Please use this identifier to cite or link to this item: https://dair.nps.edu/handle/123456789/5143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRaymond Madachy, Ryan Bell-
dc.contributor.authorRyan Longshore-
dc.date.accessioned2024-06-03T14:30:12Z-
dc.date.available2024-06-03T14:30:12Z-
dc.date.issued2024-05-01-
dc.identifier.citationAPAen_US
dc.identifier.urihttps://dair.nps.edu/handle/123456789/5143-
dc.descriptionSYM Paperen_US
dc.description.abstractArtificial Intelligence (AI) based tools that assist in generating system artifacts are transforming systems and software engineering lifecycles. Drastic reductions in effort are possible using tools that use large language models (LLMs). This research addresses the new challenges in systems and software cost modeling with the introduction of cost factors and size measures to incorporate into existing parametric cost models.en_US
dc.description.sponsorshipARPen_US
dc.language.isoen_USen_US
dc.publisherAcquisition Research Programen_US
dc.relation.ispartofseriesAcquisition Management;SYM-AM-24-080-
dc.subjectArtificial Intelligence (AI)en_US
dc.subjectGenerative Artificial Intelligenceen_US
dc.subjectSystems Engineeringen_US
dc.subjectsoftware engineeringen_US
dc.subjectLarge Language Models (LLMs)en_US
dc.subjectsystem cost modelingen_US
dc.subjectCOSYSMOen_US
dc.subjectCOCOMOen_US
dc.subjectParametric Cost Modelingen_US
dc.subjectAcquisition Cost Modelingen_US
dc.titleSystems Acquisition Cost Modeling Initiative for AI Assistanceen_US
dc.typeTechnical Reporten_US
Appears in Collections:Annual Acquisition Research Symposium Proceedings & Presentations

Files in This Item:
File Description SizeFormat 
SYM-AM-24-080.pdf637.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.