sized applications. Monolithic architecture 

consolidates all components—such as the user interface (UI), business logic, and data access 

layers—into a single, unified codebase. This centralized structure simplifies the development 

process because everything is in one place, making it easier for developers to understand the 

entire application (Fowler & Lewis, 2014). In contrast to more complex architectures like 

microservices, where various services operate independently, monolithic systems allow 

developers to build, test, and deploy the entire application as a single unit. 

One of the primary benefits of this simplicity is the straightforwardness of the 

development environment. With all the code in a single repository, there are fewer 

dependencies to manage, and developers can work without worrying about the 

communication between distributed services. This centralization reduces the need for 

complex configuration and infrastructure, making it easier to set up a development 

environment, especially for small teams (Bass et al., 2021). Additionally, testing is simpler in 

monolithic architecture because tests can cover the entire system in one go, without needing 

to mock or simulate multiple services. 

Another aspect of development simplicity in monolithic architectures is the ease of 

deploying the system. With a single deployable unit, developers can push updates to 

production with one build and deployment process, ensuring that all changes are applied 

consistently across the system (Newman, 2021). This consistency reduces the complexity of 

versioning, deployment scripts, and rollback strategies, which are often more intricate in 

distributed systems. 

However, the simplicity of monolithic architecture tends to decrease as the application 

grows. As more features and modules are added, the codebase becomes more complex and 

harder to manage. Even though the development of smaller applications is simplified, larger 
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monolithic systems often face difficulties with maintainability and scalability. When a 

developer changes one part of the system, it can have unintended consequences elsewhere, 

leading to longer testing and debugging cycles. As a result, the initial simplicity of monolithic 

architecture can give way to complexity over time (Dragoni et al., 2017). 

Monolithic architecture offers significant development simplicity, particularly for 

smaller applications, due to their unified codebase, simplified deployment, and reduced 

dependencies. However, this simplicity can become a limitation as the system grows in size 

and complexity, leading to challenges in maintainability and scalability. 

B. ADVANTAGES 

1. Ease of Development 

In a monolithic architecture there are significant advantages in ease of development. 

This design simplifies the development process by consolidating all components into one 

application. The main advantage of this approach is the reduced complexity of integrating 

multiple services or components, thereby increasing application performance and reducing 

latency. 

One of the advantages of monolithic development is managing a single codebase, 

across developers, making it easier to manage dependencies and version control. Generally, 

developers “check out” portions of the unified code while it is in revision/update. 

Furthermore, a monolithic approach typically requires fewer coordination efforts between 

teams, as changes are made in a single repository rather than across distributed services 

(Fowler, 2018). 

While these benefits can streamline the initial development phase, monolithic 

architectures become cumbersome as the application grows, often through years of update 

and inefficient practices of documenting updates/changes over years of growth, potentially 

leading to challenges in maintainability and deployment. Nonetheless, for many projects, 

especially smaller ones or those in their early stages, the monolithic approach offers a more 

straightforward and efficient development process. 
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2. Performance 

Monolithic architecture provides several performance advantages due to its unified 

structure and lack of inter-service communication overhead. In a monolithic application, all 

components—such as the UI, business logic, and data access layers—are encapsulated within 

a single codebase and runtime environment (Fowler, 2018). This integration leads to 

streamlined execution processes and minimizes the latency associated with inter-service 

communication often encountered in microservices architectures. 

Generally, monolithic architectures benefit from simplified data transfer and 

management within the application. Since all components are part of a single application, 

transactions can be managed more effectively within a single context. This centralized 

approach enables more efficient resource management and can lead to improved application 

performance. 

Another performance advantage is the ease of optimization. Developers can focus on 

optimizing a single application rather than multiple services, allowing for more targeted 

performance improvements and efficient use of resources. Additionally, monolithic 

applications often leverage a single database, which can streamline data access patterns and 

reduce the performance overhead associated with managing multiple databases (Fowler, 

2018). 

The monolithic architecture’s unified structure, in-memory communication, and 

simplified transaction management contribute to its performance advantages, particularly in 

terms of reduced latency and more efficient resource utilization. 

3. Simplicity in Deployment 

Monolithic architecture offers notable advantages in deployment simplicity due to its 

integrated and unified structure. In a monolithic system, the entire application is packaged 

into a single executable or deployable unit. This consolidated approach simplifies the 

deployment process, reducing the complexity often associated with managing multiple 

services and components Fowler, 2018). 
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One significant advantage of monolithic SW architecture is the ease of deployment. 

Since all the functional pieces or modules are contained within one codebase, there is no need 

to manage multiple SW parts and their dependencies or coordinate installations across 

different environments. Deployment of this single unit simplifies set up and maintenance. 

Another benefit of monolithic applications is the reduced overhead in managing 

deployment documentation. In monolithic architecture, deploying updates or patches involves 

releasing a single artifact. This contrasts with microservices, where multiple services may 

require individual updates and deployments, increasing the risk of inconsistencies and 

deployment errors. The monolithic approach ensures that all components are updated 

simultaneously, maintaining consistency across the application Fowler, 2018). 

Additionally, monitoring and logging application performance are simplified in 

monolithic systems. Since the entire application operates as one unit, monitoring tools and 

logging mechanisms can be more centrally and easily managed. This often provides a unified 

view of the application’s performance and behavior. 

In summary, the monolithic architecture’s simplicity in deployment is characterized 

by its unified deployment unit, ease of configuration, reduced management overhead, and 

centralized monitoring. These factors contribute to efficiency. 

C. DISADVANTAGES 

1. Scalability Issues 

Monolithic architecture, despite its initial simplicity and ease of development, faces 

significant scalability issues as applications grow. In a monolithic system, all components are 

integrated into a single codebase and executed within a single process or server Fowler, 2018). 

This design can lead to several challenges when scaling the application to meet increased 

demand. 

A drawback to developing and deploying monolithic SW applications is the difficulty 

in scaling individual components. In a monolithic architecture, the entire application must be 

scaled together, even if only specific parts require additional resources. For example, if a 
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particular component experiences high load the entire application must be scaled to handle 

this increased load. This often results in higher costs and complexity as the application grows. 

Additionally, the single codebase approach can lead to performance bottlenecks. As 

the application’s size and complexity increases, the codebase very often becomes unwieldy. 

Over years of updates, without modernization of the code structure, monolithic SW becomes 

difficult to optimize and manage. Performance issues in one part of the application can affect 

the entire system, leading to decreased overall efficiency and responsiveness. 

Another challenge is the impact on deployment and maintenance. Scaling a 

monolithic application often requires deploying the entire application, and any updates or 

changes need to be tested and deployed as a whole, increasing the risk of introducing 

regression and unintended defects in the entire application. 

In summary, while monolithic architecture offers advantages in terms of initial 

development and deployment simplicity, it faces significant scalability issues. The need to 

scale the entire application together, potential performance bottlenecks, complex deployment 

and maintenance processes, and coordination challenges all contribute to the difficulties in 

scaling monolithic systems effectively. 

2. Maintenance Complexity 

As the application grows, over the course of years and numerous update cycles 

maintaining and updating a monolithic codebase becomes increasingly complex. This 

complexity often leads to issues when modifying or adding new features. 

Maintenance complexity in a monolithic architecture arises from its unified and 

interdependent structure, where all application components are integrated into a single 

codebase. As the application grows, managing and modifying this extensive codebase can 

become increasingly challenging (Fowler, 2018). 

One significant issue is the risk of introducing bugs when changes are made. Since all 

components of the singular application are tightly coupled, changes in one part of the 

application can inadvertently affect other parts, leading to unintended SW regression and 

increased complexity of debugging efforts and tools. This interconnectedness can make 
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isolating and fixing issues more difficult compared to modular architectures where 

components are more decoupled. 

Another challenge is the increased complexity of deploying updates. Updating a 

monolithic application often requires redeploying the entire system, which can be time-

consuming and prone to implementation errors. This SW design approach means that the 

smallest updates necessitate comprehensive testing to determine if the update achieved the 

desires outcome free of unintended regression. This lack of granularity drives up the scope, 

costs, and time required to validate performance and ensure the stability of the monolithic 

application. 

A monolithic architecture, in large part, prevents the use of distributed development 

teams. As the application codebase grows, coordinating multiple developers working on 

different functions/features can become difficult. This leads to integration conflicts, slower 

development cycles, and validation test events which are significantly larger in scope. 

3. Limited Flexibility 

Monolithic architecture, while straightforward in its design, often faces significant 

flexibility limitations. In this architectural model, all components and functionalities are 

encapsulated within a single codebase, which can restrict the ability to adapt and evolve the 

application in response to changing requirements or technological advancements (Fowler, 

2018). 

One major limitation is the difficulty in implementing new features or modifying 

existing ones without affecting the entire application. With all the components of a monolithic 

application tightly coupled, any change in one part of the system may bring performance 

regression elsewhere. As years pass this tight coupling drives an increasing number of 

interdependencies which makes it increasingly more challenging to introduce new 

technologies or frameworks. Consequently, the pace of innovation can be slowed as 

developers must ensure that modifications do not compromise the stability of the entire 

system. 
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Additionally, the monolithic structure can hinder the adoption of modern development 

practices such as CI/CD. The deployment of monolithic applications usually involves 

releasing the entire application, even when the smallest updates are made. This prohibits rapid, 

incremental updates, and reduces the agility of the development and delivery process. This 

inhibitive paradigm greatly limits the ease in which new features or fixes can be quickly 

delivered and increases costs. 

In summary, monolithic architecture’s flexibility limitations arise from its tight 

coupling of components, challenges in adopting new technologies or practices, and 

inefficiencies in scaling. These factors can restrict an application’s adaptability and hinder its 

ability to evolve in a dynamic technological landscape. 

D. CONCLUSION 

Monolithic computing SW is characterized by its unified structure where all 

application components—UI, business logic, and data access layers—are integrated into a 

single codebase (Fowler & Lewis, 2014). A monolithic architecture often simplifies initial 

development and deployment. Another benefit is a more easily managed and centralized 

version control. A single codebase ensures that all developers work with the same version of 

the application, reducing fragmentation and incompatibility issues (Bass et al., 2021). 

However, as applications grow, maintaining a monolithic codebase can become cumbersome. 

Changes in one area can impact others, making updates more error-prone and time-consuming 

(Newman, 2021). 

Tight coupling is another defining characteristic of monolithic systems. Components 

within these systems are interdependent and the smallest updates can necessitate changes 

across the entire application, complicating maintenance and scaling. Additionally, even minor 

updates can drive the need for extensive testing and redeployment, driving costs and slowing 

the pace of improvement. 

Despite these challenges, monolithic architecture offers simplicity in deployment. 

Since the entire application is packaged as a single deployable unit, managing updates and 

configuration is more straightforward (Newman, 2021). As the application grows, after years 

of addition/update, the initial simplicity gained in monolithic architecture diminishes adding 
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difficulties in managing large codebases. In summary, while monolithic SW provides 

development ease and deployment simplicity, it can struggle with scalability, maintenance 

complexity, and flexibility as applications evolve. 

E. CASE STUDY, COMPUTNG INFRASTRUCTURE: A CORE ENABLER 
OF NAVAL COMBAT SYSTEMS SOFTWARE MODERNIZATION 

This case study will explore how naval CS CI enabled decades of USN power 

projection and global stability throughout the Cold War era. And, while the purpose-built 

computers and computing systems utilized prior to transition to commercial technologies 

served the USN well, they also were an inhibitor of the implementation of modern SW 

architectures and Pace-of-Threat deployment of CS improvements. 

In this case study, four CS computing architecture capability stages will be presented 

with their inherent capabilities, and the limitations they placed on SW modernization. Figure 

6 provides an overview of each stage in CSs computing environments. 

 
Figure 6. Stages of Combat System Computing Environments Evolution 
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1. Stage 1: AN/UYK-7 and AN/UYK-43 

The AN/UYK-7 and AN/UYK-43 computers were a critical 32-bit computer system 

developed for the USN, primarily used for tactical data processing in systems such as the 

Navy Tactical Data System (NTDS) and Aegis CSs. The UYK-7 was introduced in the early 

1970s and marked a significant advancement over its predecessors in terms of processing 

power, memory capacity, and input/output (I/O) capabilities. 

The AN/UYK-43 was the USN’s standard 32-bit computer system for general-

purpose applications from the early 1980s through the 2000s, replacing the AN/UYK-7. The 

UYK-43 was highly reliable, flexible, and brought significant performance improvements 

over its predecessors. The AN/UYK-43 was widely used in shipboard and submarine 

systems for tactical data processing, command and control (C2) processing, sonar, radar 

control, and other mission-critical applications. 

a. AN/UYK-7 Capabilities 

(1) Processing Power 

The AN/UYK-7 could process up to 725,000 instructions per second: 

• Architecture: The AN/UYK-7 utilized a 32-bit architecture, and featured 

a 32-bit word length, allowing for greater data precision and faster 

processing of larger numbers compared to older systems. 

• Clock Speed: The system operated at a clock speed of approximately 2.5 

MHz, typical for military-grade systems of that era. 

• Instruction Set: The instruction set included both fixed-point and 

floating-point arithmetic, making the system versatile for both general-

purpose and real-time operations. 

(2) Memory 

The AN/UYK-7 initially came with 64K words (65,536 words) of magnetic core 

memory, which equals 256 KB in modern terms (based on the 32-bit word size). This could 

be expanded to 1 MB with additional memory modules. 
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(3) I/O and Networking 

The UYK-7 had a flexible and scalable I/O system, supporting 16 to 32 independent 

I/O channels. These channels allowed the system to interface with numerous external 

devices, such as C2, radar systems, sonar, and missile control. 

(4) OS and SW 

The AN/UYK-7 ran NTDS SW, as well as the Aegis Tactical Operating Environment 

which were developed for real-time combat data processing. This SW allows the system to 

manage data from sensors, track objects, and guide weapons in real-time. 

(5) Applications 

The AN/UYK-7 was widely used in various naval applications, including the NTDS. 

It processed real-time combat data from sensors, including radar and sonar, and provided 

data to weapons systems for missile control and engagement. Aegis Combat System: Early 

Aegis Weapon System (AWS) baselines used the UYK-7 to process radar, C2, and weapons 

control data before Aegis transitioning to the AN/UYK-43 

b. AN/UYK-43 Capabilities 

(1) Processing Power 

The AN/UYK-43 was based on a 32-bit architecture, similar to its predecessor, the 

AN/UYK-7, but with a more modern design that enhanced performance and scalability. Like 

the UYK-7 the UYK-43 computer utilized a 32-bit word length and supported both fixed-

point and floating-point arithmetic. This architecture allowed for more efficient processing 

of complex computations (Harris, 1991). 

(2) Memory 

The AN/UYK-43 initially was configured with 2 MB of core memory, but later 

versions supported up to 64 MB of semiconductor memory. The move to semiconductor 

memory increased speed, reduced power consumption, and provided greater reliability 

compared to the AN/UYK-7. The memory used error detection and correction (EDAC) 

techniques to ensure data integrity, which was critical for military operations. 
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(3) Modularity 

The AN/UYK-43 was designed with a high degree of modularity. Its design allowed 

for the use of multiple central processing units (CPUs) and the addition of specialized co-

processors (input/output processors [IOPs]), and multiple memory module configurations. 

(4) I/O and Networking 

The AN/UYK-43 had a highly flexible I/O subsystem, supporting a variety of 

external peripherals and interfaces. The system supported up to 64 I/O channels, which 

allowed it to communicate simultaneously with multiple external devices. 

(5) Processing Modules and Multiprocessing 

The AN/UYK-43 supported multiprocessing, enabling multiple processors to work 

simultaneously. This feature allowed for parallel processing of data providing much higher 

performance than previous USN computers. 

(6) OS and SW 

The UYK-43 typically ran NTDS SW as well as the Aegis Tactical Executive System 

supporting AWS applications. 

(7) Applications 

Combat Direction Systems: The UYK-43 was widely deployed in combat direction 

systems on aircraft carriers, cruisers, and destroyers. 

c. Limiting Factors 

The UYK computers were purpose build MILSPEC computers designed to field on 

USN vessels. As such they needed to be limited in size and power consumption. These design 

constraints are limited to performance capabilities for processing and memory/storage. 

Within these limitations specialized operating environment (OE) SW was needed. 
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2. Stage 2: AN/UYQ-70 

The AN/UYQ-70 (commonly referred to as the UYQ-70) is an advanced, modular 

display and processing system developed for the USN to replace older systems like the AN/

UYK-43 and AN/UYK-44. It became the standard USN combat console and processing 

system during the late 1990s and early 2000s. The Q-70 program, and all those that have 

followed, sought to harness commercially relevant HW and package/deliver it to the fleet 

more rapidly than previous MILSPEC developments. 

a. Capabilities 

The UYQ-70 was designed to be highly modular and scalable, making it adaptable 

for different platforms and missions. The system could be configured in various ways, such 

as single-processor or multi-processor configurations, to meet specific requirements. 

It was built using commercial off the shelf (COTS) HW components. The use of 

COTS technology also meant the system could benefit from rapid advancements in 

commercial computing technologies. 

UYQ-70 processing, within the AWS, was used to run adjunct computer programs 

along UYK-43 computers transitioning portions of the application to a more modern and 

flexible computer language and commercial/modified commercial OSs like HP-UX and HP-

RT. 

b. Processing Power 

The UYQ-70 featured multi-processor capability, which allowed it to handle multiple 

tasks simultaneously. It could support a variety of different processors packaged on single 

board computers or symmetric multi-processor arrays. The system’s ability to integrate 

modern processing units meant it offered significant improvements in speed and 

computational power over older systems like the AN/UYK-43. 

c. I/O and Networking 

The UYQ-70 had robust networking and data communication capabilities. It could 

interface with various external sensors and systems, including C2, radar, sonar, and 
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electronic warfare systems. It supported a wide range of I/O interfaces, including Ethernet, 

fiber optic data transmission, and serial connections, allowing for flexibility in integrating 

with onboard systems. 

d. OS and SW 

The UYQ-70 typically ran Unix-based OSs, which allowed for reliable and secure 

multitasking in real-time environments. The system was designed to support real-time 

processing, which was crucial for tasks like missile guidance, threat tracking, and electronic 

warfare. 

e. Modularity 

One of the key features of the UYQ-70 was its upgradability. Because it used COTS 

components, the system could easily be upgraded with new HW and SW as commercial 

technology advanced. 

f. Applications 

The UYQ-70 is used in a wide range of naval applications, including: 

• Aegis CS: The UYQ-70 is an integral part of the Aegis system, providing 

real-time radar and weapons control data to operators. 

• Submarine CSs: It is also used in submarine combat control systems, 

where it processes sonar data, weapons control, and navigation 

information. 

• C2 Systems: Shore-based installations and mobile command centers use 

the UYQ-70 for mission planning, situational awareness, and tactical data 

coordination. 

The Q-70 era was an important step for modernization of USN systems. In this period 

portions of the CS applications were recompiled into commercial-based languages, 

commercial HW and OSs executed these applications. 
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g. Limiting Factors 

(1) HW 

A limiting factor in this period was the continued reliance on MILSPEC UYK 

computers. While COTS/MOTS HW provided vastly superior performance from 

processing, memory, and storage these applications still ran as bare metal machines where 

an entire single board computer was dedicated to a single application. The use of these 

COTS products opened the door for use of commercial operating system SW. 

(2) OS and Environment SW 

The continued use of UYK computers relied on the same specialized Reduced 

Instruction Set (RIS) OE SW. The addition of commercial UNIX-based OS, while an 

important step, continued the limits of closely coupled monolithic applications running 

“tied” to bare metal locations providing only N+1 resiliency. 

3. Stage 3: TI12 and TI16 

TI12 and TI16 built upon successes of the Q70 program establishing a notional 4-

year interval between revamped and modernized COTS HW for naval applications. One 

major advancement in this period was the elimination of MILSPEC computers and OE/OS. 

a. Capabilities 

Like UYQ-70, Tis were designed to be highly modular and scalable, making it 

adaptable for different platforms and missions. Efforts were made to deliver capability which 

supported many applications and delivered performance characteristics which met the most 

stringent requirements to make it adaptable to end users. TIs were built using all COTS HW 

components. The use of COTS technology continued the benefits of rapid advancements in 

commercial computing technologies. 

b. Processing Power 

TIs featured multi-processor capability, packaged in chassis like IBM Blade Centers 

and ATCA form factors. This allowed it to handle multiple tasks simultaneously. It could 

support a variety of different processors packaged on single board computers within these 
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processing centers. The system’s ability to integrate modern processing units meant it offered 

significant improvements of the previous generation of COTS computing infrastructure 

c. I/O and Networking 

TIs also leveraged industry trends in networking bringing improved network 

switching and network speeds. 

d. OS and SW 

TIs transitioned from UNIX-based to Linux-based OS like Red Hat Enterprise Linux 

(RHEL) and RedHawk adaptations for real-time processing. 

e. Modularity 

TIs continued the modular approach delivering a series of cabinets designed to 

provide NPS functions. TIs, built on COTS components, were upgradable with new HW and 

SW as commercial technology advanced. 

f. Applications 

TIs HW continued in many of the same applications of previous generations of HW 

across the surface USN. 

g. Limiting Factors 

(1) HW 

While TI equipment was “off the shelf” capable of advancing from bare metal 

implementations for well over a decade the SW continued to be deployed as bare metal. In 

the last couple of years, these systems have been making efforts to virtualize, thereby 

taking advantage of all the resources delivered. 

(2) OS and Environment SW 

The move to RHEL based OS, offering the ability to jump to more modern SW 

deployments continued the limits of closely coupled monolithic applications running “tied” 

to bare metal locations providing only N+1 resiliency. 
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4. Stage 4: Unmanned Surface Vessel Integrated Combat System 
Computing Infrastructure and MK6 ModX 

USV ICS CI, based upon HW and SW products under development for the 

Enterprise ICS and IWS X solutions, is the first fully modern ICS CI fielded in a tactical 

AWS. This rapidly developed and fielded ICS brought virtualized and containerized 

applications and an IaaS environment to prototype vessels for the USV program, opening 

the door to complete modernization of naval CS and their SW. 

a. Capabilities 

Built on modern commercial technologies these transformational systems fully 

support the most modern practices for SW development and delivery. The MK6 ModX 

based system features Software Defined Networking (SDN) which delivers virtual 

switching and routing functions on ultra-modern Cisco switching, modern storage arrays 

and hyper-converged infrastructure, and IaaS and PaaS SW enabling virtualized and 

containerized microservices oriented applications. 

b. Processing Power 

The newest generation of COTS computing infrastructure, these systems break 

from previous Computing and CI in that they no longer build systems which are “fixed” to 

variants of HW for a given period or TI interval. The processing in these systems is a 

selection of the most technically relevant HW available at a given time. Current processing 

is built on 32 core Intel Zeon processors. 

c. I/O and Networking 

Components, like processing, are fielded from the newest of the breed available. 

Switch to switch interfaces currently operate at 100GPS. 

d. OS and SW 

MK6 ModX based systems employ ultra-modern SW products in the IaaS and PaaS 

layers which abstract tactical applications away from the underlying infrastructure. It is this 
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industry relevant SW environment that enables virtualization, microservices, and continuous 

integration and deployment pipelines. 

e. Modularity 

MK6 ModX based systems employ HW modularity defining 12 unique 8U (a 

measure of rack-based appliances) modules. These modules form the building block of an 

ICS CI where four modules can be integrated into a common cabinet to deliver the needed 

capability. 

f. Applications 

MK6 ModX is the enterprise ICS CI supplier for all applications across the USN. 

g. Limiting Factors 

(1) HW 

MK6 ModX based systems only limitation is the common module-based 

arrangement. The rapid integration of the newest available HW removes HW limitations 

from CS deployments. 

(2) OS and Environment SW 

This modern IaaS/PaaS environment removes all foreseen barriers to CS 

modernization of tactical applications. The foundations in CI/CD usher in the potential to 

close the gap between military and commercial SW deployment and hasten the speed to 

threat capability for the U.S. military. 

5. Summary 

As presented, the USN has made the transition from purpose build computing and 

SW, based on the technology of the day, to modern architectures that enable the 

implementation of relevant processes which field granular microservices-based SW in 

weeks versus months/years. These enabling technologies, when fully implemented, will 

reduce the cost of development, testing, certification, and distribution of capability. Table 

2 summarizes the progression of USN CS core capabilities and their inherent limitations. 
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Table 2. Capability Progression as an Enabler of Navy Combat System Modernization 

Stage System Key Features Applications Limitations 

1 AN/UYK-7 and 
AN/UYK-43 

32-bit architecture, fixed-point, and 
floating-point arithmetic NTDS Limited processing power and 

memory 
Processing speeds of 0.725 MIPS 
(UYK-7) and 1.2 MIPS (UYK-43) Aegis CS Specialized OE tied to bare metal 

HW 
Memory of 256 KB (UYK-7) 
expandable to 1 MB, up to 64 MB 
(UYK-43) 

Shipboard and submarine 
tactical data processing 

Monolithic applications hindered 
modernization efforts 

Flexible I/O channels, 16–64   
MILSPEC design   

2 AN/UYQ-70 

Modular, scalable design Aegis CS Continued reliance on MILSPEC 
UYK systems 

Use of COTS components Submarine combat control Bare metal deployments with 
limited virtualization 

Multi-processor capabilities C2 systems Monolithic applications, restricted 
flexibility and resiliency 

Unix-based OSs   
Upgradable HW and SW   

3 TI12 and TI16 

Fully COTS-based design Continuation of legacy 
applications Bare metal deployments persisted 

High modularity with chassis-based 
processors 

Processing improvements 
across USN systems 

Closely coupled applications still 
limited virtualization 

Linux-based OS (RHEL)  N+1 resiliency remained dominant 
Improved networking and storage 
systems 

  

Cabinet-style modularity for 
processing and storage functions 
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Stage System Key Features Applications Limitations 

4 
USV ICS CI 
and MK6 
ModX 

Fully virtualized and containerized 
microservices 

Enterprise ICS CI for all 
surface USN applications 

Minimal HW limitations due to 
modular designs 

SDN Rapid modernization of 
combat systems 

Abstracted SW layers remove 
most barriers to modernization 

Hyper-converged infrastructure   
CI/CD   
Modern Intel Xeon processors (32 
cores) 
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V. MICROSERVICES ARCHITECTURE 

The following section presents an overview, key principles, advantages, 

disadvantages, and implementation considerations of a microservices-based computing 

architecture. 

A. INTRODUCTION 

1. Overview 

Microservices architecture is a design approach in which an application is 

composed of multiple small, independent services that communicate over a network. Each 

service is designed to perform a specific business function and operates as a separate entity 

with its own codebase, data storage, and deployment life cycle (Fowler & Lewis, 2014). 

This modular structure contrasts with monolithic architectures in which all functionalities 

are tightly integrated into a single application. 

In a microservices architecture, services are loosely coupled, meaning that each 

service can be developed, deployed, and scaled independently. This independence allows 

for greater flexibility in technology choices, as different services can use different 

programming languages, frameworks, and databases suited to their specific needs 

(Nadareishvili et al., 2016). The services interact through well-defined Application 

Program Interfaces (APIs), typically using lightweight protocols such as HTTP or 

messaging queues to facilitate communication between disparate components (Bass et al., 

2021). 

One of the key benefits of microservices is scalability. Services can be scaled 

independently based on demand, allowing for more efficient use of resources and improved 

performance (Dragoni et al., 2017). Additionally, microservices enhance resilience; if one 

service fails, it does not necessarily impact the entire application, which improves overall 

system reliability. 

However, microservices also introduce complexities, such as managing inter-

service communication and data consistency. The distributed nature of microservices can 
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lead to challenges in maintaining consistent data and coordinating service interactions, 

requiring sophisticated orchestration and monitoring tools. 

2. Key Principals 

Microservices architecture represents a significant shift from traditional monolithic 

SW design. This architectural style involves breaking down an application into smaller, 

self-contained services that communicate through well-defined APIs. The goal is to 

enhance flexibility, scalability, and resilience. This section explores the key principles of 

microservices architecture, highlighting their implications and benefits. 

a. Service Independence 

One of the core principles of microservices architecture is service independence. In 

a microservices-based system, each service operates as a standalone unit responsible for a 

specific business function or capability (Fowler & Lewis, 2014). This independence allows 

for several important benefits. 

(1) Autonomous Development and Deployment 

Each microservice can be developed, tested, and deployed independently. This 

autonomy facilitates CI/CD practices, allowing for frequent and reliable releases. Changes 

to one service do not necessitate changes or redeployment of other services, thereby 

minimizing disruptions. 

(2) Technology Diversity 

Services can be built using different programming languages, frameworks, or data 

stores best suited to their specific requirements (Nadareishvili et al., 2016). This 

technological diversity enables teams to leverage the best tools for each service without 

being constrained by a uniform technology stack. 
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(3) Fault Isolation 

Failures in one service do not directly impact others. This isolation enhances the 

overall system’s resilience and reliability, as the impact of a failure is contained within the 

service experiencing the issue (Dragoni et al., 2017). 

b. Loose Coupling 

Loose coupling is another fundamental principle of microservices architecture. It 

refers to the design of services such that they interact with each other through well-defined 

APIs rather than being tightly integrated. Loose coupling offers several advantages. 

(1) Reduced Dependencies 

Services are designed to be minimally dependent on one another, which reduces the 

risk of changes in one service impacting others. This design facilitates more 

straightforward modifications and upgrades (Fowler & Lewis, 2014). 

(2) Interoperability 

Services communicate through standardized protocols such as HTTP, REST, or 

messaging queues. This standardization ensures that services can interact seamlessly 

despite being built using different technologies or platforms (Bass et al., 2021). 

(3) Flexibility and Agility 

The decoupling of services supports a more agile development process, as teams 

can work on different services concurrently without worrying about integration issues. 

c. Single Responsibility Principle 

The Single Responsibility Principle (SRP) is a design guideline stating that each 

microservice should have one primary responsibility or business capability (Fowler & 

Lewis, 2014). SRP contributes to several aspects of microservices architecture. 
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(1) Focused Functionality 

Each service is designed to handle a specific business function, leading to a clear 

separation of functions. This focus simplifies development, testing, and maintenance. 

(2) Manageability 

By adhering to SRP, services remain smaller and more manageable. This 

manageability makes it easier to understand, test, and deploy each service individually 

(Dragoni et al., 2017). 

(3) Scalability 

Services designed around SRP can be scaled independently based on their specific 

workloads, improving resource utilization and performance. 

d. Decentralized Data Management 

In microservices architecture, each service typically manages its own data store. 

This decentralized approach contrasts with the monolithic model, in which a single central 

database is often used (Dragoni et al., 2017). Decentralized data management offers several 

benefits. 

(1) Data Ownership 

Each service has complete control over its own data, including the schema and 

storage technology. This autonomy allows services to be optimized for their specific data 

needs and requirements (Nadareishvili et al., 2016). 

(2) Reduced Data Coupling 

By avoiding a shared database, microservices reduce the risk of data conflicts and 

integration issues. Each service is responsible for its own data consistency and integrity 

(Bass et al., 2021). 
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(3) Flexibility 

Services can use different types of databases (e.g., SQL, NoSQL) based on their 

requirements. This flexibility allows for the use of the most appropriate data storage 

solution for each service (Fowler & Lewis, 2014). 

e. Automated Deployment and Continuous Integration 

Automated deployment and continuous integration are essential principles in 

microservices architecture. These practices facilitate the efficient management and release 

of services. 

(1) Continuous Integration 

Continuous integration involves frequently integrating code changes from multiple 

developers into a shared repository. Automated build and test processes help identify 

integration issues early and ensure that code changes do not introduce new defects. 

(2) Automated Deployment 

Automated deployment pipelines enable the continuous delivery of services to 

production environments. This automation reduces manual errors, accelerates release 

cycles, and improves deployment reliability (Fowler & Lewis, 2014). 

(3) Testing 

Automated testing is crucial for maintaining service quality. Tests can include unit 

tests, integration tests, and end-to-end tests, all of which are integrated into the CI/CD 

pipeline to ensure that services function correctly (Dragoni et al., 2017). 

f. Resilience and Fault Isolation 

Resilience and fault isolation are critical principles in microservices architecture. 

These principles enhance the system’s ability to handle failures and recover from them 

effectively. 
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(1) Fault Isolation 

By isolating failures within individual services, microservices architecture prevents 

issues from propagating throughout the system. This isolation helps maintain overall 

system stability and reliability (Dragoni et al., 2017). 

(2) Fault Tolerance 

Microservices often employ patterns such as circuit breakers, retries, and timeouts 

to handle failures gracefully. These patterns help manage service disruptions and maintain 

service availability (Nadareishvili et al., 2016). 

(3) Resilient Design 

Services are designed to be resilient and capable of recovering from failures. 

Techniques such as redundancy, failover, and backup strategies are employed to enhance 

resilience and minimize the impact of failures. 

g. Scalability 

Scalability is a key advantage of microservices architecture. Services can be scaled 

independently based on their specific needs, which allows for more efficient resource 

utilization (Dragoni et al., 2017). 

(1) Horizontal Scaling 

Microservices can be scaled horizontally by adding more instances of a service to 

handle an increased load. This approach improves performance and capacity without 

requiring changes to the service itself (Bass et al., 2021). 

(2) Resource Allocation 

Independent scaling allows for targeted resource allocation. Resources can be 

allocated to specific services experiencing high demand, optimizing overall system 

performance (Fowler & Lewis, 2014). 
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(3) Dynamic Scaling 

Microservices architecture supports dynamic scaling, in which services can be 

scaled up or down based on real-time demand. This flexibility ensures that resources are 

used efficiently and cost-effectively. 

h. DDD 

DDD is a methodology often used in conjunction with microservices architecture 

to model services around business domains (Fowler & Lewis, 2014). 

(1) Domain Modeling 

DDD encourages the modeling of services based on specific business domains or 

capabilities. This approach aligns services with business needs and promotes a clear 

separation of responsibilities (Nadareishvili et al., 2016). 

(2) Bounded Contexts 

DDD introduces the concept of bounded contexts, which define clear boundaries 

around a particular domain or subdomain. Each microservice operates within its own 

bounded context, ensuring a clear focus and reducing ambiguity (Dragoni et al., 2017). 

(3) Collaborative Design 

DDD fosters collaboration between business stakeholders and development teams. 

By aligning services with business requirements, DDD ensures that the system accurately 

reflects the organization’s needs and goals. 

i. Service Discovery 

Service discovery is essential for managing and locating services dynamically in a 

microservices architecture. 
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(1) Dynamic Registration 

Services register themselves with a service registry upon startup. The registry 

maintains a list of available services and their locations, enabling other services to discover 

and interact with them (Nadareishvili et al., 2016). 

(2) Service Lookup 

Services can query the service registry to locate other services they need to interact 

with. This dynamic discovery mechanism allows for flexible service interactions and 

adaptation to changes in the system (Dragoni et al., 2017). 

(3) Load Balancing 

Service discovery mechanisms often include load balancing capabilities to 

distribute requests across multiple instances of a service. This distribution improves 

performance and ensures high availability. 

j. API Gateway 

An API Gateway acts as a single-entry point for clients accessing a microservices-

based application (Bass et al., 2021). It provides several important functions: 

(1) Request Routing 

The API Gateway routes incoming requests to the appropriate microservices-based 

on the request path or other criteria. This centralizes request management and simplifies 

client interactions (Fowler & Lewis, 2014). 

(2) Cross-Cutting Concerns 

The API Gateway handles cross-cutting concerns such as authentication, 

authorization, logging, and rate limiting. By centralizing these concerns, the API Gateway 

reduces the complexity of individual services. 
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(3) Aggregation 

The API Gateway can aggregate responses from multiple services into a single 

response, simplifying the client-side logic and improving performance. 

3. Conclusion 

Microservices architecture offers a modern approach to SW design, emphasizing 

service independence, loose coupling, and decentralized data management. By adhering to 

key principles such as the SRP, automated deployment, and resilience, organizations can 

build flexible, scalable, and reliable systems. Microservices architecture aligns closely with 

business needs through DDD, supports dynamic service discovery, and centralizes cross-

cutting concerns through the API Gateway. These principles collectively contribute to the 

success and efficiency of microservices-based applications. Table 3 summarizes the 

features of a microservices architecture. 

Table 3. Features of a Microservices Architecture 

Aspect Details 

Definition 

Microservices architecture is a modular design approach where 
applications are composed of small, independent services. Each 
service performs a specific function and operates as an 
autonomous entity. 

Key Features 

Independence: Services have separate codebases, data storage, 
and deployment life cycles. 
Communication: Services interact through APIs using 
lightweight protocols (e.g., HTTP, messaging queues). 
Scalability: Each service can be independently scaled to 
optimize resource use. 

1. Service 
Independence 

Autonomous Development and Deployment: Services can be 
developed, tested, and deployed independently. 
Technology Diversity: Services can use different technologies 
as needed. 
Fault Isolation: Failures in one service do not impact others. 

2. Loose Coupling 
Services interact through well-defined APIs, minimizing 
dependencies. 
Ensures interoperability across diverse technologies. 

3. Single 
Responsibility 

Each service focuses on a specific business function. 
Enhances manageability and scalability. 
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Aspect Details 

4. Decentralized 
Data 

Each service manages its own data store, avoiding shared 
databases. 
Allows data ownership and technology flexibility. 

5. CI/CD 
Automation 

Facilitates continuous integration, automated deployment, and 
testing. 
Reduces errors and accelerates releases. 

6. Resilience and 
Fault Isolation 

Faults are isolated within individual services to enhance stability. 
Employs patterns like circuit breakers and retries for fault 
tolerance. 

7. Scalability Horizontal and dynamic scaling enables efficient resource 
utilization. 

8. DDD 
Services are modeled around specific business domains and 
bounded contexts. 
Aligns architecture with organizational goals. 

9. Service 
Discovery 

Enables dynamic registration and lookup of services through a 
registry. 
Facilitates load balancing and high availability. 

10. API Gateway Acts as a central entry point for routing requests. 
Handles cross-cutting concerns like authentication and logging. 

 

B. KUBERNETES CLUSTER COMPONENTS 

Figure 7 Presents a simplified diagram of a microservices-based architecture. 

 
Figure 7. Simplified Microservices and Kubernetes Diagram 
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1. Pod 

A Kubernetes Pod is the smallest and most fundamental unit of deployment in 

Kubernetes, an open-source container orchestration platform. A Pod represents a single 

instance of a running process in a Kubernetes cluster and can host one or more containers. 

Containers within the same Pod share the same network namespace, IP address, and 

storage, which allows them to communicate with each other via localhost and share data 

more easily. Pods are essential in Kubernetes because they abstract much of the complexity 

of managing containers directly, allowing users to focus on deploying applications rather 

than worrying about the underlying infrastructure. 

a. Components 

Each Pod in Kubernetes consists of one or more containers, typically Docker 

containers, which share resources. These shared resources include the following: 

• Networking: Pods are assigned unique IP addresses in the cluster, and all 

containers within a Pod share the same network interface. This means they 

can communicate internally using localhost, even though they are distinct 

containers. 

• Storage: Pods can define one or more volumes (persistent storage), and 

these volumes are shared across the containers within the Pod. This is 

useful for scenarios in which containers need to persist data or share files 

(Burns et al., 2018). 

Pods can host multiple containers, but they are typically used to group containers that are 

tightly coupled and need to run together. For example, a web server container might be 

grouped with a logging or monitoring sidecar container. In Kubernetes, multi-container 

Pods follow the principle of shared fate, if one container in the Pod dies, Kubernetes treats 

it as if the entire Pod has failed and may reschedule the Pod accordingly. 

b. Life Cycle 

Pods in Kubernetes are ephemeral in nature. They are not designed to be persistent 

over long periods of time; instead, they are created, used, and eventually terminated or 
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replaced. Kubernetes automatically handles the scheduling and rescheduling of Pods across 

nodes in a cluster. This self-healing capability allows Kubernetes to ensure that desired 

application states are always maintained (Hightower et al., 2017). Pods can have different 

states such as Pending, Running, Succeeded, Failed, or Unknown, reflecting their life cycle 

and health. 

c. Scaling 

A key feature of Kubernetes is its ability to scale applications based on demand. 

However, Kubernetes does not scale Pods directly. Instead, it uses higher-level abstractions 

like Deployments and ReplicaSets to manage scaling. Deployments define the desired state 

of Pods and allow Kubernetes to create or terminate Pods to match that state. This 

decoupling allows Kubernetes to maintain high availability and handle the dynamic nature 

of containerized applications (Hightower et al., 2017). 

d. Networking and Service Discovery 

Pods in Kubernetes are assigned ephemeral IP addresses. Since Pods can be 

destroyed and recreated dynamically, their IPs are not stable. To solve this issue, 

Kubernetes provides services, which act as stable network front ends to Pods. Services 

enable consistent access to Pods, regardless of their IP changes. Kubernetes also includes 

a built-in domain name server (DNS) service that allows Pods to discover other services 

via DNS names, making service discovery seamless in large clusters (Burns et al., 2018). 

e. Summary 

In summary, Kubernetes Pods provide the foundational building blocks for running 

containerized applications in a cluster. They group one or more containers into a single 

logical unit, offering shared network and storage resources. Pods are ephemeral by design, 

and Kubernetes uses abstractions like Deployments to manage their life cycle and scaling. 

With Pods, Kubernetes abstracts much of the complexity involved in container 

orchestration, allowing for automated deployment, scaling, and self-healing of 

applications. 
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2. Node 

A Kubernetes Node is a worker machine in a Kubernetes cluster, responsible for 

running the workloads defined by the Kubernetes control plane. Nodes can be physical 

servers or virtual machines (VMs), and they host the necessary services and runtime to 

manage and execute Pods, the smallest deployable units in Kubernetes. Each node is 

controlled by the Kubernetes control plane, which assigns Pods to nodes and monitors their 

performance. Nodes are fundamental components of Kubernetes clusters, enabling 

distributed deployment and scaling of containerized applications. 

a. Componenets 

Every Kubernetes node runs several essential services that are necessary for it to 

participate in the cluster. 

(1) Kubelet 

The kubelet is an agent that runs on each node and ensures that the containers inside 

the assigned Pods are running. It communicates with the Kubernetes control plane and 

receives instructions on which Pods to run, manages Pod life cycles, and reports the health 

of the node (Hightower et al., 2017). 

(2) Container Runtime 

The container runtime (such as Docker, containerd, or CRI-O) is responsible for 

pulling container images from a registry, running the containers, and managing their life 

cycles. Kubernetes supports multiple container runtimes through the Container Runtime 

Interface (CRI) (Burns et al., 2018). 

(3) Kube-Proxy 

Kube-proxy is a network proxy that runs on each node and ensures that networking 

for Pods is properly configured. It manages network rules that allow Pods to communicate 

with each other, as well as external traffic, ensuring that services are reachable both within 

and outside the cluster. 
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(4) Node API Server 

In addition to kubelet and kube-proxy, the node may also run the node API server, 

which exposes data about the state of the node to the Kubernetes control plane (Burns et 

al., 2018). 

b. Types 

Kubernetes clusters generally have two types of nodes: 

• Worker Nodes: These are the standard nodes where application 

workloads (Pods) are run. Each worker node runs the necessary services 

(kubelet, container runtime, and kube-proxy) and is responsible for 

executing and managing the containers that are part of the Pods scheduled 

on it (Hightower et al., 2017). 

• Master Nodes (Control Plane): These nodes host the control plane 

components, such as the Kubernetes API server, scheduler, and controller 

manager. While the control plane nodes do not typically run user 

workloads, they are critical for managing the cluster by making scheduling 

decisions and maintaining the desired state of the cluster (Burns et al., 

2018). 

c. Life Cycle 

The life cycle of a Kubernetes node includes several key states (Hightower et al., 

2017): 

• Ready: A node is in the “Ready” state when it is healthy and available to 

run Pods. The control plane regularly checks the health of nodes via 

heartbeats from the kubelet. 

• Not Ready: If a node is unhealthy or unresponsive, it enters the “Not 

Ready” state. The control plane will avoid scheduling new Pods on this 

node and may reschedule existing Pods on other healthy nodes, ensuring 

high availability. 

Acquisition Research Program 
department of Defense Management 
Naval Postgraduate School 

56



• Cordoning and Draining: Nodes can be temporarily removed from 

service through a process called cordoning, which prevents new Pods from 

being scheduled on the node. Draining moves the existing Pods off the 

node, typically in preparation for maintenance or scaling down 

infrastructure. 

d. Scaling 

Kubernetes supports cluster autoscaling, in which the number of nodes in the cluster 

automatically increases or decreases based on resource demand. For example, if the current 

nodes are fully utilized, Kubernetes can provision additional nodes to handle the increased 

load. Conversely, underutilized nodes can be decommissioned to optimize resource usage 

(Hightower et al., 2017). 

Node pools are a way to manage groups of nodes with similar configurations, such 

as the same instance type or geographic location. Node pools are particularly useful in 

cloud environments, where different types of workloads may require different machine 

configurations. Kubernetes can schedule Pods to specific node pools based on resource 

requirements or other constraints. 

e. Summary 

In summary, a Kubernetes node is a critical component of the cluster, providing the 

environment to run containerized workloads. Nodes host essential services such as kubelet 

and kube-proxy, which enable the node to communicate with the control plane and manage 

the life cycle of Pods. With features like autoscaling, node pools, and seamless 

orchestration, Kubernetes nodes offer a robust and scalable infrastructure for running 

modern applications. 

3. Control Plane 

The Kubernetes control plane is the central component responsible for managing 

and orchestrating the operations of a Kubernetes cluster. It serves as the brain of the cluster, 

overseeing the life cycles of Pods, maintaining the desired state of the system, and 

providing the necessary APIs for user interaction. The control plane operates on a set of 
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master nodes that host several key components, including the API server, etcd, scheduler, 

controller manager, and cloud controller manager. Together, these components manage the 

cluster state, scheduling, and coordination of resources within the cluster. 

a. Components 

(1) API Server 

The Kubernetes API server is the entry point to the Kubernetes control plane and 

serves as the central management hub. It exposes the Kubernetes API, which provides a 

RESTful interface for users and services to interact with the cluster. Every interaction with 

the cluster, such as deploying applications or scaling resources, passes through the API 

server. It authenticates requests, validates them, and processes them by interacting with 

other components of the control plane (Hightower et al., 2017). The API server is designed 

to be highly scalable and can be replicated across multiple nodes for redundancy. 

(2) Etcd 

Etcd is a distributed key-value store used by Kubernetes to store all cluster data. It 

maintains the cluster’s state and is the source of truth for all configurations, including 

details about Pods, services, and network policies. etcd’s consistency guarantees ensure 

that the state of the cluster is accurately recorded and can be recovered in the event of a 

failure (Burns et al., 2018). Because of its critical role, etcd must be backed up regularly, 

and it is usually run on highly available infrastructure. 

(3) Scheduler 

The Kubernetes scheduler is responsible for assigning Pods to nodes in the cluster. 

When a new Pod is created, the scheduler evaluates the current state of the cluster and 

assigns the Pod to an appropriate node based on resource availability and predefined 

constraints. Factors such as CPU, memory, storage, and affinity rules are considered during 

this decision-making process. The scheduler ensures that workloads are distributed 

efficiently across nodes to prevent overloading and to maintain optimal performance 

(Hightower et al., 2017). 
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(4) Controller Manager 

The Kubernetes controller manager runs a collection of controllers, each 

responsible for monitoring the state of the cluster and making changes to ensure the desired 

state is achieved. Some of the primary controllers include: 

(5) Node Controller 

The node controller monitors the health of nodes and ensures that failed nodes are 

removed from service. 

(6) Replication Controller 

The replication controller ensures that the specified number of replicas of a Pod is 

always running. 

(7) Endpoint Controller 

The endpoint controller manages the association between services and Pods. The 

controller manager watches the cluster through the API server and continuously reconciles 

the actual state of resources with the desired state, as defined by users (Burns et al., 2018). 

(8) Cloud Controller Manager 

The could controller manager integrates Kubernetes with underlying cloud 

infrastructure. It allows Kubernetes to interact with cloud providers’ APIs to manage 

resources such as load balancers, VMs, and storage. The cloud controller manager enables 

Kubernetes to abstract infrastructure details, making it easier to manage clusters across 

different cloud environments (Hightower et al., 2017). 

b. Functions 

(1) Cluster State Management 

The control plane ensures that the actual state of the system matches the desired 

state specified by users through configuration files (manifests). If discrepancies arise, the 

control plane takes corrective action, such as restarting failed Pods or rescheduling them 

on different nodes. 

Acquisition Research Program 
department of Defense Management 
Naval Postgraduate School 

59



(2) Scaling and Resource Management 

The control plane manages the scaling of applications by monitoring resource usage 

and deploying additional Pods as needed. Autoscaling can be configured based on CPU 

utilization or custom metrics. 

(3) Security and Access Control 

The API server enforces access control policies, including role-based access control 

to manage user permissions and secure communication between components. 

c. Summary 

In summary, the Kubernetes control plane is the operational core of a Kubernetes 

cluster. It manages the scheduling, orchestration, and state of the cluster, ensuring that 

applications are running as intended. Through components like the API server, scheduler, 

etcd, and various controllers, the control plane enables Kubernetes to be a highly scalable, 

resilient, and dynamic platform for managing containerized applications. 

4. Cluster 

A Kubernetes cluster is a set of machines (physical or virtual) that work together to 

run containerized applications, managed and orchestrated by Kubernetes. It is the 

foundational infrastructure for Kubernetes, designed to automate the deployment, scaling, 

and management of applications across multiple nodes. A Kubernetes cluster is composed 

of two major components: the control plane, which oversees the cluster’s operations and 

ensures the desired state of applications and the worker nodes, which run the actual 

containerized workloads. 

a. Components 

(1) Control Plane 

The control plane is the centralized management unit of the cluster. It is responsible 

for maintaining the cluster’s desired state, making scheduling decisions, and responding to 

failures. The control plane runs on one or more master nodes and consists of several key 

components: 
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(2) API Server 

The Kubernetes API server acts as the gateway to the cluster. It exposes 

Kubernetes’ RESTful API, which is used by administrators, users, and internal components 

to interact with the cluster. All requests to create, modify, or retrieve resources pass through 

the API server (Hightower et al., 2017). 

(3) Etcd 

A distributed key-value store, etcd stores the state of the entire Kubernetes cluster, 

including configurations and secrets. It serves as the source of truth for the cluster, ensuring 

consistency and reliability of data (Burns et al., 2018). 

(4) Scheduler 

The Kubernetes scheduler assigns newly created Pods to nodes based on resource 

availability, ensuring efficient use of cluster resources (Hightower et al., 2017). 

(5) Controller Manager 

The controller manager runs various controllers that monitor the state of the cluster 

and reconcile it with the desired state, such as ensuring the correct number of Pod replicas 

are running or monitoring the health of nodes (Burns et al., 2018). 

(6) Cloud Controller Manager 

This component integrates Kubernetes with cloud providers’ APIs, allowing 

Kubernetes to manage cloud resources like load balancers and storage in a cloud-native 

environment (Hightower et al., 2017). 

(7) Worker Nodes 

Worker nodes are the machines that run the actual workloads in a Kubernetes 

cluster. Each node hosts Pods, which are collections of one or more containers. The key 

components of a worker node include: 
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(8) Kubelet 

The kubelet is the primary agent on a worker node, ensuring that the containers 

specified in a Pod are running and healthy. It communicates with the control plane, receives 

instructions, and manages the life cycle of Pods on the node (Hightower et al., 2017). 

(9) Container Runtime 

The container runtime, such as Docker or container, is responsible for pulling 

container images from registries, starting containers, and managing their life cycles (Burns 

et al., 2018). 

(10) Kube-Proxy 

Kube-proxy ensures that network traffic reaches the appropriate Pods. It manages 

the networking rules that allow communication between services and Pods, both internally 

within the cluster and with external clients. 

b. Networking 

A key feature of Kubernetes is its networking model, which enables seamless 

communication between components. Each Pod in the cluster is assigned a unique IP 

address, and Kubernetes ensures that Pods can communicate with each other and with 

services inside and outside the cluster, regardless of which node they are running on. 

Networking is abstracted through services that provide stable endpoints, even as Pods are 

created, destroyed, or rescheduled (Burns et al., 2018). 

c. Scaling 

Kubernetes clusters are designed to be highly scalable. Horizontal Pod Autoscaling 

allows the system to automatically adjust the number of Pods based on demand. Cluster 

Autoscaling can add or remove worker nodes as necessary, depending on the resource 

requirements of the workloads (Hightower et al., 2017). 

Kubernetes also has built-in self-healing capabilities. If a Pod or node fails, the 

control plane reschedules the workload on another node, ensuring high availability. 
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Kubernetes monitors the health of nodes and containers, automatically restarting or 

replacing unhealthy components to maintain the desired state of the cluster. 

d. Summary 

In summary, a Kubernetes cluster is a powerful and scalable platform for running 

containerized applications, designed to automate the complex tasks of deployment, scaling, 

and management. With their control planes managing the overall state and their worker 

nodes executing the workloads, Kubernetes clusters enable organizations to achieve high 

availability, efficient resource usage, and automated recovery from failures. Table 4 

summarizes Kubernetes cluster components and their key features. 

Table 4. Kubernetes Components Summary 

Concept Description Key Features Example Uses 

Pod 

Smallest deployable 
unit in Kubernetes, 
representing one or 
more containers 
running together. 

Shared network and 
storage Hosting tightly 

coupled containers 
like a web server and 
sidecar for logging. 

Containers communicate 
via localhost 
Ephemeral and self-
healing 

Node 

A machine (physical 
or virtual) in the 
cluster that runs Pods 
and communicates 
with the control plane. 

Includes kubelet, 
container runtime, kube-
proxy 

Hosting workloads 
(worker node) or 
running control plane 
components (master 
node). 

Can be worker nodes or 
master nodes (control 
plane) 

Control 
Plane 

Central management 
unit that orchestrates 
cluster operations and 
maintains desired 
state. 

API server for cluster 
interaction Assigning Pods to 

nodes, ensuring 
replicas, and 
coordinating resource 
usage. 

Etcd for storing cluster 
state 
Scheduler for workload 
placement 
Controllers for state 
management 

Cluster 

A set of nodes 
working together, 
managed by the 
control plane. 

Unified networking 
model Running containerized 

apps across distributed 
systems with load 
balancing and 
autoscaling. 

Scalable and self-
healing 
Service discovery 
through DNS 
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C. ADVANTAGES 

Microservices architecture represents a paradigm shift from monolithic design to a 

more flexible and scalable approach. By breaking down applications into smaller, self-

contained services, organizations can reap significant benefits. This section explores the 

key advantages of microservices architecture, including enhanced scalability, flexibility, 

resilience, and maintainability. 

1. Scalability 

One of the most prominent advantages of microservices architecture is its ability to 

scale efficiently. Unlike monolithic systems, where scaling typically involves scaling the 

entire application, microservices allow for granular scaling of individual services (Dragoni 

et al., 2017). 

a. Granular Scaling 

Microservices can be scaled independently based on their specific needs. For 

instance, if a particular service experiences high demand, it can be scaled up without 

affecting other services (Nadareishvili et al., 2016). This capability ensures optimal 

resource utilization and improves performance during peak loads. 

b. Resource Optimization 

By scaling only the necessary services, organizations can optimize their resource 

allocation. This targeted approach helps in managing operational costs more effectively, as 

resources are not wasted on scaling components that do not require additional capacity 

(Fowler & Lewis, 2014). 

2. Flexibility and Agility 

Microservices architecture promotes flexibility and agility in development and 

deployment processes. 
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a. Independent Development 

Each microservice is developed and deployed independently, allowing different 

teams to work on various services concurrently. This independence reduces dependencies 

and bottlenecks associated with monolithic systems. Teams can use different technologies 

and development frameworks that best fit their service requirements (Nadareishvili et al., 

2016). 

b. Faster Time-to-Market 

With microservices, new features and updates can be introduced more rapidly. 

Since services are decoupled, changes to one service do not necessitate changes to or 

redeployment of other services (Dragoni et al., 2017). This agility accelerates the 

development cycle and helps organizations respond quickly to market demands and 

customer feedback. 

3. Resilience and Fault Isolation 

Microservices architecture enhances the resilience of applications by isolating 

faults and minimizing their impact. 

a. Fault Isolation 

In a microservices architecture, failures are contained within individual services. 

This isolation prevents failures in one service from cascading to others, thereby preserving 

the overall system’s stability (Fowler & Lewis, 2014). For example, if a payment 

processing service fails, it does not affect other services like user management or the 

product catalog. 

b. Resilient Design 

Microservices often incorporate resilience patterns such as circuit breakers, retries, 

and fallbacks to handle service disruptions gracefully (Dragoni et al., 2017). These patterns 

enable services to recover from failures and continue functioning, enhancing the overall 

reliability of the system. 
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4. Improved Maintainability 

Microservices architecture simplifies the maintenance and management of 

applications. 

a. Modular Structure 

Each microservice encapsulates a specific functionality or business capability, 

leading to a modular application structure (Nadareishvili et al., 2016). This modularity 

makes it easier to understand, test, and manage individual components, as changes are 

localized within specific services. 

b. Reduced Complexity 

By breaking down a large monolithic application into smaller services, the 

complexity of managing and updating the system is reduced. Developers can focus on one 

service at a time, which simplifies debugging, testing, and deployment. 

c. CI/CD 

Microservices support CI/CD practices. Automated pipelines enable frequent and 

reliable deployments of individual services, reducing the risk of introducing errors and 

improving the overall quality of the application. 

5. Technology Diversity 

Microservices architecture allows for the use of diverse technologies and tools, 

which can enhance the overall system’s performance and capabilities. 

a. Technology Choices 

Different microservices can be built using different programming languages, 

frameworks, and databases, depending on their specific needs. This flexibility allows teams 

to select the most appropriate technology stack for each service, optimizing performance 

and efficiency (Fowler & Lewis, 2014). 
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b. Innovation and Experimentation 

With microservices, teams can experiment with new technologies and approaches 

without impacting the entire system. This innovation fosters a culture of experimentation 

and continuous improvement (Nadareishvili et al., 2016). 

6. Enhanced Security 

Microservices architecture can enhance the security of applications by isolating 

services and managing access control more effectively. 

a. Service Isolation 

Each microservice operates independently, which means that security 

vulnerabilities are confined to individual services rather than the entire application. This 

isolation helps in minimizing the potential impact of security breaches (Dragoni et al., 

2017). 

b. Granular Access Control 

Microservices allow for fine-grained access control. Security policies and 

authentication mechanisms can be implemented at the service level, ensuring that only 

authorized users and services can access sensitive data. 

7. Better Alignment with Business Domains 

Microservices architecture supports DDD, which aligns the architecture with 

business needs. 

a. Domain Modeling 

Microservices are often organized around business domains or capabilities, which 

helps in creating services that are closely aligned with organizational goals and processes 

(Fowler & Lewis, 2014). This alignment ensures that the architecture reflects the business 

structure and facilitates more effective decision-making. 
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b. Bounded Contexts 

DDD introduces the concept of bounded contexts, where each microservice 

operates within its own defined boundaries. This approach reduces ambiguity and ensures 

that each service has a clear focus and responsibility (Nadareishvili et al., 2016). 

8. Enhanced Developer Productivity 

Microservices architecture can improve developer productivity by enabling more 

efficient development practices. 

a. Parallel Development 

With microservices, multiple teams can work on different services simultaneously, 

reducing development time and increasing productivity. Teams are not blocked by 

dependencies on other parts of the application, allowing for faster progress and quicker 

delivery of features. 

b. Focused Expertise 

Developers can specialize in specific services or technologies, leading to greater 

expertise and efficiency. This specialization enhances the quality of the service and speeds 

up development processes (Dragoni et al., 2017). 

9. Optimized Performance 

Microservices can enhance performance through various optimizations. 

a. Service-Specific Optimization 

Each microservice can be optimized based on its specific requirements and 

performance characteristics. For example, a service handling high-throughput data 

processing can be tuned for performance, while another service focused on user 

interactions can be optimized for responsiveness (Fowler & Lewis, 2014). 
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b. Efficient Resource Utilization 

Microservices enable efficient resource utilization by scaling services 

independently and optimizing their performance. This approach reduces resource wastage 

and improves overall system efficiency. 

10. Conclusion 

Microservices architecture offers a range of advantages that contribute to the 

flexibility, scalability, and resilience of applications. By allowing for granular scaling, 

independent development, and fault isolation, microservices enhance the ability to manage 

complex systems effectively. The modular structure and support for continuous integration 

and deployment improve maintainability and developer productivity. Additionally, the use 

of diverse technologies, enhanced security, and alignment with business domains further 

highlights the benefits of microservices architecture. As organizations continue to seek 

ways to improve their SW systems, microservices provide a robust and adaptable 

framework for achieving these goals. 

D. DISADVANTAGES 

While microservices architecture offers several advantages, it also comes with its 

own set of challenges and disadvantages. These can impact development, deployment, and 

operational aspects of applications. This section explores the key disadvantages of 

microservices architecture, including complexity, communication overhead, data 

management issues, testing challenges, deployment difficulties, and increased operational 

overhead. 

1. Increased Complexity 

Compared to monolithic systems, microservices architecture introduces significant 

complexity due to the nature of managing multiple services. 

a. System Complexity 

Decomposing an application into numerous microservices can lead to a complex 

system of interconnected services. Each service must be designed, developed, deployed, 
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and maintained separately, which increases the overall complexity of the system (Fowler 

& Lewis, 2014). Managing dependencies and interactions between services can become 

intricate, requiring careful orchestration and monitoring (Dragoni et al., 2017). 

b. Operational Overhead 

The complexity of managing multiple services extends to operational tasks such as 

deployment, monitoring, and troubleshooting. Ensuring that all services are properly 

configured, scaled, and maintained requires robust infrastructure and tools (Nadareishvili 

et al., 2016). This operational overhead can be challenging for organizations without the 

necessary expertise or resources. 

2. Communication Overhead 

Microservices architecture relies on inter-service communication, which can 

introduce several types of overhead. 

a. Network Latency 

Services in a microservices architecture communicate over a network, typically 

using HTTP/REST, gRPC, or messaging protocols. This network communication can 

introduce latency compared to in-process calls within a monolithic application. Increased 

latency can impact the performance of the system, particularly in scenarios in which 

services need to frequently exchange data. 

b. Data Serialization 

Communication between microservices often involves data serialization and 

deserialization, adding extra processing time and overhead. The choice of serialization 

formats (e.g., JavaScript object notation [JSON], extensible markup language [XML]) can 

influence performance and interoperability between services. 

3. Data Management Challenges 

Microservices architecture can complicate data management due to the distributed 

nature of data storage and access. 
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a. Data Consistency 

Ensuring data consistency across multiple services can be challenging. Unlike 

monolithic systems in which a single database manages data consistency, microservices 

often require distributed data management strategies (Dragoni et al., 2017). Techniques 

such as eventual consistency and distributed transactions can help address consistency 

issues but may introduce additional complexity. 

b. Database Fragmentation 

In a microservices architecture, each service typically has its own database or data 

store. This fragmentation can lead to difficulties in managing data schema changes and 

ensuring data integrity across services (Nadareishvili et al., 2016). Synchronizing and 

aggregating data from multiple sources can be complex and require additional tooling. 

4. Testing Difficulties 

Testing microservices applications presents unique challenges compared to testing 

traditional monolithic systems. 

a. Integration Testing 

Testing interactions between multiple microservices can be more complex than 

testing a monolithic application. Integration tests need to account for the interactions 

between services and ensure that data flows correctly through the system (Fowler & Lewis, 

2014). Managing test environments and ensuring that all services are correctly mocked or 

deployed for testing can be challenging. 

b. End-to-End Testing 

Conducting end-to-end tests in a microservices architecture requires setting up and 

managing a complex environment with multiple services. Ensuring that all services are 

available and functioning correctly during testing can be difficult, particularly in 

distributed environments. 
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5. Deployment and Release Management 

Deploying and managing releases in a microservices architecture can be more 

complicated than doing so in monolithic systems. 

a. Service Coordination 

Deploying multiple services requires coordinating their release and ensuring 

compatibility between versions. This coordination can be challenging, particularly when 

services have interdependencies. Managing rollouts, rollbacks, and versioning of services 

requires robust deployment strategies and tools. 

b. Deployment Automation 

Automating the deployment of multiple services requires sophisticated CI/CD 

pipelines and orchestration tools. Setting up and maintaining these pipelines can be 

complex and may require significant investment in infrastructure and tooling (Dragoni et 

al., 2017). 

6. Increased Operational Overhead 

Microservices architecture can lead to increased operational overhead due to the 

need for managing and monitoring multiple services. 

a. Monitoring and Logging 

Monitoring and logging across multiple services can be more complex than doing 

so in monolithic systems. Each service needs to be instrumented for logging and 

monitoring, and aggregating and analyzing logs from various services requires 

comprehensive tools and practices (Nadareishvili et al., 2016). Ensuring end-to-end 

visibility and diagnosing issues across services can be challenging. 

b. Resource Management 

Microservices often require more resources than monolithic applications do 

because of microservices’ need for separate instances of each service. Managing the 
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deployment, scaling, and resource utilization of multiple services requires careful planning 

and infrastructure management. 

7. Security Concerns 

Microservices architecture introduces additional security considerations when 

compared to monolithic systems. 

a. Attack Surface 

With multiple services communicating over a network, the attack surface increases. 

Each service needs to be secured individually, and the communication channels between 

services must be protected (Dragoni et al., 2017). Ensuring that all services adhere to 

security best practices and are protected from vulnerabilities can be challenging. 

b. Authentication and Authorization 

Managing authentication and authorization across multiple services requires a 

robust strategy. Ensuring that users and services have appropriate access rights and that 

security policies are consistently enforced can be complex (Fowler & Lewis, 2014). 

8. Service Discovery and Management 

Service discovery and management are essential components of microservices 

architecture but can pose challenges. 

a. Dynamic Discovery 

In a dynamic microservices environment, services can be added, removed, or scaled 

dynamically. Implementing effective service discovery mechanisms to ensure that services 

can locate and communicate with each other is crucial. This dynamic nature adds 

complexity to the architecture and requires reliable discovery tools. 

b. Configuration Management 

Managing configurations for multiple services can be complex. Each service may 

have its own configuration settings, and ensuring consistency and correctness across 

services requires robust configuration management practices (Nadareishvili et al., 2016). 

Acquisition Research Program 
department of Defense Management 
Naval Postgraduate School 

73



E. SUMMARY OF ADVANTAGES AND DISADVANTAGES 

Table 5 summarizes the advantages and disadvantages of a microservices 

architecture discussed in this section. 

Table 5. Advantages and Disadvantages of Microservices Architecture 

Aspect Details 
Advantages 

Scalability 

Granular Scaling: Individual services can be scaled 
independently based on their needs, optimizing resource 
utilization and performance (Dragoni et al., 2017). 
Resource Optimization: Targeted scaling reduces operational 
costs and prevents over-provisioning (Fowler & Lewis, 2014). 

Flexibility and 
Agility 

Independent Development: Teams can work on different 
services concurrently using varied technologies (Nadareishvili et 
al., 2016). 
Faster Time-to-Market: Decoupled services allow rapid feature 
updates without affecting other parts of the application (Dragoni 
et al., 2017). 

Resilience and 
Fault Isolation 

Fault Isolation: Failures in one service do not cascade to others, 
enhancing system stability (Fowler & Lewis, 2014). 
Resilient Design: Patterns like circuit breakers and retries 
improve recovery and reliability (Dragoni et al., 2017). 

Improved 
Maintainability 

Modular Structure: Clear separation of functionalities makes 
understanding and managing services easier (Nadareishvili et al., 
2016). 
Continuous Integration and Deployment: Automated 
pipelines facilitate frequent, reliable updates. 

Technology 
Diversity 

Technology Choices: Different services can use the most 
suitable technologies, improving performance (Fowler & Lewis, 
2014). 
Innovation and Experimentation: Teams can test new tools or 
methods without affecting the entire system. 

Enhanced 
Security 

Service Isolation: Limits the impact of vulnerabilities to specific 
services (Dragoni et al., 2017). 
Granular Access Control: Fine-grained security policies ensure 
tighter access management. 

Alignment with 
Business Domains 

Domain Modeling: Services align with business processes, 
enabling better decision-making (Fowler & Lewis, 2014). 
Bounded Contexts: Clear boundaries reduce ambiguity and 
streamline service responsibilities (Nadareishvili et al., 2016). 
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Aspect Details 

Enhanced 
Developer 
Productivity 

Parallel Development: Teams can work on separate services 
simultaneously, speeding up development. 
Focused Expertise: Developers can specialize in specific 
services, enhancing efficiency (Dragoni et al., 2017). 

Optimized 
Performance 

Service-Specific Optimization: Services can be fine-tuned for 
their unique requirements. 
Efficient Resource Utilization: Independent scaling improves 
overall system efficiency. 

Disadvantages 

Increased 
Complexity 

System Complexity: Managing multiple interconnected services 
increases architectural complexity (Fowler & Lewis, 2014). 
Operational Overhead: Deployment, monitoring, and 
troubleshooting multiple services require robust tools and 
expertise (Nadareishvili et al., 2016). 

Communication 
Overhead 

Network Latency: Inter-service communication introduces 
delays. 
Data Serialization: Serialization/deserialization adds processing 
overhead. 

Data Management 
Challenges 

Data Consistency: Achieving consistency across distributed 
data stores is complex (Dragoni et al., 2017). 
Database Fragmentation: Managing schemas and aggregating 
data from multiple databases adds overhead (Nadareishvili et al., 
2016). 

Testing 
Difficulties 

Integration Testing: Verifying interactions between services is 
challenging (Fowler & Lewis, 2014). 
End-to-End Testing: Complex environments complicate 
comprehensive testing. 

Deployment and 
Release 
Management 

Service Coordination: Ensuring compatibility during 
deployments requires careful planning. 
Deployment Automation: Setting up CI/CD pipelines for 
multiple services is resource-intensive (Dragoni et al., 2017). 

Increased 
Operational 
Overhead 

Monitoring and Logging: Aggregating logs from multiple 
services is complex (Nadareishvili et al., 2016). 
Resource Management: Managing resources for many services 
can lead to inefficiencies. 

Security Concerns 

Attack Surface: Increased communication channels raise 
security risks (Dragoni et al., 2017). 
Authentication and Authorization: Managing security across 
services requires robust solutions (Fowler & Lewis, 2014). 

Service Discovery 
and Management 

Dynamic Discovery: Ensuring that services can dynamically 
locate each other is critical. 
Configuration Management: Consistent and accurate 
configurations across services are essential (Nadareishvili et al., 
2016). 
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1. Conclusion 

Microservices architecture, while offering significant advantages, also presents 

several disadvantages that organizations need to consider. The increased complexity of 

managing multiple services, communication overhead, and data management challenges 

can impact development, deployment, and operational efficiency. Testing difficulties, 

deployment and release management complexities, and increased operational overhead 

further contribute to the challenges associated with microservices. Additionally, security 

concerns, service discovery and management issues, and cultural and organizational 

impacts must be addressed to successfully implement and maintain a microservices 

architecture. Understanding these disadvantages is crucial for organizations to make 

informed decisions about adopting microservices and develop strategies to mitigate 

potential issues. 

F. DEVELOPMENT OPERATIONS 

DevOps, a blend of development and operations practices, aims to improve 

collaboration, efficiency, and continuous delivery in SW development. When applied to 

microservices architecture, DevOps practices can significantly enhance the deployment, 

monitoring, and management of microservices-based systems. This section explores how 

DevOps integrates with microservices architecture, detailing the key practices, benefits, 

and challenges associated with this integration. 

1. Introduction 

DevOps is a cultural and technical movement that emphasizes collaboration 

between development and operations teams to streamline the SW development life cycle. 

It focuses on automating processes, improving communication, and enabling continuous 

delivery and integration. The primary goals of DevOps include reducing deployment times, 

increasing deployment frequency, and improving the overall quality of SW releases. 
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a. DevOps Practices in Microservices Architecture 

Microservices architecture, characterized by decomposing applications into small, 

independently deployable services, benefits significantly from DevOps practices. Key 

practices include the following: 

(1) Continuous Integration 

Continuous integration involves regularly integrating code changes into a shared 

repository and running automated tests to detect integration issues early (Fowler, 2006). In 

a microservices environment, continuous integration pipelines are set up for each service, 

ensuring that changes are tested and integrated continuously. This practice helps maintain 

the quality and stability of each microservice while enabling rapid development and 

deployment. 

(2) Continuous Development 

Continuous development extends continuous integration by automating the 

deployment of code changes to production environments (Humble & Farley, 2010). For 

microservices, continuous development pipelines are designed to deploy individual 

services independently, allowing teams to release updates without affecting the entire 

system. This flexibility supports frequent releases and faster time-to-market. 

(3) Infrastructure as Code 

Infrastructure as code (IaC) involves managing infrastructure through code, 

enabling automated provisioning and configuration of resources (Morris, 2016). In 

microservices architecture, IaC tools like Terraform and Ansible are used to automate the 

setup and management of environments for each microservice. This approach ensures 

consistency across environments and simplifies scaling and maintenance. 

(4) Automated Testing 

Automated testing is crucial for ensuring the quality of microservices. It includes 

unit testing, integration testing, and end-to-end testing. Microservices architecture requires 

comprehensive testing strategies to verify the functionality and interactions of individual 
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services. DevOps practices emphasize the automation of these tests to detect issues early 

and ensure reliable deployments. 

(5) Monitoring and Logging 

Effective monitoring and logging are essential for managing microservices. 

DevOps practices involve implementing centralized logging and monitoring solutions to 

gain visibility into the performance and health of each microservice (Morris, 2016). Tools 

like Prometheus and Elasticsearch, Logstash, Kibana Stack help collect, analyze, and 

visualize data from multiple services, facilitating troubleshooting and performance 

optimization. 

(6) Collaboration and Communication 

DevOps fosters collaboration between development and operations teams, which is 

crucial for managing microservices architecture. Teams work together to define service 

requirements, deployment strategies, and incident response plans. This collaboration 

ensures that microservices are developed, deployed, and maintained with a shared 

understanding of goals and responsibilities (Humble & Farley, 2010). 

2. Benefits 

The integration of DevOps practices with microservices architecture offers several 

benefits. 

(1) Faster Time-to-Market 

DevOps practices enable faster development and deployment cycles, allowing 

teams to release new features and updates more quickly. In a microservices architecture, 

independent deployment of services means that changes can be delivered without waiting 

for the entire system to be updated. This speed enhances competitiveness and 

responsiveness to market demands. 
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(2) Improved Quality and Reliability 

Automated testing and continuous integration help identify and address issues early 

in the development process, reducing the risk of defects and outages in production (Beck, 

2003). Monitoring and logging practices provide real-time insights into service 

performance, allowing teams to detect and resolve problems proactively. 

(3) Enhanced Scalability and Flexibility 

IaC and automated deployment practices support dynamic scaling and management 

of microservices environments. Teams can easily provision resources, scale services based 

on demand, and adapt to changing requirements (Morris, 2016). This flexibility enables 

organizations to handle varying workloads and optimize resource utilization. 

(4) Increased Collaboration and Efficiency 

DevOps practices promote collaboration between development and operations 

teams, breaking down silos and improving communication. This collaborative approach 

leads to more efficient workflows, faster problem resolution, and a shared understanding 

of goals and processes (Humble & Farley, 2010). 

3. Challenges and Considerations 

While DevOps offers significant benefits, integrating DevOps with microservices 

architecture also presents challenges. 

(1) Complexity of Managing Multiple Services 

Microservices architecture involves managing numerous services, each with its 

own CI/CD pipeline, infrastructure, and dependencies. Coordinating and maintaining these 

services can be complex and require robust DevOps practices and tools. Ensuring 

consistent configurations and managing inter-service interactions are key challenges. 

(2) Need for Advanced Tooling and Automation 

Implementing DevOps practices for microservices requires advanced tooling and 

automation capabilities. Setting up and maintaining CI/CD pipelines and monitoring 
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systems and IaC frameworks can be resource-intensive and may require specialized 

expertise. Organizations need to invest in appropriate tools and training to effectively 

leverage DevOps practices. 

(3) Cultural and Organizational Changes 

Adopting DevOps practices involves cultural and organizational changes, including 

shifts in team dynamics and workflows. Organizations need to foster a culture of 

collaboration, continuous improvement, and shared responsibility (Humble & Farley, 

2010). Managing these changes and aligning teams with DevOps principles can be 

challenging. 

(4) Security and Compliance 

Ensuring the security and compliance of microservices in a DevOps environment 

requires careful consideration. Automated deployments and frequent changes can 

introduce security risks if not properly managed. Implementing security best practices, 

such as automated security testing and secure coding practices, is essential (Morris, 2016). 

4. Conclusion 

DevOps practices significantly enhance the management and delivery of 

microservices architecture by promoting automation, collaboration, and continuous 

improvement. Key practices such as CI/CD, IaC, automated testing, and centralized 

monitoring contribute to faster time-to-market, improved quality, and enhanced scalability. 

However, integrating DevOps with microservices architecture also presents challenges 

related to complexity, tooling, cultural changes, and security. Organizations must address 

these challenges to fully leverage the benefits of DevOps and achieve a successful 

microservices implementation. 
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VI. UNMANNED SURFACE VESSEL INTEGRATED COMBAT 
SYSTEM: RAPID PROTOTYPING OF A MODERNIZED COMBAT 

SYSTEM 

In the fall of 2020, NSWC Dahlgren, Computing Infrastructure Group, was tasked 

with developing and delivering prototype equipment capable of running AWS elements 

and required functions to support the large unmanned surface vessel (LUSV) program. The 

initial fielding of this system required GFE for the initial LUSV platform in late 2023. 

Early direction from PEO IWS 80, who is the Major Program Manager (MPM) for 

delivery of the LUSV / USV Integrated Combat System (ICS) focused on delivery of 

computing infrastructure, and an ICS that delivered virtualized combat computer programs 

and technologically relevant and modern network, processing, and storage (NPS) HW 

(HW). 

At the time technology Insertion 16 (TI16), a FARS based acquisition effort was 

underway to supply USN surface forces with NPS. Although the HW selected for TI16 was 

already near obsolescence it was not t in full rate production. In fact, by the time LUSV 

fielded initial GFE in late 2023 the NPS products which made up this TI16 based 

infrastructure would have been over 8 years old. 

A. DEPARTMENT OF DEFENSE FEDERAL ACQUISITION 
REGULATION–BASED ACQUISITIONS 

Previous iterations of NPS and CI for surface USN programs, such as TI12, and 

TI16, resulted in HW that was plagued by obsolescence issues and delivery of HW that 

was generations old before ever reaching in-service platforms. Much of this is a byproduct 

of utilizing a lengthy FAR-based acquisition system. 

The DoD operates under the Federal Acquisition Regulation (FAR) framework to 

procure goods and services. FAR-based acquisitions serve as the regulatory backbone for 

ensuring that DoD procurement activities comply with federal laws, maintain 

accountability, and achieve value for taxpayers. While the FAR framework has distinct 
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advantages, it also comes with limitations that may hinder efficiency and adaptability in 

certain scenarios. 

B. OVERVIEW OF FEDERAL ACQUISITION REGULATION–BASED 
ACQUISITIONS 

The DoD utilizes the FAR as the primary framework for managing acquisitions. 

This system governs the procurement of goods, services, and construction to ensure 

fairness, accountability, and transparency in the expenditure of public funds. However, 

while the FAR provides a robust structure, it also imposes significant limitations that can 

hinder efficiency, innovation, and flexibility. This document explores the core aspects of 

DoD FAR-based acquisitions, highlighting their strengths and inherent challenges. 

a. Key Features 

(1) Transparency and Accountability 

The FAR mandates stringent oversight, ensuring that procurement processes are 

conducted transparently and that public funds are spent responsibly. This includes detailed 

documentation, audits, and reviews to minimize the risk of fraud and abuse (GAO, 2019). 

Standardized processes and regulations enhance public trust by providing clear rules for 

contractors and government agencies alike. 

(2) Standardization 

The FAR establishes uniform procedures across federal agencies, reducing 

variability and simplifying compliance for contractors. This standardization is designed to 

facilitate smoother interactions between agencies and suppliers. 

(3) Competition and Cost Efficiency 

FAR promotes open and fair competition, enabling the government to receive better 

value through competitive bidding processes. This competition often results in lower costs 

and higher-quality outcomes (Fowler, 2014). • Policies such as the “lowest price 

technically acceptable” (LPTA) ensure cost-effective acquisitions, though sometimes at 

the expense of innovation. 
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(4) Support for Small Businesses 

FAR includes provisions to support small and disadvantaged businesses, ensuring 

they have opportunities to participate in government contracts. 

(5) Risk Mitigation 

FAR incorporates clauses to manage risks, such as performance bonds and 

termination rights, safeguarding government interests in case of contractor non-

performance. 

b. Limitations 

Despite its strengths, the FAR framework presents several challenges that affect the 

DoD’s ability to meet its evolving needs. 

(1) Complexity and Bureaucracy 

The FAR’s extensive regulations and documentation requirements often lead to 

administrative burdens, particularly for small businesses and non-traditional contractors 

(Nadareishvili et al., 2016). Navigating these complexities requires significant expertise 

and resources, which can delay procurement processes. 

(2) Limited Flexibility 

FAR-based acquisitions are often rigid, making it challenging to adapt to changing 

requirements or emerging technologies. This rigidity is particularly problematic for fast-

paced industries like technology and cybersecurity (Dragoni et al., 2017). The focus on 

compliance sometimes overshadows the need for innovation and rapid deployment. 

(3) Lengthy Procurement Timelines 

The structured nature of FAR processes can result in prolonged procurement cycles, 

delaying the delivery of critical goods and services. This is especially problematic in 

defense scenarios where timely acquisition is essential for operational readiness. 
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(4) Innovation Challenges 

FAR’s preference for proven technologies and cost efficiency often discourages 

contractors from proposing cutting-edge solutions. This approach can stifle innovation 

(Fowler, 2014). While alternative mechanisms like OTAs exist, their adoption within 

traditional FAR systems has been limited. 

(5) Inter-Service Communication Overhead 

FAR-based acquisitions rely heavily on inter-agency and inter-service 

coordination, which can introduce communication delays and inefficiencies (Dragoni et 

al., 2017). Networked communication between services, often necessary for complex 

acquisitions, increases the risk of errors and inconsistencies. 

(6) Data and Cybersecurity Challenges 

Managing cybersecurity across multiple contracts and vendors poses significant 

challenges. While the FAR includes security provisions, emerging threats necessitate 

additional frameworks. 

(7) Operational and Monitoring Overhead 

FAR-based systems require robust tools and practices for monitoring and auditing, 

which can be resource-intensive (Fowler, 2014). Aggregating and analyzing data from 

multiple contracts often necessitates advanced infrastructure, increasing costs. 

c. Addressing the Limitations 

(1) Adoption of Alternative Mechanisms 

The DoD has increasingly turned to OTAs for flexibility in research and 

development projects, allowing faster acquisition of innovative solutions (GAO, 2019). 

Greater integration of these mechanisms within the FAR framework could balance the need 

for accountability with the demand for agility. 
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(2) Streamlining Processes 

Simplifying compliance requirements, particularly for small businesses, can 

encourage broader participation and reduce administrative burdens. Leveraging technology 

to automate documentation and reporting processes can enhance efficiency. 

(3) Enhanced Focus on Innovation 

Introducing more flexible evaluation criteria that prioritize long-term value and 

innovation over cost alone can incentivize contractors to propose advanced solutions. 

Increasing investment in contractor education about FAR alternatives like OTAs can foster 

a culture of innovation. Table 6 provides a summary of FARS and the limitations. 

Table 6. Summary of Department of Defense Federal Acquisition 
Regulation–Based Acquisitions and Limitations 

Aspect Details 
Key Features 

Transparency and 
Accountability 

FAR mandates strict oversight, documentation, audits, and 
reviews to ensure public funds are responsibly spent (GAO, 
2019). 

Standardization Uniform procedures reduce variability and simplify 
compliance for contractors across federal agencies. 

Competition and Cost 
Efficiency 

Encourages open and fair competition, leveraging policies 
like LPTA for cost-effective acquisitions (Fowler, 2014). 

Support for Small 
Businesses 

Includes provisions to ensure small and disadvantaged 
businesses can access government contracts. 

Risk Mitigation Incorporates clauses for performance bonds and termination 
rights to safeguard government interests. 

Limitations 
Complexity and 
Bureaucracy 

Extensive regulations and documentation create 
administrative burdens, especially for small businesses 
(Nadareishvili et al., 2016). 

Limited Flexibility Rigid processes hinder adaptation to evolving requirements 
and emerging technologies (Dragoni et al., 2017). 

Lengthy Procurement 
Timelines 

Structured procedures result in delays, impacting operational 
readiness in critical scenarios. 

Innovation 
Challenges 

Focus on proven technologies discourages cutting-edge 
solutions; limited adoption of mechanisms like OTAs 
(Fowler, 2014). 
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Aspect Details 
Inter-Service 
Communication 
Overhead 

Coordination between agencies introduces delays and risks 
of errors in complex acquisitions (Dragoni et al., 2017). 

Data and 
Cybersecurity 
Challenges 

Managing security across vendors poses risks; FAR includes 
provisions, but emerging threats require additional 
frameworks. 

Operational and 
Monitoring Overhead 

Monitoring multiple contracts increases resource demands 
and costs, requiring advanced infrastructure (Fowler, 2014). 

Addressing Limitations 
Adoption of 
Alternative 
Mechanisms 

Greater integration of OTAs for flexibility in research, 
development, and innovative procurement (GAO, 2019). 

Streamlining 
Processes 

Simplifying compliance for small businesses and leveraging 
automation to reduce administrative burdens. 

Enhanced Focus on 
Innovation 

Introducing flexible evaluation criteria that prioritize long-
term value and innovation. 

Contractor Education Providing education on FAR alternatives like OTAs to foster 
innovative and agile procurement practices. 

 

C. RAPID PROTOTYPING 

In early 2021USV ICS CI prototyping efforts were accelerated to support initial 

capability testing onboard a pair of commercial vessels adapted to deliver initial autonomy 

and vessel control, and USC ICS capability and refine these critical program enablers in 

the years prior to delivery of the LUSV platform. This prototyping schedule adjustment 

required the delivery of ICS CI GFE HW to The Overlord Unmanned Surface Vessel 

(OUSV) # 4 in October 2021. To meet this condensed design, development, and delivery 

timeline the USC ICS CI team leveraged and updated existing OTA, established to rapidly 

produce CI and IaaS SW suite for the Virtual Pilot Ship (VPS) prototyping effort on the 

USS Monterey. 

1. Use of Other Transactional Authority to Enable Speed to Acquisition 

Other transactional authorities (OTAs) are a significant aspect of the United States 

government’s acquisition and procurement system, particularly within the DoD. These 

authorities enable the government to enter into agreements that are more flexible and less 

restrictive than traditional contracts. OTAs have gained prominence in recent years due to 
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their ability to promote innovation, streamline the procurement process, and facilitate the 

acquisition of emerging technologies. 

In traditional government procurement, agencies often rely on FAR-based 

contracts. These contracts are designed to provide a structured, uniform approach to 

procurement but can be rigid and slow. In contrast, OTAs offer a more flexible alternative, 

enabling government agencies to engage with private industry, academic institutions, and 

nonprofit organizations in ways that are less encumbered by traditional federal contracting 

rules. 

OTAs are used primarily in situations where traditional contracts would not be as 

effective, such as in areas where rapid technological advancements are required, or where 

the government wants to collaborate more effectively with innovative companies or non-

traditional defense contractors. OTAs can be used for research, development, 

demonstration, and prototype work. 

OTAs are codified in the U.S. Code, specifically under Title 10 and Title 41, which 

provide the legal basis for their use by federal agencies, particularly the DoD. These 

authorities are not part of the FAR, which governs most government procurement. There 

are three main types of OTAs: 

• Prototype Projects: These are used primarily by the DoD to engage with 

non-traditional defense contractors to rapidly develop prototype systems 

and technologies. 

• Research Projects: This category supports research and development 

efforts, allowing agencies to work with a wide range of partners, including 

universities, nonprofit organizations, and industry leaders. 

• Production: These are less common and are used when the government 

wishes to transition from a prototype to full production, typically after 

successful demonstration and evaluation. 

The primary legal authority for OTAs comes from: 
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• 10 U.S.C. 2371b: This statute authorizes the DoD to use OTAs for 

prototypes, aiming to streamline the development process and encourage 

innovation from non-traditional contractors. 

• 41 U.S.C. 1901: This provides authority for broader OTA use, beyond 

defense applications, to include other federal agencies. 

OTAs can also be used in situations where agencies need to engage in collaborative 

agreements, such as when working with industry consortia, universities, or small 

businesses. 

a. Types 

OTAs are flexible instruments that can take different forms depending on the nature 

of the project. While they all share some common features, such as their ability to allow 

the government to work with a broad range of entities, there are specific distinctions 

between the types of OTAs used for different purposes. 

(1) Prototype Projects 

OTAs for prototype projects are perhaps the most well-known and widely used type 

of OTA. These authorities allow the government to engage with contractors to develop 

prototypes of new technologies or systems. The use of OTAs for prototyping is particularly 

significant in the defense sector, where the pace of technological advancement is fast, and 

traditional procurement processes may not be well-suited to fostering innovation. 

• Purpose: The primary purpose of OTAs for prototypes is to enable rapid, 

flexible, and cost-effective development of innovative solutions. These 

OTAs allow the government to work with non-traditional defense 

contractors who may not have experience with government contracts, but 

who possess the technical expertise to develop novel systems or 

technologies. 

• Advantages: OTAs for prototypes allow the government to avoid the 

lengthy and often cumbersome processes associated with traditional 

contracts. They provide greater flexibility in terms of cost-sharing, 
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intellectual property rights, and other terms of the agreement. This 

flexibility is crucial when working with emerging technologies or 

companies that may have unique requirements or constraints. 

• Collaboration with Non-Traditional Contractors: A significant feature 

of prototype OTAs is their ability to facilitate collaboration with non-

traditional defense contractors. The DoD has recognized that non-

traditional contractors, such as small businesses, startups, and companies 

from outside the defense industry, often bring innovative solutions to the 

table. However, traditional procurement processes can discourage these 

entities from engaging with the government due to their complexity and 

rigid requirements. 

• Example: An example of an OTA for prototype development is the 

DoD’s engagement with small technology companies to develop new SW, 

drones, or advanced sensors that can be used in combat scenarios. 

(2) Research Projects 

Research-focused OTAs provide a framework for government agencies to engage 

with a wide range of entities, including universities, nonprofit research institutions, and 

private industry, to support scientific research and technological development. 

• Purpose: These OTAs are primarily used to fund research projects that 

are designed to advance knowledge in specific fields, such as aerospace 

engineering, cybersecurity, or biotechnology. The government can 

leverage the expertise of academic and private sector institutions to 

explore new technologies, scientific theories, and experimental designs. 

• Flexibility in Terms: OTAs for research projects can offer more 

flexibility than traditional grants or contracts. The terms of these OTAs are 

negotiated based on the specific research objectives and can be tailored to 

meet the needs of both the government and the research institution. The 
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agreements are less prescriptive than traditional contracts, allowing for 

greater innovation and experimentation. 

• Collaboration with Academia: One of the key advantages of OTAs for 

research projects is that they enable the government to tap into the 

research capabilities of universities and academic institutions. These 

institutions may not typically engage in government contracts, but an OTA 

allows them to collaborate on research that aligns with their academic 

goals while meeting government needs. 

• Example: The government may use an OTA to fund a research project at 

a university focused on developing new artificial intelligence techniques 

for cybersecurity. 

(3) Production 

OTAs for production are used less frequently but are important when a government 

agency wants to transition from prototype development to full-scale production. 

• Purpose: These OTAs allow for the production of goods or services that 

are initially developed under a prototype OTA. After successful 

demonstration and evaluation, the government can use an OTA to scale up 

production, particularly when traditional procurement processes would be 

too slow or rigid to meet the demand. 

• Collaboration with Industry: OTAs for production can be used to 

engage with traditional defense contractors, as well as non-traditional 

manufacturers who are capable of scaling production quickly. These 

agreements provide flexibility in terms of cost-sharing, intellectual 

property, and other factors that might otherwise hinder production under a 

traditional contract. 

• Example: If a prototype for a new unmanned aerial vehicle (UAV) is 

successfully demonstrated, the DoD may enter into an OTA for production 

to scale up manufacturing and deploy the UAV to military units. 
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b. Advantages 

OTAs provide several key advantages, particularly in fostering innovation, 

accelerating the procurement process, and enabling the government to work with a broader 

range of organizations. These benefits have made OTAs an increasingly popular choice for 

federal agencies, especially the DoD. 

(1) Flexibility 

One of the main advantages of OTAs is their flexibility. Unlike traditional 

contracts, which are subject to the FAR, OTAs offer the ability to negotiate terms and 

conditions that are tailored to the needs of the project. This includes greater flexibility in 

how funds are allocated, how intellectual property is managed, and the specific deliverables 

that are required. 

(2) Encouraging Innovation 

OTAs are particularly beneficial in encouraging innovation. The traditional 

government procurement process is often slow and bureaucratic, which can stifle 

innovation and discourage companies from proposing cutting-edge solutions. In contrast, 

the flexibility provided by OTAs allows the government to engage with startups, small 

businesses, and non-defense companies that might have the technical expertise to develop 

groundbreaking technologies but may lack the experience or resources to navigate the 

traditional procurement system. 

The ability to engage with a broader range of contractors also means that the 

government can access the latest technological advances, such as artificial intelligence, 

cybersecurity, and quantum computing, much faster than with traditional contracts. 

(3) Reduced Administrative Burden 

OTAs can reduce the administrative burden on both the government and 

contractors. Traditional contracts often require extensive documentation, compliance 

checks, and reporting, all of which can slow down the procurement process. With OTAs, 

the administrative requirements are less burdensome, which means that agreements can be 
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negotiated and executed more quickly. This reduces the time it takes for the government to 

access new technologies and capabilities, which is critical in rapidly evolving fields like 

defense and cybersecurity. 

(4) Promoting Collaboration 

OTAs facilitate collaboration between the government and a wide range of entities, 

including non-traditional defense contractors, small businesses, universities, and research 

institutions. These collaborations can lead to innovative solutions that might not have 

emerged from more traditional government-contractor relationships. By working with 

diverse partners, the government can ensure that it is leveraging the full range of expertise 

and resources available in the private sector and academia. 

c. Disadvantages 

Despite their many advantages, OTAs also present challenges and limitations. 

These can include concerns related to competition, cost control, and ensuring that the 

government’s interests are protected. 

(1) Lack of Competition 

One of the primary concerns with OTAs is that they may not always promote 

competition. Since OTAs are negotiated agreements rather than open bidding processes, 

there is a risk that a small number of contractors could be repeatedly awarded OT 

agreements without sufficient competition. While OTAs can be used in cases where 

competitive bidding is impractical or unnecessary, there is a need for safeguards to ensure 

that competition is maintained in cases where it is feasible. 

(2) Cost Control 

While OTAs offer flexibility, they can also pose challenges in terms of cost control. 

Traditional contracts typically have well-defined pricing structures and requirements for 

cost control, whereas OTAs are negotiated agreements that may not have the same level of 

cost transparency. This can lead to challenges in monitoring and controlling costs, 

especially for larger or more complex projects. 
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(3) Lack of Oversight and Accountability 

Because OTAs are not subject to FAR, they can sometimes lack the level of 

oversight and accountability that is built into traditional procurement processes. This can 

lead to concerns about the effectiveness and efficiency of OTA-based projects, particularly 

when dealing with large sums of taxpayer money. It is essential to have mechanisms in 

place to ensure that OT agreements are properly managed, and that the government is 

getting value for expenditures.. 

(4) Complexity in Implementation 

While OTAs provide flexibility, they also require skilled contracting officers and 

project managers who are familiar with the unique characteristics of OTA agreements. The 

lack of familiarity with OTAs in some government agencies can make it difficult to 

effectively implement these authorities, particularly in situations where rapid procurement 

is needed.  

d. Conclusion 

OTAs represent a critical tool in modernizing government procurement processes, 

particularly within the DoD. By offering greater flexibility, encouraging innovation, and 

streamlining the procurement process, OTAs enable the government to work more 

effectively with industry to delivery technologically relevant HW and SW to pace 

emerging threats and mature new defense concepts like the USV ICS CI. Table 7 

summarizes the key aspect of an OTA. 

Table 7. Summary of Other Transaction Authorities in the Department of 
Defense Procurement System 

Aspect Details 
Introduction OTAs provide a flexible alternative to FAR-based contracts, 

allowing rapid innovation and streamlined procurement processes. 
Purpose Facilitate collaboration with private industry, academia, and non-

profits for research, prototyping, and production. 
Legal 
Framework 

Codified under Title 10 and Title 41 of the U.S. Code, with key 
statutes like 10 U.S.C. 2371b for prototypes and 41 U.S.C. 1901 for 
broader applications. 
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Aspect Details 
Types 

Prototype 
Projects 

Focuses on developing innovative prototypes. Enables rapid 
development, cost-sharing flexibility, and collaboration with non-
traditional contractors. 

Research 
Projects 

Supports research and development with flexible terms. Often 
engages universities and research institutions for advancing 
scientific knowledge. 

Production Used to transition from prototype to full production, especially 
when traditional procurement is too slow or rigid. 

Advantages 
Flexibility Tailored agreements allow negotiated terms, including cost, 

intellectual property, and deliverables. 
Encouraging 
Innovation 

Engages startups, small businesses, and non-defense contractors to 
bring cutting-edge technologies to government projects. 

Reduced 
Administrative 
Burden 

Fewer documentation and compliance requirements compared to 
FAR contracts, expediting agreements. 

Promoting 
Collaboration 

Facilitates partnerships with diverse entities, leveraging expertise 
from industry, academia, and research institutions. 

Rapid 
Procurement 

Accelerates access to emerging technologies, critical for fast-
evolving fields like defense and cybersecurity. 

Challenges and Limitations 
Lack of 
Competition 

Negotiated agreements may reduce competitive bidding, increasing 
the risk of awarding contracts to a narrow pool of contractors. 

Cost Control Limited transparency in negotiated pricing structures can 
complicate monitoring and controlling costs. 

Lack of 
Oversight 

Absence of FAR regulations may reduce accountability, creating 
risks for inefficiencies and waste. 

Implementation 
Complexity 

Requires skilled contracting officers familiar with OTA 
agreements, which can be a challenge in certain agencies. 

 

2. Use of Other Transactional Authority in Unmanned Surface Vessel 
Integrated Combat System Computing Infrastructure Prototyping 

In early 2021 an addendum statement of work (SOW) was written and ratified to 

design, develop, deliver, and integrate into USV prototyping vessels a USV ICS CI based 

on the latest available NPS HW and IaaS SW products. Needing to deliver the USV ICS 

CI HW/IaaS suite to a developmental lab at the NWSC-Dahlgren in advance of the October 

2021 In Yard Need Date for ICS GFE this rapid prototyping OTA required delivery of 

these systems 6 months after design. 
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3. Summary and Key Aspects of the Unmanned Surface Vessel 
Integrated Combat System Other Transactional Authority Statement 
of Work 

Current USN combat management systems are highly complex, outdated, and 

tightly linked to specific HW, creating costly and cumbersome upgrades. Existing 

paradigms lead to inefficient HW use, redundancy, and logistical challenges. An IaaS 

solution is required to address these issues, enabling scalable, modular, and efficient 

computing infrastructure. This solution must support dynamic allocation of compute and 

storage resources, function in isolated environments, and meet specific USN CS 

requirements. 

The contractor must adopt an agile development methodology, enabling iterative 

learning and adaptation to meet future CS requirements. Collaboration with USN personnel 

is essential for integration, validation, and system refinement. 

a. Develop an IaaS Prototype Framework 

• Scalable and upgradable infrastructure that decouples HW from SW. 

• Support remote management and initialization in low-bandwidth, 

disconnected environments. 

• Consolidate current cabinet configurations into a maximum of three air-

cooled cabinets for NPS with a UPS system. 

b. Support CSs 

• Enable operation of AWS and Tomahawk Weapon System (TWS). 

• Address challenges of unmanned CS computing infrastructure. 

c. Technical Focus Areas 

• Modular and open-architecture design to maximize use of COTS HW. 

• Ensure infrastructure is secure and supports multi-tenant service 

environments. 
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• Provide UPS configurations for operational sustainability during power 

loss. 

d. General and Technical Requirements Prototype Development 

• Develop CI cabinets for the LUSV and land-based operations. 

• Design UPS systems to support operations during power loss for various 

durations (e.g., 15 minutes to 48 hours). 

• Incorporate advanced remote initialization and management features. 

e. Studies and Prototyping 

• Investigate technologies for remote operation, intrusion detection, and 

anti-tamper measures. 

• Explore modular HW designs for efficient CI refresh cycles. 

f. Deliverables 

• USV ICS CI / IaaS Suites. 

• Interface Control Document, Software Production Specification (SPS), 

Bill of Materials (BOM), and final technical reports. 

• Training materials for users and administrators. 

g. Post-Delivery Support 

• Technical support for troubleshooting, maintenance, and validation of 

delivered systems. 

4. Small Empowered Teams to Enable Speed to Design, Development, 
Delivery, and Ship Integration 

To meet the challenging timeline for the USV ICS CI prototyping and fielding 

effort, a small team approach was adopted. A government team consisting of 4 CS and CI 

experts with experience with previous CI development initiatives, extensive shipboard and 

ship integration, Technical Data Package (TDP) development, mechanical, reliability, and 
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USN CS maintenance backgrounds was formed. This small team partnered with a handful 

of industry experts within the OTA organization to meet program objectives. The 

a. Benefits and Drawbacks of a Small Team Approach to Technology 
Project Development 

The approach to technology project development has evolved significantly over the 

years. While large teams were historically the norm for handling complex projects, the 

small team approach has gained popularity due to its unique advantages. However, it is not 

without its challenges. This section explores the benefits and drawbacks of a small team 

approach to technology project development, providing a comprehensive analysis of its 

impact on project success, innovation, and efficiency. 

Benefits of a Small Team Approach 

b. Enhanced Communication 

One of the most significant advantages of small teams is the ease of 

communication. With fewer members, it is simpler to align objectives, share updates, and 

resolve misunderstandings. Team members can quickly exchange ideas, leading to more 

effective collaboration and faster decision-making. This streamlined communication is 

particularly beneficial in technology projects, where rapid iterations and adaptability are 

often required. 

c. Agility and Flexibility 

Small teams are inherently more agile than larger ones. They can adapt to changes 

in project requirements, pivot strategies, and implement new ideas with minimal 

bureaucratic delays. This flexibility is especially valuable in technology projects that 

operate in fast-paced or uncertain environments, such as startups or emerging technologies. 

d. Greater Accountability 

With fewer individuals, each team member has a clearer understanding of their 

responsibilities and a greater sense of ownership over their tasks. This heightened 

accountability can lead to higher-quality work, as team members are directly invested in 
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the success of the project. Moreover, it reduces the likelihood of tasks being neglected or 

overlooked. 

e. Cost-Effectiveness 

Smaller teams typically require fewer resources, making them a cost-effective 

option for organizations. Reduced staffing means lower salaries, fewer tools and SW 

licenses, and smaller physical workspaces. For technology projects with limited budgets, 

this cost efficiency can be a deciding factor in choosing the small team approach. 

f. Improved Innovation and Creativity 

Small teams foster closer relationships and a more intimate work environment, 

which can encourage open discussions and creative problem-solving. Team members are 

more likely to contribute ideas, challenge assumptions, and experiment with innovative 

solutions. This dynamic is crucial for technology projects that rely on breakthrough 

innovations. 

g. Faster Decision-Making 

Decision-making processes in small teams are typically less bureaucratic than in 

larger teams. With fewer layers of approval and less need for extensive consultation, small 

teams can make decisions more quickly. This speed can be critical in technology projects, 

where time-to-market often determines success. 

5. Drawbacks of a Small Team Approach 

a. Limited Expertise and Resources 

A smaller team means fewer people to bring diverse skills and perspectives to the 

table. Technology projects often require specialized knowledge in areas like SW 

development, cybersecurity, and data analysis. A small team may lack the breadth of 

expertise needed to address complex challenges, potentially leading to slower progress or 

lower-quality outcomes. 
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b. Higher Workload for Team Members 

In small teams, each member must handle a larger share of the workload. This can 

lead to burnout, decreased morale, and reduced productivity over time. High workloads 

can also make it challenging for team members to dedicate time to skill development or 

long-term strategic planning. 

c. Risk of Knowledge Silos 

With fewer individuals, knowledge about specific aspects of the project may 

become concentrated in just one or two people. If these individuals leave the team or are 

unavailable, critical knowledge gaps can arise, jeopardizing the project’s progress and 

continuity. 

d. Vulnerability to Disruptions 

Small teams are more vulnerable to disruptions caused by unexpected events, such 

as illness, personal emergencies, or turnover. Losing even a single team member can have 

a significant impact on the team’s ability to meet deadlines and maintain productivity. The 

small team assembled for USV ICS CI were enabled to focus solely on this development. 

e. Challenges in Scaling 

While small teams excel in handling focused, short-term projects, they may struggle 

to scale their efforts as project demands grow. Larger, more complex technology projects 

may require additional personnel, infrastructure, and coordination, which small teams may 

find difficult to manage effectively. 

f. Dependence on Individual Performance 

In a small team, the performance of each member has a disproportionately large 

impact on the overall success of the project. If one member underperforms or fails to 

deliver, it can significantly hinder the team’s progress. This dependence can create added 

pressure and stress for individual members. 
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Table 8. Assessing Small Team Approached to Project Success 

Benefits and Drawbacks of a Small Team Approach 
Category Benefits Drawbacks 

Communication 
Streamlined, fosters 
collaboration, quicker 
decision-making 

Risk of over-reliance on few 
channels, potential for echo 
chambers 

Agility and 
Flexibility 

Quickly adapts to changes 
and new ideas 

May lack resources to handle 
rapid or large-scale shifts 

Accountability Clear ownership and high 
responsibility 

Pressure on individuals, 
potential for overwork 

Cost-Effectiveness Fewer resources needed High risk if critical skills or 
tools are missing 

Innovation and 
Creativity 

Close-knit team dynamics 
foster ideation 

Limited external perspectives 
may hinder diverse or 
groundbreaking innovations 

Resilience Quick recovery from small-
scale issues 

Vulnerable to major disruptions 
or key member losses 

 

6. Understanding the Requirement 

In order to move fast and deliver the relevant capability required, it is crucial and 

foundational to understand the requirements of the system being developed. Effective 

requirements definition is essential for ensuring that a system aligns with operational needs 

and delivers desired capabilities. In military systems, requirements serve as the foundation 

for system design, development, and testing, and provide a clear roadmap for engineers 

and developers, guiding the system architecture and design. By accurately defining system 

requirements, the USN can ensure that it is developing a system that meets operational 

goals, such as mission readiness, interoperability, and survivability. 

Furthermore, a clear set of well-documented requirements is instrumental in 

minimizing project risks. Without proper requirements, projects often experience scope 

creep (where the scope of the project expands beyond the original plan) and cost overruns 

and delays as changes to the design are needed as a fuller understanding of the requirements 

are gained. These risks are particularly significant in the development of defense systems, 

like the USV ICS CI, where budget constraints and tight timelines were present. The ability 

to track and manage requirements throughout the system development life cycle ensures 
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that these risks are mitigated. Clear requirements also foster better communication among 

all stakeholders involved in the system’s development. 

a. Key Components of Requirements Definition 

The process of requirements definition in systems development involves several 

key components, including functional and non-functional requirements, technical 

specifications, stakeholder engagement, and comprehensive documentation. 

(1) Functional Requirements 

These specify what the system must do. For instance, in the case of a naval CS, 

functional requirements would outline the system’s ability to detect, track, and engage 

enemy targets (Defense Acquisition University, 2010). Functional requirements define the 

core capabilities and tasks the system must accomplish to support operational missions. 

(2) Non-functional Requirements 

These focus on how the system performs its functions. They may address 

performance attributes such as system reliability, response time, availability, and security 

(Ward & McCune, 2018). Non-functional requirements ensure that the system not only 

performs its tasks but does so in a manner that meets the USN’s standards for efficiency, 

safety, and security. 

(3) Technical Specifications 

These describe the detailed technical aspects of the system, including HW, SW, 

interfaces, and performance thresholds (Department of the Navy, 2020). Technical 

specifications are necessary to ensure that the system integrates with existing infrastructure 

and meets specific operational constraints, such as environmental conditions or power 

consumption limitations. 

(4) Stakeholder Involvement 

Effective requirements elicitation involves gathering input from all relevant 

stakeholders, including military personnel, contractors, end users, and subject matter 

Acquisition Research Program 
department of Defense Management 
Naval Postgraduate School 

101



experts. Stakeholder engagement is essential for capturing the full spectrum of system 

needs, from operational capabilities to technical specifications. 

(5) Documentation and Traceability 

All requirements must be carefully documented and managed throughout the 

system development life cycle. Traceability refers to the ability to track each requirement 

from its origin to its implementation and testing (Defense Acquisition University, 2010). 

This ensures that no requirement is overlooked and that any changes to the system can be 

properly analyzed and evaluated. 

b. Challenges in Requirements Definition 

While the importance of requirements definition is clear, the process is not without 

its challenges. Some of the common difficulties in defining requirements for military 

systems include: 

(1) Ambiguity and Lack of Clarity 

Requirements that are vague or poorly defined can lead to confusion during system 

development. Ambiguous language can result in misinterpretation of system objectives, 

causing delays and rework (Ward & McCune, 2018). In the context of the USN, where 

operational needs can be complex and dynamic, precise language is essential. 

(2) Conflicting Stakeholder Interests 

Different stakeholders often have different priorities. For example, military 

personnel may emphasize operational capability, while engineers might focus on system 

performance and technical feasibility. 

(3) Changing Requirements 

As system development progresses, new requirements may emerge, or existing 

ones may need to be revised due to changes in technology, mission needs, or budget 

constraints. Managing changes to requirements can be challenging, especially in large, 

complex defense projects (Defense Acquisition University, 2010). 

Acquisition Research Program 
department of Defense Management 
Naval Postgraduate School 

102



(4) System Complexity 

Modern naval systems are highly complex, integrating numerous technologies, 

platforms, and operational domains. This complexity makes it difficult to capture all 

system requirements accurately. Additionally, systems must be designed to withstand 

evolving threats, which requires a high level of flexibility in the requirements definition 

process (Department of the Navy, 2020). 

c. Methodology of Requirements Definition 

During the early prototype phase of the USV ICS CI development, the requirements 

were still emerging. By thoroughly analyzing the requirements of previous AWS and ICS 

CI systems, the team was able to derive a comprehensive set of requirements that allowed 

the development to progress. The approach adopted for the USV ICS CI involved ensuring 

that it met all functional and performance requirements of the AWS, while modernizing 

the HW and form factor of core components. Additionally, the team incorporated a 

virtualization platform to support the modernization of application SW. This combination 

of approaches provided the team with a practical and achievable set of requirements, 

enabling them to meet the compressed development timelines. 

7. Best Practices for Navy System Prototyping 

The DoD Prototyping Guidebook serves as a comprehensive resource for defense 

acquisition professionals, providing guidance on the effective use of prototyping within the 

DoD’s acquisition framework. Prototyping is a critical tool in reducing technical risk, 

refining requirements, validating designs, and accelerating the delivery of capabilities to 

the warfighter. This section summarizes the material and guidance contained in this 

guidebook. 

a. Purpose and Scope 

The guidebook emphasizes the strategic value of prototyping in fostering 

innovation and ensuring technological superiority. It outlines best practices for planning, 

executing, and transitioning prototypes, aiming to enhance decision-making and program 

outcomes across various acquisition pathways. 
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b. Key Concepts 

Prototyping involves creating a preliminary version of a system or component to 

evaluate feasibility, explore design options, and identify potential issues before full-scale 

development. 

c. Types of Prototypes 

• Technology Demonstrators: Showcase new technologies to assess their 

maturity and integration potential. 

• Operational Prototypes: Developed to evaluate system performance in 

operational environments. 

• Risk Reduction Prototypes: Address specific technical or integration 

risks to inform development decisions. 

d. Prototyping Objectives 

• Risk Mitigation: Identify and address technical uncertainties early in the 

acquisition process. 

• Requirements Refinement: Inform and validate user requirements 

through iterative development. 

• Technology Maturation: Advance the readiness levels of critical 

technologies. 

• Concept Exploration: Assess alternative solutions to meet mission needs. 

e. Prototyping Process 

(1) Planning 

• Define Objectives: Clearly articulate the goals and success criteria for the 

prototype. 

• Stakeholder Engagement: Involve end users, technical experts, and 

decision-makers to ensure alignment. 
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• Resource Allocation: Secure necessary funding, personnel, and facilities. 

(2) Execution 

• Design and Development: Employ agile methodologies to iteratively 

build and refine the prototype. 

• Testing and Evaluation: Conduct assessments to measure performance 

against objectives. 

• Documentation: Maintain detailed records of design decisions, test 

results, and lessons learned. 

(3) Transition 

• Assessment: Evaluate the prototype’s success in meeting objectives and 

its potential for further development. 

• Decision-Making: Determine the appropriate path forward, whether 

transitioning to a program of record, additional prototyping, or 

termination. 

• Integration: Plan for the incorporation of successful prototypes into 

existing systems or new acquisition programs. 

f. Best Practices 

• Early and Continuous User Involvement: Engage end users throughout 

the prototyping process to ensure the solution meets operational needs. 

• Iterative Development: Adopt flexible development approaches that 

allow for rapid iteration and incorporation of feedback. 

• Risk Management: Continuously identify, assess, and mitigate risks to 

prevent issues from escalating. 

• Collaboration: Foster partnerships with industry, academia, and other 

government agencies to leverage diverse expertise and resources. 
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• Metrics and Evaluation: Establish clear metrics to assess prototype 

performance and inform decision-making. 

g. Challenges and Considerations 

• Resource Constraints: Balancing limited resources while pursuing 

multiple prototyping efforts. 

• Transition Planning: Ensuring successful prototypes are effectively 

integrated into acquisition programs. 

• Intellectual Property: Navigating IP rights to facilitate collaboration and 

future development. 

• Regulatory Compliance: Adhering to acquisition regulations while 

maintaining flexibility in prototyping efforts. 

h. Conclusion 

The DoD Prototyping Guidebook underscores the importance of prototyping as a 

strategic tool in defense acquisition. In the development of USV ICS CI prototype the team 

considered these factors, and the OTA was structured to support these objectives. 

Table 9. Department of Defense Guidance Summary on Prototype Systems 

Category Key Points 
Purpose 
and Scope 

Provides guidance on effective use of prototyping to foster innovation, 
reduce risks, and ensure technological superiority in defense acquisition. 

Prototyping 
Definition 

Creation of preliminary system versions to evaluate feasibility, explore 
design options, and address potential issues. 

Types of 
Prototypes 

Technology Demonstrators: Assess new technologies.  
Operational Prototypes: Evaluate system performance in real 
environments.  
Risk Reduction Prototypes: Mitigate technical or integration risks. 

Objectives 

Mitigate technical risks.  
Refine user requirements.  
Mature critical technologies.  
Explore alternative solutions. 

Prototyping 
Process 

Planning: Define objectives, engage stakeholders, allocate resources.  
Execution: Design iteratively, test, document outcomes.  
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Category Key Points 
Transition: Evaluate success, decide on next steps, and integrate into 
programs. 

Best 
Practices 

Engage users early and continuously.  
Use iterative development approaches.  
Identify and mitigate risks continuously.  
Collaborate with industry, academia, and agencies.  
Define clear metrics for evaluation. 

Challenges 

Balancing limited resources.  
Effective transition planning.  
Managing intellectual property.  
Ensuring regulatory compliance. 

Conclusion 
Prototyping is a strategic tool for innovation and risk reduction. 
Following the guidebook enhances decision-making and accelerates 
capability delivery. 

 

8. Deliver an Excess Capability to Support Development and 
Redundancy for Reliability 

The USV ICS CI development marked the first time an AWS based CS was 

deployed in a virtualized environment. The development team, to ensure that CI capability 

could support CS SW development the decision was made to deliver excess capacity. 

Long-term plans for prototype iteration leading to final system designed included 

assessment of end item SW capacity requirements, coupled with redundant capacity to 

support maintenance free operating time, to “right size” the system prior to production. The 

nature of the USV ICS CI as an unmanned platform was also considered when designing 

the system. 

The “Reliability and Maintainability Engineering Guidebook” addresses the 

concept of designing reliability through redundancy as a key principle for ensuring that 

systems are capable of maintaining their functionality and performance despite potential 

failures of individual components. Redundancy is widely employed in systems engineering 

to increase the reliability and availability of systems, especially in critical applications such 

as aerospace, defense, telecommunications, and industrial processes. This section 

summarizes what the guidebook says about designing reliability through redundancy. 
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a. The Role of Redundancy in Reliability Engineering 

Redundancy involves incorporating extra components or systems into the design to 

take over the function of failed components, thus preventing the entire system from failing 

when one part malfunctions. It is one of the primary strategies to enhance system reliability 

and ensure continuous operation. 

In reliability engineering, redundancy is often used in mission-critical systems 

where system failure can result in catastrophic consequences. The guidebook emphasizes 

that the goal of redundancy is to improve the system’s mean time between failures (MTBF) 

and availability. 

b. Types of Redundancy 

The guidebook outlines different types of redundancy, each tailored to address 

specific needs of reliability and maintainability in a system: 

(1) Active Redundancy 

In active redundancy, multiple components or systems perform the same function 

simultaneously. If one component fails, the others continue to function without disruption. 

• Example: In an aircraft, active redundancy might involve having two 

engines where both engines operate simultaneously, and if one fails, the 

other takes over the entire load. Both engines are continuously in 

operation, sharing the load, which maximizes operational reliability. 

• Advantages: The system continues to operate normally even when a 

failure occurs, resulting in high system availability. 

• Disadvantages: Active redundancy can increase system weight, 

complexity, and energy consumption, as additional components must be 

constantly operating. 
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(2) Standby Redundancy 

Standby redundancy involves having backup components or systems that are idle 

during normal operations but are automatically activated when the primary component 

fails. 

• Example: A backup battery in an uninterruptible power supply (UPS) is 

an example of standby redundancy. The backup battery is not active 

during normal operations, but when the primary power source fails, the 

battery activates to maintain operation. 

• Advantages: Standby redundancy is less costly and more energy-efficient 

than active redundancy, as backup systems are only used when needed. 

• Disadvantages: There is often a delay in response time when a failure 

occurs, and the standby systems may not always activate properly, 

especially if they have not been maintained or tested regularly. 

(3) Cold Redundancy 

Cold redundancy refers to backup components that are only activated in the event 

of a failure, but unlike standby redundancy, they are not immediately available. These 

components need some time to be brought online after a failure occurs. 

• Example: A spare part stored in a warehouse that can be deployed after a 

component fails is an example of cold redundancy. 

• Advantages: It is the most cost-effective redundancy strategy, as it does 

not require additional active components or systems. 

• Disadvantages: There is a significant delay in bringing the backup system 

online, which can impact system performance and reliability in a real-time 

failure situation. 

c. Design Considerations for Implementing Redundancy 

The guidebook provides several important considerations when designing 

redundancy into a system. 
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(1) Redundancy Allocation 

The process of deciding which parts of the system to make redundant and to what 

extent is critical. The guidebook stresses that redundancy should be applied strategically to 

the most critical components or subsystems that, if failed, would cause the system to stop 

functioning. Overuse of redundancy can lead to unnecessary complexity and increased 

costs. 

• Failure Mode and Effects Analysis: Failure mode and effects analysis is 

often used to identify critical components that should be designed with 

redundancy. These components are those whose failure would cause 

significant degradation or total failure of the system. 

• Reliability Centered Maintenance (RCM): When designing 

redundancy, the guidebook emphasizes incorporating RCM practices to 

ensure that redundant components are appropriately tested, maintained, 

and monitored. The redundant systems must be regularly exercised or 

tested to ensure they will function correctly when needed. 

• Probability of Failure: When designing redundancy, engineers should 

account for the probability of failure of the components and systems in 

question. Redundant components should not increase the probability of 

failure due to issues such as common mode failures. For example, if 

redundant components share a common power supply, a failure in the 

power supply could lead to a failure in both components simultaneously, 

defeating the purpose of redundancy. 

• Cost-Effectiveness: The guidebook highlights the importance of 

balancing the cost of redundancy with the level of reliability required for 

the system. Redundancy increases both initial design costs and operational 

costs (e.g., maintenance). Therefore, a trade-off analysis should be 

conducted to determine the optimal level of redundancy based on the 

system’s reliability requirements, operational environment, and risk 

tolerance. 
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• Design Complexity: Adding redundant components to a system increases 

the complexity of the design. The more complex a system becomes, the 

harder it is to manage, troubleshoot, and maintain. Redundant systems 

must be carefully designed to integrate smoothly with the rest of the 

system while minimizing additional complexity. The guidebook stresses 

that engineers must ensure that the added redundancy does not 

inadvertently reduce the overall reliability of the system due to increased 

system complexity. 

• Redundancy and System Availability: The concept of availability is 

critical when designing reliability through redundancy. Availability is a 

measure of the system’s readiness for operation, and redundancy is often 

employed to ensure high availability. The guidebook explains that 

redundant components can significantly improve the Mean Time to Repair 

(MTTR) because backup systems can be quickly brought online when a 

failure occurs. 

• MTBF: Redundancy increases the mean time between failures by 

ensuring that the failure of one component does not result in total system 

failure. 

• MTTR: Redundant systems can be swapped in quickly, reducing 

downtime and minimizing the time needed to restore the system to full 

functionality. 

• System Availability (A): This is typically calculated using the formula: 

 A = MTBFMTBF + MTTRA = MTBF + MTTRMTBF.  

Redundancy plays a major role in improving system availability by decreasing the impact 

of component failures on the overall system. 
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(2) Redundancy in Critical Systems 

The guidebook places particular emphasis on the use of redundancy in critical 

systems, where failure could result in loss of life, severe damage to property, or large-scale 

system failures. For these systems, high reliability design through redundancy is essential. 

(3) Common Mode Failures and Redundancy Design 

A critical aspect of designing reliability through redundancy is avoiding common 

mode failures. The guidebook discusses how redundancy can be compromised if redundant 

systems are vulnerable to the same failure modes. For example, if two power supply 

systems are designed with the same components (e.g., the same battery type), they may 

both fail at the same time under certain conditions. To prevent common mode failures, 

redundancy must be designed with diversity. This could mean: 

• Using different manufacturers for redundant components. 

• Using different power sources for each redundant system. 

• Ensuring that redundant components are not housed in the same 

environment where a single event could cause failure in both systems. 

d. Conclusion 

The “Reliability and Maintainability Engineering Guidebook” emphasizes that 

redundancy is a fundamental design principle for ensuring system reliability, particularly 

in critical applications. The use of redundancy helps to mitigate risks associated with 

component failure, enhance system availability, and reduce the impact of downtime.  

Redundancy is not a one-size-fits-all solution; its implementation must be tailored 

to the specific needs of the system, the operational environment, and the risk tolerance of 

the organization. Therefore, designing reliability through redundancy is an essential, yet 

nuanced aspect of creating high-performance, fault-tolerant systems. 

In prototyping the USV system the decision to deliver systems that meet the worst 

case capacity for both development and redundancy enabled confidence that the system 
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would meet the requirements and enable lessons learned to drive the “Right Sizing” of the 

system before production. 

9. Use of the Newest Commercial Hardware and Infrastructure/
Platform as a Service Software 

In the modern defense landscape, the need for advanced computing and network 

capabilities is paramount to ensuring mission success. For the USV program the ability to 

procure cutting-edge technology quickly, flexibly, and efficiently was critical. 

A central tenant of the USV OTA, and the following IWS X ICS, is continual 

iteration with next in breed HW. This approach is an innovative method for procuring 

modern computing and network HW, as well as IaaS. 

The award of the OTA to an industry team assesses the viability of the HW/SW 

solutions presented to meet current requirements. In the awarded contract vehicle for USV 

ICS CI systems continual assessment of market solutions is a core activity which ensures 

that a system will continue to iterate and integrate the newest components. 

10. Make it Work: Integrate 

Utilizing the OTA for delivery of USV ICS CI HW and IaaS ensured that we could 

deliver relevant solutions in six months vice 6–8 years. While use of the OTA limits the 

developer to the solutions awarded in the OTA SOW it enables the team to focus all energy 

on the design of the assembled components and integration to deliver a workable solution. 

While more traditional acquisition processes would include lengthy product 

selection processes, complete with often years long assessments, the USV OTA process 

allowed the small development team to focus on “Make Work” and schedule. Knowing 

that the solutions being delivered were modern and backed by considerable commercial 

fielding and utilization, the team focused on the key development features, confident that 

the underlying HW/SW supported system requirements. 

These key system requirements were: 

• USV computing infrastructure leverages OTA efforts to deliver modern 

capability in NPS equipment suites. 
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• USV ICS CI provides IaaS to tactical virtualized CS’s applications. 

• 3 Processing Cabinets and an UPS System. 

• USV Prototype 1 systems, delivered in 8U modularity, will refresh 

incrementally as Prototype 2 and ICS CI development efforts bring system 

iteration leading to modular capability refresh ad infinitum. 

• Prototype 1 CI is built on VPS Inc. I HW and IaaS products. 

• PCIe based NTDS, Aegis Time Processors (ATP), Gyro Data Converters 

(GDC), Vertical Launch Processor (VLP). 

• Prototype 1 CI supports AWS, SCS, CaaS, and TWS applications in a VM 

or container environment. 

• Prototype 1 efforts to address: 

• System security and wiping of SW upon intrusion. 

• Positive firing chain control with non-resident actuation (given that 

solution resides in the VLP vice VLS). 

• Remote maintenance and HW management strategy and functionality. 

USV ICS CI systems were delivered meeting the GFE need dates to OUSV 4. 

Features of the OTA procurement included delivery of the cables needed to connect the 

USV ICS CI as well as site integration support from the industry OTA team. The decision 

was made to use members of the Government and OTA team to perform the integration of 

these systems at both the shore sites and onboard OUSV 4. 
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Figure 8. Unmanned Surface Vessel Integrated Combat System Computing 

Infrastructure Installed on Overlord Unmanned Surface Vessel 4 

11. Assess and Iterate 

The USV ICS CI successfully delivered three prototype 1 systems within 6 months 

of OTA SOW ratification. These systems, fielded on OUSV 4 and shore development sites, 

provided a wealth of data to support development of follow-on systems. 

One significant benefit of the decision to deliver systems that meet the worst case 

capacity for development and redundancy was the ability in the development environment 

to utilize all of the system capacity, utilizing the SDN capabilities of the IaaS SW Plane, 

to run multiple instantiations (tenancies) within the CI. This enabled developers to run 

“many” USV platforms simultaneously supporting development of the system to allow 

identification and definition of USV key performance parameters (KPP). Specifically, 

exercising these KPPs, enabled by initial system design, are providing insight into operator 

workstation demands and the maximum number of USVs that a controlling unit can 

manage. 
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These KPPs, and the ability to provide systems in prototype that support an 

understanding of the systems and systems’ behaviors and automation needed to meet them, 

is critical to unmanned programs. 

KPPs are critical elements of a capability solution required to meet operational 

goals and mission effectiveness. In the context of the USN, KPPs are specific performance 

attributes that a system must meet to fulfill its role within naval operations. These 

parameters ensure that new systems and platforms align with the strategic goals and 

operational requirements of the USN. 

a. Key Aspects of USN KPPs 

KPPs are measurable, testable, and specific capabilities or characteristics that are 

essential for the system to perform its intended mission. Failure to meet a KPP typically 

renders the system unacceptable for deployment. 

(1) Alignment with Operational Requirements 

KPPs are derived from top-level requirements documents, such as the Initial 

Capabilities Document (ICD) and the Capabilities Development Document (CDD). These 

documents outline what the USN needs to achieve in terms of warfighting, readiness, and 

sustainment. KPPs in the USN are often categorized to ensure comprehensive system 

performance. Some common categories include: 

• Force Protection: Ensuring the survivability of naval platforms and 

personnel. 

• Sustainment: Addressing the life cycle management of systems, 

including logistics, maintenance, and reliability. 

• Net-Ready: Ensuring interoperability and secure communications within 

the USN’s networks and with joint/coalition forces. 

• Energy Efficiency: Ensuring that platforms optimize fuel and energy use 

to support sustained operations. 
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• Weapons System Effectiveness: Ensuring the system can meet offensive 

and defensive mission requirements. 

The USN adheres to several mandatory KPPs set by the Joint Staff to ensure 

interoperability and integration within joint military operations. These include: 

• Survivability: Systems must withstand and function in contested 

environments. 

• Net-Ready: Systems must integrate seamlessly with joint networks and 

ensure effective data exchange. 

• Force Protection: Systems must provide adequate protection for 

personnel and equipment. 

(2) Mission Success 

KPPs are directly tied to the USN’s ability to perform its missions, such as sea 

control, power projection, and maritime security. 

(3) Acquisition and Testing 

KPPs are integral to the DoD’s acquisition process. They are used to evaluate 

system performance during developmental and operational testing. 

(4) Risk Mitigation 

By defining KPPs early in the development process, the USN can identify and 

mitigate risks, ensuring that systems meet mission-critical requirements. 

(5) Accountability 

KPPs provide a clear benchmark for evaluating contractor performance and holding 

vendors accountable for delivering systems that meet the USN’s operational needs. 
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12. Development and Deployment of Unmanned Surface Vessel 
Integrated Combat System Computing Infrastructure Prototype 2 

The USV program, using lessons earned in the initial USV ICS CI development, 

produced a second iteration to support USV program objectives and the T&E site needs. 

One key feature of the new OTA-based ICS paradigm is the immediate iteration to the 

newest in breed HW. Diverging from past CI development efforts where lifetime buys of 

HW would be made to maintain a consistent baseline, USV ICS CI fielded and integrated 

new HW, proving the transparency and abstraction of the HW from CS applications. 

A key benefit of this continual iteration was the ability to reduce the HW footprint, 

delivering the same capacity with fewer physical servers, due to technological increases in 

storage and CPU core densities. 

13. Conclusion 

In 2020, NSWC Dahlgren Computing Infrastructure Group was tasked with 

developing prototype equipment for USV ICS CI fielding of a virtualized AWS to support 

the LUSV program. The effort aimed to deliver modernized computing infrastructure and 

NPS HW, emphasizing virtualized combat SW and advanced technologies. Early guidance 

from PEO IWS 80 highlighted the need for rapid, technologically relevant solutions for 

maritime operations. 

14. Challenges in Legacy Procurement Approaches 

Developing the LUSV ICS faced significant hurdles due to limitations in the FAR-

based acquisition process, which governs DoD procurement. Legacy systems like 

Technology Insertions 12 and 16 often suffered from HW obsolescence, with components 

outdated before deployment. For example, TI16 infrastructure scheduled for LUSV 

deployment in 2023 was already eight years old, hindering the USN’s ability to field 

cutting-edge solutions. 

15. Addressing Limitations 

The DoD has turned to OTAs for greater flexibility in research and development, 

enabling rapid prototyping and innovation. Streamlining compliance processes and 
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fostering contractor education further enhances participation and efficiency. Prioritizing 

long-term value over cost efficiency incentivizes advanced solutions. 

16. Lessons from Large Unmanned Surface Vessel Integrated Combat 
System Development 

Key takeaways include the necessity of agile procurement strategies, a small team 

approach, and integrating modernization efforts to address obsolescence. Exploring 

alternatives like OTAs ensures timely delivery of cutting-edge systems, supporting the 

USN’s operational relevance and readiness. 

  

Acquisition Research Program 
department of Defense Management 
Naval Postgraduate School 

119



THIS PAGE INTENTIONALLY LEFT BLANK 

Acquisition Research Program 
department of Defense Management 
Naval Postgraduate School 

120



VII. INTEGRATED COMBAT SYSTEM: GATEWAY TO MODERN 
SPEED TO CAPABILITY 

The ICS was a concept with technical basis established by a white paper written by 

Dr. Alvin Murphy. This whitepaper established the foundation for initial estimates based 

on historical timelines and general budget requests for ICS HW and SW work. 

This chapter summarizes the ICS-CMS Conceptual Reference Model, as articulated 

by Dr. Murphy (Murphy, 2022). This summary covers key aspects like system components, 

subsystems, integration, and advanced technologies used within the system. The model is 

a framework that ensures the development of cohesive, flexible, and highly effective CSs 

for modern naval environments. 

1. Introduction 

a. Purpose 

An ICS is designed to enable seamless integration and interoperability between 

various combat components such as sensors, weapon systems, communication channels, 

and decision-making systems. It enhances situational awareness, response times, and the 

overall combat effectiveness of naval forces by ensuring that all subsystems within a ship 

or a fleet are interconnected and working in sync. The ICS approach ensures that all 

elements of the CS work together, eliminating redundancies, optimizing resource usage, 

and improving operational outcomes. 

b. Core Features 

• Modularity: ICS systems are modular in nature, meaning that new 

technologies or systems can be integrated into existing platforms without 

significant overhaul. This is crucial for ensuring that combat systems can 

evolve over time. 

• Interoperability: The system ensures that various subsystems 

communicate effectively, allowing multiple platforms or fleets to operate 

together, regardless of technological differences. 
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• Adaptability: As new threats, technologies, and operational needs 

emerge, the ICS can be updated or adapted to meet these requirements. 

 
Figure 9. Integrated Combat System Common Core Concept. Source: 

Murphy (2022). 

2. Combat Management System Overview 

a. Role of CMS in ICS 

The CMS is the heart of the ICS. It is responsible for the central processing of data, 

coordination of weapon systems, and providing operators with a unified operational 

picture. CMS integrates various combat components, including sensors (radar, sonar, etc.), 

decision support systems, and weapons control systems, into a single, cohesive entity. The 

CMS is the interface through which operators interact with the system, making it essential 

for successful combat operations. 
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b. Core Functions 

• Sensor Data Processing and Fusion: The CMS collects raw data from a 

wide range of sensors (radar, infrared, sonar, etc.) and processes it to 

provide a coherent and actionable operational picture. This data fusion 

process ensures that operators have access to real-time information for 

decision-making. 

• Threat Detection and Assessment: The CMS continuously evaluates the 

sensor data to detect and classify potential threats. By using advanced 

algorithms and AI-based techniques, the system can prioritize threats 

based on urgency, severity, and likelihood. 

• Weapon System Control: The CMS manages the engagement of 

weapons, coordinating the targeting, firing, and reloading processes. It 

ensures that the most appropriate weapon system is selected for a given 

target. 

• Decision Support: The CMS supports decision-making by providing tools 

and algorithms to assess various options based on the current combat 

situation. It ensures that operators can make well-informed decisions 

under pressure. 

3. Key Components of the Conceptual Reference Model 

This section outlines the essential components that make up the Conceptual 

Reference Model for an ICS-based CMS. These elements work together to provide the 

necessary functionality for modern combat systems. 

a. Sensor Integration 

• Multi-sensor Systems: The model advocates for integrating multiple 

types of sensors to provide redundant, accurate, and comprehensive 

situational awareness. This includes radar, sonar, infrared sensors, electro-

optical sensors, and other environmental sensing equipment. 
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• Sensor Fusion: The fusion of data from these diverse sensors allows the 

CMS to build a comprehensive, multi-dimensional picture of the 

environment. Redundancy ensures that even if one sensor fails, others can 

compensate. 

• Real-time Data: The integration of real-time data from all sensors ensures 

that the system responds dynamically to changing combat conditions, 

making it vital for modern warfare scenarios. 

b. Data Fusion and Processing 

• Real-Time Processing: The CMS processes raw data from sensors in real-

time. Algorithms and computational models are used to identify, track, 

and assess potential threats and targets. 

• Artificial Intelligence (AI) and Machine Learning: AI and machine 

learning models are used to enhance the accuracy of data fusion. These 

technologies enable the CMS to continuously learn and adapt based on 

changing operational contexts and evolving threats. 

• Threat Prioritization: Data fusion algorithms help the system prioritize 

threats, focusing on the most imminent or dangerous targets. This is 

crucial for managing multiple engagements simultaneously. 

c. Decision Support and C2 

• C2 Subsystems: The C2 subsystem ensures communication between 

different units and facilitates decision-making processes. It allows 

commanders to issue orders, share information, and coordinate actions 

across various units within a fleet. 

• Real-time Operational Picture: A unified operational picture, derived 

from fused sensor data, is displayed to operators and commanders, 

assisting them in making informed decisions quickly. 
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• Automated Decision-Making: In complex scenarios, the CMS can 

provide automated recommendations for actions. These recommendations 

are based on pre-programmed decision trees, predictive models, and real-

time analysis. 

d. Weapon Systems Management 

• Weapon Selection: Based on the nature of the threat and the available 

resources, the CMS selects the most appropriate weapon system (e.g., 

missiles, torpedoes, guns) for engagement. 

• Targeting and Engagement: The CMS coordinates targeting processes, 

ensuring that weapons are accurately aimed and fired at the right moment. 

• Multi-Layered Defense: In certain scenarios, multiple weapon systems 

may be used in tandem (e.g., a ship’s close-in weapon system for defense 

against incoming missiles, while a longer-range system targets air or 

surface threats). 

e. Human-Machine Interface 

• Operator Interface: The human-machine interface (HMI) is the interface 

through which operators interact with the system. It provides visual 

displays, alarms, and controls that allow operators to monitor and control 

the system. 

• Usability: Ensuring that the HMI is intuitive is crucial for effective system 

operation. Operators should be able to process critical information and 

make decisions rapidly, even under stress. 

• Situational Awareness: The HMI provides operators with a clear picture 

of the environment, including real-time status updates and mission-critical 

information, ensuring situational awareness during combat. 
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Figure 10. Murphy Integrated Combat System Concept. Source: Murphy (2022). 
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f. Modularity and Scalability 

• Modular Design: The system is built to be modular, meaning individual 

subsystems (sensors, weapons, communication systems) can be replaced, 

upgraded, or expanded as new technologies become available. 

• Scalability: The modular nature of the ICS allows it to scale across 

different platforms, from individual ships to entire fleets. This scalability 

ensures the system can be adapted for different mission sizes and 

complexities. 

• Future-Proofing: The model is designed with future technologies in 

mind, ensuring that future upgrades can be seamlessly integrated without 

the need for major system redesigns. 

4. Integration of Advanced Technologies 

a. AI Microservices 

• AI in Decision Support: AI microservices are integrated into the CMS to 

enhance decision support capabilities. AI algorithms can assess combat 

scenarios, predict enemy actions, and provide recommendations for 

countermeasures. 

• Autonomous Decision-making: In some cases, the system can make 

autonomous decisions based on predefined parameters, helping to reduce 

operator load and increase reaction speed. 

• Predictive Analytics: AI can analyze historical data and operational 

patterns to predict future outcomes, giving commanders a tactical 

advantage. 
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b. Cybersecurity 

• Threat Detection: As combat systems become more interconnected, 

cybersecurity becomes a critical consideration. The model includes strong 

cybersecurity measures to protect the ICS from cyber-attacks. 

• Data Integrity: Ensuring the integrity of the sensor data and 

communication channels is vital to prevent manipulation or corruption of 

critical information. 

• Resilience: The system is designed to maintain operational capability even 

in the event of a cyber-attack, ensuring that backup protocols and 

redundancies are in place. 

5. System-of-Systems Engineering Approach 

a. System Integration 

• Holistic Design: The ICS-CMS model follows a system-of-systems 

approach, recognizing the interdependencies between subsystems. A 

failure in one subsystem could potentially compromise the entire system, 

so all components must work in harmony. 

• Interoperability: The system is designed to ensure that various 

subsystems, regardless of their manufacturer or technological basis, can 

communicate and operate together seamlessly. 

• Joint Operations: By integrating systems across different platforms and 

services (e.g., Navy, Army, Air Force), the ICS model supports joint 

operations, improving overall coordination and effectiveness. 

b. Complexity Management 

• Decomposition of Systems: To manage the complexity of modern combat 

environments, the system is decomposed into smaller, manageable 

subsystems. This approach ensures that the overall system remains 

adaptable and maintainable. 
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• Integration Challenges: One of the challenges faced in system 

integration is ensuring that all components are compatible with one 

another and can be effectively managed by a central CMS. 

6. Challenges and Considerations 

a. Resource Constraints 

The integration of multiple systems and advanced technologies requires significant 

resources in terms of time, funding, and technical expertise. Effective resource allocation 

is crucial for successful implementation. 

b. Human Factors 

• Operator Training: Ensuring that operators are adequately trained to use 

the CMS efficiently is crucial for the system’s success. 

• User Experience: The system’s HMI design must be optimized for user 

experience, minimizing cognitive overload and reducing the chance of 

operator error. 

c. Life Cycle Management 

Managing the life cycle of the system, from initial design to decommissioning, 

requires careful planning and support. Maintenance, upgrades, and replacements must be 

considered at all stages of the system’s life. 

7. Conclusion 

The ICS-CMS Conceptual Reference Model by Alvin Murphy presents a robust 

and adaptable framework for modern combat management. By focusing on integration, 

modularity, real-time data processing, and advanced technologies like AI, the model 

ensures that naval combat systems can meet the challenges of modern warfare. Through 

effective system design, integration of multiple subsystems, and adaptability to future 

needs, the ICS model provides a comprehensive approach to enhancing combat capabilities 

across naval platforms. 
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This conceptual reference model highlights the critical importance of system 

integration, decision support, and scalability, while also addressing challenges such as 

resource constraints, cybersecurity, and the complexity of modern combat environments. 

Ultimately, this framework enables the creation of highly effective, adaptable, and future-

proof combat systems that can operate across a range of mission scenarios. 

The ICS-CMS Conceptual Reference Model, as articulated by Dr. Alvin Murphy, 

provides a comprehensive framework for understanding and developing modern naval 

combat systems. This model emphasizes the integration of various subsystems to create a 

cohesive and efficient combat management environment. 

Table 10. Summarizing the Integrated Combat System Concept 

Section Key Points 

1. Introduction 

ICS integrates various combat components such as sensors, 
weapons, and communication systems.  
Provides seamless interoperability for operational effectiveness.  
Enhances situational awareness and combat effectiveness. 

Core Features 

Modularity: Allows for easy integration of new technologies.  
Interoperability: Ensures smooth communication across 
platforms.  
Adaptability: Can evolve with emerging threats and technologies. 

2. CMS 

The CMS is the central hub for processing data, coordinating 
weapons, and aiding decision-making.  
Integrates sensors, weapons, and decision support systems.  
Provides operators with a unified operational picture. 

Core Functions 
of CMS 

Sensor Data Processing: Collects and processes raw data from 
various sensors.  
Threat Detection and Assessment: Uses AI to classify and 
prioritize threats.  
Weapon Systems Control: Manages engagement of weapon 
systems.  
Decision Support: Assists operators with decision-making under 
pressure. 

3. Key 
Components of 
the Model 

Sensor Integration: Integrates multiple sensors for accurate, 
redundant situational awareness.  
Data Fusion and Processing: Uses advanced algorithms for real-
time analysis.  
Weapon Systems Management: Manages weapon selection and 
targeting.  
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Section Key Points 
HMI: Provides operators with intuitive controls for effective 
system interaction.  
Modularity and Scalability: Ensures system can be upgraded and 
adapted for different platforms. 

4. Integration of 
Advanced 
Technologies 

AI Microservices: Enhances decision support and automates 
decision-making processes.  
Cybersecurity: Protects against cyber threats and ensures data 
integrity. 

5. System-of-
Systems 
Approach 

Emphasizes integration of subsystems for overall operational 
effectiveness.  
Supports joint operations between various military branches.  
Focus on interoperability and scalability across platforms. 

Challenges and 
Considerations 

Resource Constraints: Need for significant resources (funding, 
time, expertise).  
Human Factors: Ensures effective operator training and intuitive 
interface design.  
Life cycle Management: Focus on maintenance, upgrades, and 
system longevity. 

6. Conclusion 

The ICS-CMS model enables a cohesive, adaptable, and scalable 
approach to modern naval combat.  
Focuses on integrating advanced technologies, AI, and real-time 
data processing.  
Ensures future-proofing through modular design and system 
integration. 

 

B. TECHNICAL STRATEGY 

To further the ICS vision concepts were put into appropriate forms to generate N96 

interest and drive to the vision. The team established a rough breakdown with HW and SW 

as the Foundry and Forge, respectively. These teams moved quickly to implement build 

and development environments using an Agile CS methodology of establishing Objectives 

and Key Results (OKRs) for Planning Intervals (PIs) (3-4 months). While the OKRs helped 

to guide the initially quick steps the general vision needed more definition. The team wrote 

the Now, Next, Later, technical strategy. 

This strategy established two entities as key enablers of the ICS concept, The Forge 

and the Foundry. Articulated throughout multiple USN guidance documents. The strategy 

outlined in Now, Next, Later (NAVSEA 2022) presents a phased approach to modernizing 
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and integrating CSs for naval operations. It emphasizes evolving towards a unified ICS to 

enhance warfighting capabilities, maintain technological superiority, and adapt to 

emerging threats. 

1. Now: Immediate Actions 

The Now phase focuses on addressing urgent needs and setting the foundation for 

future advancements: 

• Incremental Modernization: Updates to current CSs to enhance 

operational readiness, using existing infrastructure and technology. 

• Platform-Specific Capabilities: Maintaining platform independence 

while optimizing CSs for individual ship classes. 

• Interoperability: Ensuring seamless integration between legacy and new 

systems to enable joint operations and data sharing across platforms. 

2. Next: Mid-Term Goals 

The “Next” phase builds on the foundation laid in the Now phase by transitioning 

to a more integrated and flexible CS architecture: 

• Modular Open Systems Approach (MOSA): Implementing modular and 

open architectures to increase adaptability, reduce costs, and facilitate 

technology upgrades. 

• Virtualization and Containerization: Adopting SW virtualization to 

improve resource efficiency and support rapid deployment of capabilities. 

• Improved Cybersecurity: Enhancing resilience against emerging cyber 

threats through robust security frameworks. 

3. Later: Long-Term Vision 

The “Later” phase focuses on achieving the fully realized ICS: 
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• Integrated Fleet-Wide Capabilities: Moving from platform-centric 

systems to a cohesive, networked fleet where all platforms share CS data 

in real-time. 

• Autonomy and AI: Leveraging artificial intelligence and autonomous 

systems to enhance decision-making, reduce operator workload, and 

improve mission outcomes. 

• Continuous Modernization: Establishing an agile, iterative development 

process to ensure the ICS evolves in response to future threats and 

technological advancements. 

To achieve the strategic goals of the fully modularized CMS four key ICS phases 

have been identified in the ICS Strategic Vision [Office of the Chief of Naval Operations 

(OPNAV), 2022] to gauge the maturity of ICS definition, development, fielding, and 

support across these three epochs. These key phases are: 

1. ICS Foundation: A portion of a CMS subdomain with refactored SW 

functions in the form of services (i.e., some legacy functionality strangled 

out) organized by common ICS architecture with cyber resilient 

subdomain enclaves (e.g., CMS, element), running atop an IaaS and PaaS 

infrastructure to bring new/improved warfighting capability. 

2. ICS Enabled: Portions of multiple CMS subdomains with refactored SW 

functions in the form of services, organized by common ICS architecture 

with a cyber resilient enclave (e.g., full CS enclave), running atop an IaaS 

and PaaS infrastructure to bring multiple new/improved operational 

capabilities (Note: this is where the “ICS Tipping Point” is expected to be 

achieved.) 

3. ICS Node: Multiple CMS subdomains with fully refactored SW functions 

in the form of services, organized by common ICS architecture with cyber 

resilient enclaves (e.g., platform and netted level), running atop an IaaS 

and PaaS infrastructure to bring new multiple new/improved operational 

capabilities. 

Acquisition Research Program 
department of Defense Management 
Naval Postgraduate School 

133



4. ICS Fully Realized: All CMS subdomains have refactored SW functions 

in the form of services for all CMS subdomains, organized by common 

ICS architecture with (platform- and netted level) cyber resiliency, 

running atop an IaaS and PaaS infrastructure to bring multiple new/

improved operational capabilities. 

a. Key Principles 

• Agility: The strategy emphasizes flexibility to adapt to changing 

operational and technological environments. 

• Interoperability: Ensuring seamless communication across platforms and 

allies. 

• Cost-Effectiveness: Reducing life cycle costs through modular design and 

efficient acquisition processes. 

• Scalability: Supporting diverse mission requirements through adaptable 

systems. 

b. Key Enablers 

The Forge is a DoD initiative focused on revolutionizing SW development and 

delivery for defense systems. Spearheaded by the USN, the Forge operates as a SW factory, 

leveraging modern development practices and technologies to produce high-quality, 

mission-critical applications with speed and efficiency. 

c. Core Objectives 

The Forge Software Factory aims to address key challenges in traditional defense 

SW development, including lengthy delivery cycles, limited flexibility, and challenges in 

integrating emerging technologies. 
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(1) Accelerated Development and Deployment 

Using Agile and DevSecOps methodologies, The Forge emphasizes continuous 

integration, testing, and delivery to reduce the time required to deliver SW to operational 

platforms. 

(2) Scalability and Adaptability 

The Forge focuses on producing modular, scalable solutions that can be easily 

adapted to evolving mission requirements, ensuring long-term relevance and usability. 

(3) Cybersecurity Embedded in Development 

Security is integrated into every phase of the SW life cycle (DevSecOps), ensuring 

robust defenses against cyber threats from the outset. 

(4) Cross-Platform Interoperability 

Building SW with a MOSA to ensure compatibility across diverse systems and 

platforms within the USN and joint forces. 

d. Development Methodology 

The Forge Software Factory aims to address key challenges in traditional defense 

SW development, by use of modern methods. 

(1) Agile Practices 

The Forge adopts Agile principles, breaking projects into smaller, iterative sprints 

that enable faster delivery of incremental capabilities and better responsiveness to changing 

requirements. 

(2) DevSecOps Integration 

By embedding security and operations within the development process, The Forge 

ensures that SW is secure, operationally reliable, and deployable in real world 

environments. 
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(3) Cloud-Native Technologies 

The Forge relies on cloud infrastructure to facilitate rapid scaling, resource 

optimization, and easier collaboration across teams. 

(4) Automation Tools 

Leveraging automation for testing, deployment, and monitoring reduces human 

error, accelerates timelines, and ensures consistency. 

4. Key Achievements 

a. Reduced Development Cycles 

The Forge has significantly shortened the time needed to develop and deploy 

applications, moving from years under traditional models to months or even weeks. 

(1) Enhanced Cyber Resilience 

With security integrated into development, Forge-produced applications meet 

stringent DoD cybersecurity standards. 

(2) Operational Software Delivery 

The Forge has delivered tools for critical mission areas such as maritime operations, 

autonomous systems, and data analytics, showcasing its capability to support cutting-edge 

defense technology. 

b. Strategic Importance 

(1) Rapid Response to Emerging Threats 

The Forge enables the USN to quickly adapt to shifting operational environments 

by rapidly developing and deploying new capabilities. 

(2) Cost Efficiency 

By modernizing development practices, The Forge reduces the financial burden 

associated with traditional waterfall-style SW development. 
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(3) Collaborative Ecosystem 

The Forge promotes collaboration between government, industry, and academia, 

fostering innovation and leveraging expertise across sectors. 

C. THE FOUNDRY: U.S. NAVY HARDWARE FACTORY 

The Foundry is a USN initiative designed to streamline the design, production, and 

delivery of cutting-edge HW systems for naval operations. Similar to the Forge Software 

Factory, which focuses on SW, the Foundry aims to modernize and accelerate the USN’s 

approach to HW development, ensuring warfighters have access to the most advanced and 

reliable systems to meet emerging challenges. 

1. Core Objectives 

The Foundry addresses inefficiencies and limitations in traditional HW 

procurement and development by focusing on the key objectives outlined here. 

a. Rapid Prototyping and Deployment 

• Emphasizes the quick design, testing, and fielding of HW prototypes to 

meet urgent operational needs (Department of the Navy [DON], 2021). 

• Reduces the development-to-deployment timeline using modular and 

additive manufacturing techniques (DON, 2021). 

b. Standardization and Modularity 

• Implements a MOSA to ensure HW components are interoperable across 

platforms and can be easily upgraded or replaced (Office of the Under 

Secretary of Defense for Acquisition and Sustainment [OUSD(A&S)], 

2020). 

c. Integration with Software Development 

• Synchronizes HW development with SW capabilities from initiatives like 

The Forge to ensure seamless performance in complex systems (DON, 

2021). 
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d. Scalability and Sustainability 

• Focuses on designing HW scalable for various platforms, including 

surface ships, submarines, and unmanned systems. 

• Uses sustainable materials and processes to align with environmental and 

long-term operational goals (DON, 2021). 

e. Cost Efficiency 

• Reduces costs through advanced manufacturing techniques, streamlined 

supply chains, and efficient resource allocation (DON, 2021). 

2. Key Features 

a. Advanced Manufacturing 

• Employs 3D printing and additive manufacturing to produce complex 

components quickly and cost-effectively (Defense Innovation Unit, 2020). 

• Enables on demand production, reducing inventory needs and minimizing 

logistical challenges. 

b. Agility in Design and Production 

• Utilizes Agile methodologies for iterative HW development, allowing 

rapid adaptation to changing requirements (DON, 2021). 

• Shortens the design cycle through digital engineering and simulation tools 

(OUSD(A&S), 2020). 

c. Cybersecurity for Hardware Systems 

• Ensures HW components are resistant to tampering and cyber threats, 

integrating security measures into every stage of the design and production 

process (DON, 2021). 
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d. Collaborative Development 

• Partners with industry and academia to leverage the latest research and 

innovations in HW technology (Defense Innovation Unit, 2020). 

e. Data-Driven Decision-Making 

• Uses advanced analytics and digital twin technology to optimize designs, 

predict maintenance needs, and improve life cycle management 

(OUSD(A&S), 2020). 

3. Key Achievements 

a. Prototyping Success 

• Delivered prototypes for USVs, including ruggedized computing HW and 

sensor systems, within compressed timelines (DON, 2021). 

b. Fleet-Wide Modernization 

• Contributed to upgrading aging combat systems by replacing obsolete HW 

with modern, modular components (OUSD(A&S), 2020). 

c. Enhanced Readiness 

• Improved operational readiness by producing HW systems that integrate 

seamlessly with existing platforms and SW systems (DON, 2021). 

d. Supply Chain Resilience 

• Built more resilient supply chains by adopting domestic manufacturing 

capabilities and reducing reliance on foreign suppliers (Defense 

Innovation Unit, 2020). 

4. Strategic Importance 

The Foundry is crucial to ensuring the USN can maintain technological superiority 

and operational readiness in an era of rapid technological advancement. Key benefits are 

outlined here. 
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a. Adaptability to Emerging Threats 

• By enabling rapid prototyping and deployment, the Foundry allows the 

USN to respond quickly to new challenges in the maritime domain (DON, 

2021). 

b. Innovation Ecosystem 

• Encourages innovation through collaboration with industry and academic 

institutions, driving the development of next-generation HW. 

c. Life Cycle Optimization 

• Extends the lifespan of critical systems by ensuring HW can be easily 

upgraded and maintained over time (OUSD(A&S), 2020). 

d. Force Multiplier 

• Enhances the USN’s overall combat effectiveness by providing high-

quality, interoperable HW systems that meet the demands of modern 

warfare (DON, 2021). 

Table 11. The Forge Software Factory versus The Foundry Hardware 
Factory 

Aspect The Forge The Foundry 

Focus 
Revolutionizing SW 
development and delivery for 
defense systems. 

Streamlining the design, 
production, and delivery of 
advanced HW systems. 

Core 
Objectives 

Accelerated development using 
Agile and DevSecOps. 

Rapid prototyping and deployment. 

Modular, scalable solutions. Standardization through MOSA. 
Cross-platform interoperability. Integration with SW systems. 

Development 
Methodology 

Agile practices for iterative 
progress. 

Agile methodologies for HW 
design. 

DevSecOps integrating security 
throughout development. 

Advanced manufacturing (e.g., 3D 
printing). 

Cloud-native technologies. Data-driven decision-making using 
digital twin technology. 
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Aspect The Forge The Foundry 
Automation for testing and 
monitoring. 

  

Key Features 

Continuous integration, testing, 
and deployment. 

Modular, upgradable designs. 

Robust cybersecurity embedded 
in the life cycle. 

Cybersecurity measures in HW 
systems. 

Automation-driven efficiency. Collaboration with industry and 
academia. 

Achievements 

Reduced development cycles 
from years to months or weeks. 

Delivered HW prototypes for USVs 
within compressed timelines. 

Enhanced cyber resilience. Upgraded aging combat systems 
with modern components. 

Delivered SW for autonomous 
systems, maritime ops, and 
analytics. 

Improved supply chain resilience. 

Strategic 
Importance 

Rapid response to emerging 
threats. 

Enhanced adaptability to emerging 
threats. 

Cost-efficient development 
practices. 

Life cycle optimization with 
scalable, sustainable designs. 

Collaboration ecosystem for 
innovation. 

Force multiplier in combat 
effectiveness. 

 

The Forge and the Foundry are key pillars in the USN’s modernization strategy, 

driving digital transformation and HW innovation. The Forge exemplifies Agile, 

DevSecOps, and cloud-based practices to deliver efficient, secure, and adaptable SW 

solutions, serving as a model for military-wide application. Complementing this, The 

Foundry focuses on developing cutting-edge, flexible, and secure HW, ensuring the USN 

maintains technological superiority in an evolving global security landscape. Together, 

they align with initiatives like the ICS to redefine how defense capabilities are developed 

and sustained in the 21st century. 

D. ARCHITECTURE 

With architectures, workflow process, and development environments established 

the USN team has set-off to refine initial schedules and cost estimates based on realized 

Forge SW development progress and the newly awarded systems engineering (SE) and 
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systems integration (SI) contract. The SE/SI contract is a key enabler to Forge and SW 

refactoring activities 

1. Architecture Strategy 

The PEO IWS (2024) ICS, CS Re-Architecture Strategy and Approach strategy 

document outlines goals, cornerstones, and an approach to build a common CMS on a 

modern services-based architecture. This document states, as the ICS Re-architecture Goal, 

“By FY28, our goal is to completely phase out heritage CSs by 100% re-architecting to a 

unified ICS” (PEO IWS 2024). ICS architecture while continuously deploying hybrid ICS 

configurations across IaaS-equipped Surface Platforms” (PEO IWS 2024). 

The core result of ICS architecture and re-architecture efforts is a CMS which 

provides combat direction capability through the management and deconfliction of sensor 

and weapon tasks within the combat system. The CMS provides for the integration of multi-

warfare area displays, track pictures, and decisions. Additionally, the CMS provides an 

integrated assessment of platform readiness to complete assigned missions (PEO IWS 2024). 

The ICS-CMS is inclusive of infrastructure, display, planning, C2, training, and 

element interface SW. This CMS provides force-level functions to services necessary to 

coordinate information and effects across the force. Guiding the ICS-CMS architecture are 

five cornerstones. Table 7–3 summarizes the architecture cornerstones. 

Table 12. Cornerstones of Combat Management System Modernization 

Cornerstone Key Focus Objectives and Features 

1. Software 
Agility 

Delivering capabilities 
rapidly at the “speed of 
relevance.” 

Reduce resource, build, test, and delivery 
timelines for upgrades. 
Modular, loosely coupled SW functions for 
easy updates. 
Enable over-the-air updates. 

2. Tactical 
Automation 

Enhanced decision-
making using AI, ML, 
and visualization. 

Common data understanding through 
ontologies and common data models. 
Develop ICS-based reference architecture for 
consistent automation. 
Update interfaces for AI use. 
Upgrade once, proliferate widely. 
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Cornerstone Key Focus Objectives and Features 
3. Single 
CMS 
“Core” 

Unified CMS 
integration across all 
ship classes. 

Standardize user interfaces to reduce training 
needs. 
Leverage UX/UI best practices for usability. 

4. Seamless 
C2ISR&T 
Integration 

Integrating C2ISR&T 
data. 

Multi-level security for seamless data 
sharing. 
Reference architectures for C4I and CS 
integration. 
Enable actionable tactical insights. 

5. Combat 
System-of-
Systems 

Connecting multiple 
ships’ sensors and 
effectors into a unified 
Combat SoS. 

Real-time situational awareness for decision-
making. 
Access and control data across all ICS nodes. 
IoT-style architecture for distributed 
operations and cybersecurity. 

 

The re-architecture approach follows a Refactor, Rehost, and Re-Write strategy. In 

the PEO IWS ICS document these activities are defined as: 

• Refactor: Modernize existing code in place to improve how the code 

works, without changing what the code fundamentally does. This includes 

applying the strangler pattern and implementing Facades, reorganizing the 

code and other code improvements, wrapping that code in VMs, 

establishing external APIs as necessary, and carry-in the VMs into the new 

architecture. Migration directly to containers is also possible but depends 

on the degree of modernization of the code, and may require additional 

effort beyond what would be required to host in VMs (PEO IWS ICS 

2024). 

• Rehost: Wrap existing code in VMs, establishing external APIs as 

necessary, and carry-in the VMs into the new architecture. Rehosting code 

associated with a function (or functions) does not change the code itself, it 

focuses on wrapping it so that it can be extracted and carried-in to the new 

architecture (PEO IWS ICS 2024). 

• Greenfield Re-Write: A re-write of the code associated with a function 

based on the intent of the original function. This can also be accomplished 

by pulling in a 3rd party solution that satisfies the function. The results in 
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either case are new applications hosted in containers compliant with the 

ICS architecture (PEO IWS ICS 2024). 

• Greenfield New: New function(s) written from scratch required as part of 

the ICS architecture that do not exist in heritage CS architectures today. 

These may be driven by technology advancements or ICS requirements 

beyond those of heritage systems. This can also be accomplished by 

pulling in a 3rd party solution that satisfies the function. Similar to 

greenfield re-write, the results in either case are new applications hosted in 

containers compliant with the ICS architecture.  

Figure 11provides an overview of the ICS Re-architecture (PEO IWS ICS 2024). 
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Figure 11. Integrated Combat System Heritage Code Re-Architecture Approach. Source Program Executive Office, 

Integrated Warfare Systems–Integrated Combat System (2024).
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2. Services-Based Architecture 

With ICS processes in place and a high level architecture established, the USN team 

developed a next level breakdown (ICS service-based architecture) of the system which 

was led by an external consultant in conjunction with ICS SMEs to help eliminate legacy 

CS bias. 

The resultant notional ICS service-based architecture is expected to grow and 

change as solution white papers are developed, transforming legacy architectures into a 

modern containerized set of services for the CMS. Figure 12 provides this notional outline 

of the reallocation of legacy Aegis and SSDS functions into a services-based architecture. 

 
Figure 12. Mapping Legacy Combat System Code to a Service-Based 

Architecture 
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To better assess the size of the effort to refactor two codebases into a common ICS 

the USN team leveraged the detailed Software Requirements of Aegis and SSDS. At the 

Software Requirement Specification, or B5, level the team identified Capability Building 

Blocks (CBBs). CBBs have a history with CS development dating to ~2012 with Aegis BL 

9.2 development under the Advanced Capability Build 2016 (ACB-16) program. CBBs are 

further used on existing BL9 development, BL10, FFG, and other development efforts. 

By breaking the refactoring effort into CBBs the team can “tackle” the services-

based refactoring by addressing groups of services needed to perform an end capability. 

The main benefit of this ICS / CMS re-architecture is the ability to rapidly deliver 

capability to the war fighter. Modern SW development demands flexibility, scalability, and 

rapid delivery, driving the DoD to adopt microservices architectures combined with CI/CD 

pipelines to achieve these goals. This combination enables SW teams to meet ever-evolving 

threats while maintaining high reliability, scalability, and developer productivity. Without 

developing a modernized delivery process the significant benefits of microservices would 

be lost. 

E. MODERNIZING SOFTWARE DISTRIBUTION: DELIVERY PIPELINE 

Increased capability to threat SW delivery is essential to meet threats to national 

security through maritime superiority. To provide this capability CI/CD of serviced based 

SW is needed. As important as CS SW capability is the underlying security of the CS 

components and the IaaS/PaaS SW. 

As the technology landscape evolves, organizations are increasingly adopting 

microservices architecture and CI/CD pipelines to improve SW delivery efficiency, 

scalability, and adaptability. Together, these approaches address many of the limitations of 

traditional SW development methodologies, empowering businesses to innovate rapidly, 

scale seamlessly, and maintain high-quality applications. 

CI/CD pipelines are critical components of modern SW development. CI refers to 

the practice of frequently integrating code changes into a shared repository, while CD 
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automates the delivery of applications to production after the build process. Together, CI/

CD pipelines enable faster, more reliable SW delivery. 

1. Faster Time to the War Fighter 

CI/CD pipelines streamline the development, testing, and deployment process, 

significantly reducing the time it takes to deliver SW updates. 

• Automated Testing: With CI/CD, testing becomes an automated part of 

the process, ensuring that code changes are validated early and often. This 

reduces manual testing efforts and accelerates the release cycle. 

• Frequent Releases: By automating the build, test, and deployment 

processes, CI/CD enables teams to deploy updates to production on a 

regular basis, reducing the time between development and customer-

facing changes (Humble & Farley, 2010). 

2. Improved Code Quality 

CI/CD pipelines help maintain high standards of code quality by integrating 

automated testing and continuous feedback into the development process. 

• Early Detection of Bugs: Automated testing within the CI pipeline 

ensures that bugs are detected early in the development cycle, preventing 

them from propagating to production. This early detection reduces the 

time and cost associated with fixing bugs later in the process. 

• Consistent Quality Assurance: CI/CD pipelines enforce a consistent 

testing process, ensuring that each code change meets predefined quality 

standards before being deployed (Humble & Farley, 2010). 

3. Reduced Risk of Deployment Failures 

CI/CD pipelines reduce the risks associated with SW deployment by automating 

the process and ensuring that each release is thoroughly tested. 
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• Continuous Feedback: Developers receive immediate feedback when 

issues are detected, allowing them to address problems before they reach 

production (Humble & Farley, 2010). 

• Automated Rollback: CI/CD pipelines can include automated rollback 

mechanisms, so if a deployment fails, the system can revert to the last 

known stable version without manual intervention (Humble & Farley, 

2010). 

4. Enhanced Collaboration and Transparency 

CI/CD pipelines foster collaboration among developers, testers, and operations 

teams, promoting a shared responsibility for the success of the application. 

• Collaborative Development: CI/CD pipelines facilitate communication 

between teams by providing a single point of integration and visibility for 

the development process (Humble & Farley, 2010). This transparency 

helps ensure that all stakeholders are aligned on the status of the 

application. 

• Continuous Improvement: With regular deployments, teams can 

continuously assess and improve the development process, ensuring that 

workflows remain efficient and aligned with the evolving needs of the 

business (Humble & Farley, 2010). 

5. Reliability and Consistency 

By automating the build, test, and deployment processes, CI/CD pipelines reduce 

the variability associated with manual deployments. 

• Repeatable Deployments: CI/CD ensures that the same process is 

followed for every deployment, eliminating human error and ensuring that 

every deployment is consistent with the previous one (Humble & Farley, 

2010). 
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• Reliability in Production: With automated testing and continuous 

integration, CI/CD pipelines increase the reliability of production releases. 

6. Greater Flexibility and Agility 

CI/CD pipelines support agile development practices by enabling rapid iterations 

and frequent releases of new features and bug fixes. 

• Faster Feedback Loops: With automated testing and continuous 

integration, teams can quickly assess new code and rapidly respond to 

feedback from stakeholders (Humble & Farley, 2010). 

• Iterative Development: CI/CD pipelines support the agile model, coupled 

with micro services-based architectures it is easier to implement frequent, 

smaller releases rather than infrequent, large ones. This enables USN 

developers and the Forge to react quickly to emergent threats and make 

changes more efficiently. 

The combination of microservices architecture and CI/CD pipelines offers 

significant benefits for modern SW development. Microservices enable scalability, 

modularity, and flexibility, while CI/CD pipelines streamline the development, testing, and 

deployment processes. Together, these practices reduce development cycles, improve code 

quality, and enhance collaboration, ensuring that USN organizations can deliver high-

quality SW at scale, respond quickly to threats, and maintain operational agility. 

F. CONCLUSION 

The ICS-CMS Conceptual Reference Model by Alvin Murphy outlines a 

framework for modernizing naval combat systems by focusing on integration, modularity, 

real-time data processing, and advanced technologies like AI. The model aims to ensure 

naval platforms can adapt to modern warfare challenges by creating efficient, scalable, and 

adaptable combat systems. It addresses key issues such as system integration, decision 

support, cybersecurity, and resource constraints, enabling the USN to operate effectively 

in complex environments. 
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The ICS framework integrates various subsystems to improve decision-making 

through real-time data processing, AI, and automation. These technologies help reduce 

operator workload and speed up decision-making. The development of ICS is structured 

around the Now, Next, Later vision, which outlines a phased modernization process. The 

Now phase addresses urgent needs by enhancing legacy systems and ensuring 

interoperability. The “Next” phase emphasizes flexible, modular architectures and 

improved cybersecurity. The “Later” phase envisions a networked fleet with AI and 

autonomous systems, supported by continuous modernization. 

The ICS development follows four key phases: ICS Foundation, ICS Enabled, ICS 

Node, and ICS Fully Realized. Each phase progressively integrates modular systems across 

platforms and enhances cybersecurity, preparing the USN for future operational needs. The 

ICS emphasizes agility, interoperability, cost-effectiveness, and scalability to meet diverse 

mission requirements. 

Key enablers of ICS include the Forge Software Factory and the Foundry Hardware 

Factory. The Forge uses Agile and DevSecOps practices to accelerate SW development 

and ensure security, while the Foundry focuses on rapidly prototyping and deploying 

hardware using modular designs and advanced manufacturing techniques. Together, these 

initiatives allow the USN to respond quickly to emerging threats and ensure technological 

superiority. 

In conclusion, the ICS framework provides a comprehensive modernization 

strategy that integrates SW, hardware, and advanced technologies. It ensures the USN’s 

CSs remain flexible, resilient, and capable of meeting the evolving challenges of modern 

warfare. Through initiatives like the Forge and the Foundry, the USN can maintain its 

operational readiness and adapt to future needs. 

This paper endeavored to lay a foundation from purpose-built DoD computing and 

weapon systems and the SW structures these early capabilities supported, to the path 

towards adoption of practices and components enabling the USN to “Deliver Resilient 

Warfighting Capability at the Speed of Relevance.” 
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The following summarizes the key findings of the architectures and process 

improvements which are guiding efforts and modernizing the USN Surface Force. 

1. Monolithic Architecture Overview 

Monolithic SW integrates all components—UI, business logic, and data access—

into a single codebase, simplifying initial development, deployment, and version control 

(Fowler & Lewis, 2014; Bass et al., 2021). However, as the application grows, maintaining 

the codebase becomes challenging, with updates in one area affecting others, leading to 

time-consuming and error-prone changes (Newman, 2021). 

a. Challenges with Monolithic Systems 

Monolithic systems are tightly coupled, meaning minor updates require widespread 

changes, complicating scaling and maintenance. This increases testing and redeployment 

costs, slowing progress. As the system grows, the initial simplicity diminishes, making the 

codebase harder to manage 

b. Deployment Simplicity 

While monolithic systems offer simple deployment as a single unit, this simplicity 

becomes less effective over time, as managing the system becomes increasingly difficult 

as the application evolves. 

2. Transition to Microservices and the Navy’s Approach 

The USN has transitioned from purpose-built computing systems to modern 

architectures, enabling the fielding of granular microservices-based SW in weeks rather 

than months or years. This shift significantly reduces the cost of development, testing, 

certification, and distribution of capabilities. The USN’s core capabilities and their 

limitations are outlined in Table 4–1, showcasing this technological progression. 

a. Microservices Architecture Overview 

Microservices architecture focuses on service independence, loose coupling, and 

decentralized data management. By adopting principles like the SRP, automated 
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deployment, and resilience, organizations can create scalable and flexible systems. 

Microservices support business alignment through DDD and centralized concerns via the 

API Gateway, contributing to efficient and reliable applications. 

b. Challenges with Microservices 

Despite its advantages, microservices architecture comes with increased 

complexity in managing multiple services, communication overhead, and data 

management. Testing, deployment, and operational challenges can slow efficiency. 

Security concerns, service discovery, and organizational impacts also need addressing to 

ensure successful implementation. 

c. DevOps Integration with Microservices 

DevOps practices enhance microservices by promoting automation, collaboration, 

and continuous improvement. Practices like continuous integration, deployment, and 

automated testing enable faster market delivery and improved quality. However, 

integrating DevOps with microservices introduces complexity, tooling challenges, and 

security concerns that organizations must overcome. 

3. Large Unmanned Surface Vessel Integrated Combat System 
Development and Challenges 

The USN’s development of the LUSV ICS encountered significant challenges due 

to legacy procurement approaches. Systems like Technology Insertions 12 and 16 suffered 

from hardware obsolescence, which hindered the deployment of cutting-edge solutions. To 

address this, the DoD turned to OTAs for more flexibility in R&D, enabling rapid 

prototyping and innovation. 

The challenges of legacy procurement led to a focus on agile procurement strategies 

and integrating modernization efforts to combat obsolescence. OTAs, contractor education, 

and prioritizing long-term value over cost efficiency are key strategies for overcoming 

procurement barriers and ensuring timely system delivery. 
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4. Integrated Combat System Conceptual Framework for 
Modernization 

The ICS framework emphasizes integration, modularity, real-time data processing, 

and AI to modernize naval combat systems. The framework supports efficient decision-

making, improved cybersecurity, and the integration of new technologies. The phased 

approach—Now, Next, Later—focuses on urgent needs, flexible architectures, and 

autonomous systems, preparing the USN for future challenges. 

5. Integrated Combat System Development Phases and Key Enablers 

ICS development follows four phases: ICS Foundation, ICS Enabled, ICS Node, 

and ICS Fully Realized, progressively integrating modular systems and enhancing 

cybersecurity. Key enablers like the Forge Software Factory and the Foundry Hardware 

Factory accelerate SW development and hardware prototyping using agile practices and 

modular designs. These initiatives ensure the USN can respond quickly to emerging 

threats. 

6. Integrated Combat System Modernization Strategy 

The ICS framework integrates SW, hardware, and advanced technologies, ensuring 

that the USN’s combat systems remain flexible, resilient, and capable of adapting to 

modern warfare challenges. Through initiatives like the Forge and the Foundry, the USN 

can maintain operational readiness and continuously modernize its capabilities to meet 

future needs. 

G. IMPLICATIONS FOR FUTURE NAVY 

The transition from monolithic computing SW to modern architectures, particularly 

microservices, has significant implications for the future of the USN. The monolithic 

approach, characterized by a unified codebase that simplifies initial development and 

deployment, faces challenges as systems grow. The difficulty in managing large codebases, 

the risk of error-prone updates, and the complexity of scaling hinder long-term 

effectiveness. As applications evolve, the simplicity of monolithic architecture diminishes, 

making them less adaptable to modern operational needs. 
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In contrast, microservices architecture provides a more flexible, scalable, and 

modular approach that better aligns with the USN’s evolving technological requirements. 

By emphasizing service independence, loose coupling, and decentralized data 

management, microservices allow for quicker updates, enhanced resilience, and more 

efficient systems that can evolve rapidly in response to operational demands. However, the 

adoption of microservices comes with its own challenges, including the complexity of 

managing multiple services, testing difficulties, increased operational overhead, and 

security concerns. 

To fully leverage the advantages of microservices, the USN must continue to 

integrate and refine modern practices like DevOps, which enable continuous integration, 

automated deployment, and rapid iteration. This allows for faster time-to-market, improved 

quality, and better scalability. However, DevOps adoption must overcome challenges such 

as complexity, tooling requirements, and cultural shifts within the organization. 

Furthermore, the USN’s transition from legacy procurement methods to more agile 

models, like OTAs, allows for faster innovation and the development of cutting-edge 

solutions, as demonstrated in the LUSV program. The ability to rapidly prototype and 

deploy systems, such as virtualized combat SW, helps the USN maintain operational 

relevance and readiness in the face of evolving threats. 

Modernizing USN combat systems through initiatives like the ICS-CMS which 

emphasizes modularity, real-time data processing, and advanced technologies such as AI. 

By improving decision-making, reducing operator workload, and enhancing cybersecurity, 

ICS will ensure that the USN’s combat systems remain flexible and resilient. The use of 

Agile and DevSecOps in the development of ICS, along with rapid hardware prototyping, 

supports a more adaptive and efficient approach to meeting future operational needs. 

H. FINAL THOUGHTS 

The shift from monolithic to microservices-based architectures, coupled with agile 

procurement practices and modernization efforts, positions the USN to maintain 

technological superiority and adaptability in the rapidly changing landscape of modern 
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warfare. Through initiatives like the Forge Software Factory and the Foundry Hardware 

Factory, the USN can continue to innovate and respond effectively to emerging challenges. 

But these efforts are not without challenges. The scope of the effort to re-architect 

CS SW and build the fully realized ICS is both very large and complex. And, while rapid 

prototype efforts like USV ICS CI demonstrate the value of streamlined procurement 

vehicles like the OTA, industry teams will gain greater control of technical solutions and 

costs. 

It is incumbent on USN leadership and the government to exert and maintain the 

right balance of oversight and control and maintain the technical acumen to oversee these 

developments. The right balance is one where small and highly capable teams can maintain 

critical oversight while not significantly impeding the pace of development to Deliver 

Resilient Warfighting Capability at the Speed of Relevance! 
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